Change of variables in the multiple Lebesgue integrals.

Masatsugu Tsuji.

(Received April 4, 1948)

Rademacher's theorem¹⁾ on the change of variables in the multiple Lebesgue integrals, though very important, is not found in any book on the theory of functions of real variables, so that I will give a simple proof of it in the following lines.

Let D be a domain in the (x_1, \ldots, x_n) -space and Δ be one in the (u_1, \ldots, u_n) -space and D be mapped on Δ topologically by

$$T: u_{i} = f_{i}(x_{1}, \dots, x_{n}),$$

$$T^{-1}: x_{i} = \varphi_{i}(u_{1}, \dots, u_{n}), (i = 1, 2, \dots, n),$$
(1)

where f_i and φ_i are continuous in D and Δ respectively.

If any measurable set in D is mapped on a measurable set in Δ , then T is called a measurable mapping. It is well known? that the necessary and sufficient condition that T is a measurable mapping is that any null set in D is mapped on a null set in Δ .

Theorem 1.4) If at every point $(x_1, \ldots, x_n) \in D$,

$$\frac{\lim_{h_1^2 + \dots + h_n^2 \to 0} \frac{|f_i(x_1 + h_1, \dots, x_n + h_n) - f_i(x_1, \dots, x_n)|}{\sqrt{h_1^2 + \dots + h_n^2}}$$

$$= L_i(x_1, \dots, x_n) < \infty \qquad (i = 1, 2, \dots, n), \tag{2}$$

then T is a measurable mapping.

Proof. We define a set A_k (k=1,2,...) of points $(x_1,...,x_n)$ by the condition

⁽¹⁾ Rademacher: Über die partielle und totale Differentierbarkeit von Funktionen mehererer Veränderlichen und über die Transformation der Doppelintegrale. Math. Ann. 79.

⁽²⁾ Rademacher: Eineindeutige Abbildung und Messbarkeit. Monathefte f. Math. u. Phys. 27 (1916). Carathéodory: Vorlesungen über reelle Funktionen. p. 354.

⁽³⁾ A set is called a null set, if its Lebesgue measure is zero.

⁽⁴⁾ Rademacher. 1. c. (1), (2).

that for any h_1, \ldots, h_n , such that $h_1^2 + \ldots + h_n^2 < \frac{1}{h^2}$,

$$|f_{i}(x_{1}+h_{1},...,x_{n}+h_{n})-f(x_{1},...,x_{n})| \leq k \sqrt{h_{1}^{2}+...+h_{n}^{2}},$$

$$(i=1, 2,....,n).$$
(3)

From the continuity of $f_i(x_1,...,x_n)$, it follows that A_k are closed sets and from (2)

$$D = \sum_{k=1}^{\infty} A_k \,. \tag{4}$$

Let $(x_1^0,...,x_n^0) \in A_k$ and

$$u_i = f_i(x_1^0 + h_1, ..., x_n^0 + h_n), \quad u_n^0 = f_i(x_1^0, ..., x_n^0), \quad (h_1^2 + h_n^2 < \frac{1}{k^2}), (5)$$

then by (3),

$$\sum_{i=1}^{n} (u_i - u_i^0)^2 \le nk^2 (h_1^2 + \dots + h_n^2). \tag{6}$$

Let K(r) be the inside of a sphere of radius r:

$$K(r): \sum_{i=1}^{n} (x_i - x_k^0)^2 \le r^2$$
 (7)

and K'(r) be its image in Δ by (1), then by (6),

$$\sum_{i=1}^{n} (u_i - u_i^0)^2 \le (\sqrt{n} \ k \ r)^2,$$

so that K'(r) is contained in a sphere of radius $\sqrt{n} k r$. Since

$$mK(r) = Cr^{n}, \left(C = \frac{\pi^{\frac{n}{2}}}{\Gamma(1 + \frac{n}{2})}\right), \tag{8}$$

we have

$$mK'(r) \leq M \ mK(r), \quad \text{if} \quad r \leq \frac{1}{k}, \ (M = \sqrt{n} \ k)^n.$$
 (9)

To prove that T is a measurable mapping, it suffices to prove that any null set e in D is mapped on a null set e' in Δ .

