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Introduction.

Recently C. Chevalley and H. F. Tuan obtained an interesting charac-
terization of the Lie algebras of algebraic Lie groups of matrices®. Using
the notion of réplicas » of matrices, they introduced namely the concept
of algebraic Lie algebras of matrices; A Lie algebra € of matrices over a
field P is called linear algebraic (/-algebraic)® if every replica of each AegQ
belongs also to & It was shown by them that, if 7 is the field of complex
numbers, the l—algebraicity is the characteristic property of the Lie algebras
of algebraic Lie groups of matrices. The notion has been extended recently
by M. Got6 to general, not necessarily matric, Lie algebras®. Namely a
Lie algcbra is called algebraic if its adjoint representation is /-algebraic.
Then he proved that any algebraic Lie algebta over a fiele of characterirtic
zero is isomorphic with an Z-algebraic Lie algebra of matrices. In this note
we shall first prove some results on /Z-algebraic Lie algebras. Most of these
results have been obtained by C. Chevalley and H. F. Tuan, but our methods
will be somewhat different from theirs. Then we shall characterize the Lie
groups of algebraic Lie algebras ever the field of complex numbers. We
show that the integrated groups:of such Lie algebras are algebraic groups
in the sense that the functions which define the mu1t1p11cat10n of group

" elements are algebraic functions of suitably chosen parameters of the group.

This result follows also from the above mentioned result of . M. Gotd, but .
our proof is a more direct ohe._ The converse of this proposition has been
already proved by L. Maurer® and thus we obtain a characterization of the
Lie groups of algebraic Lie algebras. The writer is grateful to Mr. M.
Gotd for his friendly cooperation.

1. Let P be a field of characteristic zero.- For simplicity we call a.

‘nilpotent matrix an z-matrix, a matrix with simple elementary divisors an

s-matrix, and an s-matrix whose characteristic roots are all rational numbers
an 7-matrix. Let A4 be a matrix with coefficients in P and P be algebrai-
cally closed. In a previous note“f we showed that we may represent A in
the form o ” '



On algetraic Lie groups and algebras. . 47

A=A +21A4+...... + 4,4, ; (1)
where 4, ......, 4 are the characteristic roots of 4 which are linearlgf in-
dependent with respect to the field R of rational numbers, A° is an z-matrix
and 4%, ...... , A* are w-matrices such that 4* (=0, 1, ...... , #) are com- .

mutative with each other and form a linear basis for replicas of 4. Now
let ‘ ‘

A=B"+&B'+...... +£,87 (2)

be any decomposition of 4 into an z-matrix 5° and r-matrices B7 such that
B (/=0,1, ...... , J) are commutative with each other and §; (=1, eenees
7) are linearly independent over R. Then B* (=0, 1, ......, j) are replicas
of A and any replica of 4'is a linear combination of 5°". For, we see
first from (1) and (2) that V ’

L A=R, WA ... AR A=EB ... +EB. -

We may assume that 4% and 5% (: &=0) are all diagonal matrices®. Let

where #¢ and si are rational numbers. Denote by I a linear space spanned

by 45, ...... y A by e , &5 over R, Let py, ...... , M,, be a basis of I
over R such that p,=/; for z=1, ...... , £ Let,
ei::ZZL:lﬁg,uu’ J’?GR (i=1: """ b ].)
Then . , ' : -
2150515:';——2321 Z)lzll’ }6,’1u5f=217=1#u2‘3=1 1:5:= 5=5Fu7';‘-
Hence - |
ri=3Y_,pist (=1, ...... s By e=1, ..., 7)
Therefore . »
A =3B (=1, ......, &)

We may prove by the same argument that B° are linear combinations of
A’ and this proves our assertion. We call in the following a' decomposi-
- tion (2) of a matrix 4 a canonical decomposition. -

s
» s '
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We denote by gl(z, ) the Tie algebra of all matrices of degrec #
with coefficients in the field P.

