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On topological completeness

Jun-iti NAGATA

(Received May 30, 1949)

E. $\dot{C}$ech has proved the following theorem1) :
A $metri\approx able$ space $R$ is $topolo_{\delta^{0}}\cdot icallycomp^{\gamma_{p}}te$ if and only if it is completely
$metri2able$ .

In this paper we shall show that by making use of the theorem $of\cdot N$ . A.
Shanin we can simplify the proof of ech’s theorem and generalize it
slightly.

We mean in this paper by a filter a family of closed sets having the
finite intersection property, and we say that a filter $\{F_{\alpha}|A\}$ is vanishing
when $\Pi F_{\alpha}=\Phi$ holds.

N. A. Shanin’s theorem. $1n$ orckr that a $T_{1}$-space $R$ can be represented
as an interscction of at most $\mathfrak{n}$ (a cardinal number) open sels in Wallman’s
$bico\varphi pactifca\iota^{s}ionl^{\prime}V(R)$ of $R$ , it is nccessary and sufficient thal tltere exists
a collection $\{\mathfrak{F}\gamma\}$ of at most $\mathfrak{n}va/tis\prime_{l}ing$ filters $\mathfrak{F}_{\gamma}$ of $Rwit/zt/l_{\vee}^{\prime\prime}$ property $=$

For an arbitrary maximum $vanis/li\prime lg$ filter $\mathfrak{F}$ of $R,$ $t/lere$ exists a filler $\mathfrak{F}_{\gamma}$

of $\{\mathfrak{F}_{\gamma}\}$ such $t/lat\mathfrak{F}_{\tau}\subset \mathfrak{F}$ .
When we note that there exists a one-to-one correspondence between

an open set of $W(R)$ containing $R$ and a vanishing filter of $R$ as well as
between a point of $W(R)-R$ and a maximum vanishing filter of $R$ , this
theorem is almost obvious.

Proof of $\check{C}ec1_{l}’ st/leorem$ . We begin with the necessity of the condition.
Let $R$ be a $topological.ly$ complete and metrizable space. Since $R$ is topolo-
gically complete, $R$ is, as is $\iota ve11$ known, a $G_{\delta}$ -set in $\check{C}ech’ s$ bicompacti-
fication $\beta(R)$ of $R$ , i.e. an intersection of at most countable open sets of
$\beta(R)$ . Since $R$ is metrizable, and accordingly normal, $\beta(R)$ and $’\iota v(R)$

are, as is well-known, identical. Therefore, when we use Shanin’s theorem
in the case of $\mathfrak{n}=\mathfrak{a}$ , we get the family $)_{(}\mathfrak{F}_{n}$ } of at most a countable number
of vaning filters $\mathfrak{F}_{n}$ mentioned in the theorem.
Let $\mathfrak{F}_{n}=$ { $F_{n,\alpha}|$ a $\epsilon A_{n}$ } ; then $\{F_{n^{c_{q}}},|\alpha\in A_{n}\}=\mathfrak{M}_{n^{3)}}(n=1,2,\ldots)$ are open
coverings of $R$ .

On the other hand, since $R$ is metrizable, $R$ has a base [ $\mathfrak{N}_{m}$ } of uniform-
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ity of a countable number of open coverings $\mathfrak{N}_{m}$ agreeing with its topology.
Now we put $\mu=\{\mathfrak{M}_{n}, \mathfrak{N}_{m}\}$ $(n, m=1,2,\ldots)$ ,
and $\triangle\mu=\{\mathfrak{P}\wedge \mathfrak{P}^{\prime}|\mathfrak{P},\mathfrak{P}^{\prime}\epsilon\mu\}$ .
Since $R$ is metrizable, and accordingly fully normal, for an arbltrary open
covering $\mathfrak{P}$ of $R$ , there exists an open $\triangle- refineme\iota lt\mathfrak{Q}(\mathfrak{P})^{4)}$

Therefore we put $\mu\triangle=\{\mathfrak{Q}(\mathfrak{P})|\mathfrak{P}^{\epsilon\mu\}}$ ,

and successively
$\mu_{1}=\mu+\triangle\mu+\mu\triangle$ ,

$\mu_{2}=\mu_{1}+\triangle\mu_{1}+\mu_{1}\triangle$ ,

and finally $\nu=\mu_{1}+\mu_{2}+\ldots\ldots$ ;

then $\nu$ has the countable cardinal number.
Since $\nu$ contains $\{\mathfrak{N}_{n},\}$ , it is obviously a base of a uniformity agreeing with
the topology of $R$ . By using $\nu$ , we introduce a metric agreeing with $\nu$

and accordingly with the topopology of $R$ .
Now we can show that the uniformity $\nu$ is complete, $i$ . $e$ . this metric

space $R$ is complete.
For this purpose, we shall show that no Cauchy filter can be vanishing.

