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Abstract. It is an interesting question whether a given equation of motion has a peri-
odic solution or not, and in the positive case to describe it. We investigate periodic magnetic
curves in elliptic Sasakian space forms and we obtain a quantization principle for periodic
magnetic flowlines on Berger spheres. We give a criterion for periodicity of magnetic curves
on the unit sphere S3.

1. Introduction. It has been a long-standing problem to find closed trajectories in
dynamical systems on manifolds. The existence of closed trajectories turns out to be subtle
and closely related to topology and geometric structures of the manifolds. For example, the
following fundamental existence theorem of closed geodesics is well known. For any compact
Riemannian manifold (M, g), in each element of the fundamental group π1(M), there exists
a closed geodesic which attains the minimum of the energy functional in the homotopy class.

An interesting generalization of the notion of geodesic is that of magnetic curve. In
classical mechanics, motions of particles in the Euclidean 3-space are described by the New-
ton equation mγ̈ (t) = F(γ (t)), where m is the mass and the vector field F represents the
force. Take an immersed surface M in the Euclidean 3-space E3. A motion of the particle
constrained on M obeys the equation of motion:

∇γ̇ γ̇ = 0 .

Here ∇ is the Levi-Civita connection of M . This is nothing but the equation of geodesics.
The Newton equation is generalized to motions in curved spaces (semi-Riemannian man-

ifolds) as follows:

m∇γ̇ γ̇ = Fγ .
Hence, geodesics in Riemannian manifolds are mathematical models of motions of a particle
with no force acting on it.

A free relativistic particle of mass m is described in terms of geodesics in Minkowski
spacetime E4

1 with the Lagrangian

L(x, ẋ) = −mc√−〈ẋ, ẋ〉 .
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Here c is the light speed. In general relativity, free falls are regarded as geodesics in the
spacetime, i.e. time-oriented Lorentzian 4-manifolds.

Magnetic curves represent, in physics, the trajectories of charged particles moving on
a Riemannian manifold under the influence of magnetic forces. The Landau-Hall problem
means the study of the motion of charged particles on a Riemannian surface in the presence
of a constant and static magnetic field. In this context, in the absence of any electric field, a
particle of mass m and charge q moves with the velocity v(t) satisfying the Lorentz force law

dP(t)

dt
= q

c
v(t) × B ,

where B is the magnetic field, P = (ε/c2)v is the momentum and ε = mc2/
√

1− |v|2/c2 is
the energy of the particle. Geodesics are magnetic curves with vanishing magnetic field.

In Euclidean 3-space, if B is stationary, i.e. independent of t , then the motion of the
particle is described by a circular helix around B. As a particular situation, the magnetic
trajectory of the particle may be a circle, hence a periodic curve.

Moreover, magnetic curves are derived from the variational problem of the Landau-Hall
functional. See e.g. [6, 17]. In the absence of a magnetic field, the Landau-Hall functional
coincides with the kinetic energy functional. It is well known that geodesics are characterized
as critical points of the energy functional. From variational point of view, the existence of
global potential for magnetic fields is a natural assumption. Based on these observations,
we study magnetic curves in 3-dimensional contact metric manifolds, especially in Sasakian
manifolds.

More generally, in any 3-dimensional Riemannian manifold (M, g), magnetic fields of
nonzero constant length are in one to one correspondence to almost contact structures com-
patible to the metric g (see [3] and Section 2.4 of the present paper). This fact motivates
us to study magnetic curves in almost contact metric 3-manifolds (with closed fundamental
2-form).

In [21], Taubes proved the generalized Weinstein conjecture in dimension 3, namely, on a
compact, orientable, contact 3-manifold the Reeb vector field ξ has at least one closed integral
curve. In conjunction with this problem it is important to explore the existence of periodic
magnetic trajectories of the contact magnetic field defined by ξ in Sasakian manifolds. It is
an important fact that the study of magnetic curves in Sasakian manifolds with constant ϕ-
sectional curvature (known as Sasakian space forms) of arbitrary dimension reduces to their
investigation in dimension 3. See [9]. Berger spheres are realized as Sasakian space forms
of constant ϕ-sectional curvature c > −3. Such a Sasakian space form is called an elliptic
Sasakian space form.