Let $e \subset D$, me=0 and put $e_k=eA_k$, then $me_k=0$ and

$$e' = \sum_{k=1}^{\infty} e_k, \qquad e' = \sum_{k=1}^{\infty} e_k',$$
 (10)

where e', e_k' are images of e, e_k in Δ respectively. We will prove that $me_k'=0$. Since $me_k=0$, there exists for any $\varepsilon>0$ an open set O, such that $e_k\subset O$, $mO<\varepsilon$. We express O as a sum of enumerably infinite number of non-overlapping cubes $\{\Delta_i\}$,

$$O = \sum_{i=1}^{\infty} \Delta_i, \qquad mO = \sum_{i=1}^{\infty} m\Delta_i < \varepsilon. \tag{11}$$

Let K_i be the inside of a sphere which is concentric with Δ_i and passes through the vertices of Δ_i , then

$$mK_i \leq M' \quad m\Delta_i, \quad (M' = \text{const.}).$$
 (12)

By taking Δ_i sufficiently small, we may assume that all K_i are contained in O and their radii are less than $\frac{1}{k}$. Let K_i' be the image of K_i in Δ .

If K_i has common points with e_k , then, since its radius is less than $\frac{1}{k}$, we have from (9), $mK'_i \leq M mK_i$. Hence if we denote the sum of K_i ,

which have comnon points with e_k by $\sum_{i}' K_i$, then

$$e_k \subset \sum_i' K_i, \qquad e_k' \subset \sum_i' K_i',$$

hence from (9), (12), (11),

$$m^*e_k' \leq \sum_i 'mK_i' \leq M\sum_i mK_i \leq MM' \sum_i 'm\Delta_i < MM'\varepsilon$$

where m^*e_k' is the outer measure of e_k' . Since ε is arbitrary, we have $me'_k=0$ and hence me'=0 from (10). Hence T is a measurable mapping.

2.

 $f(x_1,...,x_n)$ is said totally differentiable in Stolz's sense at $(x_1^0,...,x_n^0)$, if $f(x_1,...,x_n)$ is expressed in the neighbourhood of $(x_1^0,...,x_n^0)$ in the form:

$$f(x_1^0 + h_1, \dots, x_n^0 + h_n) = f(x^0, \dots, x_n^0) + \sum_{k=1}^n \frac{\partial f(x_1^0, \dots, x_n^0)}{\partial x_k^0} h_k + D(h_1, \dots, h_n),$$
(13)

where

$$\lim_{h_1^2 + \dots + h^2_n \to o} \frac{|D(h_1, \dots, h_h)|}{\sqrt{h_1^2 + h^2_n}} = 0.$$

If in (1), $f_i(x_1,...,x_n)$ (i=1,2,...,n) satisfy the condition (2) at every point of D, then $f_i(x_1,...,x_n)$ are totally differentiable almost-everywhere in D^5 . Hence $\frac{\partial f_i}{\partial x^k}$ and so

$$J(x_1,...,x_n) = \begin{vmatrix} \frac{\partial f_1}{\partial x_1}, & \dots, & \frac{\partial f_1}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial f_n}{\partial x_1}, & \dots, & \frac{\partial f_n}{\partial x_n} \end{vmatrix}$$

exists almost everywhere in D and since f_i are continuous, $\frac{\partial f_i}{\partial x_k}$ and hence

 $J(x_1,...,x_n)$ is measurable in D.

Theorem 2. Let $f_i(x_1,...,x_n)$ (i=1,2,...,n) satisfy the condition (2) at every point of D and $F(u_1,...,u_n)$ be integrable in Δ , then

 $F(f_1(x_1,...,x_n),...,f_n(x_1,...,x_n))|J(x_1,...x_n)|$ is measurable in D and

$$\int_{\Delta} \int F(u_1, ..., u_n) du_1 ... du_n = \int_{D} \int F(f_1(x_1, ..., x_n), ..., f_n(x_1, ..., x_n))$$

$$|J(x_1, ..., x_n)| dx_1, ... dx_n.$$

Proof. Since $f_i(x_1,...,x_n)$ are totally differentiable almost everywhere in D, we may assume that $(o,...,o) \in D$, $f_i(o,....,o) = o$ and $f_i(x_1,...,x_n)$ are totally differentiable at (o,...,o), so that in the neighbourhood of (o,...,o), (1) can be expressed in the form:

where

$$a_{ik} = \left(\frac{\partial f_i(x_1, \dots, x_n)}{\partial x_k}\right)_{x_1 = \dots = x_n = 0}$$

$$\lim_{x_1^2 + \dots + x_n^2 \to 0} \frac{|D_i(x_1, \dots, x_n)|}{\sqrt{x_1^2 + \dots + x_n^2}} = o, \quad (i = 1, 2, \dots, n),$$
(15)

⁽⁵⁾ Rademacher: 1.c. (1). Saks: Theory of the integral. p. 311.

