Journal of the Mathematical Society of Japan Vol. 1, No. 4, April, 1950.

On affine collineations in projectively related spaces.

KENTARO YANO AND TYIÛTI IMAI.

(Received Sept. 1, 1949)

§1. Introduction. M. S. Knebelman¹ proved a theorem on motions in conformally related Riemannian spaces: If an *n*-dimensional Riemannian space V_n admits an *r*-parameter group G_r of motions (r < n), then there exist n-r independent Riemannian spaces which are conformal to the Riemannian space V_n and admit the group G_r as group of motions.

One of the present authors has given in his forthcoming book a simple proof of this theorem. Let X_a be the *r* infinitesimal operators of the group G_r of motions in V_n whose fundamental tensor is $g_{\mu\nu}$, then we have

(1.1)
$$X_{a}g_{\mu\nu}=0, \qquad (a,b,c,\ldots=1,2,\ldots,r;\lambda,\mu,\nu,\ldots=1,2,\ldots,n).$$

In order that a Riemannian space which is conformal to V_n and consequently whose fundamental tensor is of the form $\rho^2 g_{\mu\nu}$ admit the G_r as a group of motions, it is necessary and sufficient that we have

$$X_a(\rho^2 g_{\mu\nu}) \doteq 0,$$

from which,

(1.2)
$$X_a \rho^2 = 0,$$

because of (1, 1). But, X_a being the operators of a group, that is, X_a satisfying the relations

$$(1.3) (X_b X_c) f = c_{bc}^{\cdot \cdot \cdot a} X_a f,$$

the equations (1.2) are completely integrable. Thus the theorem of Knebelman is proved.

The purpose of the present Note is to give a simple proof of an analogous theorem for group of affine collineations in projectively related spaces which is also due to Knebelman.³

¹⁾ M.S. Knebelman: On groups of motions in related spaces. Amer. Jour. of Math., 52(1930), 280-282.

²⁾ K. Yano: Groups of transformations in generalized spaces, in press.

³⁾ M. S. Knebelman: Collineations of projectively related affine connections. Annals of Math., 29 (1928), 389-394.

§2. Group of affine collineations in projectively related spaces.

Let A_n be an *n*-dimensional affinely connected space whose components of the connection are $I^{\lambda}_{\mu\nu}$, and suppose that A_n admit an *r*-parameter group $G_r(r < n)$ of affine collineations. Then, deonting by X_a the infinite-simal operators of the group G_r , we have (1.3) and

$$(2.1) X_a \Gamma^{\lambda}_{\mu\nu} = 0.$$

Now, in order that an *n*-dimensional affinely connected space \overline{A}_n which is projectively related to A_n admit the group G_r as a group of affine collineations, it is necessary and sufficient that there exist a covariant vector φ_n such that

 $X_a \overline{l}^{\overline{\lambda}}_{\mu\nu} = 0.$

(2.2)
$$\overline{\Gamma}^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\mu\nu} + \delta^{\lambda}_{\mu}\varphi_{\nu} + \delta^{\lambda}_{\nu}\varphi_{\mu}$$

and

Subsituting (2, 2) into (2, 3), we find

 $X_a \Gamma_{\mu\nu}^{\ \lambda} + \delta^{\lambda}_{\mu} X_a \varphi_{\nu} + \delta^{\lambda}_{\nu} X_a \varphi_{\mu} = 0,$

from which

because of (2.1).

Now, according to (1,3), the differential equations

are completely integrable and admit n-r independent solutions.

But, for one of these solutions, we have

$$X_{a}(\varphi_{;\nu}) - (X_{a}\varphi)_{;\nu} = 0, \quad \left(\varphi_{;\nu} = -\frac{\partial\varphi}{\partial x^{\nu}}\right)$$

from which

(2.6)

 $X_a \varphi_{;\nu} = 0.$

Thus the gradient of the solution φ of (2.5) satisfies the (2.4). Thus we have the theorem of Knebelman:

Theorem: If an n-dimensional affinely connected space A_n admits an r-parameter group G_r , of affine collineations (r < n), then there exist n-r independent affinely connected spaces, which are projectively related to A_n and admit the group G_r as group of affine collineations.

Department of Mathematics, Tokyo University.