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On the decomposition of an ($L$)-group

Yoz\^o MATSUSHIMA

(Received Feb. 15, 1949)

The purpose of the present note is to give a decomposition theorem
of an (L)-group1) which is a generalization of the well known theorem
of $Levi^{9}\vee$) in the theory of Lie groups.

The writer expresses his hearty thanks to Mr. M. Got\^o for his kind
advices.

\S 1. A locally compact group $G$ is called an $(L)$ -group, if $G$ contains
a system of clos $ed$ normal subgrotips $\{N_{\alpha}\}$ such that

1) $G/N_{\alpha}$ are all Lie groups and
2) $\cap N_{\alpha}=e$ ,

where $ed^{\alpha}enotes$ the unit element of $G$ . If an (L) -group $G$ is connected,
$G$ contains a system of compact normal subgroups $\{1\zeta_{\alpha}\}$ such that $G/K_{\alpha}$

are all Lie groups and $nK_{\alpha}=e$ Moreover we may assume that all $K_{\alpha}$ are
$\alpha$

contained in a compact normal subgroup and that the intersection of any
finite number of $K_{\alpha}$ is contained in the system $|K_{\alpha}\}^{3)}$ . Such a system
$\{K_{\alpha}\}$ is denoted in the following as a canonical system of $G$ .

A subgroup $L$ of an (L)-group $G$ is called a Lie subgroup, if it is
generated by a local Lie group $L_{l}$ which is contained in a neighbourhood
of the unit element of $G$ . If we take as the neighbourhoods of the unit
element in the group $L$ those of the local group $L_{l}$ we may introduce a
new topology in $L$ , which we shall call th $e$ inner topology of $L$ .

Now let $G$ be an arbitrary topological group and let $H_{1}$ and $H_{2}$ be
the subgroups of $G$ . We denote by $[H_{1}, H_{2}]$ the subgroup of $G$ generated
by the elements of the form $[/l_{1}, h_{2}]=h_{1}/\iota_{2}/l_{1}^{-1}h_{2}^{-1}$ The closure of $[H_{1}$ ,
$H_{\underline{o}}]$ will be denoted by $C(H_{1}, H_{2})$ and is called the topological commuta-
tor group of $H_{1}$ and $H_{2}$ . In particular $C(\dot{G}, G)$ is called the topological
commutator group of $G$ and is denoted by $D(G)$ . We define inductively
the groups $D_{n}(G)$ by the relations $D_{0}(G)=G,$ $D_{n}(G)=D(D_{n-1}(G))$ .
Analogously the subgroups $N_{n}(G)$ are defined by $N_{o}(G)=G$ $A^{r_{n}}(G)=$

$C(G, \Lambda^{7_{n-1}}(G))$ . A connected locally compact group $G$ is solvaole (nil-
potent), if $D_{n}(G)=e(1V_{n}(G)=e)$ for some integer $n$ . In th $e$ case of th $e$

Lie groups these definitions of the solvability ard th $e$ nilpotency coincide
with the usual ones.
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As K. Iwasawa has shown, there exists in any connected locally
compact group $G$ a unique maximal solvable connected closed normal
subgroup which is called the radical of $G^{S)}$ .

Definition $I$ . A connected (L)-group is said to be semi-simple if its
radical contains only the unit element.

By a result of M. Got\^o4) any connected semi-simple (L)-group $G$ is
the product of its maximal connected compact normal subgroup $C$ and a
closed connected normal subgroup $L$ , which is a semi-simpl Lie group
containing no compact connected normal subgroup other than the group
$(e)$ consisting only of the unit element, such that $[L, C]=e$ and $L\cap G$

is a finite group5). We call such a decomposition of a connected semi-
simple (L)-group a canonical decomposition.

\S 2. In this section we prove some lemmas which are necessary in
the following sections.

Lemma $I$ . Let $G$ be a connected Lie group and $R$ its radical and
let $N$ be a closed normal subgroup. Then $RN$ is closed and $RN/N$ is
th $e$ radical of $G/N$.

We omit the proof.
Lemma 2. Let $G$ be a connected (L)-group and $R$ its radical. If

$N$ is a closed normal subgroup of $G$ such that $G/N$ is a Lie group, then
$RN$ is closed and $RN/N$ is the radical of $G/N$.

Proof. Let $K$ be a compact normal subgroup of $G$ such that $G/K$ is
a Lie group. Then $G/N\cap K$ is also a Lie group and since $KnN$ is
compact, we see that $R(K\cap N)/KnN$ is the raical of $G/KnN^{6)}$ . By
the homomorphic mapping of $G/KnN$ on $G/N,$ $R(Kn_{1}V)/K\cap N$ is
mapped on $RN/N$. Then by Lemma 3 we see that $RN$ is closed and
$RN/i^{\backslash }\backslash r$ is the radical of $G/N$.

Lemma 3. Let $G$ be a connected semi-simple (L)-group and $N$ a
closed o-dimensional normal subgroup. If $G/N$ is a Lie group, then $G$

itself is a I.ie group and $\tilde{N}$ is discrete.
Proof. Since $\Lambda^{\gamma}$ is o-dimensional, $N$ is contained in the center of $G$ .

Let $K$ be a compact open subgroup of $N$. As $N$ is central, $K$ is a com-
pact o-dimensional normal subgroup of $G$ . Since $N/K$ is discrete, we see
that $G/K$ is a Lie group,. whence $G$ is a Lie $group^{6\rangle}$ . Since each o-di-
mesional closed subgroup of a Lie group is discrete, $N$ is discrete.