⁽⁶⁾ Rademcher: 1.c. (1).

so that

$$J(o,...,o) = \begin{vmatrix} a_{11},....,a_{1n} \\ \\ a_{n1},...,a_{nn} \end{vmatrix} . \tag{16}$$

Let K(r) be the inside of a sphere of radius r:

$$K(r): \quad x_1^2 + \dots + x_n^2 \le r^2 \tag{17}$$

and K'(r) be its image in Δ by (14). Then we will prove that

$$\lim_{r \to 0} \frac{mK'(r)}{mK(r)} = |J(o,...,o)|. \tag{18}$$

To prove this, we associate to (14) an affine transformation:

$$\begin{array}{ccc}
v_1 = a_{11} & x_1 + \dots + a_{1n} x_n, \\
\dots & \dots & \dots \\
v_n = a_{n1} x_1 + \dots + a_{nn} x_n.
\end{array}$$
(19)

Then by (15),

$$\sum_{i=1}^{n} (u_i - v_i)^2 \le \varepsilon^2 (x_1^2 + \dots + x_n^2), \tag{20}$$

where $\varepsilon \rightarrow o$ with $x_1^2 + \dots + x_n^2 \rightarrow o$.

We have two cases to consider according as J(o,...o) = o or $J(o,...,o) \neq o$.

(i)
$$f(o,...,o) = o$$
.

In this case, $(x_1,...,x_n)$ -space is mapped on a linear sub-space of at most (n-1)-dimensions in $(v_1,...,v_n)$ -space by (19), hence from (20), we have easily $mK'(r) \leq \varepsilon r^n$, where $\varepsilon \to o$ with $r \to o$, hence from (8), we have $mK'(r) \leq \delta mK(r)$, where $\delta \to o$ with $r \to o$, so that

$$\lim_{r \to 0} \frac{mK(r)}{mK(r)} = o = |J(o, \dots, o)|. \tag{21}$$

(ii)
$$J(o,...,o) \neq o$$
.

In this case, we can solve (19) with respect to x_i , such that

$$\left. \begin{array}{c}
 x_1 = b_{11}v_1 + \dots + b_{1n}v_n, \\
 \dots & \dots \\
 x_n = b_{n1}v_1 + \dots + b_{nn}v_n
\end{array} \right\},
 (22)$$

where

$$\begin{vmatrix} b_{11}, \dots, b_{1n} \\ \dots \\ b_{n}, \dots, b_{nn} \end{vmatrix} = \begin{vmatrix} a_{11}, \dots, a_{1n} \\ \dots \\ a_{n1}, \dots, a_{nn} \end{vmatrix}^{-1} = \frac{1}{J(o, \dots, o)}.$$
 (23)

Let K(r) be mapped on $\Delta(r)$ by (19), then by (22),

$$\Delta(r): (b_{11}v_1 + \ldots + b_{1n}v_n)^2 + \ldots + (b_{n1}v_1 + \ldots + b_{nn} v_n)^2 = \sum_{i,k}^{1,\ldots,n} B_{ik} v_i \quad v_k \leq r^2,$$

where

$$B = \begin{vmatrix} B_{11}, \dots, B_{1n} \\ B_{n1}, \dots, B_{nn} \end{vmatrix} = \begin{vmatrix} b_{11}, \dots, b_{1n} \\ \vdots \\ b_{n1}, \dots, b_{nn} \end{vmatrix}^{2} = \frac{1}{f^{2}(o, \dots, o)}. \quad (25)$$

By a suitable orthogonal transformation, $\Delta(r)$ can be brought into the form:

$$\Delta(r): \quad \frac{\xi_1^2}{a_1^2} + \dots + \frac{\xi_n^2}{a_n^2} \leq r^2, \quad (a_i > 0), \qquad (26)$$

where $\lambda_1 = \frac{1}{a_1^2}, \dots, \lambda_n = \frac{1}{a_n^2}$ are the roots of the characteristic equation:

$$B(\lambda) = \begin{vmatrix} B_{11} - \lambda, \dots, B_{1n} \\ \vdots \\ B_{n1}, \dots, B_{nn} - \lambda \end{vmatrix} = 0,$$

so that by (25),

$$\frac{1}{(a_1...a_n)^2} = \lambda_1...\lambda_n = B(o) = \frac{1}{J^2(o...,o)}, \text{ or}$$

