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On the harmonic prolongation.
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tReccived December 1, 1948. $y$

In the customary proofs of the theorems of the harmonic prolongation,
it is usual to make use of Green’s formula and so it is necessary to assume
the functions to have the first derivatives continuous on 4 part or whole of
the bonndary. In this note we prove them without using Green’s formula
and show that the theorems hold without the assumption of the continuity
of the first derivatives.

Theorem. I. Let $v(x,y)be\gamma_{\iota armom\acute{c}}$ in $t/le$ domain, $(x-a)^{2}+y^{2}<r^{2}$

$y>0$ , and continuous on its closure, $(x-a)^{\underline{o}}+f^{o}=^{r^{o},y}<>0=$
’ and suppose that

its normal derivative vanishes on the real axis, $y=0,$ $a-r<x<a+r$ . $1f$ we
defne the function $v^{*}(x,y)$ by setting

(1) $v^{*}(x, y)=v(x, y)$ when $(x-a)^{2}+y\underline{\leqq}r^{o},$ $y\geqq 0$ ,

$v^{*}(x, y)=v(x,-y)$ when $(x-a)^{2}+y=<r,$ $\gamma\leqq 0$,

$t\gamma_{len}v^{*}(x, y)$ is a harmonic prolongation of $v(xp)$ in $th\ell\dot{\alpha}rcle(x-a)^{2}+y^{\underline{o}}$

$<r^{\sim}$ .
Without loss of generality we can assume that $r=1$ and $a=0$ .

We consider the Poisson integral $V(x,y)$ for the boundary value of $v^{*}(x,y)$ ,

$ V(x,y)=\frac{1}{2\pi}\int_{0}^{2\pi}\frac{1-r^{\underline{o}}}{1-2r\cos(\varphi-\theta)+r^{2}}v^{*}(\xi,\eta)d\varphi$,

where $\xi+i\eta=e^{i}$ and $x+i\parallel=re^{i\theta},$ $0\leqq r<1$ . $V(x, y)$ is harmonic in $d+J^{\prime^{\underline{o}}}<1$ ,

continuous on $x^{2}+y^{\underline{9}_{--}}\leq 1$ , and its normal derivative vanishes on the $reaI$

axis, $y=0,$ $-1<x<1$ , because of the continuity and symmetry of $v^{*}(x,y)$ .
Then $u(x, y)=V(x, y)-v(x, y)$ has the same properties as $v(x, y)$ and
vanishes on the peripherie $x^{2}+y^{\underline{o}}=1,$ $y_{\frac{>}{--}}0$ . Hence if we can prove the
following lemma, we obtain the theorem I.

Lemma. $1fu(x, y)$ is harmonic in $t\nearrow_{l}e$ domain $x^{2}+y^{2}<1,$ $y>0$ and
continuous on its closure $x^{2}+y^{2}=<1,$ $y>0=$ and satisfies the $follm/ing$ boundary
conditions:

(2) $u(x, \parallel)=0$ for $x^{\underline{o}}+y^{o}\lrcorner=1,$ $\parallel_{=}>0$ ;
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(3) $\frac{\partial u}{\partial n}=0$ for $-1<x<1,$ $y=0$ ,

tlen $u(x, y)$ is identically $2ero$ .
The proof of Lemma. Let $(\xi, \eta)$ be an inversion of $(x,y)$ with $re$spect

to the unit circle and put
(4) $u^{*}(\xi, \eta)=-u(x, y)$ $(x^{2}+y^{2}\leqq 1, y\geqq 0)$

then, from (2), we have the harmonic prolongation ot $u(x,y)$ on the upper
half plane. We denote again by $u(x, y)$ this prolongation. $u(x, \parallel)$ is
continuous and bounded; hence we have the Poisson representation of $u(x,y)$

in the upper half planc,

(5) $u(x, y)=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{\gamma}{(t-x)^{2}+y^{9}\sim}u(t)dt$ $(y>0)$ ,

where $u(t)=u(t, 0)$ . By the boundary condition (3), for $-1<x<1$ .
(6) $0=\frac{\partial u}{\partial n}=\lim_{y\rightarrow 0}\frac{u(x,y)-u(x)}{y}$

$=\lim_{y\rightarrow 0}\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{u(t)-u(x)}{(t-x)^{2}+y^{\underline{o}}}dt$.

From (4) follows

$\backslash \int^{1_{1}}\frac{u(t)-u(x)}{tI>1(t-x)^{o}\sim+i\mathscr{J}-}dt=-\int^{1_{-1}}\frac{u(t)+u(x)}{(1-tx)^{\underline{o}}+(ty)^{2}}dt$.