Lemma 4. Let $G$ be a connected (L)-group and ‘
$L$ be a closed con-

nected normal subgroup which Is a semi-simple Lie group. Suppose that
there exists a closed normal subgroup $M$ such that $G=L\cdot M,$ $[L,M]=e$ .
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Then $G=L\cdot M_{0}$ , where $M_{0}$ denotes the component of the unit element in
$M$.

Proof. As $G/M$ is a semi-simple Lie group, $M$ contains the radical,
$R$ of $G$ . Hence $M_{0}\supseteqq R$ and $G/M_{0}$ is a connected semi-simple (L)-group.
But since the factor group of $G/M_{0}$ with respect to $M/M_{0}$ is a Lie group
and since $M/M_{0}$ is o-dimensional, $G/M_{0}$ is a Lie group and $M/M_{0}$ is
discrete by Lemma 3. We have $G/M_{0}=LM_{0}/M_{0}\cdot M_{/}^{/}M_{0}$ , where $LM_{0}/M_{0}$

is a Lie subgroup of $G/M_{0}$ . As we may easily see, the Lie groups $G/M_{0}$

and $LM_{0}/M_{0}$ are locally isomorphic, whence $G/1\Psi_{0}=L\cdot M_{0}/M_{0}$ . Thus $G=$

$L\cdot M_{0}$ .
Lemma $j^{\prime}$ . Let $G$ be a connected (L)-group and $R$ its radical and

let $D(G)$ be the topological commutator group. Then $G=D(G)\cdot R$ .
Proof. As $G/D(G)$ is abelian, there exist closed normal subgroups

$K$ and $H$ such that $K\cdot H=G$ , $K\cap H=D(G),$ $K/D(G)$ is compact and
$H/D(G)$ is a vector group. Since $G/K$ is a vector group we see by
Lemma 4 that $RK/K$ is the radical of $G/K$. But since $G/K$ is abelian,
we have $G=R\cdot K$. Next let $R_{1}$ be the radical of $D(G)$ and put $K/R_{1}=$

$\tilde{K},$ $D(G)/R_{1}=\tilde{D}$ . $Then\tilde{D}$ is semi-simple and $\tilde{K}/\tilde{D}$ is a compact abelian
group. Let $\tilde{N}$ be the centraliser of $\tilde{D}$ in $\tilde{K}$. Then $K^{\sim}=\tilde{D}\cdot\tilde{N}^{7)}$ . Now let
$R_{2}$ be the radical of $K$. Then $\tilde{R}_{2}=R_{2}/R_{1}$ is the radical of $\tilde{K}$ and as we
may easily see $\tilde{R_{2}}$ is contained in $\tilde{N}$. Since $\tilde{N}/\tilde{N}\cap\tilde{D}(\cong\tilde{K}/\tilde{D})$ and $\tilde{N}$

$n\tilde{D}$ are abelian, $\tilde{N}$ is solvable, whence the component of the unit element
of $\tilde{N}$ coincides with $\tilde{R}_{2}$ . Let $\tilde{D}=\tilde{L}\cdot\tilde{C}$’ be the canonical decomposition of
$\tilde{D}$ . The $\tilde{K}=\tilde{L}\cdot\tilde{C}\cdot\tilde{N}$ and $\tilde{M}=\tilde{C}\tilde{N}$ is the closed normal subgroup of $\tilde{K}$

such that $[\tilde{L},\tilde{M}]=c$. Therefore we get by Lemma 4 $\tilde{K}=\tilde{L}\cdot\tilde{M}_{0}$ , where $\tilde{M}_{0}$

denotes the component of the unit element of $\tilde{M}$. But we see easily that
$\tilde{M}_{0}=\tilde{C}\cdot\tilde{R}_{y}$ whence $\tilde{K}=\tilde{L}\cdot\tilde{C}\cdot\tilde{R_{2}}$ . Hence $K=D\cdot R_{2}$ . Therefore $G=K\cdot R=$

$D(G)\cdot R$ .
Lemma $\theta$ . Let $G$ be a connected (L)-group such that the radical $R$

is a Lie group. If the factor group $G/K$ with respect to a compact
o-dimensional subgroup $K$ is a Lie group, then $G$ itself is a Lie group.

Proof. It is sufficient to prove that $G/R$ is a Lie group. But since
$G/KR$ is a Lie group and $KR/R$ is .a compact o-dimensional normal
subgroup of $G/R,$ $G/R$ is a Lie group.

\S 3. In this section we prove our decomposition theorem and the
uniqueness of such decomposition up to inner automorphismus.

