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Abstract. In this paper, we study the Tamagawa numbers of a crystalline representa-
tion over a tower of cyclotomic extensions under certain technical conditions on the represen-
tation. In particular, we show that we may improve the asymptotic bounds given in the thesis
of Arthur Laurent in certain cases.

1. Introduction. In [BK90], Bloch and Kato defined the local Tamagawa number of
a general motive. Furthermore, they formulated a conjecture relating the Tamagawa number
to the size of the Shafarevich-Tate group, generalizing works of Birch and Swinnerton-Dyer
on elliptic curves.

Fix an odd prime p. Let T be a crystalline Zp-representation of GF , where F is a finite
unramified extension of Qp. We write V = T ⊗ Qp. The local Tamagawa number of T at a
prime outside p is relatively well understood (see for example [FPR94]). In this article, we
study the local Tamagawa number of T at p over a tower of cyclotomic extensions of F . More
specifically, we give asymptotic bounds on TamFn,ωn(T ) for n ≥ 1, where Fn = F(μpn) and
ωn is a basis of detZp

(OFn ⊗OF
Dcris(T )/ Fil0 Dcris(T )

)
, with Dcris(T ) being the Dieudonné

module of T . We show in §5.2 that under some technical hypotheses on T , we have the
inequality

(1.1) TamFn,ωn(T ) ≤
p(r(p

n−1+p−2)+s1(p−1)+s2[Fn:F ])d ′

detZp (1− ϕ|Dcris(V ))(p)
,

for all n ≥ 1. Here, d ′ is the dimension of Dcris(V )/ Fil0 Dcris(V ), r , s1 and s2 are some
constants that depend only on the integrality of the Frobenius action ϕ on Dcris(V ) and (�)(p)
denotes pordp(�).

The structure of the paper is as follows. We shall first of all introduce some notation and
review some standard results from p-adic Hodge Theory in §2. We then reprove a result of
Perrin-Riou in §3, which is one of the key ingredient of her construction of the big exponen-
tial map in [PR94]. This result will be needed to analyse the denominators of the Bloch-Kato
exponential map. In §4, we review some results of Wach modules from [Ber04] and use them
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to prove a relation between crystalline classes over cyclotomic extensions and power series.
Furthermore, we shall analyse the denominators of these power series. In §5.2, we combine
these results to prove (1.1). We note that in Arthur Laurent’s thesis [Lau13], a different as-
ymptotic bound is given. We shall discuss how the two bounds compare in §6. In particular,
if f =∑ anq

n is a modular form of even weight k and that ordp(ap) ≥ k/2, it is possible to
work out the constants r , s1 and s2 explicitly and that (1.1) gives

TamFn,ωn(Tf (k/2)) ≤ p
(
k/2(p−1)(pn−1+1)−pn−1(p−2)

)
e ,

where Tf is the two dimensional representation of Deligne associated to f and e is the degree
of the smallest extension of Qp that contains all an.

Finally, there are two appendices to this paper. The first one contains some elementary
results on p-adic valuations of elements in Fn and their relations to cyclotomic polynomials.
The second one is a discussion on a consequence of our results in §3 onQ-systems, which are
important objects in the study of p-adic Gross-Zagier formulae in [Kob13, Kob14, Ota14].

2. Notation.
2.1. Iwasawa algebra and power series. Let p be an odd prime, with vp the normal-

ized p-adic valuation on Qp with vp(p) = 1. We fix F a finite unramified extension of Qp.
It is equipped with the Frobenius automorphism σ . For 1 ≤ n ≤ ∞, we denote the extension
F(μpn) by Fn. We write Γ for the Galois group Gal(F∞/F ). We have the cyclotomic char-
acter χ on the absolute Galois groupGF of F . Fix a topological generator γ of Gal(F∞/F1)

and write u = χ(γ ) ∈ 1+ pZp .
LetΛF = OF [[Γ ]] = OF [Δ][[γ−1]] be the Iwasawa algebra of Γ over OF . We define

HF to be the set of elements in Qp[Δ][[γ − 1]] that converge when we replace γ − 1 by any
elements in the open p-adic unit disk.

Let m ∈ Z and I ⊂ Z a finite subset. For an integer n ≥ 0, define ωn,m(γ ) =
(u−mγ )pn − 1, ωn,I (γ ) = ∏

m∈I ωn,m(γ ), Φn,m(γ ) = Φpn(u
−mγ ) and Φn,I (γ ) =∏

m∈I Φn,m(γ ), where Φpn is the pn-th cyclotomic polynomial. We also introduce the fol-
lowing notation of p-adic logarithms

�m = log(γ )

log(u)
−m = log(u−mγ )

log(u)
.

Given f ∈ HF and g ∈ Qp[[γ − 1]]. We say that g is divisible by f (written g|f ) if
each Δ-isotypic component of f is divisible by g over Qp[[γ − 1]].

We define Acris, Bcris and BdR to be the usual Fontaine rings (definitions can be found
in [Ber03, Ber04] for example). Recall that the ring Ẽ

+ = lim←−
x 
→xp

OCp is equipped with the

operator ϕ defined by x 
→ xp and that ϕ is invertible on Ẽ
+. We fix an element ε =

(1, ζp, ζp2, . . . ) ∈ Ẽ
+, where ζpn is a primitive pn-th root of unity. For an integer n, we write

εn = [ϕ−n(ε)] ∈ W(Ẽ+). Here, W(Ẽ+) is the ring of Witt vectors with coefficients in Ẽ
+

and [•] denotes the Teichmuller lift. Note that, when n ≥ 0, we have

(2.1) ε−n = εp
n

0 ∈ 1+ pnW(Ẽ+)
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since the first n coordinates of εp
n

are all 1.
Let π = [ε0] − 1. Define A

+
F = OF [[π]], which we shall identify with the set of power

series OF [[X]]. Given f =∑ amπ
m, we write f σ

n
to be

∑
σn(am)π

m for n ∈ Z. The action
of ϕ : π 
→ (1+π)p−1 is extended σ -linearly to A

+
F . In other words, if F =∑ amπ

m ∈ A
+
F ,

then ϕ(F ) = ∑
σ(am)((1 + π)p − 1)m. Further, there is a standard left inverse ψ of ϕ on

A
+
F , which sends (1+ π)i to (1+ π)i/p if p|i and 0 otherwise.

We define B
+
F,rig to be the set of power series in F [[π]] that converge on the open unit

disk. We have t = log(1 + π) ∈ B
+
F,rig. The operators ϕ and ψ on A

+
F extend naturally to

B
+
F,rig. For an integerm ≥ 0, we have the operator on (B+F,rig)ψ=0 defined by∇m = t ddt−m =
t∂ − m, where ∂ = (1 + π) d

dπ
. We note that the operator ∂ acts bijectively on (A+F )ψ=0 as

well as (B+F,rig)ψ=0.
We have an isomorphism of ΛF -modules (the Mellin transform)

MF : HF
∼−→ (B+F,rig)

ψ=0

1 
→ 1+ π ,
where the image of ΛF is (A+F )ψ=0. If f ∈ HF , then

(2.2) MF (�m · f ) = ∇m ◦MF (f ).

THEOREM 2.1. Let f ∈ HF and n ≥ 1 an integer. We have Φn−1(γ )|f over HF if
and only if MF (f ) ∈ Φn(1+ π)(B+F,rig)ψ=0.

PROOF. This is [LLZ10, Theorem 5.4]. �

COROLLARY 2.2. Let f ∈ HF and m,n ≥ 1 integers. We have Φn−1,m(γ )|f over
HF if and only if ∂mMF (f ) ∈ Φn(1+ π)(B+F,rig)ψ=0.

PROOF. This follows from [LLZ10, proof of Lemma 5.9]. �

2.2. Crystalline representations and Wach modules. Let T be a crystalline rank-d
Zp-representation of GF and V = T ⊗Zp Qp. We assume that T has Hodge-Tate weights in
[a; b] with b ≥ 1. Furthermore, we shall assume the following Fontaine-Laffaille condition
from [FL82] holds throughout.

(H.FL) b − a ≤ p − 1.

We define H 1
Iw(F, T ) to be the inverse limit lim←−H 1(Fn, T ), where the connecting map

is the corestriction map. For m ≥ n ≥ 0, we write corm/n for the corestriction map from
H 1(Fm, T ) to H 1(Fn, T ). Let

prT ,n : H 1
Iw(F, T ) −→ H 1(Fn, T )

denote the natural projection.
Let m ∈ Z. We have the Tate twist T (m) = T ⊗ Zpem, where GF acts on Zpem via the

character χm. We have a natural isomorphism

H 1
Iw(F, T )

·em−→ H 1
Iw(F, T (m)) .
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We write Dcris(T ) for the Dieudonné module of T . We assume the following hypothesis
holds.

(H.eigen) None of the eigenvalues of ϕ on Dcris(T ) is an integral power of p.

