Riemann Spaces of Class Two and Their Algebraic Characterization.

Part II.

Makoto Matsumoto.

(Received June 15, 1949)

In this paper we give a necessary and sufficient condition that a Riemann space $R_n(n \ge 8)$ be of class two, making use of the type number discussed in a preceding paper⁽¹⁾.

§ 1. A reality condition

Suppose that a Riemann space $R_n(n \ge 6)$ of class two is of type ≥ 3 , and put

$$K_{ij} = p_{ij} + eq_{ij} \quad (e^2 = -1);$$
 (1.1)

where the tensor K_{ij} is the solution of (1.9) of the part I, i. e.

$$M_{ijkl} = K_{i(j)} K_{kl)}, \tag{1.2}$$

and p's and q's are all real. The tensor M_{ijkl} in $(1\cdot 2)$ is defined by $(1\cdot 10)$ of the part I, i. e.

$$M_{ijkl} = \frac{1}{2} \left(R_{c \cdot i(j}^{\alpha} R_{|\alpha| \cdot kl)}^{c} \right). \tag{1.3}$$

Substituting $(1 \cdot 1)$ in $(1 \cdot 2)$ and equating to zero the imaginary parts we have

$$p_{i(j}q_{kl)} + q_{i(j}p_{kl)} = 0. (1.4)$$

(A) Suppose that det. |q| = 0. Contracting (1.4) by q^{kl} we have

$$(n-4) p_{ij} + q^{ab} p_{ab} q_{ij} = 0,$$

and contracting it by q^{ij} we have $q^{ab}p_{ab}=0$ for n>2. Therefore all of p_{ij} are zero for $n \ge 6$. Hence the K's are pure imaginary except zero.

(B) Suppose that det. |q|=0. If the rank of ||q|| is $2\sigma(n>2\sigma \ge 6)$, we have similarly $p_{ij}=0$ for $i, j=1,\ldots, 2\sigma$.

Next putting k, $l=1,\ldots, 2\sigma$ and i, $j>2\sigma$ in $(1\cdot 4)$ we have $q_{kl}p_{ij}=0$,

and therefore $p_{ij}=0$ for $i, j>2\sigma$ if $2\sigma \ge 2$.

Finally putting i, j, $k=1,\ldots,2\sigma$ and $l>2\sigma$ in (1.4) we have

$$p_{il}q_{jk}+p_{kl}q_{ij}+p_{lj}q_{ik}=0,$$

Contracting this by q^{ik} we have $p_{il}=0$ for $i=1,\ldots,2\sigma$ and $l>2\sigma$ if $2\sigma \geq 4$. Hence the following cases may occur:

(I)
$$2\sigma \geq 6$$
; then $p_{ij}=0$ $(i, j=1,..., n)$,

(II)
$$2\sigma = 4$$
; then $p_{ij}=0$ $(i=1,..., n; j=5,...,n)$;

(III)
$$2\sigma = 2$$
; then $p_{ij}=0$ (i, $j=3,....n$),

(IV)
$$2\sigma = 0$$
; then $p_{ij} = 0$ $(i, j = 1,n)$.

If the cases (II) or (III) are assumed to hold, we have immediately that a maximum value of rank of ||K|| is four in contradiction to hypothesis on the type number and we have the

Lemma:..... If a Riemann space $R_n(n \ge 6)$ of class two is of type ≥ 3 , the solutions K's of (1.2) are all real or pure imaginary except zero.

Now we put

$$K^{2}_{(h,i,j,k,l,m)} = \begin{vmatrix} 0 & K_{hi} & K_{hj} & K_{hk} & K_{hl} & K_{hm} \\ -K_{hi} & 0 & K_{ij} & K_{ik} & K_{il} & K_{jm} \\ -K_{hl} & K_{ij} & 0 & K_{jk} & K_{jl} & K_{jm} \\ -K_{hk} & -K_{ik} & -K_{jk} & 0 & K_{kl} & K_{km} \\ -K_{hl} & -K_{il} & -K_{jl} & -K_{kl} & 0 & K_{lm} \\ -K_{hm} & -K_{im} & -K_{jm} & -K_{km} & -K_{lm} & 0 \end{vmatrix}$$

$$(1.5)$$

and

and let $K_{(h,i,j,k,l,m)}$ and $M_{(h,i,j,k,l,m)}$ be respectively the Pfaff's aggregate of $K^2_{(h,i,j,k,l,m)}$ and $M^2_{(h,i,j,k,l,m)}$.