Lemma 1. Let A, Xegl(n, P). If AX=XA, then every replica of A
commutes with X,

Proof.  We may assume that P is algebraically closed. Let (1) be
the carfonical decomposition of 4. Since 4 commutes with X, every eigen-
space of A is invariant under X. As each 4, (¢=1, ...... , #) has only one
characteristic root and in fact represented by a scalar matrix in each of
these eigen-spaces of 4%, A4' commutes with X. Hence «4° commutes also
with X, and so does every replica of 4, since it is a linear combination of
A t

Lemma 2. Let € be a Lie subalgebra of gl(z, P), where P is of
chara:teristic zero. Then the radical R, of the derlved algebra @ of 2 is
composed only of nilpotent matrices.

Proof. Let K be an algebraically closed field. containing . We will .
show that every element of the radical R, of the derived algebra ¥ of any
~ Lie algebra (not necessarily of matrices) € over P is represented by zero
matrix in any (absolutely) irreducible representation of € in X. Any irre-
ducible representation of € in X may be extendeéd to the irreducible repre-
sentation D of L . _

Let A be the kernel of this representation D of SA - As Dis absolutely
1rredu01ble D is the direct sum of - the semi-simple ideal (=%’) and ' the
one-dimensional center™.

Since

2:/A=D,
L&/ must have the same sEructure and. we have
' 82/ = (L1/2)" + (3/20),
where (8,(/2[)’ is the derived algebra of SA/A which is semi- sxmple and
3/ is the one-dimensional center of L4/ Since
(Ra/2)' = (8, W) /A = T//24/ 0 9

8,{/8,{0 A is semi-simple and Lz’ N A must Contain the radical of €. But
since R,x is contained in the radical of Lx; R, is contained in . Thus
every element of R, is represented by zero matrix in any absolutely irre-
ducible representation of Q. 'Now, let { be a‘Lie algebra of matrices.

]
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Then we may reduce Q in X to the form

%
. 8_—" . 82 . ’ [
* \gk
where ¢, (i=1,2, ...... ,£) are absolutely irreducible. Hence we see from

the above consideratmn that every matrix of R, is nilpotent.

Remark. By - considering the adjoint representation, we may prove .
that the radical of the derived algebra of any Lie algebra (not necesqanly
of matrices) over P is nilpotent™. - N : ‘

Lemma 3. Let-Q be a Lie algebra of matrices composed only of
nilpotent matrices and 4 be a matrix which admits as its invariants all the
tensor invariants of 2. Then A4 belongs to Q.

This lemma was obtained by 1. Ado, and M. Goto‘” gave an elementary
proof using the notion of the replicas of matrices.

Lemma 4. Let I be a vector space over an algebraically closed
field K and 4 a linear transformation on 9. Further let M be the direct
sum of some  tensor spaces and N a subspace of I which is invariant
under 4. We denote by A the matrix of linear transformation which is
induced by A it R. Then N is invariant under all reprlicas of A4 and the
matrices of linear transformations which are induced by the replicas of 4
in N are replicas of the matrix 4. Further any replica of 4 is induced
conversely by a replica of A4 in .

Lemma 5. et P be a field, K an extensxon field of P and 4 a
‘matrix in gl (#, 7). Then there exist replicas 4, (/=1,2, ...... ,#) of 4in.
gl (#, P) such that every rephca of 4 in gl (#,K) is the form aA,+......

+a;A; with ¢eKX. .

~ Proof. Let. Z,, be the space of »-times contravariant and s-times
covallant tensors over K, and N, , the subspace of all tensor invariants of
A in Z,, Let g, be the set of all matrices in gl (2, X) which admit as
" their invariants all tensors in N, with »,s < p. Then ¥ form a mono-
tone decreasing series of linear spaces over K whose intersection is the set
Q of all replicas of 4. Hence there exists an 1ntecrer m such that

\ . ' ) 8m=8m+1=......=8.

On assuming Aeql (7, P), we see from ‘the théory of linear eqations that
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we may take a basis F{,...... ,F& of N, over K such t}_xat all the com-
ponents of the tensors F% belong to P. We take such bases of M., for
7,s < m. Then a matrix Xegl (#, K) is .a replica of 4 if and oniy if

X FO=0 - (r,s<m;i=1,2,....)

