Journal of the Mathematical Society of Japan Vol. 2, Nos. 1-2, Sept, 1950
Riemann Spaces of Class Two and Their Algebraic Characterization.

Part II.
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- In this paper we give a necessary and sufficient condilion that a
Riemann space R,(z =>8) be of class two, making use of the type number
discussed in a preceding paper®.

§ 1. A reality condition

Suppose that a Riemann space R,(n# = 6) of class two is of type =3,
and put

Ky=pu+eq; (f=—1); (1-1)
where the tensor Kj; is the solution of (1:9) of the part I, i. e.
M= Koy Koy, )
and p's and ¢'s are all real. The tensor My, in (1-2) is defined by (1-10)
of the part I, i. e.

1 « o
Mjklz_Q—(Rc.f(leal. kz))- (1’3)

Substituting (1-1) in (1-2) and equating to zero the imaginary parts we
have

LesZin + G 8wy =0- (1-4)
(A) Suppose that det. |¢|>0. Contracting (1:4) by ¢¥ we have

(” - 4) Pt gabpabgij::oy

and contracting it by ¢ we have ¢”p,=0 for n>2. Therefore all of
2 are zero for #>6. Hence the K’s are pure imaginary except zero.
(B) Suppose that det. |g|=0. If the rank of ||g|| is 2¢(#> 26> 6),
we have similarly p,;=0 for 7, j=1,...... , 26.
Next putting £, /=1,...... , 20 and ¢, 7>2¢ in (1-4) we have ¢u2,;,=0,
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and therefore p,,=0 for 7, 7> 20 if 20 > 2.
Finally putting ¢, 7, £2=1,...... 20 and />2¢ in (1.4) we have

. DaG i+ Pregis+ 1;90=0,
Contracting this by ¢* we have p,=0 for /=1,...... 20 and /> 20 if 20>4.
Hence the following cases may occur : )
(I) 26 = 6; then p,;=0 (¢, j=1,...... y 1),
(1) 26 =4; then p,;=0 (=1,...... , n; f=5,...... 7);
(III) 26 = 2; then p,;=0 (¢, ;/=3,...... 7),
(IV) 26 =0; then p,;=0 (¢, j=1,...... 7).

If the cases (II) or (III) are assumed to hold, we have immediately
that a maximum value of rank of [[K]| is four in contradiction to
hypothesis on the type number and we have the

Lemma:...... If @ Riemnann space R,(n2>6) of class two is of type =3,
the solutions K's of (1.2) are all real or pure imaginary exccpt zero.

Now we put

Kg(h,i,j,k,l,m) = El 0 Ky Khj K Km K,
—Ke 0 Ky Ka Ka @K,
}; — Ky K;; 0- Ky Ky K, '
K —Ke —Kp O K K, @9
=Ky —Ke —Ky —Ke 0 K,
K —Ki —Kjpy —Kiw — K, 0

and
0 )
M TRkl m) = 0 JW;'kzm M1 ]szzm ]”ijkm ]‘[iﬂcl
_Mjklm 0 Mtklm -Z‘/];lem Mljkm Mjkl
_Mklm _Mlklm 0 Mmm Mlibu Mlikl 6
1.
M — Mgy — Yo O My My | O

- Mjkm - Mljkm - Mnlcm - Mn‘jm 0 Matjlc
- Mjkl - Mljkl - Mu’kl - Mu‘jl — M, htjk ‘0

and let Kp;jrimy and My, ;r.my be respectively the Pfaff’s aggregate of
0l 9
K gigtomy A0 I g g0, me
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From the theory® of determinant, for example, let K ;; be the algebraic
complement of Kj; in det. K’u.;::m- 1The algebraic complement Xj; in
Koigrpm 18 My, as it is seen from (1-2). Then we have

K 1i= Mipsne Kt g rmys 1-7)

and so on. Let K24, ;.. be the determinant, whose elements are A';,...,

.., X,,, then we have

72 A — 2 ! 2 3
,A (h,i,j,/c,l,m)""M (h,i,j‘k,l,m)l[( (h,z',j,lc,l,m)} . (1'8)

As K°®g4j00m 15 of order six, we have

72 —_— 2 5
K (h,f,j,k,z,m)—{]f (h,i,j,k,l,m)}' )

Now, from the hypothesis on the type number, we can take 7%, 7, j, &, /,

m so that K4, ;..m is not zero. Hence we have from (1.8)

{ K wiogeimy 1= g 10,m (1-9)
K*gia0my 1S positive, because it is square of real polynomial of
Kpirevnres , K- On the other hand we have from (1-2)
K it tymy = 1.5, 10,m (1-10)
Then we have
M o.3,00m = O- (1-11)

If K’s be pure imaginary except zero and the rank of [|X|| be =6,
there is one of K%y ;..m which is negative. Hence from (1-10), (1-11)
and lemma we have the |

Theorem 1. I...... If a real Ricmaun space R, (n2=6) of class two
is of type =3, solutions K’s shall be real if, and only if, the inequality
(1.11) is satisfied.