$$a_1...a_n = |J(o,...,o)|. \tag{27}$$

Since by a transformation: $\hat{\xi}_i = a_i X_i$, (26) can be transformed into the form: $X_1^2 + \dots + X_n^2 \leq r^2$, we have from (8),

$$m\Delta(r) = a_1 \dots a_n \ mK(r) = C \cdot a_1 \dots a_n \ r^n. \tag{28}$$

If $(x_1,...,x_n)$ lies on a sphere: $x^2+...+x_n^2=r^2$, then $(v_1,...,v_n)$ lies on an ellipsoid: $\frac{\xi_1^2}{a_1^2}+...+\frac{\xi_n^2}{a_n^2}=r^2$, so that by (20), $(u_1,...,u_n)$ lies between two ellipsoids:

$$\frac{\xi_1^2}{a_1^2} + \dots + \frac{\xi_n^2}{a_n^2} = r^2 (1 - \delta)^2, \quad \frac{\xi_1^2}{a_1^2} + \dots + \frac{\xi_n^2}{a_n^2} = r^2 (1 + \delta)^2, \quad (29)$$

where $\delta \rightarrow o$ with $r \rightarrow o$. Hence we have from (27), (28),

$$C \ a_1...a_n \ r^n (1-\delta)^n \le mK'(r) \le Ca_1...a_n \ r^n \ (1+\delta)^n$$
, or $| J(o,...,o) | (1-\delta)^n \ mK(r) \le mK'(r) \le | J(o,...,o) | (1+\delta)^n mK(r)$, so that

$$\lim_{r \to 0} \frac{mK'(r)}{mK(r)} = |J(o,...,o)|.$$
 (29)

From (21), (29), we have (18).

By Theorem 1, the mapping $u_i = f_i(x_1, ..., x_n)$ is a measurable mapping, so that any measurable set $e \subset D$ is mapped on a measurable set $e' \subset \Delta$ and a null set in D is mapped on a null set in Δ . Hence if we put

$$me' = \Phi(e)$$
,

then $\Phi(e)$ is an absolutely continuous additive set function defined on measurable sets in D, so that by Lebesgue's theorem,

$$me' = \Phi(e) = \int \dots \int_e D\Phi(x_1, \dots, x_n) dx_1, \dots dx_n,$$

where $D\Phi(x_1,...,x_n)$ is the derivative of $\Phi(e)$ at $(x_1,...,x_n)$, which exists almost everywhere in D. From (18), we have $D\Phi(x_1,...,x_n) = |J(x_1,...,x_n)|$ almost everywhere in D, so that

$$me' = \int \dots \int_{e} | J(x_1, \dots, x_n) | dx_1, \dots, dx_n.$$
 (30)

Let e_0 be the set of $(x_1, ..., x_n)$, such that $J(x_1, ..., x_n) = o$, then e_0 is measurable, so that from (30),

$$me'_0 = o, (31)$$

where e'_0 is the image of e_0 in Δ .

Now $\Delta - e_0'$ is mapped on $D - e_0$ by $x_i = \varphi_i(u_1, ..., u_n)$. We will prove that this is a measurable mapping. To prove this, it suffices to prove that any null set $e' \subset \Delta - e_0'$ is mapped on a null set $e \subset D - e_0$.

Let $e' \subset \Delta - e'_0$ be a null set and e be its image in $D - e_0$. Since me' = o, there exists a G_{δ} -set H' in Δ , such that

$$e' \subset H', \quad mH' = o.$$
 (31)

Let H be the image of H' in D, then H is a G_{δ} -set, so that by (30),

$$o = mH' = \int_{H} \int |J(x_1, \dots, x_n)| dx_1, \dots, dx_n.$$

Hence $J(x_1,...,x_n) = o$ almost everywhere in H. From this we conclude that $m(H-He_0) = o$. Since $e \in H-He_0$, we have me=o, q.e.d.

Hence any measurable set in $\Delta - e_0'$ is mapped on a measurable set in $D - e_0$.