But we may regard these equations as the linear equations with coefficients
in P of indeterminates X=(x;). Then there exists A«ql (n, Py (i=1, ......,
£) such that every solution Xegl (1, K) is a linear combination of A4; with
coefficients in K. :

Leyma 6.. Let Q be a Lie subalgebra of gl (7,/7) and K an exten-
sion field of P If 4™ is J-algebraic over K, then £ is also /-algebraic.

Proof. let Xj, ...... , X, be a basis of & over /2 and X¢Q Let X’ be a
replica of X in gl (%, ). Since 8x is /-algebraic, X’ is a linear combina-
tion of X, ...... , X, with coefficients in K. Then the same is the case with

coefficients in 7 in virtue of the same theorem of linear equations as above.

Definition 1. Let  be a Lie subalgebra of gl (%, P). A basis {X;,
...... , X} of & over P is called algebraic if every replica of each Xj; in gl |
(7, I’) belongs to L. \

Now we may prove the follbwing theorem. .

Theorem 1. ZLet P te a ficld of characteristic zero. A Lic subalgebra
8 of gl (n,P) is talgebraic if and only if & fas an algebrtgic basts.

Proof. Assume that £ possesses an algebraic basis X7, ...... , X,. Then
by Lemma 5, X, ...... , X, is also an algebraic basis of £x over K, where
K is an algebraically closed extension of K. Hence we see from Lemma
6 that we may assume that /7° is algebraically closed. First we prove the
theorem in the case when £ has the structure 8=&+3, where & is a
semi-simple ideal and 3 is the center. -  * '

Let " . ' ,

X;=Y;+ 2, Yi(@, ,Z‘(,S

]
and

V,=V2+ & V4 ... +&YE Z=Z+EZ1+ ... +&.7%
be the canonical decompositions of V; and Z; respéctivel_y”). " From V[Y‘Zi]
=V, Z,—ZY,=0 we get by Lemma 1 [¥iZ¢{]=0 for s,¢=0,1, ...... , A
Then we see that the decomposition :

X=Vi+ Z= (VI Z) +E(VIAZD + o +E(VE+ ZE) |
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is a canonical decomposition of X, Iet /. be a rephca of Z; and.
Z-—ao +(/71 ...... +aka.

Then Y§=a0Y2+a1Y}+ ...... +(1ka and X;=u(Vi+Z) +a(Vi+Z) +...
et (Yi+ZY) are replicas of V; and X; respectively. Since' & is semi-
simple, & is /-algebraic'”, whence V%>&. But by assumption X7 belongs
also to € and so Z;=X;—VQ. Thus every replica of Z; belongs to L.
Now let X=V+2¢®. Then from [¥, Z]=0 we se¢ that every replica X’
of X is of the form ¥Y'+2’, where ¥’ and Z’ are replicas of ¥ and Z
- respectively.  Since X is of the form X=«,X,, it follows that Z=31a,7,
We see again from the commutativity of Z;’'s that Z'=3«,Z;, where Z) is,
for each /, a replica of Z;. Therefore Z’¢2. But since & is l-algebraic,
Y’¢@ and hence X'=Y"+2¢®. Thus £ is /l-algebraic. Next let € be
an arbitrary Lie algebra possessing an algcbraic basis. Let R, be the
radical of the derived algebra £ of @ Then R, is composed only of
nilpotent matrices. Let ¥, , be the space of .7-times contravariant and s-
times covariant tensors and N, , the totality of tensor invariants of R, in
Z,,. Since R, is an ideal of 8, M,, is invariant under L.