§ 2. The resultant system

From (1.9) we have the
Lemma: ...... If a real Riemann space R.(n=6) of class two is of
Lype =3, it is necessary that
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M 2(h,z,j,lc,z,m)> 0; (2 . 1)

where the Summation is to be extended over all possible valucs of the indices
appearing in ihe above delerminant.

Further necessary conditions in the form of a system of linear
homogeneous equations can be derived as follows. Let us write (1-2) in
their homogeneous form namely,

A2 Mjkl’: Ix’i(j[(‘kl)' (2 . 2)

We multiply (1-2) by K, and subtract the expression obtained by
interchanging 72 and / and then we have by means of (1-2)

Ki; Mymia+ Kot K ilMm s ¥ K Mijin - £ osMignr + KindMy5,,=0. (2:3)

Consider the equations (2-:2) and (2:2) as a system for the determination
of the unknowns A and K’s. Since R, is of class two and of type >3,
the system must admit such a solution that the matrix ||AX || has rank > 6,
hence the system composed of (2-2) and (2-3) must admit a non-trivial
solution (4, K’s). Now we know from the theory® of a system of
homogeneous algebraic equétions that the above equations (2.2) and
(2:3) must admit a resultant system, i. e. a set of polynomials in the
components AM’s such that the vanishing of these polynomials is necessary
and sufficient for the existence of a non-trivial solution. Representing the
resultant system of (2.:2) and (2-3) by R(M), it follows that

R(M)=0 (2-4)

is a necessary condition for a Riemann space R, to be of class two.
Suppose (2:4) to be satisfied. Let (A, K’s) be a non-trivial solution
of (2-2) and (2-3). Suppose A4=0 in this solution. Then by the similar
way as in § 1 of the part I we have the rank of matrix ||X|| to be zero
or two. If the rank of [|K|| is two, taking the coordinate system such
that all of Kj; are zero except K;, and putting i=1, ;=2 and %, 4, /,
nm=3,...... , 72 in (2-3) we have M,,,;,,=0 for %, %, I, m=3....... , 7. Next
utting i=/=1, j=2 and £, /, m=3,...... , 7 in (2-3) we have M, =0
for £, 7, =3, ...... , 72 and similarly Mpy,,=0. Hence all of M,=0
except J/,; in contradiction to (2-1) and it follows that all of X’s are
zero in contradiction to the hypothesis. We must therefore have 420 so
that the quantities K;/4 can be defined and these constitute a solution
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of (1-2). We thus have from the theorem 2.1 of the part I the

Theorem 2. 1...... If & real Riemann space R,(n=>6) is of type =3
and the left-hand members of (1-2) are defined by (1-3), then the equations
(1-2) will have solutions -K’s which are unique to within algebraic sign if,
and only 1if, the inequality (2-1) and the cquations (2-4) are satisfied. -

When conditions (1:11) are likewise imposed, it follows from the
theorem 1.1 that the above solutions K's will be real. In this case
the polynomial inequality (2-1) can be replaced by the polynomial
inequality ' ’

E -ﬂ](h,z‘,j,k,l,m)> O . (2 . 5)

of lower degree, the summation in this inequality and in (2-1) having the
same signiﬁcarice. Hence we have the

Theorem 2. 2...... If a real Riemann space R,(n2=>6) is of type
=3 and the left-kand members of (1-2) are defined by (1:3), then the eqiation
(1-2) will have a real solutions K's which are unique to witlin algebraic
sign if, and only if, the inequalities (1-12) and (2:5) and the equation (2-4)
are satisficd. , ‘ .

Moreover we shall derive the explicit expression for K’s. From the
theory® of determinant, we have '

([{M)g {Kg(h,i,j,k,l,m) }8": 0 [?jk K;jl | ij v I

- I?jk 0 E’\'l Ekm

- ]?jl -_— j?lr.l O ‘[;’lﬂl

—'l?jm _Ekm —K;l?n O
and from (1.7)

.—; ‘{ [{2(h,z, ok, m) }-2 0 Mlilm Mikm Mn’kl
. —‘Mﬂm O Mu’jm Mlz‘jl
- j‘[hikm - Mlig‘m 0 Mn‘jlc

—'Mézz - Mn‘jl — My, & . 0

"Hence, let M, be the above determinant and we have
(](m) 2Mh,z',j,k,l,m) = ]W(h,i)- ‘ (2 6)