Therefore by (6) we have

(7) $\lim_{y\rightarrow 0}\int\frac{u(t)-u(x)}{-1(t-x)^{2}+y^{2}}dt=\int_{-1}^{1}\frac{u(t)+u(x)}{(1-tx)^{2}}dt$.

Suppose that $u(t)$ is not identically zero in $-1\leqq t\leqq 1$ , then the maximum
$M$of $|u(t)|in-1\leqq t\leqq 1$ is positive, and there exists an $x_{0}$ such that $u(x_{0})=$

$M$ or $u(x_{0})=-M$. If $u(x_{0})=M$, from the continuity of $u(t)$ and $u(1)=u(O)=$
$0$ , we can casily derive the following inequelities

(8) $\lim_{y\rightarrow 0}\int_{-1}^{1}\frac{u(t)-u(x_{0})}{(t-x_{0})^{2}+y^{2}}dt<0$ ,

$\int_{-1}^{1}\frac{u(t)+u(x_{0})}{(1-tx_{0})^{2}}dt>0$ .

This contradicts the $e$quation (7). When $u(x_{0})=-M$, we are similarly
led to the contradiction. Hence it results that $u(t)$ and therefore, by (4),
$u(X, j^{\prime})$ also is identically zero.
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From the above theorem we can easily obtain the follo$ning$

$T/\iota corem$ . Let $D_{1}$ and $D_{\sim}$, be two domams $\ovalbox{\tt\small REJECT} z\ell\dot{n}t/lOl/f$ common inner point, but
whose boundaries contain a common isolated analytic curve C. Let $u_{1}(x, y)$ be
$/\iota armonic$ in $D_{1}$ and $tt_{?}(x, y)$ in $D_{2}$ , and be continuous and

(10) $u_{1}(x, y)=l/2(x, y)$ ,

(11) $\frac{\partial u_{1}}{\partial n}=\frac{\partial u_{2}}{\partial n}$

on the $i\prime\prime er$ point of $C$, rvhere $\partial/\partial nb^{p}i//\mathscr{T}$ the normal derivative in the same
sense. Tlten cach is the harmonic $trolo/l_{\delta^{\circ}}ation$ of the other.

Without loss of generality we can assume that $C$ is a segment on the
real axis. Let $(a, 0)$ be any inner point on the common boundary.
Suppose that the upper semi-circle about $(a, 0)$ with snfficicntly small radius
belongs to $D_{1}$ .

In order to prove the theorem it is sufficicnt to show that for every
sufficiently small $r>0$ .

(12) $\frac{1}{2\pi}[\int_{0}^{\pi}u_{1}(a+\rho^{l}\cos\varphi, r\sin\varphi)d\varphi$

$+\int_{\pi}^{2\pi}u_{2}(a+r\cos\varphi, ’’\sin\varphi)d\varphi]$

.
$=u_{1}(a, 0)(=n_{?}(a, 0))$ .

If we define the function $U(x,y)$ by setting
$U(x, y)=l\ell_{1}(x,-y)+u_{2}(x,-p’)$

for $y_{\frac{>}{--}}0,$ $(x-a)^{2}+\parallel^{2}>r$,

then $U(x, i\nu)$ is harmonic for $(x-a)^{2}+J^{\prime^{\underline{o}}<r^{\prime},y>0}=$
’ and by (11) its normal

derivative vanishes on the $a-,’<x<a+r’,$ $y=0$ .
Hence, denoting by $U^{*}(x, y)$ the hamonic prolongation of $U(x, y)$ in the
circle $(x-a)^{2}+y^{\underline{o}}<\underline{o}$ in the theorem 1, we have

$\frac{1}{2\pi}\int_{0}^{2\pi}U^{*}(a+r\cos\varphi, r\sin\varphi)d\varphi=U^{*}(a, 0)$

$=u_{1}(a,0)+u_{2}(a,0)=2n_{1}(a,0)$ .
On the other hand, from the definition of $U^{*}$ , we have

$\frac{1}{2\pi}\int_{0}^{2*}U^{*}(a+r\cos\varphi, r\sin\varphi))d\varphi$

$=\frac{1}{2\pi}\int_{0^{\varpi}}|u_{1}(a+r\cos\varphi, r\sin\varphi)$
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$+u_{2}(a+r\cos\varphi,-r\sin\varphi)\}d\varphi$

$+\frac{1}{2\pi}\int_{\pi}^{2\pi}\{u_{1}(a+r\cos\varphi, -\prime r\sin\varphi)$

$+u_{2}(a+r\cos\varphi, r\sin\varphi)\}d\varphi$

$=\div[\int_{0}^{\pi}u_{1}(a+r\cos\varphi, r\sin\varphi)d\varphi$

$+\int_{\pi}^{2\pi}u_{2}(a+r\cos\varphi, r\sin\varphi)d\varphi]$

Thus we have (12), as was to be proved.
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