Note in particular that (H.eigen) implies that T (m)GF∞ = 0 for all m ∈ Z. We have the
identification

(2.3) Dcris(T (m)) = Dcris(T ) · t−mem .
We write Twm for the bijection

Twm : (B+F,rig)ψ=0 ⊗ Dcris(T )→ (B+F,rig)
ψ=0 ⊗ Dcris(T (m))

f ⊗ v 
→ ∂−mf ⊗ v · t−mem .
Here, the tensor product is taken overOF . We shall abuse notation and write ϕ for the diagonal
map ϕ ⊗ ϕ on B

+
F,rig ⊗ Dcris(T ).

REMARK 2.3. It can be checked that Twm commutes with the actions of ϕ = ϕ⊗ϕ on
(B+F,rig)ψ=0 ⊗ Dcris(T ) and (B+F,rig)ψ=0 ⊗ Dcris(T (m)) since ∂mϕ = pmϕ∂m and ϕ(t−m) =
p−mt−m.

The tangent space of V over Fn is defined to be

tn(V ) := Fn ⊗ Dcris(T )/ Fil0 Dcris(T ) .

When n = 0, we simply write t (V ) = F⊗Dcris(T )/ Fil0 Dcris(T ). Recall that the Bloch-Kato
exponential map

expV,n : tn(V )⊕ Dcris(T )−→H 1
f (Fn, V )

is defined as the connecting map of the short exact sequence

(2.4) 0→ Qp → Bcris → Bcris ⊕ BdR/B
+
dR → 0

and H 1
f (Fn, V ) can be realized as

ker
(
H 1(Fn, V )→ H 1(Fn, V ⊗ Bcris)

)
.

We write exp∗V,n : H 1(Fn, V )/H
1
f (Fn, V ) −→ Fn⊗Fil0 Dcris(V ) for the dual map of expV,n.

Note that under (H.eigen), we in fact have

H 1
e (K, T ) = H 1

f (K, T ) = H 1
g (K, T )

for all finite extension K of F (see [BK90, §3.11]).
We write N(T ) for the Wach module of T (see [Ber03, §A] or [Ber04, §II] for a defini-

tion). We recall that there is an identification

(2.5) N(T (m)) = N(T )⊗ π−mem
and that there is an isomorphism ([Ber03, Theorem A.3])

(2.6) h1
T : D(T )ψ=1 = (πaN(T ))ψ=1 ∼−→ H 1

Iw(F, T ) .
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We may extend this map to

h1
T : Drig(V )

ψ=1 ∼−→ HF ⊗H 1
Iw(F, T ) ,

where Drig(V ) is the (ϕ, Γ )-module over the Robba ring associated to V . For an integer
n ≥ 0, we shall write h1

T ,n for the map h1
T composed with the natural projection prT ,n.

If x ∈ Fn((t)) ⊗ Dcris(T ), we define ∂T (x) ∈ Fn ⊗ Dcris(T ) to be the constant term
(coefficient of t0) of x. Recall that we have the map ϕ−n : B+F,rig → Fn[[t]] sending π to
ζpn exp(t/pn)− 1.

THEOREM 2.4. If y ∈ Drig(V )
ψ=1 ∩ (B+F,rig[t−1] ⊗ Dcris(T )), then

exp∗V,n ◦h1
T ,n(y) = p−n∂T (ϕ−n(y))

for all n ≥ 1. If n = 0, then

exp∗V,0 ◦h1
T ,0(y) = (1− p−1ϕ−1)∂T (y) .

PROOF. This is [Ber03, Theorem II.6]. �

2.3. Perrin-Riou’s exponential map. Let T be as above with both (H.FL) and
(H.eigen) hold. Since Fil−b Dcris(T ) = Dcris(T ), we have the Perrin-Riou exponential map
from [PR94]

ΩT,b : (B+F,rig)ψ=0 ⊗ Dcris(T ) −→ HF ⊗H 1
Iw(F, T ) .

Note that ΩT,b is a ΛF -homomorphism. It is compatible under twisting, that is, we have the
following commutative diagram:

(2.7) (B+F,rig)ψ=0 ⊗Dcris(T )
ΩT,b ��

Twm
��

HF ⊗H 1
Iw(F, T )

·em
��

(B+F,rig)ψ=0 ⊗ Dcris(T (m))
(−1)mΩT (m),b+m �� HF ⊗H 1

Iw(F, T )

for any integerm ≥ 1−b (c.f. [PR94, Théorème 3.2.3 (B.ii)]). If g ∈ (B+F,rig)ψ=0⊗Dcris(T ),

then by [PR94, Proposition 2.2.1], there exists a uniqueG ∈ (B+F,rig⊗Dcris(T ))
ψ=1 such that

(1−ϕ)G = g (see also §3 below for a discussion on the solution to this equation). By [Ber03,
Theorem II.13], we can describe the Perrin-Riou exponential map via

(2.8) ΩT,b(g) = h1
T ◦ ∇b−1 ◦ · · · ◦ ∇0(G) .

DEFINITION 2.5. We define the maps

ΞT,n : (A+F )ψ=0 ⊗ Dcris(T ) → H 1
f (Fn, V )

g 
→ expV,n
(
(p ⊗ ϕ)−nGσ−n(ζpn − 1)

)
,

ΣT,n : (A+F )ψ=0 ⊗ Dcris(T ) → H 1
f (Fn, V )

g 
→ p(b−1)n expV,n
(
Gσ
−n
(ζpn − 1)

)
,
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ΘT,n : (A+F )ψ=0 ⊗ Dcris(T ) → tn(V ) ,

g 
→ Gσ
−n
(ζpn − 1) mod Fil0 Dcris(T ) ,

whereG ∈ (B+F,rig⊗Dcris(T ))
ψ=1 is such that (1−ϕ)g = G andGσ

−n
denotes (σ−n⊗ 1)G.

For j ≤ b − 1 and n ≥ 1, we have the interpolation formula

(2.9) prT (−j),n(ΩT,b(g) · e−j ) = (−1)j (b − j − 1)!ΞT (−j),n ◦ Tw−j (g)

by [PR94, Théorème 3.2.3 (A)] (after changing the sign of j ).

PROPOSITION 2.6. There exists an integer s such that the image of ΣT,n lies inside
p−sH 1

f (Fn, T ) for all n ≥ 1. Furthermore, we have the relation

corn+1/n ΣT,n+1(g) = pbΣT,n(1⊗ ϕ(g))
for all g ∈ (A+F )ψ=0 ⊗ Dcris(T ) and n ≥ 1.

PROOF. This is [PR94, Proposition 2.4.2] after a slight modification of the definition of
ΣT,n (from page 108 of op. cit.). �

Assume that a = 0, then we have the p-adic regulator map

LT : H 1
Iw(F, T ) → HF ⊗ Dcris(T )

z 
→ (M−1
F ⊗ 1) ◦ (1− ϕ) ◦ (h1

T )
−1(z) .(2.10)

See [LLZ11, §3] for a detailed discussion on this map. By (2.2) and (2.8), we have the relation

(2.11) LT = �b−1 · · · �0 · (M−1
F ⊗ 1) ◦Ω−1

T ,b .

3. Analysis of the equation (1 − ϕ)G = g . In this section, we take T to be a fixed
crystalline representation as in §2.2 satisfying (H.FL) and (H.eigen). The Hodge-Tate weights
of T are in [a; b]with b ≥ 1. By (H.FL), pbϕDcris(T ) ⊂ Dcris(T ). We fix an integer 1 ≤ r ≤
b such that the slopes of the action of ϕ on Dcris(T ) are ≥ −r . In particular, there exists an
integer s ≥ 0 such that

(3.1) (prϕ)k(Dcris(T )) ⊂ p−sDcris(T )

for all k ≥ 0. We fix an OF -basis v1, . . . , vd of Dcris(T ).
Note that 1−pjϕ is invertible on F⊗Dcris(T ) for all integers j thanks to our assumption

(H.eigen). We choose s such that in addition to (3.1), we have

(3.2) (1− pjϕ)−1(Dcris(T )) ⊂ p−sDcris(T )

for all 0 ≤ j ≤ r .
Let g ∈ (B+F,rig)ψ=0 ⊗ Dcris(T ), our goal in this section is to study the equation

(Eg ) (1− ϕ)G = g

for G ∈ (B+F,rig ⊗ Dcris(T ))
ψ=1. The following is a slight modification of [PR94, Proposi-

tion 2.2.1].
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PROPOSITION 3.1. Let T , r and s be as above (so that (3.1) and (3.2) are satisfied).
Then,

(i) The map (1− ϕ) : B+F,rig ⊗ Dcris(T )→ B
+
F,rig ⊗ Dcris(T ) is bijective;

(ii) For all g ∈ A
+
F ⊗ Dcris(T ) and n ≥ 1, τ ∈ GFn , we have

p(r−1)n · (τ − 1)G(εn − 1) ∈ p1−r−s
Acris ⊗ Dcris(T ) ,

where G is the unique solution to Eg (which exists by part (i)).