If we hope to obtain the full expression of X’s, we may discuss in



82 M. MATSUMOTO.

similar way as in § 9 in the Thomas’s paper for Riemann spaces of class
one.®

§ 3. Tensor E;;,

Let a Riemann space R,(#z==6) of class two be of type =>3. We
put :

Ep=HEHL  (P=I, Il; i, j, b, I=1,......, n), (3-1)

and shall find the intrinsic expressions of Z£’s. For this purpose, we
shall first find the intrinsic expressions of L’s defined by (1-1) in the part
I, i e

Lowy=H o Hyj— H gy H 5i — H o H 55+ H 3 H s (3-2)
(A) Suppose that det. |K|>=0 and contract (1-7) of the part I, i. e.
Nesigir=Las 5Ky + Kt Liamony (3-3)

by K*. As L., is skew-symmetric in 7 and 7, we have
“(m—4) Loyt K¥ Lyt Koy= K™ Ny jaa., ' (3-4)

Contracting (3:4) by K*“ we have

1
‘Kij-Latbj =_Tn—-2—)—KUK’djVabiﬂd,
hence from (3:4) we have
Lupg=—— L KON i 1 K K KNN,
atbj 7 ~4 abijed 2 (”_2) (” _4) %3 abedfy

(a,6,¢,d,i,7=1,...,n).

(B) Suppose that the rank of || K||=2r(#>2r >6), and take 7, j,
&y, I=1,...... y 2t and a, 6=1,...... » 2 in (3:3), and then we have similarly
(3-9’) obtained by taking i, 7, ¢, 4, f, g=1,...... y 2t and a, 6=1,...... y 7
and =2t in (3.5). Next taking ;>2r; 7, £, /=1,...... y 2t and a, 6=1,
...... , # in (3:3) we obtain

1
2(—1)

-Laib Y

KN pijea (F>215 2, ¢, d=1,...... , 2t a, 6=1,...... y 72)
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Finally taking #, /> 27 ; 4, /=1....... , 2t and a, 6=1,...... , 7 in (3-3) we
have similarly :
Lmj:_;:.zgcdz\/;wcd (G, j>2t; ¢, d=1,......2¢; a, b=1,......n).

Hence we have uniquely the intrinsic expressions of L’s from (3:3),
if the conditions of the theorem 2.1 are satisfied.
Now, if we put

Saib.i:H;xHﬁ—Hé{ng(a’ 6, 2, j=1,...... oY (3-8)

and then we have from (3-2)
1 : .
Saz‘bj= TZ“(Laibj + Lz'ajb) . (3 * 9)
Next multiplying (1-6) of the part I, i. e.

Hc?(iK’JQf:jlc) =HER 5, (3-10)

for P=I/ by Hj and for P=7 by H}, and subtracting, we have from
(8:1) and (3:8)

Ea(f(bl] Kﬂc) = c(msz)a;-'}k). (3 . 11)

By the similar way as that of finding L’s, when |K|30, we have

Buw=— L K*(SunRa +2SeuRaad) (3-12)

and when the rank of ||[K|| is 2 (n>2r > 6), we have (3-12') obtained
by taking ¢, ;. 2=1,...... , 2¢, and @, &, ¢, I=1,...... , n and 7=2r in
(3:12), and '

1

Eaibl= o¢

K (SeinRalin+2Ses0:Ralis)

(a,,¢,l=1,...... s 1y Jyk=1,...... , 2r; £>21). (3-13)

On .the other hand from (3:1) and (3:.8), we have immediately
Epri=Epju=EFEwp; (@, &, 2, j=1,...... ”n), 3-14)

and
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Sahclsijlcl = E.sz Eabkl [
) \(a, b, ¢, d, 2, 7, &, I=1,...... , 7). (3-15)
ﬁcdfj Yo l .

Finally we have from the Gauss equation

Rijklelkjl_ﬁ‘iljk (7., ]', Ié, l———l, ...... , 71). (3'16)

§ 4. The Gauss equation

In the first place we shall pay attention to the following facts.

Remart 1. If we interchange "the positive directions of normals B¢
to a n-dimensional variety S, in a (#+2)-dimensional euclidean space
- E,.2 the algebraic sign of A7, changes according to H{;=2D5;;B5%.

Remark 11, Let By and BF be two systems of mutually orthogonal
unit vectors normal to S, in Z,,.. With reference to 5S¢ and BE we

have respectively A%, and /7%. The formulae of transformation of normal
systems are

BE=I8B§ ;
where ||/|| is orthogonal matrix. We.can deduce
HI=I18 HY.
If we put, for example, Z#=0, i. e.
LLH A+ LR =0,

from this equation /$(P, Q=7, IT) are determined to within algebraic
sign. Therefore, for example, the algebraic sign of

r 7P I I 1Irrri1
h=l1 L+ ITHi

can be selected arbitrarily and then other /7% are all determined.