From the theory⁽²⁾ of determinant, for example, let \overline{K}_{hi} be the algebraic complement of K_{hi} in det. $K^2_{(h,i,j,k,l,m)}$. The algebraic complement K_{hi} in $K_{(h,i,j,k,l,m)}$ is M_{jklm} as it is seen from $(1\cdot 2)$. Then we have

$$\overline{K}_{ht} = M_{jklm} K_{(h,i,j,k,l,m)}, \qquad (1.7)$$

and so on. Let $\bar{K}^2_{(h,l,j,k,l,m)}$ be the determinant, whose elements are $\bar{K}_{hi},...,\bar{K}_{lm}$, then we have

$$\bar{K}^{2}_{(h,i,j,k,l,m)} = M^{2}_{(h,i,j,k,l,m)} \{ K^{2}_{(h,i,j,k,l,m)} \}^{3}.$$
 (1.8)

As $K^{2}_{(h,l,j,k,l,m)}$ is of order six, we have

$$\bar{K}^{2}_{(h,i,j,k,l,m)} = \{K^{2}_{(h,i,j,k,l,m)}\}^{5},$$

Now, from the hypothesis on the type number, we can take h, i, j, k, l, m so that $K^2_{(h,i,j,k,l,m)}$ is not zero. Hence we have from (1.8)

$$\{K^{2}_{(h,i,j,k,l,m)}\}^{2} = M^{2}_{(h,i,j,k,l,m)}$$
 (1.9)

 $K^2_{(h,i,j,k,l,m)}$ is positive, because it is square of real polynomial of K_{hl},\ldots,K_{lm} . On the other hand we have from $(1\cdot 2)$

$$K^{2}_{(h,i,j,k,l,m)} = M_{(h,i,j,k,l,m)}. \tag{1.10}$$

Then we have

$$M_{(h,l,i,k,l,m)} \ge 0. \tag{1.11}$$

If K's be pure imaginary except zero and the rank of ||K|| be ≥ 6 , there is one of $K^2_{(h,i,j,k,l,m)}$ which is negative. Hence from (1·10), (1·11) and lemma we have the

Theorem I. I..... If a real Riemann space R_n $(n \ge 6)$ of class two is of type ≥ 3 , solutions K's shall be real if, and only if, the inequality (1.11) is satisfied.

§ 2. The resultant system

From (1.9) we have the

Lemma: If a real Riemann space $R_n(n \ge 6)$ of class two is of type ≥ 3 , it is necessary that

$$\sum M^2_{(h,t,j,k,l,m)} > 0$$
; (2.1)

where the summation is to be extended over all possible values of the indices appearing in the above determinant.

Further necessary conditions in the form of a system of linear homogeneous equations can be derived as follows. Let us write $(1\cdot2)$ in their homogeneous form namely,

$$A^2 M_{ijkl} = K_{i(j}K_{kl)}. \tag{2.2}$$

We multiply $(1\cdot 2)$ by K_{hm} and subtract the expression obtained by interchanging m and l and then we have by means of $(1\cdot 2)$

$$K_{ij}M_{hmkl} + K_{jk}M_{hmil} + K_{ki}M_{hmjl} + K_{hm}M_{ijlk} + K_{ml}M_{ijhk} + K_{lh}M_{ijmk} = 0. \quad (2\cdot3)$$

Consider the equations $(2 \cdot 2)$ and $(2 \cdot 2)$ as a system for the determination of the unknowns A and K's. Since R_n is of class two and of type ≥ 3 , the system must admit such a solution that the matrix ||K|| has rank ≥ 6 , hence the system composed of $(2 \cdot 2)$ and $(2 \cdot 3)$ must admit a non-trivial solution (A, K's). Now we know from the theory (3) of a system of homogeneous algebraic equations that the above equations $(2 \cdot 2)$ and $(2 \cdot 3)$ must admit a resultant system, i. e. a set of polynomials in the components M's such that the vanishing of these polynomials is necessary and sufficient for the existence of a non-trivial solution. Representing the resultant system of $(2 \cdot 2)$ and $(2 \cdot 3)$ by R(M), it follows that

$$R(M) = 0 (2.4)$$

is a necessary condition for a Riemann space R_n to be of class two.