PROOF. (i) follows from [PR94, Proposition 2.2.1, parts (i) and (ii)] and (H.eigen). We
rewrite the construction ofG in op. cit. on replacing h, which is the largest Hodge-Tate weight
of T in Perrin-Riou’s proof, by our chosen integer r .

Firstly, assume that g ∈ πr+1
B
+
F,rig ⊗ Dcris(T ). Write g = πr+1 ∑d

i=1 fi ⊗ vi where

fi ∈ B
+
F,rig. For an integer k ≥ 0,

ϕk(g) = p−rkϕk(π)r+1
d∑

i=1

ϕk(fi)⊗ (prϕ)k(vi) .

Note that (prϕ)k(vi) ∈ p−sDcris(T ) for any k ≥ 0 by (3.1) and that p−rkϕk(π)r+1 → 0 as
k →∞. Furthermore, ϕk(fi)→ fi(0) as k →∞. Hence, we deduce that ϕk(g)→ 0. This
implies that

∑∞
k=0 ϕ

k(g) converges to a solution to Eg .
Now, for a general g ∈ (B+F,rig)ψ=0 ⊗Dcris(T ) and j ≥ 0 an integer, we defineΔj(g) =

(∂j ⊗ 1)(g)|π=0 ∈ F ⊗ Dcris(T ). Then,

g̃ := g −
r∑

j=0

tj

j ! ⊗Δj(g) ∈ π
r+1

B
+
F,rig ⊗ Dcris(T ) .

By the first part of our proof,
∑∞
k=0 ϕ

k(g̃) converges and the limit is the solution to (Eg̃ ).
Since ϕ(tj ) = pj tj , we see that

(1− ϕ)(tj ⊗ (1− pjϕ)−1Δj(g)
) = tj ⊗Δj(g) .

Therefore, the solution to Eg is given by

(3.3) G =
∞∑

k=0

ϕk(g̃)+
r∑

j=0

tj

j ! ⊗ (1− p
jϕ)−1Δj(g) .

We now prove (ii). We shall show that on replacing π by εn−1, the action of p(r−1)n(τ−
1) sends each individual term of (3.3) to p1−r−s

Acris ⊗ Dcris(T ) for all τ ∈ GFn .
Fix some τ ∈ GFn . By definition, χ(τ) ∈ 1+pnZp . Let α = (χ(τ )− 1)p−n ∈ Zp. We

may describe the actions of τ explicitly: τ · t = χ(τ)t and τ · εk = εχ(τ)k = εk · εαk−n for all
integers k.
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Let us first analyze the terms in the second sum in (3.3). Since log(εn) = p−nt , we have
for 0 ≤ j ≤ r the equation

p(r−1)n(τ − 1)

(
logj (εn)

j ! ⊗ (1− pjϕ)−1Δj(g)

)

= p(r−1)n(χ(τ )j − 1)(p−nt)j

j ! ⊗ (1− pjϕ)−1Δj(g)

= p(r−j−1)n(χ(τ )j − 1)tj

j ! ⊗ (1− pjϕ)−1Δj(g) .

Note that p(r−j−1)n(χ(τ )j−1)t j

j ! ∈ Acris since χ(τ)j − 1 ∈ pnZp and j ≤ r ≤ b ≤ p −
1. Therefore, thanks to (3.2), we deduce that the above expression lies inside p−sAcris ⊗
Dcris(T ) ⊂ p1−r−s

Acris ⊗ Dcris(T ).
We now consider the terms that appear in the first sum in (3.3):

ϕk(g̃) = ϕk(g)−
r∑

j=0

(
pjktj

j ! ⊗ ϕ
k(Δj (g))

)
,

where k ≥ 0.
(Case 1) n ≥ k:

Let g =∑d
i=1 fi ⊗ vi , where fi ∈ A

+
F . Then

p(r−1)n(τ − 1)ϕk(g)(εn − 1)

= p(r−1)n
d∑

i=1

(
f σ

k

i (ε
χ(τ)
n−k − 1)− f σki (εn−k − 1)

)⊗ ϕk(vi)

= p(r−1)n
d∑

i=1

(
f σ

k

i (εn−k · εα−k − 1)− f σki (εn−k − 1)
)⊗ ϕk(vi) .

From (2.1), ε−k ≡ 1 mod pkAcris, so the expression above lies inside p(r−1)n+k
Acris ⊗

ϕk(Dcris(T )). But n ≥ k, so via (3.1), we deduce that this set is contained in Acris ⊗
prkϕk(Dcris(T )) ⊂ p−sAcris ⊗ Dcris(T ).

If 0 ≤ j ≤ r , then

p(r−1)n(τ − 1)

(
pjk logj (εn)

j ! ⊗ ϕk(Δj (g))
)

= p(r−1)n+jk (χ(τ )j − 1)p−jntj

j ! ⊗ ϕk(Δj (g)) .

But (χ(τ )j−1) ∈ pnZp , so the above expression is contained in prn+jk−jnAcris⊗ϕk(Δj (g)),
which is contained in Acris ⊗ (prϕ)k(Δj (g)) ⊂ p−sAcris ⊗ Dcris(T ) thanks to the fact that
n ≥ k and (3.1).
(Case 2) n < k:
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Let g̃ =∑d
i=1 fi ⊗ vi . Fix 0 ≤ i ≤ d and write fi =∑∞m=r+1 amπ

m, where am ∈ OF .
By the definition of g̃ , we have vp(am) ≥ −rsm for allm ≥ r+1, where sm ≥ 0 is the integer
such that psm is the largest p-power ≤ m.

Consider

(τ − 1)ϕk(fi)(εn − 1) = f σki (ε
χ(τ)
n−k − 1)− f σki (εn−k − 1) .

Let x = εn−k − 1 ∈ pk−nAcris and y = ετ(χ)n−k − εn−k = εn−k(εα−k − 1) ∈ pkAcris (c.f. (2.1)).
We have

(τ − 1)ϕk(fi)(εn − 1) =
∞∑

m=0

σk(am)((x + y)m − xm) .

For each m ≥ r + 1, (x + y)m − xm ∈ pm(k−n)+nAcris. Recall that am ∈ p−rsmOF , so

σk(am)((x + y)m − xm) ∈ p−rsm+m(k−n)+nAcris .

Therefore, we deduce that

p(r−1)n(τ − 1)ϕk(g̃) ∈ prn−rsm+m(k−n)−rkAcris ⊗ (prϕ)k (Dcris(T )) .

But m > r , k > n and m ≥ psm , so

rn− rsm+m(k−n)− rk = (m− r)(k−n)− rsm ≥ m− r − rsm ≥ m− r
(

log(m)

log(p)
+ 1

)
.

The function f (m) = m− r
(

log(m)
log(p) + 1

)
is increasing by studying its derivative and the fact

that m > r . Therefore, f (m) ≥ f (r + 1) = 1 − r log(r+1)
log(p) . Recall that r ≤ b ≤ p − 1 by

(H.FL), so f (m) ≥ 1− r . Hence

p(r−1)n(τ − 1)ϕk(g̃) ∈ p1−r
Acris ⊗ (prϕ)k (Dcris(T )) ⊂ p1−r−s

Acris ⊗ Dcris(T )

by (3.1). �

COROLLARY 3.2. If g ∈ (A+F )ψ=0 ⊗ Dcris(T ), then

p(r−b)nΣT,n(g) ∈ p1−r−sH 1
f (Fn, T ).

PROOF. Recall from Definition 2.5 that

p(r−b)nΣT,n(g) = p(r−1)n expV,n
(
Gσ
−n
(ζpn − 1)

)
.

But expV,n is defined to be the connecting map that arises from the fundamental short exact
sequence

0→ Qp → B
ϕ=1
cris → BdR/B

+
dR → 0

after tensoring by V , which implies that expV,n
(
Gσ
−n
(ζpn − 1)

)
is represented by the co-

cycle that sends τ ∈ GFn to (τ − 1) · Gσ−n(εn − 1). Therefore, the lemma follows from
Proposition 3.1(ii). �
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4. On an inverse of ΣT,n.
4.1. Preliminary Results on Wach modules. In this section, we fix a representation

as in §2.2 under the conditions (H.eigen) and (H.FL). Let T be the Tate twist T (−a) of T .
So, all the Hodge-Tate weights of T are ≥ 0. Let r1 = 0, . . . , rd = b − a be the Hodge-Tate
weights of T. Let v1, . . . , vd be an OF -basis of Dcris(T) that respects its filtration. Then, by
(H.FL), the matrix of ϕ with respect to this basis is of the form

A :=
⎛

⎜
⎝

p−r1
. . .

p−rd

⎞

⎟
⎠ · A0,

where A0 ∈ GLd (OF ) .