Theorem 1. Let $G$ be a connected $(L)$ -group. $T/\iota enG$ decomposes
into $t1_{l}e$ form $G=L\cdot C\cdot R,$ $w/lere$
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1) $R$ is $tJ\iota e$ radical of $G,$ $C$ is a compact connected semi-simple subgroup
and $L$ is a semi-simple Lie sulgroup $w\prime_{l}ich$ contains no compact connected
normal subgroup different from $(e)$ ,

2) $[L, C]=e$ and $L\cap C$ is a finite group and
3) $LR$ and $CR$ are tlie ctosed normal subgroups such $t1\iota atG/R=$

$LR/R\cdot CR/R$ is $ th\ell$ canonical decomposilion of $t/le$ connected $\varphi mi$-simple $(L)$

-group $G/R$ .
Proof. We first consider the case where $G$ is a Lie group. Let $G$

$=S\cdot R$ be a Levi decomposition of $G$, where $S$ is a semi-simple Lie
subgroup. Now let $S=L\cdot C$ be th $e$ canonical decomposition of the semi-
simple Lie group $S$ . Then since the inner topology of $S$ is stronger than
the relative topology of $S$ as a subgroup of $G,$ $C$ is also a compact con-
nected semi-simple subgroup of $G$ . Since $S$ and $G/R$ are locally isomor-
phic and the compactness is the local property in the case of the semi-
simple Lie groups by Weyl’s theorem,8) the image $CR/R$ of $C$ by the
locally isomorphic mapping of $S$ on $G/R$ is th $e$ maximal compact connec-
ted normal subgroup of $G/R$ . Moreover since $L$ is the component of the
unit element of th $e$ centraliser of $C,$ $LR/R$ coincides locally with the
component of the centraliser of $CR/R$ . Hence $LR/R$ is closed and $G/R$

$=LR/R\cdot CR/R$ . is the canonical decomposition of $G/R$ .
Next we consider the case of an (L)-group. But we proceed stepwise

as follows: First we consider the case where $R$ is a simply connected
Lie group, then the case where $R$ is nilpotent, and finally th $e$ general case.

1) $R$ is a simply connected Lie group.
Let $G/R=L_{1}/R\cdot C_{1}/R$ be the canonical decomposition of $G/R$ and $K_{0}$ be
th $e$ maximal compact connected $nx$)$rmal$ subgroup of $C_{1}$ . Clearly $K_{0}$ is a
normal subgroup of $G$ . We first show that $G/K_{0}$ is a Lie group. Since
$L_{1}$ is a Lie group and $G/K_{0}=L_{1}K_{0}/K_{0}\cdot C_{1}/K_{0}$ , it is sufficient to show that
$C_{1}/K_{0}$ is a Lie group. Let $K$ be $\backslash the$ maximal compact normal subgroup
of $C_{1}$ . Then $C_{1}/K$ is a Lie groupq) and since $K/K_{0}$ is compact and
o-dimensional and the radical $RK_{0}/K_{0}$ of $C_{1}/K_{0}$ is a Lie group, we see by
Lemma 6 that $C_{1/^{\prime}}A_{0}$ is a Lie group. Now since the kernel $K_{0}R/R$ of
th $e$ homomorphism $G/R\sim G/K_{0}R$ is compact and connected, $C/KR$ is th $e$

maximal compact connected normal subgroup of $G/K_{0}R$ and $G/K_{0}R=L_{1}K_{0}$

$/K_{0}R\cdot C_{1}/K_{0}R$ is the canoaical decomposition of the semi-simple Lie group
$G/K_{0}R$ . Put $G^{*}=G/.K_{0},$ $R^{*}=RK_{0}/K_{0},$ $L_{1}^{*}=L_{1}K_{0}/K_{0}$ and $C_{1}^{*}=C_{1}/K_{0}$ . Then
by what has been already proved there exists a semi-simple Lie subgroup $S^{*}$

of the Lie group $G^{*}$ such that $L^{*_{1}}=L^{*}R^{*}$ and $C_{1}^{*}=C^{*}R^{*}$ , where $S^{*}=$
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$L^{*}C^{*}$ is the canonical decomposition of $s*$ . Now let $L_{1}=L\cdot R$ be a Levi
decomposition of the Lie group $L_{1}$ , where $L$ is a semi-simple Lie subgroup.
Then $L_{1}^{*}=L_{1}K_{0}/K_{0}=L\cdot K_{0}/K_{0}\cdot RK_{0}/K_{0}$ is a Levi decdmposition of $L_{1}^{*}$ and
since $L_{1}^{*}=L^{*}R^{*}$ is also such a decomposition, there exists an element $r$

in $R$ such that $rLr^{-1}K_{0}/K_{0}=L^{*10)}$ . Now let $C$ be the complete inverse
image of $C^{*}$ under the homomorphism $G/G\sim K_{0}$ . Clearly $C$ is contained
in $C_{1}$ and since $C^{*}$ and $A_{0}^{\prime}$ are both compact, connected and semi-simple,
the same holds for $C$ Since $G=L_{1}\cdot C_{1},$ $L_{1}=rLr^{-1}\cdot R,$ $C_{1}=CR$ , we have $G$

$=rLr^{-1}\cdot C\cdot R$ . Now since $[L^{*}, C^{*}]=e$ , i.e. [$ rLr^{-1}K_{0}/1\zeta_{0}C/K_{0}\rceil=\iota$ we have
$[rLr^{-1}, C]\subseteqq K_{0}$ . On the other hand since $[L_{1},C_{1}]\subseteqq R$ , we have $[rLr^{-1}, C]$

$\subseteqq R$ , whence [$L,$ $C\rfloor\subseteqq RnK_{0}$ . But as $R$ is simply connected, $R$ contains
no compact subgroup, whence $R\cap K_{0}=e$ . Thus [$L,$ $C\rfloor=e$ . That $rLr^{-1}\cap C$

is a finite group will be shown afterwards.
2) $R$ is nilpotent.