Suppose $(2\cdot 4)$ to be satisfied. Let (A, K's) be a non-trivial solution of $(2\cdot 2)$ and $(2\cdot 3)$. Suppose A=0 in this solution. Then by the similar way as in § 1 of the part I we have the rank of matrix ||K|| to be zero or two. If the rank of ||K|| is two, taking the coordinate system such that all of K_{ij} are zero except K_{12} and putting i=1, j=2 and $h, k, l, m=3,\ldots,n$ in $(2\cdot 3)$ we have $M_{hklm}=0$ for $h, k, l, m=3,\ldots,n$. Next putting i=h=1, j=2 and $k, l, m=3,\ldots,n$ in $(2\cdot 3)$ we have $M_{1klm}=0$ for $k, l, m=3,\ldots,n$ and similarly $M_{2klm}=0$. Hence all of $M_{ijkl}=0$ except M_{12ij} in contradiction to $(2\cdot 1)$ and it follows that all of K's are zero in contradiction to the hypothesis. We must therefore have $A \approx 0$ so that the quantities K_{ij}/A can be defined and these constitute a solution

of $(1\cdot 2)$. We thus have from the theorem $2\cdot 1$ of the part I the

Theorem 2. I..... If a real Riemann space $R_n(n \ge 6)$ is of type ≥ 3 and the left-hand members of $(1 \cdot 2)$ are defined by $(1 \cdot 3)$, then the equations $(1 \cdot 2)$ will have solutions K's which are unique to within algebraic sign if, and only if, the inequality $(2 \cdot 1)$ and the equations $(2 \cdot 4)$ are satisfied.

When conditions $(1\cdot11)$ are likewise imposed, it follows from the theorem 1.1 that the above solutions K's will be real. In this case the polynomial inequality $(2\cdot1)$ can be replaced by the polynomial inequality

$$\sum M_{(h,i,j,k,l,m)} > 0 \tag{2.5}$$

of lower degree, the summation in this inequality and in $(2 \cdot 1)$ having the same significance. Hence we have the

Theorem 2. 2..... If a real Riemann space $R_n(n \ge 6)$ is of type ≥ 3 and the left-hand members of $(1 \cdot 2)$ are defined by $(1 \cdot 3)$, then the equation $(1 \cdot 2)$ will have a real solutions K's which are unique to within algebraic sign if, and only if, the inequalities $(1 \cdot 12)$ and $(2 \cdot 5)$ and the equation $(2 \cdot 4)$ are satisfied.

Moreover we shall derive the explicit expression for K's. From the theory of determinant, we have

$$(K_{hi})^{2} \{K^{2}_{(h,i,j,k,l,m)}\}^{3} = \begin{vmatrix} 0 & \bar{K}_{jk} & \bar{K}_{jl} & \bar{K}_{jm} \\ -\bar{K}_{jk} & 0 & \bar{K}_{kl} & \bar{K}_{km} \\ -\bar{K}_{jl} & -\bar{K}_{kl} & 0 & \bar{K}_{lm} \\ -\bar{K}_{jm} & -\bar{K}_{km} & -\bar{K}_{lm} & 0 \end{vmatrix}$$

and from (1.7)

Hence, let $M_{(h,i)}$ be the above determinant and we have

$$(K_{hi})^2 M_{(h,i,j,k,l,m)} = M_{(h,i)}.$$
 (2.6)

If we hope to obtain the full expression of K's, we may discuss in

similar way as in § 9 in the Thomas's paper for Riemann spaces of class one. (6)

\S 3. Tensor E_{ijkl}

Let a Riemann space $R_n(n \ge 6)$ of class two be of type ≥ 3 . We put

$$E_{ijkl} = H_{ij}^P H_{kl}^P$$
 $(P = I, II; i, j, k, l = 1,..., n),$ (3.1)

and shall find the intrinsic expressions of E's. For this purpose, we shall first find the intrinsic expressions of L's defined by $(1 \cdot 1)$ in the part I, i. e.