PROPOSITION 4.1. Under the identification N(T)/πN(T) = Dcris(T), we may lift
v1, . . . , vd to an A

+
F -basis of N(T), with respect to which the matrix of ϕ is of the form

P :=
⎛

⎜
⎝

μrd−r1q−r1
. . .

q−rd

⎞

⎟
⎠ ·A0 ,

where μ = p/(q − πp−1) ∈ (A+F )×.

PROOF. Consider the representation T(−rd). Its Hodge-Tate weights are r1− rd , . . . , 0
and vi ⊗ trd e−rd form a basis of Dcris(T(−rd)). The matrix of ϕ with respect to this basis is

prdA =
⎛

⎜
⎝

prd−r1
. . .

1

⎞

⎟
⎠ ·A0 ,

since ϕ(t) = pt .
By the proof of [Ber04, Proposition V.2.3], we can lift it to an A

+
F -basis of N(T(−rd))

(say n′1, . . . , n′d ) such that the matrix of ϕ with respect to this basis is given by

⎛

⎜
⎝

(μq)rd−r1
. . .

1

⎞

⎟
⎠ · A0 .

But n′1 ⊗ π−rd erd , . . . , n′d ⊗ π−rd erd is a basis of N(T) and

ϕ(n′i ⊗ π−rd erd ) = q−rd ϕ(n′i )⊗ π−rd erd , i = 1, . . . , d.

Hence the result. �
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Note in particular that the inverse P−1 is a matrix with coefficients in A
+
F . Let n1, . . . , nd

be the basis given by Proposition 4.1 (so ni mod π = vi for i = 1, . . . , d). We have a change
of basis matrix M = (mij ) ∈ Md×d (B+F,rig) that satisfies ni =∑d

j=1mij vj for i = 1, . . . , d .
By the semi-linearity of the action of ϕ on N(T ), we have the equation

(4.1) PM = ϕ(M)A ,
which is equivalent to M = P−1ϕ(M)A. Substituting M on the right-hand side repeatedly,
we obtain for any n ≥ 0 the relation

(4.2) M = P−1ϕ(P−1) · · ·ϕn(P−1)ϕn+1(M)ϕn(A) · · ·ϕ(A)A .
It follows from [Ber04, Proposition III.2.1] that there is an inclusion of B+F,rig-modules

(4.3) B
+
F,rig ⊗ Dcris(T(−rd)) ⊂ B

+
F,rig ⊗ N(T(−rd))

with elementary divisors [(t/π)r1; . . . ; (t/π)rd ]. Therefore, via (2.3) and (2.5), we deduce
that

B
+
F,rig ⊗ N(T) ⊂ B

+
F,rig ⊗Dcris(T)

whose elementary divisors are [(t/π)r1; . . . ; (t/π)rd ].
PROPOSITION 4.2. The matrix M lies inside Id + πrdMd×d(B+F,rig), where Id is the

d × d identity matrix.

PROOF. Let n′1, . . . , n′d be the basis in the proof of Proposition 4.1. Let Gγ be the
matrix of γ with respect to this basis. Then, the proof of [Ber04, Proposition V.2.3] tells us
that

Gγ ∈ Id + πp−1Md×d(A+F ) .

Let M ′ = (m′ij ) = (t/π)rdM−1, which is the change of basis matrix for the inclusion

(4.3). In particular, this is a matrix with entries in B
+
F,rig. We have

vi ⊗ trd e−rd =
d∑

j=1

m′ij n′j , i = 1, . . . , d .

The left-hand side of this equation above is invariant under the action of γ , this implies the
relation

γ (M ′)Gγ = M ′ .
By definition, M ′ ≡ Id mod π . Let M ′ = Id + πN , where N is a matrix defined over

B
+
F,rig. Then, the fact that Gγ ≡ Id mod πp−1 implies that

γ (π)γ (N) ≡ πN mod πp−1 .

On comparing the coefficients of π , we see that N ≡ 0 mod π . In other words, M ′ ≡ Id

mod π2. On repeating this procedure, we can show that M ′ ≡ Id mod πp−1.



508 A. LEI

But M = (t/π)rd (M ′)−1 and t/π ≡ 1 mod π . Since we have assumed that rd ≤ p− 1
(i.e. (H.FL)), we haveM ≡ Id mod πrd as required. �

DEFINITION 4.3. For an integer n ≥ 0, we define

Mlog,n =M−1
F

(
(1+ π)ϕn(M)) .

COROLLARY 4.4. For all n ≥ 1,

ωn−1,{0,...,rd−1}(γ )|
(
Mlog,n − Id

)

over HF .

PROOF. By Proposition 4.2, we have

(1+ π)ϕn(M) ∈ (1+ π)(Id + ϕn(π)rdMd×d (B+F,rig)) .

Therefore, our result follows from Corollary 2.2. �

4.2. Integrality conditions on crystalline classes. We shall now make use of the
structure of N(T) to study crystalline classes (that is, elements inH 1

f ). For any z ∈ H 1
Iw(F,T),

we define ui (z), ui,n(z) ∈ HF , i = 1, . . . , d by the relations

(4.4) LT(z) =
d∑

i=1

ui (z)⊗ vi =
d∑

i=1

ui,n(z)⊗ ϕn(vi) ,

where v1, . . . , vd is a basis of Dcris(T) as in the previous section and LT is the regulator map
defined in (2.11). Our main goal in this section is to study the coefficients ui,n(z) when z
comes from classes in H 1

f (Fn, T ). Let us first prove two lemmas.

LEMMA 4.5. Let x ∈ N(T)ψ=1, then there exist unique elements si(x) ∈ (A+F )ψ=0 for
i = 1, . . . , d such that

(4.5) (1− ϕ)x =
d∑

i=1

si(x)ϕ(ni) =
(
s1(x) · · · sd(x)

)
PM

⎛

⎜
⎝

v1
...

vd

⎞

⎟
⎠ ,

where M and P are the matrices as defined in the previous section.

PROOF. Recall from [LLZ11, §3] that we have the inclusion

N(T)ψ=1 1−ϕ−→ ((ϕ)∗N(T))ψ=0 ⊂ (B+F,rig)ψ=0 ⊗ Dcris(T) .

Here (ϕ)∗N(T) denotes A+F · ϕ(N(T)). Therefore, we may write

(1− ϕ)x =
d∑

i=1

si (x)ϕ(ni)
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for some si (x) ∈ (A+F )ψ=0. Recall that ni =∑d
j=1mij vj . Hence, on applying ϕ, we obtain

⎛

⎜
⎝

ϕ(n1)
...

ϕ(nd)

⎞

⎟
⎠ = ϕ(M)

⎛

⎜
⎝

ϕ(v1)
...

ϕ(vd)

⎞

⎟
⎠ = ϕ(M)A

⎛

⎜
⎝

v1
...

vd

⎞

⎟
⎠ ,

so we are done by (4.1). �

LEMMA 4.6. Let m ≥ 0 and n ≥ 1 be integers, x ∈ (B+F,rig ⊗ Dcris(T))
ψ=1 and write

x =∑d
i=1 xivi , where xi ∈ B

+
F,rig. Then,

∂T(−m) ◦ ϕ−n (x · e−m) = 1

m!
d∑

i=1

(∂mxi)(ζpn − 1)⊗ ϕ−n(vi · tme−m) .

PROOF. Let us write

x · e−m =
d∑

i=1

(t−mxi)⊗ (vi · tme−m) ∈ (B+F,rig[t−1] ⊗ Dcris(T(−m)))ψ=1 .

If we apply ϕ−n on both sides, we deduce that

ϕ−n (x · e−m) =
d∑

i=1

(
t−mxi(ζpn exp(t/pn)− 1)

)⊗ (ϕ−n(vi) · tme−m
)

as ϕ−n(t−m) = p−nmt−m and ϕ−n(tm · e−m) = pnmtm · e−m. Therefore, when we apply the
map ∂T(−m), what we get on the right-hand side are the coefficients of tm in

xi(ζpn exp(t/pn)− 1) = ϕ−n(xi) ,
i = 1, . . . , d , tensored by ϕ−n(vi) · tme−m. The said coefficients in ϕ−n(xi) can be obtained
from applying 1

m!
dm

dtm
|t=0 = 1

m!∂
m|t=0. However, we in fact have the relation pmn∂mϕ−n =

ϕ−n∂m, which implies that

1

m!∂
mϕ−n(xi) = 1

pmnm!ϕ
−n∂m(xi) .

In other words,

∂T(−m) ◦ ϕ−n (x · e−m)= 1

pmnm!
d∑

i=1

ϕ−n∂m(xi)|t=0 ⊗
(
ϕ−n(vi) · tme−m

)

= 1

m!
d∑

i=1

ϕ−n∂m(xi)|t=0 ⊗ ϕ−n(vi · tme−m) .