" Let

' SE.:Z‘ETM Q=Zmrs
where direct summatlons are extended to sufficiently high orders of #,s.
L is an invariant space under € and we denote by () the representation
of £ induced in Q. Then, by Lemma 3, (A4)=0 if and only if 4¢%R,. If
Xiy eeernn » X, is an algebraic basis of 8, then, by Lemma 4, linearly indepen-

dent ones among (X)), ...... , (X,) form an algebraic basis of ®). So (®
" has also an algebraic basis. On the other hand :

@ =2/R,  R=¥OR

R/R, is the center of L/ Ry, since [ X, V]eR, for XeQ, YeR. Hence
(8) is the direct sum of a semi-simple ideal and its center, whence-(2) is
l-algebraic by the above consideration. Now let X¢@ and X’ a replica of
X. Then, by Lemm 4, £ is invariant under X’ and (X”) is a replica of
(X). Since (8) is l-algebraic, there exists Y¢® such that (X")y=(Y).
Then (X'—Y)=0, whence X’~V<R, by Lemma 3. Hence X"€ and &
is /-algebraic. The converse proposition is obvious. '

From [zemma 5, 6 and Theorem 1 we get the followmg
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Corollary. l.et P be a field of characteristic zero, £-a Lie subalgebra
of gl (2,P) "and K an extension field of /2 Then & is /-algebraic if and
only if 8% is an /J-algebraic subalgebra of gl (7, K).

- Definition 2. A basis {Xj, ...... , X,} of a Lie subalgebra € of q[ (n,P)
is called rational "if each X is an zz-matrix or an 7-matrix.

Since every replica of 7- or r-matrix is a scalar multiple of 1t a
rational basis of € is an algebraic basis. ‘

- Theorem 2. Let & be a Lic subalgebra of gl (i, P) and I’ an algebrai-
cally closed field of characteristic zevo. Then L'is l-algcbraic if and only if
L las rational basis. : '

Proof. If & has a rational basis, then ¥ is /-algebraic by Theorem 1.
Let conversely € be /lalgebraic Lie algebra of 7 dimensions and Xj, ...... ,
X, (m>r) be linearly independent matrices of € which are - or »-matrices.
Let A be a matrix of € which is linearly independeht of Xy .onen. , X and

A=A +EA +..... &4

a canonical decomposition of 4. Since & is /J-algebraic, 4, (!=0,1,...... ,
#) belong to & As A4 is linearly independent of X, ...... , X,., at least
one of them, say 4‘, must be linearly independent of X, ...... , Xn Putting
A*=LX,,, we obtain 741 linearly indedendent matrices, which are 7- or
7-matrices. 'Repeating this process we conclude that € has a rational basis.

2. Theorem 3. A Lic subalgebva & of gl (n, P) s l-algebraic if and
only of ils radical R.is l-algebraic. ,

Proof. Let R be [-élgebraic. By Levi’s theorem there exists a semi-
simple subalgebra & of & such that £=&+ R, &7 R=0. Then from * the
/-algebraicity of & and R we see that £ has an algebraic basis. Therefore
g is iilso" l-algebraic by Theorem 1. Let, conversely, 2 be lalgebraic. We
may assume that P is algebraically closed. ILet R, P, Q and (8) have
the same meanings as in the proof of Theorem 1. Then

(8) /R +R/ R
where '/R, is semi-simple and R/R, is the center. Hence
(B)=&)+R),

"where (%) and (R) are the representations of & and R respectively and
(R) is the center of (). By Lemma 4 (&) is l-algebraic, whence (R)

-
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is l—algebrdlc by Lemma 1. ITet R¢R and S be a replica.of R. Then
(S) is a replica of (R). Hence (S)e(R) and so S belongs to ER Thus
R is l-algebraic,

Lemmea 7. Let & be a’ Lie subalgebra of qI (2,P) and D, the inner
derivation of £ defined by an element AL, ie. D, X=AX] for XeR. D,
is represented by 7z-matrix or s-matrix dCCOI‘dlllO‘ as A is n-matrix or s-
matrix. ‘

We omit the proof. \

Lemma 8. Let Aegl (2, P).. Then ‘there exists an z-matrix A° and
an s-matrix A4* in gl (2, P) sueh that {A4°4°]1=0 and A =A'+A4°. More-
over they are replicas of 4. » ’ ‘

Proof. Let K be the splitting field of the Characteristic gquation of A.
Then, as we may easily verify, 4 is decomposed uniguzly in gl (n, K) into
the form A= A°+As where 4, and 4° are 7- and s-matrix respectlvely
such that [A"A’] =0. Now let ¢ be any substitution of the Galois group
of K/P. Then .