Let $F(u_1,...,u_n)$ be a measurable function in Δ and for any real number α , let E_{α}' be the set of $(u_1,...,u_n) \in \Delta - e'_0$, such that

$$F(u_1, \dots, u_n) > a. \tag{32}$$

Then E_{α}' is measurable, so that its image $E_{\alpha} \subset D - e_0$ by $x_i = \varphi_i(u_1, ..., u_n)$ is measurable. Evidently E_{α} is the set of $(x_1, ..., x_n) \in D - e_0$, such that

$$F(f_1(x_1,\ldots,x_n),\ldots,f_n(x,\ldots,x_n)) > a.$$
(33)

Hence $F(f_1(x_1,...,x_n),...,f_n(x_1,...,x_n))$ and so

$$F(f_1(x_1,...,x_n),...f_n(x_1,...,x_n)) | J(x_1,...,x_n) |$$
(34)

is measurable in $D-e_0$. Since $J(x_1,...,x_n)=o$ in e_0 , (34) is measurable in D.

First we suppose that $F(u_1,...,u_n)$ is bounded and $A < F(u_1,...u_n) < B$ in Δ . Let

$$A = l_0 < l_1 < \dots < l_{p+1} = B \quad (l_{i+1} - l_i < \varepsilon),$$

$$E_i' = E(l_i \le F(u_1, \dots, u_n) < l_{i+1}), \text{ where } E = \Delta - e'_0,$$
(35)

and E_i be the image of E_i' in $D-e_0$, then E_i' , E_i are measurable and

$$\sum_{i=0}^{p} E_{i}' = \Delta - e_{0}', \quad \sum_{i=0}^{p} E_{i} = D - e_{0}. \tag{36}$$

By (30),

$$mE_i' = \int \dots \int |J(x_1, \dots, x_n)| dx_1 \dots dx_n.$$

We put

$$S = \sum_{i=0}^{p} l_{i} \ mE_{i}' = \sum_{i=0}^{p} l_{i} \int_{E_{i}} \dots \int |J(x_{1}, \dots, x_{n})| dx_{1} \dots dx_{n},$$

$$I = \int_{D} \dots \int F(f_{1}, \dots, f_{n}) |J(x_{1}, \dots, x_{n})| dx_{1} \dots dx_{n} = \int_{D-e_{0}} \dots \int F(f_{1}, \dots, f_{n})$$

$$|J(x_{1}, \dots, x_{n})| dx_{1} \dots dx_{n}$$

$$= \sum_{i=0}^{p} \int_{C} \dots \int_{C} F(f_{1}, \dots, f_{n}) |J(x_{1}, \dots, x_{n})| dx_{1} \dots dx_{n},$$

$$(38)$$

then

$$|I-S| \leq \sum_{i=0}^{p} \int_{E_{i}} \dots \int |F(f_{1},...,f_{n}) - l_{i}| |J(x_{1},...,x_{n},)| dx_{1}...dx_{n} \leq \sum_{i=0}^{p} \int_{E_{i}} \dots \int |J(x_{1},...,x_{n})| dx_{1}...dx_{n} \leq \varepsilon \int_{D-\varepsilon} \dots \int |J(x_{1},...,x_{n})| dx_{1}...dx_{n} \leq \varepsilon \int_{D-\varepsilon} \dots \int |J(x_{1},...,x_{n})| dx_{1}...dx_{n} = \varepsilon \int_{D} \dots \int |J(x_{1},...,x_{n})| dx_{1}...dx_{n} = \varepsilon M \Delta.$$
(39)

Since for $\varepsilon \rightarrow 0$.

$$S \rightarrow \int \dots \int F(u_1, \dots u_n) du_1 \dots du_n = \int \dots \int F(u_1, \dots u_n) du_1 \dots du_n,$$

we have from (39),

$$\int \dots \int F(u_1, \dots, u_n) \ du_1, \dots du_n = \int \dots \int F(f_1, \dots, f_n) | J(x_1, \dots, x_n) | dx_1, \dots dx_n.$$
(40)

If $F(u_1,...,u_n) \ge o$ in Δ , then put

$$F_N(u_1,\ldots,u_n) = [F(u_1,\ldots,u_n)]_0^N$$

where $F_N = F$, if $F \le N$ and F = N, if $F \ge N$. Then from (40)

$$\int_{\Delta} \int F_{N}(u_{1},...,u_{n}) du_{1}...du_{n} = \int_{D} \int F_{N}(f_{1},...,f_{n}) |J(x_{1},...,x_{n})| dx_{1}...dx_{n}.$$

If we make $N \rightarrow \infty$, then we have (40). In the general case we put

$$F=F_1-F_2$$
, where $F_1=\frac{|F|+F}{2} \ge o$, $F_2=\frac{|F|-F}{2} \ge o$ and apply (40)

on F_1 and F_2 and we have (40).

Hence the theorem is completely proved.

Mathematical Institute,
Tokyo University.