Given an element R ∈ B
+
F,rig, we have ϕ−n(R)|t=0 = R(ζpn − 1). Hence the result. �

Using the second part of Theorem 2.4, we deduce similarly the following lemma.
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LEMMA 4.7. Let m ≥ 0 be an integer, x =∑d
i=1 xivi ∈ (B+F,rig ⊗ Dcris(T))

ψ=1be as
in Lemma 4.6. Then,

∂T(−m) ◦ (1− p−1ϕ−1) (x · e−m) = 1

m!
d∑

i=1

(∂mxi)(0)⊗ (1− pm−1ϕ−1)(vi · tme−m) .

THEOREM 4.8. Let 0 ≤ m ≤ rd − 1 and n ≥ 1 be integers. Fix an element z ∈
H 1

Iw(F,T) such that prT(−m),n(z · e−m) ∈ H 1
f (Fn,T(−m)). If ui,n(z) ∈ HF are the elements

defined in (4.4), then for i = 1, . . . , d ,

ui,n(z) = ωn−1,m(γ )ũi,n(z)

for some ũni (z) ∈ HF . Furthermore,

ũi,n(z) ≡ t̃i mod ωn−1,{0,...,rd−1}(γ )HF

for some t̃i ∈ ΛF .

PROOF. Let x = (h1
T)
−1(z) ∈ N(T)ψ=1. Then (2.10) says that

LT(z) = (M−1 ⊗ 1) ◦ (1− ϕ)x .
Write x = ∑d

i=1 xivi and (1 − ϕ)x = ∑d
i=1 ui,nϕ

n(vi) where xi ∈ B
+
F,rig and ui,n ∈

(B+F,rig)ψ=0. On comparing with (4.4), we have

(4.6) MF

(
ui,n(z)

) = ui,n .
Furthermore, we may deduce from (4.2) and (4.5) that

(
u1,n · · · ud,n

) = (s1(x) · · · sd (x)
)
PM(ϕn−1(A) · · ·ϕ(A)A)−1

= (s1(x) · · · sd (x)
)
ϕ(P−1) · · ·ϕn−1(P−1)ϕn(M) .

(4.7)

By Theorem 2.4 and Lemma 4.6, the fact that prT(−m),n(z · e−m) ∈ H 1
f (Fn,T(−m))

implies that

(∂mxi)(ζpn − 1) = 0.

Therefore, ϕn−1(q)|∂mxi (over B+F,rig) for all i.

Further, note that if prT(−m),n(z · e−m) ∈ H 1
f (Fn,T(−m)), then prT(−m),k(z · e−m) ∈

H 1
f (Fk,T(−m)) for all 0 ≤ k ≤ n. On applying Lemma 4.6 again, we have ϕk−1(q)|∂mxi

for 1 ≤ k ≤ n. By Lemma 4.7 and (H.eigen), we also have π |∂mxi . Therefore, we deduce
that ϕn(π)|∂mxi for all i. On applying 1−ϕ, we see that ϕn(π)|∂mui,n for all i. The first part
of the theorem now follows from (4.6) and Corollary 2.2.

Consider (4.7). Let τ1, . . . , τd ∈ (A+F )ψ=0 be the elements defined by
(
τ1 · · · τd

) = (s1(x) · · · sd (x)
)
ϕ(P−1) · · ·ϕn−1(P−1) .

We then have
(
τ1 · · · τd

)
ϕn(M) = (u1,n · · · ud,n

)
.
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Recall from [LLZ10, proof of Theorem 3.5] that if f ∈ B
+
F,rig, then

(A+F · ϕ(f ))ψ=0

is a free ΛF -module of rank 1, with basis (1 + π)ϕ(f ). Therefore, there exist ti ∈ ΛF such
that

(
t1 · · · td

) · (1+ π)ϕn(M) = (τ1 · · · τd
)
ϕn(M) = (u1,n · · · ud,n

)
.

We deduce from (4.6) that

(4.8)
(
t1 · · · td

)
Mlog,n =

(
u1,n(z) · · · ud,n(z)

)
.

But Mlog,n ≡ Id mod ωn−1,{0,...,rd−1} by Corollary 4.4. Hence, the fact that ωn−1,m(γ )|
ui,n(z) (over HF ) implies that ωn−1,m(γ )|ti over HF for all i. Since ti ∈ ΛF and ωn−1,m(γ )

is a monic polynomial in γ − 1, this division is in fact over ΛF . If we write
t̃i = ti/ωn−1,m(γ ) ∈ ΛF , then (4.8) tells us that

(
t̃1 · · · t̃d

)
Mlog,n =

(
ũ1,n(z) · · · ũd,n(z)

)
.

Hence,

t̃i ≡ ũi,n(z) mod ωn−1,{0,...,rd−1}(γ )HF

as required. �

Let Sn,m be the set of elements in HF that are coprime to ωn−1,m(γ ). If M is an HF -
module, we write S−1

n,mM for the localization ofM with respect to Sn,m.

COROLLARY 4.9. Let m and z be as above. Then,

LT(z)
∏rd−1
j=0 �j

∈ S−1
n,mHF ⊗Dcris(T) .

Furthermore, there exist ci,m ∈ ΛF , i = 1, . . . , d such that

LT (z)
∏rd−1
j=0 �j

≡ pn
d∑

i=1

ci,m ⊗ ϕn(vi) mod ωn−1,m(γ )S
−1
n,mHF ⊗ Dcris(T) .

PROOF. We use the same notation as in the proof of Theorem 4.8. We have

LT(z)
∏rd−1
j=0 �j

= 1

�rd−1 · · · �0

d∑

i=1

ui,n(z)⊗ ϕn(vi)

= ωn−1,m(γ )

�rd−1 · · · �0

d∑

i=1

ũi,n(z)⊗ ϕn(vi) ,

which gives the first part of the corollary as �j with j �= m and �m/ωn−1,m(γ ) are all coprime
to ωn−1,m(γ ).
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Now, consider the factor

ωn−1,m(γ )

�rd−1 · · · �0
= p(n−1) log(u)
∏
i≥n

Φi,m(γ )

p

∏

j �=m

1

�j
.

On the one hand, we deduce from Lemma A.3 and (H.FL) that �j is congruent to (m − j)
modulo ωn−1,m(γ ), which is a p-adic unit for all j �= m. On the other hand, Lemma A.2 says

that
∏
i≥n

Φi,m(γ )

p
is congruent to a constant in 1+pnZp. Hence we are done by the following

fact

vp(log(u)) = vp(u− 1) = 1 .

�

COROLLARY 4.10. Let m and z be as above. There exist elements ci,m ∈ (A+F )ψ=0,
i = 1, . . . , d such that

pn
d∑

i=1

∂mci,m ⊗ ϕn(vi) ≡ ∂m ◦Ω−1
T,rd

(z) mod ϕn(π)S−1
n,0(B

+
F,rig)

ψ=0 ⊗ Dcris(T) .

PROOF. Let MF,Sn,m be the induced map from S−1
n,mHF to S−1

n,m(B
+
F,rig)

ψ=0. Then, by
Corollary 2.2, we have

∂mMF,Sn,m

(
ωn−1,m(γ )S

−1
n,mHF

)
= ϕn(π)S−1

n,0(B
+
F,rig)

ψ=0 .

Our result now follows from combining this with Corollary 4.9 and (2.11). �

PROPOSITION 4.11. Let ci,m ∈ (A+F )ψ=0 be any elements given by Corollary 4.10.
Then

prT(−m),n(z) = (−1)m(rd −m− 1)!p(m+1−rd)nΣT(−m),n ◦ Tw−m
( d∑

i=1

ci,m ⊗ vi
)
.

PROOF. Let us write

c = Tw−m
( d∑

i=1

ci,m ⊗ vi
)
∈ (A+F )ψ=0 ⊗ Dcris(T(−m))

and let

cn = pn
d∑

i=1

∂mci,m ⊗ ϕn(vi) = (p ⊗ ϕ)n(c) · t−mem .

By the commutative diagram (2.7), we have

Ω−1
T(−m),rd−m(z · e−m) = (−1)m Tw−m ◦Ω−1

T,rd
(z) = (−1)m(∂m ⊗ tme−m) ◦Ω−1

T,rd
(z) .

Corollary 4.10 says that the last term is congruent to

cn · tme−m = (p ⊗ ϕ)n(c) mod ϕn(π) .
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Therefore, on applying (2.9), we have

prT(−m),n(z · e−m) = (−1)m(rd −m− 1)!ΞT(−m),n
(
(p ⊗ ϕ)n(c)) .

By definitions,

p(rd−m−1)nΞT(−m),n = ΣT(−m),n ◦ (p ⊗ ϕ)−n

as the largest Hodge-Tate weight of T(−m) is rd −m. Hence, we deduce that

prT(−m),n(z · e−m)= (−1)m(rd −m− 1)!p−(rd−m−1)nΣT(−m),n(c)

as required. �

5. Upper bounds of Tamagawa numbers.
5.1. Relation between (A+F )ψ=0 and OFn . For n ≥ 2, we let OTr=0

Fn
denote the kernel

of TrFn/Fn−1 on OFn . By [Lei10, Lemma 3.1], we have the decomposition

(5.1) OFn =
n⊕

i=2

OTr=0
Fi
⊕OF1

as Zp-modules and that

(5.2) rankZp OTr=0
Fn
= φ(pn)− φ(pn−1) = pn−2(p − 1)2 .