$$L_{aibj} = H_{ai}^{I} H_{bj}^{II} - H_{aj}^{I} H_{bi}^{II} - H_{ai}^{II} H_{bj}^{I} + H_{aj}^{II} H_{bi}^{I}.$$
 (3.2)

(A) Suppose that det. $|K| \neq 0$ and contract (1.7) of the part I, i. e.

$$N_{abijkl} = L_{aib\ (j} K_{kl)} + K_{i(j} L_{[a|k|b]l)}$$
(3.3)

by K^{kl} . As L_{aibj} is skew-symmetric in i and j, we have

$$(n-4)L_{aibj} + K^{kl}L_{akbl}K_{ij} = K^{kl}N_{abljkl}$$

$$(3.4)$$

Contracting (3.4) by K^{ij} we have

$$K^{ij}L_{aibj} = \frac{1}{2(n-2)}K^{ij}K^{kl}N_{abijkl},$$

hence from (3.4) we have

$$L_{aibj} = \frac{1}{n-4} K^{cd} N_{abijcd} - \frac{1}{2(n-2)(n-4)} K_{ij} K^{cd} K^{fg} N_{abcdfg}$$

$$(a, b, c, d, i, j=1,...,n).$$

(B) Suppose that the rank of $||K|| = 2\tau (n > 2\tau \ge 6)$, and take $i, j, k, l=1,\ldots,2\tau$ and $a, b=1,\ldots,n$ in (3·3), and then we have similarly (3·5') obtained by taking $i, j, c, d, f, g=1,\ldots,2\tau$ and $a, b=1,\ldots,n$ and $n=2\tau$ in (3·5). Next taking $j>2\tau$; $i, k, l=1,\ldots,2\tau$ and $a, b=1,\ldots,n$ in (3·3) we obtain

$$L_{aibj} = \frac{1}{2(\tau - 1)} K^{cd} N_{abijcd} \ (j > 2\tau \ ; \ i, \ c, \ d = 1, \dots, 2\tau \ ; \ a, \ b = 1, \dots, n)$$

Finally taking $i, j > 2\tau$; $k, l=1,\ldots, 2\tau$ and $a, b=1,\ldots, n$ in (3·3) we have similarly

$$L_{aibj} = \frac{1}{2\tau} K^{cd} N_{abijcd} \ (i, j > 2\tau \; ; \; c, d = 1, \dots, 2\tau \; ; \; a, b = 1, \dots, n).$$

Hence we have uniquely the intrinsic expressions of L's from (3.3), if the conditions of the theorem $2 \cdot 1$ are satisfied.

Now, if we put

$$S_{aibj} = H_{ai}^{I} H_{bj}^{II} - H_{ai}^{II} H_{bj}^{I}(a, b, i, j=1,..., n),$$
(3.8)

and then we have from (3.2)

$$S_{aibj} = \frac{1}{2} (L_{aibj} + L_{iajb}). \tag{3.9}$$

Next multiplying (1.6) of the part I, i. e.

$$H_{a(i}^{Q}K_{|Q|\cdot jk)}^{P} = H_{c(i}^{P}K_{|a|\cdot jk)}^{C},$$
 (3.10)

for P=II by H_{bl}^{I} and for P=I by H_{bl}^{II} and subtracting, we have from $(3\cdot 1)$ and $(3\cdot 8)$

$$E_{a(i|bl)} K_{jk} = S_{c(i|bl)} R_{|a| \cdot jk}. \tag{3.11}$$

By the similar way as that of finding L's, when $|K| \neq 0$, we have

$$E_{aibl} = \frac{1}{n-2} K^{jk} \left(S_{cibl} R_{a \cdot jk}^{c} + 2 S_{cjbl} R_{a \cdot ki}^{c} \right), \qquad (3.12)$$

and when the rank of ||K|| is 2τ ($n>2\tau \ge 6$), we have $(3\cdot 12')$ obtained by taking $i, j, k=1,\ldots, 2\tau$, and $a, b, c, l=1,\ldots, n$ and $n=2\tau$ in $(3\cdot 12)$, and

$$E_{aibl} = \frac{1}{2\tau} K^{jk} (S_{cibl} R_{a \cdot jk}^{c} + 2S_{cjbl} R_{a \cdot ki}^{c})$$

$$(a, i, c, l = 1, \dots, n; j, k = 1, \dots, 2\tau; i > 2\tau).$$
(3.13)