A=06A=0A"+ o 4°,

- where 64° and ¢4* are also 2- and s-matrix respectively and [¢A4", cA4*]=0.
. Hence, by the uniqueness of such decomposition, we get

o A=A, oA =4

This shows thar 4° and A4°* belong to gl (%, P).
Theorem 4. ZLet & be an l-algebraic Lie subalgebra of gl (n, P) and
- R s radical. Lot =S+ R (SNR=0) é¢ a Levi decomposition of L; S
being @ semi-simple subalgebra of L. Denote by W the, ideal composed of all
nibpotent matrices of R.  Then there exists an l-algebraic abelian subalgebra
A of R composed only of s-mnatrices such that

[S, A]=0, R=A+N ANN=0.

Proof. 1f we regard R as an S-module, then N is an S-submodule.
By the well known completely reducibility of the representations of semi-
‘simple Lie algebraq we have R=MM+N, where IM is an S-submodule. But
by T.emma 2 [S, R] < & R = N, whence [S, M]=0. ILet A be a regular
element of R, i.c. an element which has as many different characteristic
roots as a general element of R, and let A=M+ZV, MM, VR, Then
M is also regular. Further let M= M"+ M* be the decompositioe of M as
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in Lemma 8. Since R is /J-algebraic, #/%R and it is also regular. More-
over [&, M]=0 implies [&, #*]=0 by Lemma 1. Thus there exists a
regular element 4 of R such that A4 is s-matrix and [&, 4]=0. Now we
decompose R by D,: n '

E}{:‘mo‘l' 9{1,

where R, is composed of all X¢R -such that D3X=0 for a sufficiently
large integer 7z and D, R,=NR,. As is well known, R, is a nilpotentb sub-
algebra. Since 4 is s-matrix, D4 has simple elementary divisors by
7, whence D, X=[AX]=0 for X<R,. Then by Lemma 1 R, is l-algebraic.
Denote by A the set of all s-matrices in- Ry and by I, the ideal of all .z-
" matrices in R,. Since R, is nilpotent, we have by [BX]=0 for
B, X<R,. Hence A is an abelian ideal of R, and, as we may easily
see, /-algebraic. Let X«R, and X=X"+ X* as in L.emma 8. Since R, is
J-algebraic, X° and X* belong to R, and in fact X", X°%N,. Hence
Ro=%+No. . As we may readily verify |[&, 4]=0 implies [&S, Ro] £ Ro.
Since Ny=NR, N is an S-submodule of Ry, Ro==T +N,, where T is an S-
- module such that [&,%]=0. Let 4, ...... , A, be a basis of A. Then we
may find VgR, such that Al-{-ZV,, vy Ay + NV, is a basis of $. But since
[4;, V;]=0 and A,, IV; are_respectively s- and n-matrices, 4; and N, are
replicas of A;+ ;. Hence, by Lemma 1, [&, 4,4 V,]=0 implies [&, 4;]
=0. Thus [&, A]=0. Moreover R,=[4, F]S[R, R]SN. Therefore
No+ R, =N and R=A+N. ' . .

Remark. Any subalgebra € of gl (%, P) which has the structure as in
the Theorem 4 has an algebraic basis and therefore /l-algebraic.

3. Definition 3. A Lie algebra is called algebraic, if its adjoint repre-
sentation is /-glgebraic. A complex Lie group is called algebraic, if para-
meters of the group can be so chosen that the functions which define the
multiplication of group elements are algebraic functions.