LEMMA 5.1. We have

(ϕn−1(q)A+F ) ∩ (A+F )ψ=0 =
{
ϕn−1(q)(A+F )ψ=0 if n ≥ 2 ,

ϕ(π)(A+F )ψ=0 if n = 1 .

PROOF. If n ≥ 2, ϕn−1(q)f ∈ (A+F )ψ=0 for some f ∈ A
+
F , then

ψ(ϕn−1(q)f ) = ϕn−2(q)ψ(f ) = 0 .

This forces f ∈ (A+F )ψ=0.
For n = 1, suppose that ψ(qf ) = 0, where f ∈ A

+
F . We may write f = f (0)+ πg for

some g ∈ A
+
F . Then ψ(qf (0) + qπg) = f (0) + πψ(g) = 0, so f (0) = ψ(g) = 0. This

implies that qf ∈ ϕ(π)(A+F )ψ=0 as claimed. �

LEMMA 5.2. There is an isomorphism of Zp-modules

ιn : (A+F )ψ=0/ϕn−1(q)(A+F )
ψ=0 ∼= OTr=0

Fn

for n ≥ 2. When n = 1, we have instead

ι1 : (A+F )ψ=0/ϕ(π)(A+F )
ψ=0 ∼= OF1 .
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PROOF. Since Φn is the minimal polynomial of ζpn − 1 and ϕn−1(q) = Φn(π + 1) for
n ≥ 1, we have an isomorphism of rings

(5.3) A
+
F /ϕ

n−1(q)A+F ∼= OFn

given by the evaluation map ιn : π 
→ ζpn − 1. By Lemma 5.1, the map ιn restricted
to (A+F )ψ=0 has kernel ϕn−1(q)(A+F )ψ=0 when n ≥ 2, whereas for n = 1, the kernel is
ϕ(π)(A+F )ψ=0. Therefore, we have injections

ιn : (A+F )ψ=0/ϕn−1(q)(A+F )
ψ=0 ↪→OFn ,

ι1 : (A+F )ψ=0/ϕ(π)(A+F )
ψ=0 ↪→ OF1 .

Given an element f ∈ (A+F )ψ=0, we have
∑

ηp=1

f (η(1+ π)− 1) = 0 .

Therefore, for n ≥ 2,

TrFn/Fn−1 f (ζpn − 1) = 0 .

Whereas,

TrF1/F0 f (ζp − 1) = −f (0) .
This implies that ιn(f ) ∈ OTr=0

Fn
if n ≥ 2. If x ∈ OTr=0

Fn
, then

x =
∑

1≤i≤pn−1,(i,p)=1

aiζ
i
pn

for some ai ∈ OF . So, x has a pre-image
∑

1≤i≤pn−1,(i,p)=1

ai(1+ π)i ∈ (A+F )ψ=0

under the map ιn. This gives our result for n ≥ 2.
Now consider n = 1. Given x ∈ OF1 , we have

x =
p−1∑

i=1

aiζ
i
p

for some ai ∈ OF . So, if

f =
p−1∑

i=1

ai(1+ π)i ,

then ι1(f ) = x. Hence we are done. �
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5.2. Bounding Tamagawa numbers. Now, we assume that T is a crystalline repre-
sentation satisfying (H.eigen) and (H.FL) with Hodge-Tate weights in [a, b], where a ≤ 0
and b ≥ 1 as before. Let 1 ≤ r ≤ b be an integer such that the slopes of ϕ on Dcris(T ) are all
≥ −r . We fix two integers s1, s2 ≥ 0 such that

(prϕ)kDcris(T ) ⊂ p−s1Dcris(T ) ∀k ≥ 0 ,(5.4)

(1− ϕ)−1
Dcris(T ) ⊂ p−s2Dcris(T ) .(5.5)

Let us first recall the definition of the Tamagawa number of T over Fn with respect to
a basis ω of detQp tn(V ). Let ω∗ be the dual basis to ω. Then, the Tamagawa number is the
unique power of p defined by

ι(det−1
Zp
H 1
f (K, T )) = Zp TamK,ω(T )ω

∗ ,

where ι is the isomorphism det−1
Qp
H 1
f (Fn, V ) → det−1

Qp
tn(K), which arises from the exact

sequence

0→ Dcris(V )→ Dcris(V )⊕ tn(V )→ H 1
f (Fn, V )→ 0

which is a consequence of (2.4) and (H.eigen). Hence, if we fix a lattice L in tn(V ) such that
ω generates detZp L, then

(5.6) TamFn,ω(T ) =
(
H 1
f (Fn, T ) : expV,n(L)

)

detZp (1− ϕ|Dcris(V ))(p)
.

From now on, we takeLn to be the lattice OFn⊗Dcris(T )/ Fil0 Dcris(T ) and fix a basis ωn
of detZp Ln. We write d ′ for the Zp-rank of Dcris(T )/ Fil0 Dcris(T ) and d ′n := d ′ × [Fn : F ],
which is the Zp-rank of OFn ⊗ Dcris(T )/ Fil0 Dcris(T ).

LEMMA 5.3. For m ∈ Z, let Ln,m = pmLn and ωn,m a basis of detZp Ln,m. We have
the equality

TamFn,ωn,m(T ) = pmd
′
n TamFn,ωn(T ).

PROOF. It follows from (5.6) and the fact that the Zp-rank of H 1
f (Fn, T ) is d ′n. �

From now on, we shall assume that the representation T satisfies the following additional
hypothesis.

(H.tor) (T ∨)GF∞ = 0, where T ∨ denotes the Pontryagin dual of T .

Under (H.tor), the inflation-restriction exact sequence implies that the corestriction map
H 1(Fm, T )→ H 1(Fn, T ) is surjective for allm ≥ n (see for example [Lei10, Corollary 4.5]).
In particular, the projectionH 1

Iw(F, T )→ H 1(Fn, T ) is surjective.

LEMMA 5.4. Let x ∈ H 1
f (Fn, T ), then there exists g ∈ (A+F )ψ=0 ⊗Dcris(T ) such that

expV,n ◦ΘT,n(g) = x.
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PROOF. We take m = −a ≥ 0 in Proposition 4.11. In particular, T(−m) = T by the
definition of T. Let z ∈ H 1

Iw(F, T ) be any element such that

prT(−m),n(z) = x .
Proposition 4.11 says that there exists c ∈ (A+F )ψ=0 ⊗ Dcris(T) such that

x = p(1−b)nΣT,n ◦ Tw−m(c) .

But we have Tw−m(c) ∈ (A+F )ψ=0 ⊗ Dcris(T ) and

ΣT,n = p(b−1)n expV,n ◦ΘT,n .
Hence, we obtain our result on taking g = Tw−m(c). �

COROLLARY 5.5. Let An be the image of (A+F )ψ=0 ⊗ Dcris(T ) under ΘT,n in tn(V ).
We have the inequality

(
H 1
f (Fn, T ) : expV,n(Ln)

) ≤ (An : Ln) .
PROOF. By Lemma 5.4, we have the inclusion

H 1
f (Fn, T ) ⊂ expV,n (An) .

Therefore,
(
H 1
f (Fn, T ) : expV,n(Ln)

) ≤ ( expV,n(An) : expV,n(Ln)
)
.

The result now follows from the fact that expV,n is injective on tn(V ). �

Via (5.1), there are decompositions

tn(V ) =
n⊕

i=2

(
OTr=0
Fi
⊗ t (V )

)
⊕ (OF1 ⊗ t (V )

)
,

Ln =
n⊕

i=2

(
OTr=0
Fi
⊗ Dcris(T )/ Fil0 Dcris(T )

)
⊕
(
OF1 ⊗ Dcris(T )/ Fil0 Dcris(T )

)
.

For i ≥ 2 (respectively i = 1), we write pri for the projection of tn(V ) to OTr=0
Fi
⊗ t (V )

(respectively OF1 ⊗ t (V )).
LEMMA 5.6. Let g ∈ (A+F )ψ=0 ⊗ Dcris(T ), then

pri ◦ΘT,n(g) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
(σ−i ⊗ ϕn−i )g) (ζpi − 1) mod Fil0 Dcris(T )

if i ≥ 2 ,
(
(σ−1 ⊗ ϕn−1)g

)
(ζp − 1)+ (1− ϕ)−1ϕn(g(0)) mod Fil0 Dcris(T )

if i = 1 .
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PROOF. Recall from (3.3) that if (1− ϕ)G = g , then

G =
∞∑

k=0

ϕk(g̃)+
r∑

j=0

tj

j ! ⊗ (1− p
jϕ)−1Δj(g) ,

where g̃ = g −∑r
j=0

t j

j ! ⊗Δj(g). When evaluated at ζpn − 1, all the terms involving tj with
j ≥ 1 vanish by the definition of t . Furthermore, by the definition of g̃ , it is divisible by π
over B+F,rig. This implies that ϕk(g̃) vanishes at ζpn − 1 for all k ≥ n. Therefore, we have

Gσ
−n
(ζpn − 1)=

n−1∑

k=0

ϕk(g̃)σ
−n
(ζpn − 1)+ (1− ϕ)−1g(0)

=
n−1∑

k=0

(
(σ k−n ⊗ ϕk)g(ζpn−k − 1)− ϕk(g(0)))+ (1− ϕ)−1g(0)

=
n∑

i=1

(
(σ−i ⊗ ϕn−i )g)(ζpi − 1)+ (1− ϕ)−1ϕn(g(0)) .