On the other hand from (3.1) and (3.8), we have immediately

$$E_{aibj} = E_{bjai} = E_{iabj}$$
 (a, b, i, j=1,....n), (3.14)

and

$$S_{abci}S_{ijkl} = \begin{vmatrix} E_{ablj} & E_{abkl} \\ E_{cdij} & E_{cdkl} \end{vmatrix} (a, b, c, d, i, j, k, l=1,..., n). \quad (3.15)$$

Finally we have from the Gauss equation

$$R_{ijkl} = E_{ikjl} - E_{iljk} \ (i, j, k, l=1,..., n).$$
 (3.16)

§ 4. The Gauss equation

In the first place we shall pay attention to the following facts.

Remark I. If we interchange the positive directions of normals B_P^{α} to a *n*-dimensional variety S_n in a (n+2)-dimensional euclidean space E_{n+2} , the algebraic sign of H_{ij}^P changes according to $H_{ij}^P = B_{i,j}^{\alpha} B_P^{\alpha}$.

Remark II. Let B_P^{α} and \bar{B}_P^{α} be two systems of mutually orthogonal unit vectors normal to S_n in E_{n+2} . With reference to B_P^{α} and \bar{B}_P^{α} we have respectively H_{ij}^P and \bar{H}_{ij}^P . The formulae of transformation of normal systems are

$$\bar{B}_{P}^{\cdot \alpha} = l_{P}^{Q} B_{Q}^{\cdot \alpha}$$
;

where || | | | is orthogonal matrix. We can deduce

$$\bar{H}_{ij}^P = l_P^Q H_{ij}^Q$$
.

If we put, for example, $\bar{H}_{11}^{H}=0$, i. e.

$$l_{II}^{I}H_{11}^{I}+l_{II}^{II}H_{11}^{II}=0$$
,

from this equation $l_P^Q(P, Q=I, II)$ are determined to within algebraic sign. Therefore, for example, the algebraic sign of

$$\bar{H}_{II}^{P} = l_{I}^{I} H_{11}^{I} + l_{I}^{II} H_{11}^{II}$$

can be selected arbitrarily and then other \bar{H}_{ij}^P are all determined.

Now, if a real Riemann space $R_n(n \ge 6)$ is of class two and of type ≥ 3 , it is necessary that $(1 \cdot 11)$, $(2 \cdot 4)$ and $(2 \cdot 5)$ are satisfied. Then K's is expressed intrinsically. Making use of K's, we have intrinsic expressions of L's, S's and E's. Therefore $(3 \cdot 14)$, $(3 \cdot 15)$ and $(3 \cdot 16)$ are also necessary conditions for R_n to be of class two. These necessary conditions $(1 \cdot 11)$, $(2 \cdot 4)$, $(3 \cdot 5)$, $(3 \cdot 14)$, $(3 \cdot 15)$ and $(3 \cdot 16)$ are constructed

only by g_{ij} and their partial derivatives.

Conversely we shall prove the

Theorem 4. I:..... If a real Riemann space $R_n(n \ge 6)$ is of type ≥ 3 , then there will be a set of functions $H_{ij}^p(=H_{ji}^p)(P=I, II: i, j=1,...$..., n) satisfying the Gauss equation if, and only if, the inequalities (1·11) and (2·5), and the equations (2·4), (3·14), (3·15) and (3·16) are satisfied. Taking a=i, b=j, c=k, d=l in (3·15) we have

$$E_{ijij}E_{klkl} - (E_{ijkl})^2 = (S_{ijkl})^2 \tag{4.1}$$

Suppose that all of $E_{ijij}=0$ and then all of $E_{ijkl}=0$ from $(4\cdot1)$, because E's and S's are real. Therefore from $(3\cdot16)$ R_{ijkl} is zero tensor in contradiction to the hypothesis on the type number. Now suppose, for example, $E_{1111} \succeq 0$. We take $H_{11}^{II}=0$ and

$$H_{11}^{I} = \sqrt{E_{1111}}; \qquad (4.2)$$

where algebraic sign is arbitrary (Cf. Re. II). Next we take

$$E_{11ij} = H_{11}^I H_{ij}^I \quad (i, j=1,..., n),$$
 (4.3)