Lemmna 9. The integrated group & of -any /-algebraic' Lie subalgebra
g of gl (#,C) is algebraic, where C denotes the field of complex numbers.
~ Proof. By Theorem 3, € has a rational basis Xj, ......, X,. Then the
matrix G€¢® which is sufficiently near the unit matrix may be represented
uniquely in the form '

G=exp 51 X;...... exp z,X,,

where 2y, ......, 2, are the complex parameters. If X, is z-matrix, then we
] , ;

N ~
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see easily that the coefficients of exp z.X; are polynomials of z;. In case
X; is r-matrix, we may assume without loss of generality that its charac-
teristic - roots are all rational mturers Then the coefficients of exp.s.X;
are rational functions of exp z,. If we change the paramster z; into w, by
the equation
. exp z;=1+z0;

then the coefficients of exp 2,X; are rational functions of 7, Hence the
coefficients of G are rational functions of the suitably chosen parameters.
From this we may easily verify that .® is an algebraic group.

Since any semi-simple Lie algebra is isomorphic with an [-algebfaic Lie
algebra, we see that awy complex semni-simple Lie group is algebraic.

Lenna 1o™. let & be algebraic and R its radical. By Levi’s theorem .
L=C+R, SNR=0, where & is a semi- SJmple subalgebra of €.  Denote -
by M the largest mlpotcnt ideal. Then there exists an abelian subalgebra
A of R such that \ ; '

[&, A]=0, R=A+N, ANN=0
\
and A is represented falthfully in the adjoint representatlon of & by /-
algebraic ILie algebra composed of s-matrices.

Theorem 5. T/ Lie group & of any algeémzc Lie algeém & over the
complex number field C is algebraic.

Proof. let =S+ A+N be the direct decomposition of € as in the
above lemma and put T=&+A. Then T is a subalgebra of € and A is
its center. We denote By I, the set of all elements X«Z such that [X9]
=0. Then as we may easily see, , is an ideal of & and is a direct
factor of X, since  is completely reducible. Let $=%,+%,. Then =3,

+3&,+N and T, +N is obviously an ideal of L. I, is, _]Ubt as &, direct
sum of a semi-simple ideal and its center. But since ¥, is a direct factor
of ¢, its center must be contained in the center 3 of & As B3CR, NNE,
=0, ¥, must be semi-simple. We gee readily that £,=3,+%N is also
algebraic and =%,+8,. Since the Lie group of & is the direct product
of the Lie groups of &, and &, and any complex semi-simple group is
algebraic, it is sufficient to prove the theorem in the case $,=0. N may
be regarded as a representation module of ¥ and ‘this representation D of
¥ is, by our assumption, faithful and /-algebraic, We denote by $ and &
the (local) subgroups of & whose Lie algebras are N and T respectively.
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"Then § is a nilpotent invariant subgroup of . Every element of & which
is sufficiently near the unit element may be represented uniquely in the
form a,r,, where 6.9, 7,4 and (@), (6) denote the parameters of the groups
$ and R respectively. Then ‘ '

(aarb)’(axfy) =0y Ty’ ’ ’ ¢
where , . '
6 =0,(T0,75), Ty =TTy ' 3)

-

We may take canonical parameters () of the nilpotent group $ such that
#; are polynomials of (a) and (x), where o,=0,02". Let 04, =0,7.07".
Then, as the parameters (x) are canonical, ' - ’

ﬁ(x) = 33404 (0) .

Since the matrix (#;(4)) may be represented in the form exp D, De¢D
and D is l-algebraic faithful representation of ¥, «,,(4) are’rational func-
tions of (4) if the parameters (#) are chosen suitably. Hence 17, wh1ch are
determined by (3), depend algebraically on (&), (#) and (4). On the other
hand, since we have chosen the parameters (&) of & as above, y; which
are also defined by (3), depend algeblalcallv on (6) and (). Therefore &
is an algebraic group. ' . :

Let, conversely, @ be an aloebralc Lie group and § its Lie algebra.
It has been proved by I.. Maurer®™ that the adjoint representation of € has
a rational basis. Hence & is algebraic. Thus we obtain the following
results: A complex Lie group ® is algebraic if and only. only if its Lie
algebra & is algebraic.
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