Our result now follows from Lemma 5.2. �

PROPOSITION 5.7. We have the inequality

(An : Ln) ≤ p(r(pn−1+p−2)+s2(p−1))d ′+s1d ′n .

PROOF. Let g ∈ (A+F )ψ=0 ⊗ Dcris(T ). For i ≥ 2, Lemma 5.6 tells us that pri ◦ΘT,n(g)
lies inside

OTr=0
Fi
⊗ ϕn−i (Dcris(T )) mod Fil0 Dcris(T ) .

Note that ϕn−i (Dcris(T )) ⊂ p−s1+r(i−n)Dcris(T ) by (5.4), so

pri (An) ⊂ p−s1+r(i−n) pri (Ln) .

Together with (5.2) we deduce that

[pri (An) : pri (Ln)] ≤
(
ps1+r(n−i)

)pi−2(p−1)2d ′
.

For i = 1, (5.4) and (5.5) tell us that

pr1(An) ⊂ OF1 ⊗ p−s1−s2−rn pr1(Ln) .

Thus,

[pr1(An) : pr1(Ln)] ≤
(
ps1+s2+rn

)(p−1)d ′
.

Since Ln =⊕n
i=1 pri (Ln) and An ⊂⊕n

i=1 pri (An), we deduce that

(An : Ln)≤
n∏

i=1

(pri (An) : pri (Ln))

≤ (p
∑n
i=2(s1+r(n−i))pi−2(p−1)2+(s1+s2+rn)(p−1))d ′
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= p(r(pn−1+p−2)+s2(p−1))d ′+s1d ′n

as required. �

COROLLARY 5.8. The Tamagawa number TamFn,ωn(T ) is bounded above by

p(r(p
n−1+p−2)+s2(p−1))d ′+s1d ′n

detZp (1− ϕ|Dcris(V ))(p)
.

PROOF. This follows from combining (5.6) with Corollary 5.5 and Proposition 5.7. �

REMARK 5.9. Note that pn−1 + p − 2 ≤ [Fn : F ] for all n ≥ 1. In particular, under
the notation of Lemma 5.3, we deduce from Corollary 5.8 the inequality

TamFn,ωn,−r−s1 (T ) ≤
ps2(p−1)d ′

det(1− ϕ|Dcris(V ))(p)
,

which is independent of n.

6. Comparison with Laurent’s results. We recall from [Lau13] that TamFn,ωn(T ) is
bounded above by

(6.1) p[Fn:Qp ]nα × jn(ωn ⊗ v−1
n ) ,

where α = −∑d
i ri + (b − 1)d + d ′, with r1, . . . , rd being the Hodge-Tate weights of T

and jn(ωn ⊗ v−1
n ) is a power of p that measures the difference between ωn and detZp An (see

p. 97 of op. cit.). In general, it is not clear how to calculate jn(ωn⊗v−1
n ) explicitly. However,

it seems to us that the bounds given in Corollary 5.8 would generally grow slower than (6.1)
because the former are O(pn), instead of O(npn). In the following section, we illustrate this
with representations arising from modular forms.

REMARK 6.1. There are in fact some extra factors in the upper bound of Laurent.
However, under (H.eigen) and (H.FL), they all turn out to be 1.

6.1. Representations attached to modular forms. Let f =∑n≥1 anq
n be a modu-

lar form of even weight k and nebentypus ε whose level is coprime to p. LetE be the smallest
extension of Qp that contains an for all n. Let Vf be the Deligne representation restricted to
GQp , which is of dimension 2[E : Qp]. Furthermore, we fix a Galois-stable lattice Tf inside
Vf . It has Hodge-Tate weights 1−k and 0 (with multiplicity [E : Qp]). In particular, if p > k,
then (H.FL) holds as well. The action of ϕ on Dcris(Vf ) satisfies ϕ2 − apϕ + ε(p)pk−1. We
see that the evenness of k ensures that (H.eigen) holds as well. Finally, if (H.FL) holds, then
p + 1 � k − 1. This implies that (H.tor) holds by [Lei10, Lemma 4.4].

Take T = Tf (k/2) and assume that vp(ap) ≥ k/2 with ε(p) = 1. Under this assump-
tion, the slope of ϕ on Dcris(T ) is constant and equal to −1/2.

For this particular representation, Laurent has worked out the exact value of jn(ωn⊗v−1
n )

in [Lau13, §3.4.3] and showed that

(6.2) TamFn,ωn(Tf (k/2)) ≤ p(n+1/2)e[Fn:Qp ](k−2) ,
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where e = [E : Qp]. Furthermore, when k=2, equality holds. That is, TamFn,ωn(Tf (k/2))=
1 for all n ≥ 1.

For the same representation, Corollary 5.8 says that

TamFn,ωn(Tf (k/2)) ≤
p
(
(pn−1+p−2)+s2(p−1)+s1[Fn:Qp ]

)
e

detZp (1− ϕ|Dcris(V ))(p)

as d ′ = e and we may take r = 1. In the case k > 2, we see that this bound is smaller than
(6.2) when n is sufficiently large, no matter what s1 and s2 are.

For the rest of this section, we shall analyse the action of ϕ in order to find out what
value s we can take. Recall that the action of ϕ on Dcris(T ) satisfies the equation

(6.3) ϕ2 − ap

p
k
2

ϕ + 1

p
= 0 .

Therefore,

det(1− ϕ|Dcris(V ))(p) =
(

1− ap

p
k
2

+ 1

p

)

(p)

= 1

pe
.

LEMMA 6.2. For all n ≥ 0,

(pϕ)nDcris(T ) ⊂ p−k/2+1
Dcris(T ) .

PROOF. By (H.FL), the fact that the highest Hodge-Tate weight of Dcris(T ) is k/2 im-
plies that we may pick v ∈ Filk/2 Dcris(T ) \ Filk/2+1

Dcris(T ) such that v, pk/2ϕ(v) form a
basis of Dcris(T ). The matrix of ϕ with respect to this basis is given by

(
0 −pk/2−1

p−k/2 ap/p
k/2

)
=
(−pk/2β −pk/2α

1 1

)(
α 0
0 β

)
⎛

⎝
pk/2

α−β
α

α−β
−pk/2
α−β

−β
α−β

⎞

⎠ ,

where α and β are the roots to X2 − ap

pk/2
+ 1

p
, both of which have p-adic valuation −1/2.

Therefore, the matrix of (pϕ)n is given by

(−pk/2β −pk/2α
1 1

)(
(pα)n 0

0 (pβ)n

)( 1
pk/2(α−β)

α
α−β

−1
pk/2(α−β)

−β
α−β

)

.

But (α − β)2 =
(
ap

pk/2

)2 − 4
p

, which means that vp(α − β) = −1/2. This tells us that all the

entries of the product of the three matrices above have p-adic valuations at least n/2− k/2+
1/2 ≥ −k/2+ 1 for n ≥ 1. When n = 0, the product is the identity. Hence the result. �

LEMMA 6.3. We have

(1− ϕ)−1
Dcris(T ) ⊂ p− k2+1

Dcris(T ) .
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PROOF. Following [LLZ11, Lemma 5.6], we deduce from (6.3) the equation

(1− ϕ)−1 =
ϕ + 1− ap

p
k
2

1− ap

p
k
2
+ 1

p

,

where the denominator has p-adic valuation −1. The largest Hodge-Tate weight of T is k/2,
so (H.FL) implies that ϕDcris(T ) ⊂ p−k/2Dcris(T ). As 1 + ap

pk/2
has non-negative p-adic

valuation, our result follows. �

In particular, we may take s1 = s2 = k/2 − 1 in Corollary 5.8 for this particular repre-
sentation. Hence, we conclude that

TamFn,ωn(Tf (k/2)) ≤ p
(
k/2(p−1)(pn−1+1)−pn−1(p−2)

)
e .
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Appendix A. Results on p-adic valuations.

LEMMA A.1. If α = 1+ pβ, where β ∈ Zp , n ≥ 0 is an integer, then vp(αp
n − 1) =

n+ 1+ vp(β). Furthermore,

αp
n − 1

pn+1β
≡

n−1∑

i=0

(−pβ)i
i + 1

mod pnZp .