Assume that the assertion is false, $i$ . $e$ . there exists a vanishing Cauchy
filter; then by constructing a maximum filter which contains this filter, we
get a maximum vanishing Cauchy filter $\mathfrak{F}=|F_{\beta}$ }. For this $\mathfrak{F}$ , we can
choose an element $\mathfrak{F}_{n}$ of $\{\mathfrak{F}n\}$ such that

$\mathfrak{F}\supset \mathfrak{F}n=\{F_{n,\alpha}\}$ .
Let $\{F_{n^{C},\alpha}\}=\mathfrak{M}_{n}$ ; then there exists an open covering $\mathfrak{P}$ such that

$\mathfrak{P}\epsilon\nu,$ $\mathfrak{P}^{\Delta}<\mathfrak{M}_{n}$

On the other hand, since $\mathfrak{F}$ is a Cauchy filter, there exist $F_{\beta}$ and $a$ such
that

$f_{\beta}\prime^{\neg}\epsilon \mathfrak{F},$ a $\epsilon R$ ; $F,$ $\subset S(a, \mathfrak{P})^{6)}$

Since $\mathfrak{P}^{\Delta}<\mathfrak{M}_{n}$ , there exists an element $F_{n^{c}\alpha)}$ of $\mathfrak{M}_{n}$

such that $S(a, \mathfrak{P})\subset F_{n^{c}\alpha}$ .
Therefore it must be $ F_{p}nF_{n,\alpha}=\phi$ .
Since $F_{n,\alpha}\in \mathfrak{F},$ $\mathfrak{F}$ would not be a filter, contradicting the $ass\iota:mption$ .
Therefore the uniformity $\nu m_{L}^{-}lst$ be complete.

Next, we shall prove the sufficiency.



46 Jun-iti NAGATA.

Let $R$ be a complete metric space.
If $R$ is totally bounded; then $R$ is $bicom_{A}oact$ and the problem is trivial.
Therefore let us assume that $R$ is not totally bounded; then, for some $n_{0}$ ,
the open covering $\{S_{1/n}(x)|x\in R\}(n\geqq n_{0})$ has no finite subcovering, where
we mean by $S_{5}(x)$ the set of all points with the distanc $e$ less than $\epsilon$ from
$x$.
Therefore $\mathfrak{S}_{n}=\{S_{1}^{e_{/n}}(x)|x\in R\}(n\geqq n_{0})$ is a vanishing filter, and the car-
dinal number of $\{\mathfrak{S}_{n}|n\geqq n_{0}\}$ is countable.

Let $\mathfrak{F}=\{F_{\alpha}\}$ be an arbitrary maximum vanishing filter of $R$ . Since
$R$ is complete, $\mathfrak{F}$ can not be a Cauchy filter, that is, there exists $n^{t}$ such
that if $n\geqq n^{\prime}$ , for every $F_{\alpha}\in \mathfrak{F}$ and $\chi\in R,$ $F_{\alpha}\not\subset S_{1/n}(x)$ holds. Let
$n\geqq n_{0},n^{\prime}$ ; then

$ F_{\alpha}nS_{1}^{c_{/n}}(x)\neq\phi$ for all $F_{\alpha}\in \mathfrak{F}$ and $x\in R$ .

Since $\mathfrak{F}$ is maximum, it must be

$S_{1/}^{c_{n}}(x)\in \mathfrak{F}$ for all $x\in R$ ;

hence $\mathfrak{S}_{n}\subset \mathfrak{F}$ .
Therefore the collection $\{\mathfrak{S}_{n}|n\geqq n_{0}\}$ has the property of the collection of
vanishing filters $\cdot$ in Shanin’s theorem, and $R$ is accordingly a $G_{\delta}$-set of $W(R)$ ,
$i$ . $e$ . $R$ is topologically complete.

From the method of this proof, we see that the follwing corollary holds.
Corollary. Let $R$ be a fully normal topological space, in $w/lic/l$ a unformity

with $t/u$ cardinal number at most $\mathfrak{n}$ can be introduced. $1n$ order that $R$ can
be represented as an intersection of at mosl $\mathfrak{n}$ open sets in some bicompact $T_{2}-$

space, it is necessary and snfficient thal a complete uniformity wilh a cardinal
number at most $\mathfrak{n}$ can be introduced in $R$ .
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Notes.

1) E. $\check{C}ech$ : On bicompact spaces. Annals of Math, 38, (1937.)
2) N. A. Shanin: On the theory of bicompact extensions of topological spaces. Comptes

Rendus (Doklady) USSR, 38, (1943). This theorem is stated in the more general form.
3) We denote by $F_{n,\alpha}^{o}$ the complement of $1^{7_{n,\alpha}}$ .
4) Cf. Tukey: Convergence and uniformity in topology. 1940.
5) $S(a\mathfrak{P})=\sum P$.

a $\epsilon P\epsilon \mathfrak{B}$
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