Let $K$ be the maximal compact subgroup of $R$ . Then $K$ is $conn\dot{e}$cted and
is contained in the center of $R^{11)}$ . Therefore $\acute{K}$ is the unique maximal
compact subgroup and a central subgronp of $G$ and $R/K$ is a simply
connected Lie group. Let $G/R=L_{1}/R\cdot C_{1}/R$ be the canonical decompo-
sition of $G/Ran\dot{d}$ put $G^{1;}=G/K,$ $R^{\prime}=R/K,\dot{L}_{1^{\prime}}=L_{1}/K$ and $C_{1^{\prime}}=C_{1}/R$ .
Then $G^{\prime}/R^{\prime}=L_{1^{\prime}}/R^{\prime}\cdot C_{1^{\prime}}/R^{\prime}$’is the canonical decomposition of $G^{\prime}/R^{\prime}$ and
since th $e$ radical $R^{\prime}$ of $G^{t}$ is simply connected, we have by 1) a decom-
position of $G$ such that $G^{\prime}=L^{t}\cdot C^{\prime}R^{\prime},$ $L_{1}^{\prime}=L^{\prime}R^{\prime}$ , $C_{1}^{\prime}=C^{\prime}R^{\prime},$ $[L^{\prime}, C^{\prime}]=e^{\prime}$ ,
where $e^{\prime}$ denotes the unit element of $G^{f}$ . Now since $L^{t_{1}}=L_{1}/K$ is a Lie
group and $K$ is compact and abelian, there exists in $L_{1}$ a semi-simple\sim Lie
subgroup $L$ such that $L_{1}=L\cdot R$ and $L^{\prime}=LK/K^{1l)}$ Next let $C$ be $the\sim$

complete invers $e$ image of $C^{\prime}$ under the $homomorphism_{\sim}C_{1}\sim C_{1}^{\prime}$
‘ Then $C$

is compact and connected and $K$ is the radical of $C$ As we may $see$

from the structur $e$ theory of compact $gl\infty up\dot{s}^{14)}$ there exists a $connected\sim$

compact semi-simple subgroup $C$ such that $\tilde{C}=C\cdot K$ Then $C_{1}=C\cdot R=C$

. $R$ . Thus $G=L\cdot C\cdot R,$ $L_{1}=L\cdot R$ , $C_{1}=C\cdot R$ . Since $[L^{\prime}, C^{\prime}]=e^{\prime}$ , we have
$[L, C]\subseteqq K$ As $K$ is central, $(lcl^{-1}c^{-1})c=c(lcl^{-1}c^{-1}),$ $i.e$ . $lcl^{-1}=clcl^{-\iota_{C^{-1}}}$

for $c\epsilon C,$ $l\epsilon L$ . Multiplying $c^{-1}$ from the left, we obtain $c^{-1}(lcl^{-1})=(lcl^{-1})c^{-1}$ .
Then $(lcl^{-1}c^{-1})\cdot(ldl^{-1}d^{-1})=c^{-1}(lcl^{-1})(ldl^{-1}d^{-1})=c^{-1}(\prime cdl^{-1}d^{-1}c^{-1})c=lcdl^{-1}$

$(cd)^{-1}$ . Hence, for-fixed $l,$
, the correspondence $c\rightarrow lcl^{-1}c^{-1}$ is a continuous

(not necessarily open) homomorphism of the group $Ci_{I1}to$ the group $K$

Denoting by $N$ the kernel of this homomorphism, we see that $C/N$ is an
abelian group. But since $C$ is semi-simple, we have $C=N$. Therefore
every element in $C$ commutes with $l\epsilon L$ . Thus we obtain $[L, C]=e$ . $M_{ov}$
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reover since $L$ and $L_{1}/R$ are locally isomorphic and $L_{1}/R$ contains no
compact connected normal subgroup except $(e)$ , the same holds for $L$ by
Weyl’s theorem. Now we prove that“ $LnC$ is a $fin^{c_{1te}^{\ovalbox{\tt\small REJECT}}}$ group. Let $\{K_{\alpha}\}$

be a canonical system of the connected (L)-group $G$ . Then $G$ is the
limit group of the system of groups $\{G/K_{\alpha}\}$ and hence $LnC$ is the limit
group of the system of groups $\{(L\cap C)K_{\alpha}/K_{\alpha}\}$ . We “have $G/K_{\alpha}=LK_{\dot{\alpha}}/$

$K_{\alpha}\cdot CK_{\alpha}/K_{\alpha}RK_{\alpha}/K_{\alpha}$ and $L[\zeta_{\alpha}/K_{\alpha}\cdot CK_{\alpha}/K_{\alpha}$ are the maximal $semi-\grave{s}i\tilde{m}ple$ Lie
subgroups $S_{\alpha}$ of the Lie groups $G/K_{\alpha}’$ . Since $L\sim\sim LK_{\alpha}/K_{\alpha}$ and $L$ contains
no compact $\dot{c}on\grave{n}ected$ normal $s_{\dot{L}}\iota bgroup$ except $(e)$ , the same hold for $LK_{\alpha}$