and then we have uniquely such a set of functions $H_{ij}^{I}(i, j=1,...,n)$ that is symmetric in i and j from $(3\cdot 14)$. Finally we take

$$S_{11ij} = H_{11}^{I}H_{ij}^{II} \ (i, j=1,..., n),$$
 (4.4)

and then we have uniquely a set of functions $H_{ij}^{II}(i, j=1,...,n)$ and it is symmetric in i and j, because interchanging a and b, or c and d in (3.15) we obtain

$$S_{abcd} = S_{bacd} = S_{abdc}.$$

Now we shall prove that those H_{ij}^p satisfy (3·1). In fact, taking a=b=i=j=1 in (3·10) we have from (4·2), (4·3) and (4·4)

hence we can deduce $(3\cdot1)$ immediately. Finally from $(3\cdot16)$ those satisfy the Gauss equation and therefore we have the theorem 4.1.

If H_{ij}^p are real, we have from (3·1) $E_{ijij} \ge 0$ (i, j=1,....n) and so, from (3·15), matrix $||E_{ijkl}||$ (i, j: row; p, l: column) is positive semi-

definite. Conversely the matrix $||E_{ijkl}||$ is positive semi-definite, we can have real H_{ij}^P by the above method, hence we have the

Theorem 4. 2:..... If a real Riemann space $R_n(n \ge 6)$ is of type ≥ 3 , then there will be a set of real functions $H_{ij}^P(=H_{ji}^P)$ (P=I, II; i, j = 1,....,n) satisfying the Gauss equation if, and only if, the inequalities (1·11) and (2·5), and the equations (2·4), (3·14), (3·15) and (3·16) are satisfied; and $||E_{ijkl}||$ is positive semi-definite.

We have from the theorem 2.4 of the part I and theorem 4.1 the

Theorem 4. 3: If a real Riemann space $R_n(n \ge 8)$ is of type ≥ 4 , then there will be two sets of functions $H_{ij}^p(=H_{ji}^p)$ and $H_{Qi}^p(=-H_{Pi}^Q)$ (P, Q=I, II; i, j=....., n) satisfying the Gauss, Codazzi and Ricci equations if, and only if, the inequalities $(1\cdot 11)$ and $(2\cdot 5)$, and the equations $(2\cdot 4)$, $(3\cdot 14)$, $(3\cdot 15)$ and $(3\cdot 16)$ are satisfied; and the matrix $||E_{ijkl}||$ is positive semi-definite.

If H_{ij}^P are real, $H_{Qi}^P(P, Q=I, II; i=1,...,n)$ satisfying the Codazzi equaion are also real (Cf. Allendoerfer's paper), hence we have the most remarkable theorem:

Theorem 4. 4: If a real Riemann space $R_n(n \ge 8)$ is of type ≥ 4 , then R_n will be of class two if, and only if, the inequalities $(1 \cdot 11)$ and $(2 \cdot 5)$, and the equations $(2 \cdot 4)$, $(3 \cdot 14)$, $(3 \cdot 15)$ and $(3 \cdot 16)$ are satisfied; and the matrix $||E_{ijk}||$ is positive semi-definite.

For remark, a solution K's of $(1\cdot 2)$ is unique to within algebraic sign for type ≥ 3 and $g^{ab}(H^{II}_{ai}H^{I}_{bj}-H^{II}_{aj}H^{I}_{bi})$ satisfy $(1\cdot 2)$ as the result of the Gauss equation, hence the equation (Cf. §. 1 of the part I)

$$K_{ij} = g^{ab} (H^{II}_{ai} H^{I}_{bj} - H^{II}_{aj} H^{I}_{bi})$$

are satisfied to within algebraic sign.

Revised Oct. 20, 1949

References

- 1) M. Matsumoto: Riemann spaces of class two and their algebraic characterization (part I), J. Math. Soc. Japan.
- 2) G. Kowalewski: Einführung in die Determinantententheorie, P. 142.
- 3) B. L. van der Waerden: Moderne Algebra 2, P. 14.
- 4) G. Kowalewski: 1. c. P. 80.
- 5) Acta Math. 67 (1936).
- 6) Amer. J. Math. 61 (1939).

Mathematical Institute
Doshisha University