In 2009 Cabrerizo et al. [8] have been looked for periodic orbits of the contact magnetic
field on the unit sphere S3. See also [2]. In this paper we study closed magnetic curves in
arbitrary elliptic Sasakian space forms and we obtain a quantization principle for periodic
magnetic flowlines on Berger spheres. We prove that the set of all periodic magnetic curves
of arbitrary strength on the Sasakian space form M3(c), (c > −3) can be quantized in the set
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of rational numbers (Theorem 5.1) and we write the quantization principle generalizing the
result of Cabrerizo et al. Finally, we give a criterion for periodicity of magnetic curves on the
unit sphere S3 (Theorem 6.1).

To close Introduction, we mention some symplectic geometric motivations for the study
of contact magnetic curves. During the study of area minimization problem among La-
grangian surfaces in Kähler surfaces, Schoen and Wolfson completely classified admissible
singular points of area minimizing Lagrangian surfaces. These singularities are locally mod-
elled by Hamilton-minimal Lagrangian cones in complex Euclidean plane C2 (see [19, Theo-
rem 7.1]). In particular, Schoen and Wolfson classified Hamilton-minimal Lagrangian cones
in C2. Those Lagrangian cones are realized as cones over L-minimal Legendre curves in S3.
As a result, closed L-minimal Legendre curves in the unit 3-sphere S3 are classified (see [19]
and also [13]). Here a Legendre curve in a 3-dimensional Sasakian manifold is said to be
L-minimal if it is a critical point of the length functional under Legendre variations.

One can see that every closed L-minimal Legendre curve in S3 is a contact magnetic
curve. Conversely, every closed contact magnetic curve in S3 which is Legendre with respect
to the canonical Sasakian structure is L-minimal and hence induces a Hamiltonian-minimal
Lagrangian cone in C2.

2. Preliminaries.
2.1. Magnetic curves. The motion of the charged particles in a Riemannian manifold

under the action of the magnetic fields are known as magnetic curves. More precisely, a
magnetic field F on a Riemannian manifold (M, g) is a closed 2-form F and the Lorentz
force associated to F is a tensor field φ of type (1, 1) such that

(1) F(X, Y ) = g(φX, Y ) , X, Y ∈ X(M) .

A curve γ onM that satisfies the Lorentz equation

(2) ∇γ̇ γ̇ = φ(γ̇ ) ,
is called a magnetic trajectory of F , or simply a magnetic curve. Here ∇ denotes the Levi-
Civita connection associated to the metric g . The Lorentz equation generalizes the equation
of geodesics under arc length parametrization, namely, ∇γ̇ γ̇ = 0. A magnetic field F is said
to be uniform if ∇F = 0.

It is well-known that the magnetic trajectories have constant speed. When the magnetic
curve γ (s) is arc length parametrized, it is called a normal magnetic curve.

The case of dimension 3 is rather special, since it allows us to identify 2-forms with
vector fields via the Hodge � operator and the volume form dvg of the (oriented) manifold. In
this way, magnetic fields may be identified with divergence free vector fields by

FV = dvg (V , ·, ·) .
Magnetic fields F corresponding to Killing vector fields are usually known as Killing

magnetic fields. Their trajectories, called Killing magnetic curves, are of great importance
since they are related to the Kirchhoff elastic rods. See e.g. [3, 5].



116 J. INOGUCHI AND M. I. MUNTEANU

2.2. Sasakian manifolds. A (ϕ, ξ, η) structure on a manifoldM is defined by a field
ϕ of endomorphisms of tangent spaces, a vector field ξ and a 1-form η satisfying

η(ξ) = 1 , ϕ2 = −I+ η⊗ ξ , ϕξ = 0 , η ◦ ϕ = 0 .