$/K_{\alpha}$ . Hence $CK_{\alpha}/K$. are the maximal compact connected normal sub-
groups of $S_{\alpha}$ and $S_{a}=LK_{\alpha}/K_{\alpha}\cdot CK_{\alpha}/K_{\alpha}$ are the canonical decompositions
of $S_{\alpha}$ . Therefore $(L\cap C)K_{8}/K_{\alpha}$ are the finite groups. Thus $LnC$ is a
hmit group of a system of finite groups, whqnce $LnC$ is compact. On
the other hand $LnC$ is contained in the center of the semi-simple Lie
group $L$ and hence it is enumerable. Therefore $LnC$ must be a finite
group.15)

3) General case.
As the radical $R_{1}$ of the topological commutor group $D$ ( $ G\rangle$ is nilpotent;16)
we have by 2) a decomposition of $D(G)$ such that $D(G)=L\cdot C\cdot R_{1},$ $[L$,
$C]=e$ and $LnC$ is a finite group. Then since $G=D(G)\cdot R$ by Lemma
7, we have $G=L\cdot C\cdot R$ . We must prove that $LR$ and $CR$ are the closed
normal $subgro_{-}$ ps such that $G/R=LR/R\cdot CR/R$ is the canonical decom-
position of $G/R$ . For this purpose let $G/R=L_{1}/R\cdot C_{1}/R$ be the canonical
decomposition of $G/R$ . Since $CR_{1}$ is a characteristic subgroup of $D(G)$ ,
$CR=CR_{1}\cdot R$ is a closed normal subgroup of $G$ and clearly $CR\supset C_{1}=$ . Now
we have $G/R_{1}=R/R_{1}\cdot D/R_{1}$ and th $e$ radical $R/R_{1}$ of $G/R_{1}$ is central.
Since $R/R_{1}$ is also the radical of $C_{1}/R_{1}$ and $C_{1}/R_{1}/R/R_{1}$ compact, $C_{1}/R_{1}$

is by 2) the product of $R/R_{1}$ and a compact semi-simple connected
subgroup. Hence $D(C_{1}/R_{1})$ is compact and since $D(C_{1}/R_{1})\subseteqq D(G/R_{1})=$

$D(G)/R_{1}$ , we have $D(C_{1}/R_{1})\subseteqq CR_{1}/R_{1^{A}}$ But $D(C_{1}/R_{1})=\overline{D(C_{1})R_{1}/}R_{1}$ ,
whence $D(C_{1})R_{2}\subseteqq CR_{1}$ , Therefore $\overline{D(C_{1})R}\subseteqq CR$ . On the other hand since
$C_{1}/R$ is $semi\rightarrow simple$ , we have $D(C_{1}/R)=C_{1}/R$ and hence $\overline{D(C_{1})R}=C_{1}$ .
Thus we obtain $C_{1}=CR$ . Now $G/R=C_{1}/R\cdot LR/R$ and clearly $ Z_{1}/R\supseteqq$

$LR/R$ . But as $G/R/C_{1}/R$ is locally isomorphic with $LR/R$ and also with
$L_{1}/R$ , the Lie groups $L_{1}/R$ and $LR/R$ must be of the same dimensions.
Therefore $L_{1}/R=LR/R$, whence $L_{1}=LR$ . $q$ . $e$ . $d$ .

Theorem 2. Let $G=L\cdot C\cdot R$ and $G=L^{\prime}C^{\prime}R$ be $ tzv\delta$ decompositions of
a $con$mected $(L)$ -group $GwI_{l}ich$ satisfy $t/\iota e$ conditions 1) and 2) in Theorem
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2. $T/lent/lereexis;s$ an $el\iota^{\prime}\prime nentr$ in $R$ suck tltat $rLr^{-1}=L^{\prime},$ $rCr^{-1}=C^{\prime}$ .
Proof. We may assume that the one of these decompositions, for

example $G=L\cdot C\cdot R^{\backslash }$ is the one obtained in th $e$ proof of Theorem 1. First
we prove that $LR=L^{\prime}R$ and $CR=C^{\prime}R$ . Let $K$ } be a canonical system
of $G$ . Then $G/K_{\alpha}=LK_{\alpha}/K_{\alpha}\cdot CR_{\sigma}/K_{l}RK_{\alpha}/K_{\alpha}$ and $S_{\alpha}=LR_{\alpha}/K_{\alpha}\cdot CK_{\alpha}/K_{\alpha}$

is a maximal semi-simple Lie subgroup of $G/R_{\alpha}$ . As was shown before,
$CK_{\alpha}/K_{\alpha}$ is the maximal compact connected normal subgroup of $S_{\alpha}$ . By
th $e$ same reason, also $C^{\prime}K_{\alpha}/A_{\alpha}^{\prime}$ is the maximal compact normal subgroup of
th $e$ maximal semi-slmple Lie subgroup $S_{\alpha^{\prime}}=L^{\prime}R_{\alpha}/K_{\alpha}\cdot C^{\prime}K_{\alpha}/K_{\alpha}$ . Hence from
what has been already noticed in th $e$ proof of Theorem 1 we obtain $CK_{\triangleleft}$

$/K_{\alpha}\cdot RK_{\alpha}/K_{\alpha}=C^{\prime}K_{\alpha}/R_{\alpha}RR/K_{\alpha}i$ . $e$ . $CRK_{\alpha}=C^{\prime}RK_{\alpha}$ . Consideiing the in-
tersections of each sides for all $a$ , we get $CR=C^{\prime}R$ . But since $G/R=$
$LR/R\cdot CR/R=L^{\prime}R./R\cdot CR/R$ and the former is the canonical decomposi-
tion of $G/R$ , we have $LR/R\supseteqq L^{\prime}R/R$ . But as $G/R/CR/R$ is locally
isomorphic with $LR/R$ and also with $L^{\prime}R/R$ , we obtain $LR=L^{t}R$ as before.