Now, if a real Riemann space R,(#=>6) is of class two and of type
>3, it is necessary that (1-11), (2-4) and (2:5) are satisfied. Then
K’s is expressed intrinsically. Making use of K’s, we have intrinsic
expressions of ZL’s, S’s and E’s. Therefore (3-14), (3-15) and (3-16)
are also necessary conditions for R, to be of class two. These necessary

conditions (1-11), (2-4), (3:5), (3-14), (8:15) and (3:16) are constracted
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only by g, and their partial derivatives.

Conversely we shall prove the

I:...... If a real Riemann space R,(n=6) is of type
=3, then there will be a set of functions HG(=H ) (P=1, Il : i, 7=1,...
ey ) SAisfYing the Gauss equation if, and only if, the inequalities (1-11)
and (2-5), and the equations (2-4), (3-14), (3-15) and (3-16) are satisfied.

Taking a=i, é=j, c=#, d=/ in (3-15) we have '

EtjijklIcZ— (Eijkz)2 = ( Sc‘jkl) : (4 * 1)

Suppose that all of £j;;=0 and then all of £;,;,=0 from (4-1), because
E’s and S’s are real. Therefore from (3:16) R, is zero tensor in con-
tradiction to the hypothesis on the type number. Now suppose, for exam-
P].e, E]ul%o. We take H]I‘{:O and

Hlll= '\/Ellll ’ (4.2)

»

where algebraic sign is arbitrary (Cf. Re. /7). Next we take

Ewy=HLH{, (i, j=1,...... y ), 4-3)

and then we have uniquely such a set of functions ) 5@ 7=1,...... y 72)
that is symmetric in 7 and ; from (3.14). Finally we take

Suy=HLHE (@, j=1,...... , 72), (4-4)

and then we have uniquely a set of functions 5G J=1,...... , 72) and

it is symmetric in ¢z and ;, because interchanging @ and 4, or ¢ and & in
(3.15) we obtain

S abed ™ Sbacrl =S5, abice

Now we shall prove that those A7, satisfy (3-1). In fact, taking
a=6=i=7=1 in (3.:10) we have from (4-2), (4:3) and (4-4)

(HL)  HWHY| = (HL)HLHE,
. H{IHgd Ecdkl
hence we can deduce (3:1) immediately. Finally from (3:16) those
satisfy the Gauss equation and therefore we have the theorem 4.1.

If A% are real, we have from (3:1) E,; =>0(; j=1,...... 7) and so,
from (3:15), matrix ||[Eyull (G, /1 row; p, /: column) is positive semi-

»
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definite. Conversely the matrix || £l is positive semi-definite, we can
have real A by the above method, hence we have the

2:...... If a real Riemann space R,(n=6) s of type
>3, then therve will be a sct of real functions Hi(=Hp) (P=I, IT; i, f
=1,...... , 1) satisfying the Gauss equation if, and only if, the inequalitics

(1-11) and (2-5), and the equations (2-4), (3:14), (3-15) and (3-16) are
satisfied ; and || E,,|| is positive semi-definite.
We have from the theorem 2.4 of the part I and theorem 4.1 the

3: ...... If a real Riemann space R,(n=8) is of {ype
>4, then theve will be two sets of functions Hi(=H}) and Hg(=—H?%,;)
(P, Q=1, 1], ¢, 7=...... , 1) satiyfying the Gauss, Codaszi and Ricc

equations if, and only if, the inequalities (1-11) and (2-5), and the equations
(2-4), (3-14), (3-15) and (3:16) arc satisfied ; and the matvix | Eul
is positive scmi-defintte.

If A7, are real, H; (P, Q=1, Il; 1=1,...... , 72) satisfying the Codazzi
equaion are also real (Cf. Allendoerfer’'s paper),® hence we have the most
remarkable theorem: '

Theorem 4. 4: ...... If a real Riemann space R,(1n=8) is of type
=>4, then R, will bc of class two if, and only if, the inequalities (1-11) and
(2-5), and the egquations (2-4), (3-14), (3-15) and (3:16) are satisficd ;
and the matrix || Eyyll is positive semi-definite.

For remark, a solution A’s of (1:2) is unique to within algebraic
sign for type >3 and g®(HUHI,—HIIH},) satisfy (1-2) as the result
of the Gauss equation, hence the equation (Cf. §. 1 of the part I)

K=" (Ha gj_Hch;-HI{i)

are satisfied to within algebraic sign.

Revised Oct. 20, 1949
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