If (M, ϕ, ξ, η) admits a compatible Riemannian metric g , namely

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ) , for all X,Y ∈ X(M) ,

then M is said to have an almost contact metric structure, and (M, ϕ, ξ, η, g) is called an
almost contact metric manifold. Consequently, we have that ξ is unitary and η(X) = g(ξ,X),
for any X ∈ X(M).

We define a 2-formΩ on (M, ϕ, ξ, η, g) by

Ω(X, Y ) = g(ϕX, Y ) , for all X,Y ∈ X(M) ,(3)

called the fundamental 2-form of the almost contact metric structure (ϕ, ξ, η, g).
If Ω = dη, then (M, ϕ, ξ, η, g) is called a contact metric manifold. Here dη is defined

by dη(X, Y ) = 1
2

(
Xη(Y )− Yη(X)− η([X,Y ])), for any X,Y ∈ X(M). On a contact metric

manifoldM , the 1-form η is a contact form (see Blair’s book [7]). The vector field ξ is called
the Reeb vector field of M and it is characterized by ιξ η = 1 and ιξ dη = 0. Here ι denotes
the interior product. In analytical mechanics ξ is traditionally called the characteristic vector
field of M .

An almost contact metric manifold M is said to be normal if the normality tensor S =
Nϕ + 2dη ⊗ ξ vanishes, where Nϕ is the Nijenhuis torsion of ϕ defined by Nϕ(X, Y ) =
[ϕX, ϕY ] + ϕ2[X,Y ] − ϕ[ϕX, Y ] − ϕ[X,ϕY ], for any X,Y ∈ X(M).

A Sasakian manifold is defined as a normal contact metric manifold. Denoting by ∇ the
Levi-Civita connection associated to g , the Sasakian manifold (M, ϕ, ξ, η, g) is characterized
by

(∇Xϕ)Y = −g(X, Y )ξ + η(Y )X , for any X,Y ∈ X(M) .

As a consequence, we have

∇Xξ = ϕX , ∀X ∈ X(M) .(4)

A contact metric structure (ϕ, ξ, η, g) is called K-contact if ξ is a Killing vector field.
Due to (4) and the fact that ϕ is skew-symmetric, it follows that a Sasakian manifold is K-
contact. The converse is not true in general. Yet, a 3-dimensional manifold is Sasakian if and
only if it is K-contact.

A plane section Π at p ∈ M2n+1 is called a ϕ-section if it is invariant under ϕp. The
sectional curvature k(Π) of a ϕ-section is called the ϕ-sectional curvature of M2n+1 at p. A
Sasakian manifold (M2n+1, ϕ, ξ, η, g) is said to be a Sasakian space form if it has constant
ϕ-sectional curvature.

A Sasakian space form M(c) of constant ϕ-sectional curvature c is said to be elliptic,
parabolic or hyperbolic if c > −3, c = −3 or c < −3, respectively. See e.g. [11].
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Let us start with a Sasakian manifold (M, ϕ, ξ, η, g). We take a positive constant a and
we define a new Sasakian structure (ϕ, ξ̂ , η̂, ĝ) onM by

ξ̂ := 1

a
ξ , η̂ := aη , ĝ := ag + a(a − 1)η⊗ η .

This structure is called a D-homothetic deformation of (ϕ, ξ, η, g). In particular, if M(c) is
a Sasakian space form, then deforming the structure, we obtain also a Sasakian space form
M(ĉ), where ĉ = c+3

a
− 3. For every value of c there exist Sasakian space forms, as follows:

the elliptic Sasakian space forms, also known as the Berger spheres if c > −3, the Heisenberg
space R2n+1(−3), if c = −3, and B2n × R when c < −3. See also [7, Theorem 7.15]. Note
that the case c > −3 includes the standard unit sphere S2n+1(1).