Next we consider the case where th $e$ radical $R$ is nilpotent. Let $K$

be th $e$ maximal compact subgroup of $R$ . As we have already remarked,
$K$ is connected and is contained in th$ec$enter of $G$ . Then $CK$ is a max-
imal compact subgroup of $C_{1}=CR=C^{\prime}R$ . For, since $C_{1}/K=CK/A\cdot R/K$

and $R/K$ is a simply connected Lie group, $CK/K$ is a maximal compact
subgroup of $C_{1}/K$ and hence $CK$ is maximally compact in $C_{1}$ By the same
way $CK$ is also a maximal compact subgroup of $C_{1}$ Henc $e$ there exists
an element $a=c\cdot r(c\epsilon C, r\epsilon R)$ in $C_{1}$ such that $aCKa^{-1}=C^{\prime}K$. Since $K$ is
central, we have $rCr^{-1}K=C^{\prime}K$. Let $C^{\prime}K=M$ Then $K$ is the radical of
$M$ and $rCr^{-1}\cdot K$ and $CK$ are two decompositions of th $e$ compact group $M$

as the products of the semi-simple connected cempact normal subgroups
and th $e$ radical. As such a decomposition of the compact group is $uni_{1}\cap ue$ ,
we have $rCr^{-1}=C$. Hence it is sufficient to show that, if $G=L\cdot C\cdot R=L^{\prime}$ .
$C\cdot R$ are the decompositions of $G$ , then there exists an element $r$ in $R$

such that $rLr^{-1}=L^{\prime}$ and $rCr^{-1}=C$ If $G$ is a Lie group, this is easy to
verify. First let $R$ be simply connected. Let $K_{0}$ be the maximal compact
connected normal subgroup of $C_{1}=CR$ . Then as we hav $e$ already shown
$G/K_{0}$ is a Lie group and hence there exists an element $r$ in $R$ such that
$rLr^{-1}\cdot K_{0}=L^{\prime}K_{0}$ and $rCr^{-1}=C$ Since $K_{0}\subseteqq C$, we have $[rLr^{-1}, K_{0}]=e,$ $[L$ ,
$K_{0}]=e$ and $rLr^{-1}\cap K_{0}$ and $L^{\prime}nK_{0}$ are finite groups. Hence $L^{\prime}K_{0}$ is alge-
braically isomorphic with $L^{\prime}\times K_{0}/D$ , where $D$ is a finite group. If we
introduce a topology in $L^{\prime}K_{0}$ as the factor group of $L^{\prime}\times K_{0}$ , then $L^{\prime}K_{0}$

becomes a connected semi-simple (L)-group and $L^{\prime}$ is a clos$ed$ subgroup.
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Since $L^{\prime}$ contains no compact connected normal subgroup, $K_{0}$ is the max-
imal compact connected normal subgroup of $L^{\prime}\cdot K_{0}$ . Let $L^{\prime}K_{0}=L_{0}K_{0}$ be the
canonical decomposition of $L^{\prime}K_{0}$ , then $L^{\prime}$ is contained in $L_{0}$ and since $L_{0}$

and $L^{\prime}$ are locally isomorphic Lie groups we get $L_{0}=L^{\prime}$ . $rLr^{-1}$ is also
contained in $L_{0}$ and $L^{\prime}$ and $rLr^{-1}$ are also locally isomorphic. Hence $L^{\prime}$

$=rLr^{-1}$ . If $R$ is not simply connected, consider the group $G/K$ Then
we have $rLr^{-1}\cdot K=L^{\prime}K$ and $rCr^{-1}K=CK$. Then considering the commu-
tator group in the former and the topological commutator group in the
latter, we obtain $rLr=L^{\prime}$ and $rCr=C$. Finally we consider the general
case. Let $R_{1}$ be the radical of $D(G)$ . Then since the decomposition $G=$

$L\cdot C\cdot R$ is the one obtained in the proof of Theorem 1, $D(G)/R_{1}=LR_{1}/R_{1}$

. $CR_{1}/R_{1}$ is the canonical decomposition of $D(G)/R_{1}$ . Now the component
of th $e$ unit element of the group $CR\cap D(G)$ is $CR_{1}$ . For, since $C\subseteqq D$

$(G)$ , we have $CR\cap D(G)=C(R\cap D(G))$ and as tha component of the
unit element of $R\cap D(G)$ is $R_{1}$ , we may easily velify the above proposition.
Sinc$eC^{\prime}R=CR$ and $C^{\prime}$ is also contained in $D(\backslash G),$ $ C^{\prime}(R\cap D(G))=C(R\cap$

$D(G))$ and considering the components of the both sides, we have $CR_{1}=$

$C^{\prime}R_{1}$ . As $L^{\prime}$ is also contained in $D(G)$ and $[L^{\prime}, C^{\prime}]=e$ , we have
$LR_{1}/R_{1}\supseteqq L^{t}R_{1}/R_{1}$ and by the same argument as before we obtain $LR_{1}=$

$L^{\prime}R_{1}$ . Therefore $D(G)=L\cdot C\cdot R_{1}=L^{\prime}C^{\prime}R_{1}$ . Since $R_{1}$ is nilpotent there
exists an element $r$ in $R_{1}$ such that $rLr^{-1}=L^{\prime}$ and $rCr^{-1}=C$ q.e.d.