PROOF. We have the expansion

αp
n − 1 = (1+ pβ)pn − 1 =

pn∑

i=1

(
pn

i

)
(pβ)i .

We can rewrite the summand as
(
pn

i

)
(pβ)i = (pn+1β)× (p

n − 1)× (pn − 2)× · · · × (pn − (i − 1))

1× 2× · · · × (i − 1)
× (pβ)

i−1

i
.

As in [Lei11, proof of Lemma 5.4], we have

(i − 1)× vp(pβ) > vp(i) ,

which implies that pn+1β divides αp
n − 1 over Zp and that

αp
n − 1

pn+1β
=

pn∑

i=1

(pn − 1)× (pn − 2)× · · · × (pn − (i − 1))

1× 2× · · · × (i − 1)
× (pβ)

i−1

i

≡
pn∑

i=1

(−1)i−1 × (pβ)
i−1

i
mod pn .

Hence we are done. �
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LEMMA A.2. Let i, j ∈ Z, k ≥ n+ 1, then

Φpk(u
−iγ )
p

≡ δ mod ωn,j (γ )

for some p-adic unit δ ∈ 1+ pnZp.

PROOF. Since ωn,j = (u−j γ )pn − 1, we have

Φpk(u
−iγ )
p

= (u−iγ )pk − 1

p((u−iγ )pk−1 − 1)
≡ (uj−i )pk − 1

p((uj−i )pk−1 − 1)
mod ωn,j

as k−1 ≥ n. If u = 1+pτ , where τ ∈ Zp, then uj−i = 1+p(j− i)τ+O(p2) = 1+pβ for
some β ∈ Zp. Therefore, if we write α = uj−i , Lemma A.1 implies that the last expression
satisfies

(1+ pτ)(j−i)pk − 1

p(((1+ pτ)(j−i)pk−1 − 1)
= αp

k − 1

p(αp
k−1 − 1)

= (αp
k − 1)/pk+1β

(αp
k−1 − 1)/pkβ

∈ 1+ pnZp ,

as required. �

LEMMA A.3. Let i, j ∈ Z and n ≥ 1. Then, �i is congruent to the constant j − i
modulo ωn,j .

PROOF. By definition,

�i − �j = j − i
and ωn,j |�j . Hence the result. �

Appendix B. Q-systems for crystalline representations. In [Kob13, Kob14],
Kobayashi proved the p-adic Gross-Zagier formula for elliptic curves and weight 2 modu-
lar forms with non-ordinary reduction at p. One of the key ingredients is the interpolation of
Heegner points. More specifically, let E be an elliptic curve with good supersingular reduc-
tion at p with ap the trace of the Frobenius at p on the p-adic Tate module. Write Mn for the
maximal ideal of Qp(μpn). If cn ∈ Ê(Mn), n ≥ 1 is a family of elements such that

(B.1) Trn+2/n(cn+2)− ap Trn+1/n(cn+1)+ pcn = 0

for all n ≥ 1, Kobayashi showed that there exists a power series f ∈ Zp[[X]] such that
f (ζpn−1) = cn for all n ≥ 1 if and only if cpn+1 ≡ cn mod pOQp(μpn+1 ). A family of points

satisfying (B.1) is called a Q-system, where Q is the polynomialX2 − apX + p. They have
been extensively studied by Knospe in [Kno95]. The result of Kobayashi mentioned above
has been generalized to general formal groups by Ota in [Ota14]. In this appendix, we explain
how the results of Perrin-Riou on the solutions to (Eg ) discussed in §3 allows us to construct
Q-systems for a general crystalline representation.

Let T be a representation as defined in §2.2 with Hodge-Tate weights in [a; b] with
b ≥ 1. As before, we assume that both (H.eigen) and (H.FL) hold.
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DEFINITION B.1. Let k ≥ 1 be an integer. We say that Q(X) ∈ OF [X] is a k-
polynomial for T if it satisfies

Q(pkϕ)Dcris(T ) = 0 .

DEFINITION B.2. Let Q = ∑N
i=0 aiX

i ∈ OF [X] be a k-polynomial for T for some
integer k. We define the Q-systems of T to be the set of elements

{
(cn)n≥1 : cn ∈ H 1

f (Fn, T ),

d∑

i=0

ai corn+i/n (cn+i ) = 0 ∀n ≥ 1

}
.

LEMMA B.3. A non-trivial b-polynomial for T exists.

PROOF. Since Fil−b Dcris(T ) = Dcris(T ), we have Fil0 Dcris(T (−b)) = Dcris(T (−b)).
In particular, by Fontaine-Laffaille theory, ϕ(Dcris(T (−b))) ⊂ Dcris(T (−b)). We have the
polynomial

QT (X) = det(Xν − ϕν |Dcris(T (−b))) ∈ OF [X] ,
where pν is the size of the residue field of F . Since Dcris(T ) = Dcris(T (−b)) ⊗ t−beb and
ϕ(t−b) = p−bt−b, we have

QT (p
bϕ)Dcris(T ) = QT (ϕ)Dcris(T (−b)) = 0 .

So, we see that QT is a b-polynomial for T . �

We fix a b-polynomialQ(X) of T . Note thatQ(X) is then automatically a b−m polyno-
mial for T (−m) for all m ∈ {0, 1, . . . , b− 1} (this follows from the fact that ϕ(tm) = pmtm).
In addition, we take s to be the integer satisfying (3.1) and (3.2) (for any fixed r). We explain
how to construct families of Q-system of T (−m) using the results of Perrin-Riou that we
have reviewed in §2.3.

PROPOSITION B.4. Let Q be a b-polynomial for T , g ∈ (A+F )ψ=0 ⊗ Dcris(T ) and m
an integer such that 0 ≤ m ≤ b− 1, then

(
pr+s−1ΣT (−m),n ◦ Tw−m(g)

)
n≥1 form aQ-system

of T (−m) for all m ∈ {0, 1, . . . , b − 1}.
PROOF. Let cn = pr+s−1ΣT (−m),n◦Tw−m(g) for n ≥ 1 and writeQ(X) =∑N

i=0 aiX
i .

Note that

Tw−m(g) ∈ (A+F )ψ=0 ⊗ Dcris(T (−m))
and that T (−m) has Hodge-Tate weights in [−m; b−m]. So, by Corollary 3.2, we have

cn ∈ H 1
f (Fn, T (−m))

and

(B.2)
N∑

i=0

ai corn+i/n(cn+i ) = pr+s−1ΣT (−m),n ◦
( N∑

i=0

ai(p
b−m ⊗ ϕ)i

)
◦ Tw−m(g) .
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Since Q is a (b −m)-polynomial for T (−m), we have

N∑

i=0

ai(p
b−mϕ)i = 0

on Dcris(T (−m)). Hence the right-hand side of (B.2) is 0. �

We now show that it is possible to refine the construction above by taking into account
the slope of ϕ. In particular, we fix an integer 1 ≤ r ≤ b such that the slopes of ϕ on Dcris(T )

are ≥ −r .
LEMMA B.5. A non-trivial r-polynomial for T exists.

PROOF. Since the eigenvalues of ϕ on Dcris(T (−r)) are all p-integral, the polynomial

QT,r(X) = det(Xν − ϕν |Dcris(T (−r))),
where pν is the size of the residue field of F , is a polynomial defined over OF and hence it is
an r-polynomial for T . �

Note that if QT (X) =∑νd
i=0 aiX

i is the polynomial defined in the proof of Lemma B.3,
then it is related to the polynomialQT,r via the relation

QT,r (X) =
νd∑

i=0

ai

p(b−r)(d−i)
Xi .

We remark that as before, ifQ is an r-polynomial for T , thenQ is an (r−m)-polynomial
for T (−m) for all m ∈ {0, 1, . . . , r − 1}.

PROPOSITION B.6. LetQ be an r-polynomial for T . If g ∈ (A+F )ψ=0⊗Dcris(T ), then
the elements

pr+s−1+(r−b)nΣT (−m),n ◦ Tw−m(g)

form a Q-system for T (−m) for all 0 ≤ m ≤ r − 1.

PROOF. Corollary 3.2 tells us that

pr+s−1+(r−b)nΣT (−m),n ◦ Tw−m(g) ∈ H 1
f (Fn, T )

for all n ≥ 1. LetQ(X) =∑N
i=0 aiX

i and let

R(X) = p(b−r)NQ(pr−bX) = p(b−r)N
N∑

i=0

aip
i(r−b)Xi ∈ OF [X] .

Since Q is an r-polynomial for T , R is a b-polynomial for T . Let cn = pr+s−1ΣT (−m),n ◦
Tw−m(g) as in the proof of Proposition B.4. Then, they form an R-system for T (−m). This
gives us the relation

p(b−r)N
N∑

i=1

aip
i(r−b) corn+i/n cn+i = 0 .
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Therefore,
N∑

i=1

ai corn+i/n
(
p(n+i)(r−b)cn+i

)
= 0

as required. �
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