\S 4. Now we may give somewhat different formulation to Theorems
1 and 2.

Defnition 2. Let $G$ be a connected (L)-group. A subgroup $H$ of
$G$ is called an $sem!$-simple $(L)$ -subgroup, if, for each closed normal
subgroup $N$ such that $G/N$ is a Lie group, $H\Lambda^{\gamma}/N$ is a semi-simple Lie
subgroup of $G/N$.

As we may easily see, each closed semi-simple subgroup is a semi-
simple (L)-subgroup.

Theorem 3. Let $G$ be a connected $(L)$ -group and $R$ its radical. Then
$l^{\prime here}$ ezists a semi-simpJe $(L)$ -subgroup $Ssuc\nearrow l$ that $G=S$ . R. $JfS^{\prime}$ is anotler
semi-simple $(L)$ -subgroup suclt $t/\iota atG=S^{\prime}\cdot R$. $t/\iota ent/\iota ere$ extsts an element $r$

in $R$ such tltat $rSr^{-1}=S^{\prime}$ .
Proof. Let $G=L\cdot C\cdot R$ be a decomposition in Theorem 1. Then

since $L$ and $C$ are semi-simple (L)-subgroups and $[L, C]=e$, we see that
the subgoup $S=L\cdot C$ is a semi-simple (L)-subgroup such that $S\cdot R=G$ .
Now let $|K_{\alpha}$ } be a canonical system of $G$ and put $G_{\alpha}=G/K_{\alpha},$ $S^{r_{\alpha}}=S^{\prime}K_{\alpha}$

$/K_{\alpha}$ Then $S_{\alpha}^{\prime}$ are maximal semi-simple Lie subgroups of the Lie groups
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$G_{\alpha}$ and $G$ is the limit group of the system \dagger $G_{\alpha}$ } of’ Lie groups. Let $a$

and $\beta$ be an $arb!t^{\not\in}rary$ pair of indices such that $K_{\#}\subset K_{\alpha}$ . Then. $G_{\beta}$ is
homomorphic to $G_{\alpha}$ . If $\varphi_{\alpha_{1}s}$ denotes the homomorphic mapping of $G_{8,1}$ on
$G_{\alpha}$ , then there corresponds to every element $x$ of $G$ th $e$ system $\{2i_{\alpha}\}$ ,

where $x_{\alpha}\not\in G_{\alpha}$ and $x_{\alpha}=\varphi_{\alpha\$}(x_{\mathfrak{l}}\$)$ for any pair $a,$ $\beta$ such that. $K_{\beta}\subset K_{\alpha}$ . In par-
ticular the elements of $S^{\prime}$ ars determined by the systems $\{s_{\alpha}^{t}\},$ $s_{\alpha}^{\prime}\epsilon S_{\alpha^{\prime}}$

Now let $S^{l_{\alpha}}=\grave{L}^{\prime}{}_{\alpha}C_{\alpha}^{\prime}$ and $S_{\beta}^{\prime}=L^{r_{\beta}}\cdot C_{\theta}^{\prime}’$

’
be th $e$ canonical decompositions of

the semi-simple Lie groups $S_{\alpha}^{\prime}$ and $S_{\beta}^{/}$ . Then $\varphi_{\alpha\backslash }(S_{\beta}^{\prime})=S^{\prime\alpha},$ $\varphi_{\alpha}|(L_{\beta}^{\prime})=$

$L_{\alpha}^{\prime}$ and $\varphi_{\alpha},’(C_{\beta}^{\prime})=C_{\alpha}^{\prime}$ Clearly the systems $\{c_{\alpha}^{\prime}\}$ such that $c_{\alpha}^{\prime}\epsilon C_{\alpha}^{\prime}$ deter-
$\min e$ a compact subgroup $C^{\prime}\subseteqq S^{\prime}$ . Further since the kernels $K_{\alpha},$

’ of the
homomorphisms $\varphi_{\alpha},$’ are compact, we see that $\varphi_{\alpha q}$ are locally isomorphic
mappings of $L_{\beta}^{\prime}$ on $L_{\alpha}^{\prime}$ . In fact, let $\mathfrak{K}_{\alpha}$ be the ideals of $\mathfrak{G}$, which cor-
respond to the group $K_{\alpha},$

” where $\mathfrak{G}_{I}$, denotes the Lie algebra of the
Lie group $G_{\beta}$ . Then since $K_{\alpha}q$ is compact, $\mathfrak{K}_{\alpha S}=\mathfrak{S}_{\alpha\beta}+\mathfrak{Z}\alpha q$

’ where $\mathfrak{S}_{\alpha\backslash }$ is
the semi-simple ideal and $\mathfrak{Z}_{\alpha\beta}$ is the center. Since $\mathfrak{K}_{\alpha}$

, is the ideal of $\mathfrak{G}_{1}*$

$\mathfrak{S}_{\alpha,\backslash }$ is contained in the Lie algebra $\mathfrak{S}_{\beta}^{\prime}$ of the maximal semi-simple Lie
subgroup $S_{8}$ and $\mathfrak{Z}_{\alpha q}$ is contained in the radical of $\mathfrak{G}_{\beta}$ Moreover since
$\mathfrak{S}_{\alpha}$ generates the compact group, $\mathfrak{S}_{\alpha\beta}$ is contained in th $e$ Lie algebra of
the $gro_{L}lpC_{\beta}^{\prime}$ . Hence the intersection of $\mathfrak{K}_{\alpha\$}$ and th $e$ Lie algebra of the
Lie subgroups $L_{1}^{\prime}s$ contains only zero. This proves th $e$ above assertion
Therefore we may choose a sufficiently small neighbourhood $L_{\alpha}^{0}$ of the
unit element of $e$ach $L^{r_{\alpha}}$ such that $\varphi_{\alpha},$’ are the one-to-one mappings of $L_{\beta}^{0}$

on $L_{\alpha}^{0}$ for all pairs $(a, \beta)$ such that $K_{q}\subset K_{\alpha}$ . Further let $\varphi_{\alpha}^{t}$ be th $e$

homomorphic mappings of $G$ on $G_{\alpha}$ and put $L^{0}=n_{\alpha}\psi_{\alpha}^{-1}(L_{\alpha}^{0})$ . There
correspond to the elements of $L^{0}$ the systems } $x_{\alpha}$ } such that $x_{\alpha}\epsilon L^{0_{\alpha}}$

and, for fixed $a$ , every element $x_{\alpha}$ in $L_{\alpha}^{0}$ appears in such a system.
Hence $L^{0}$ is a local Lie group isomorphic with th $e$ local Lie groups $L^{0_{\alpha}}$ .
Let $L^{\prime}$ be the Lie subgroup generated by $L^{0}$ . Then $L^{\prime}\subset S^{\prime}$ and $\psi_{\alpha}(L^{\prime})=$

$L_{\alpha}$ , i.e. $L^{\prime}K_{\alpha}/K_{\alpha}=L_{\alpha}$ . We may easily see that $S^{\prime}=L^{\prime}\cdot C^{\prime}$ and $[L^{\prime}, C]=e$ .
Further we may prov $e$ by the same argument as in the proof of Theorem
1 that $L^{\prime}\cap C’$ is a finite group. Hence we obtain a decomposition $G=L^{t}$

. $C^{\prime}R$ which satisfies the conditions 1) and 2) in Theorem 2 such that $S^{\prime}$

$=L^{\prime}C^{\prime}$ . Then by Theorem 3 there exists an $e1$ement $r$ in $R$ such that
$rLr^{-1}=L^{\prime}$ and $rCr^{-1}=C^{\prime}.-$ Hence $rSr^{-1}=S^{\prime}$ . q.e.d.

Now we $con_{S}ider$ the case where $G$ is a connected (1) $- group^{1-)}$ and
show that in this case the semi-simple. (L)-subgroup $S$ is closed.

Theorem 4. $1fG$ is a connected (1)-group, $t/len$ every semi-simple
$(L)$ -subgroup $S$ such that $G=S\cdot R$ is a closed sulgroup.
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Procf If $K$ is a compact normal subgroup of $G$ such that $G/K$ is a
Lie group, then $G/K$ is faithfully representable $(\Gamma r.)^{18.)}$ Let $\overline{S}$ be the closure
of $S$. Then $\overline{S}K/K$ is the closure of $SK/K$. But since $S^{-}K/K$ is a semi-
simple Lie subgroup of the ’ $r$. Lie group $G/K$, it is $closed_{\sim}^{19)}$ Hence
$\overline{S}K/K=SK/K$. Thus $\overline{S}$ is a semi-simple (L)-subgroup such that $G=S^{-}$.
$R$ . But since $S$ is conjugate with $\overline{S},$ $S$ is also closed.

Mathematical Institute
Nagoya University

Notes

1) For ( $L$)-groups, see K. Iwasawa. On some types of topological groups, Annals of Math.

Vol. 50, No. 3 (1949). We shall refer to this paper as I.
2) For Levi’s theorem, see J.H.C. Whitehead. On the decomposition of an infinitesimal group.

Proc. Cambr. Phil. Soc. v. 32. (1932), A. Malcev. On the representation of an algebra as
a direct sum of the radical and a semi-simple algebra, C. R. DRSS, 56 (1942) and M.
Got\^o, On a theorem of E.E. Levi, Mathematica Japonicae. Vol. 1. No. 3 (1949).

3) See, I.
4) M. Got\^o, Linear representations of topological groups, to appear shortly. We shall refer to

this paper as G.

5) $L$ is the component of the unit element in the centraliser of $C$.
6) See, G.
7) See, G.
8) H. Weyl, Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare

Transformationen, I-III, Math. Zeit. Bd. 23-24(1924-25).

9) See, I.
10) See, A. Malcev, loc. cit.
11) See, G.
12) For, by I, maximal compact subgroups are conjugate with each other and any compact

abelian normal subgroup is contained in the center of G.
13) See, I. Lemma 4.8
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14) See, H. Fleudenthal, Topologische Gruppen mit geniigend vielen fastperiodischen Funktionen,

Ann. of Math. 37 (1936).
J5) See, G.
16) See, G.
17) For $t$ -he definition and properties of (1)-groups, see, G.
18) A Lie group is said to be faithfully representable, if it admits an isomorphic continuous

representaion by matrices.
19) K. Yosida, A theorem concerning the semi-simple Lie groups, Tohoku Math. Journ. $v$ . 4$

(1937).
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