2.3. Magnetic curves in Sasakian manifolds. Let (M, ϕ, ξ, η, g) be a contact metric
manifold and let Ω be the fundamental 2-form defined by (3). Since Ω = dη on a contact
metric manifold,Ω is a closed 2-form, thus we can define a magnetic field on M by

Fq(X, Y ) = qΩ(X, Y ) ,(5)

where X,Y ∈ X(M) and q is a real constant. We call Fq the contact magnetic field with the
strength q . Notice that if q = 0, then the contact magnetic field vanishes identically and the
magnetic curves are the geodesics ofM . In the sequel we assume q 	= 0.

The Lorentz force φq associated to the contact magnetic field Fq may be easily deter-
mined combining (3) and (1), namely

(6) φq = qϕ ,
where ϕ is the field of endomorphisms of the contact metric structure.

In this setting, the Lorentz equation (2) can be written as

(7) ∇γ ′γ ′ = qϕγ ′,
where γ : I ⊆ R → M2n+1 is a smooth curve parametrized by arc length. Here by γ ′ we
denote the derivative of γ with respect to its arc length. The solutions of (7) are called normal
magnetic curves or trajectories for Fq .

REMARK 2.1. Contact magnetic trajectories can be obtained as solutions of a varia-
tional problem. More precisely, they are the critical points of the Landau Hall functional:

LH(γ ) =
∫ (

1

2
g(γ̇ (t), γ̇ (t))+ qη(γ̇ (t))

)
dt .

Here, the contact 1-form η is regarded as the potential 1-form.

2.4. Magnetic curves in 3-dimensional Riemannian manifolds. Let F = FV be a
magnetic field with corresponding divergence free vector field V on an oriented 3-dimensional
Riemannian manifold (M, g).

Then one can check that the Lorentz force φ of F satisfies ([4], page 7):

φ2X = −g(V , V )X + g(V ,X)V .
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Moreover, we have

V 
(φX) = g(φX, V ) = g(V ×X,V ) = dvg (V ,X, V ) = 0 ,

g(φX, φY ) = g(V , V )g(X, Y )− V 
(X)V 
(Y ) .
Here V 
 denotes the 1-form metrically dual to V . Thus, if V has constant length q > 0, then
(ϕ, ξ, η) = (φ/q, V /q, V 
/q) defines a (ϕ, ξ, η)-structure compatible to the Riemannian
structure g satisfying divξ = 0. The magnetic field F is represented by F = qΩ as a contact
magnetic field on the resulting almost contact metric manifold (M, ϕ, ξ, η, g).

3. Sasakian structures on the Berger spheres. In this section, we give an explicit
matrix group model of the 3-dimensional Berger spheres M3(c) equipped with a natural
Sasakian structure of constant ϕ-sectional curvature c > −3.

As it is well known, the unit 3-sphere (S3; η1, ξ1, ϕ1, g1) is identified with the special
unitary groupG = SU(2) with bi-invariant metric.

Let us denote by g the Lie algebra ofG. The bi-invariant metric g1 of constant curvature
1 onG is induced by the following inner product 〈·, ·〉1 on g:

〈X,Y 〉1 = −1

2
tr(XY ) , X, Y ∈ g .

Take a quaternionic basis of g:

i =
(

0
√−1√−1 0

)
, j =

(
0 −1
1 0

)
, k =

(√−1 0
0 −√−1

)
.

By using this basis, the group SU(2) is described as

SU(2) =
{(

x0 +
√−1 x3 −x2 +

√−1 x1

x2 +
√−1 x1 x0 −

√−1 x3

) ∣∣∣∣ x2
0 + x2

1 + x2
2 + x2

3 = 1

}
.

In the spinor representation of the Euclidean 3-space E3, we identify R3 with g = su(2) via
the correspondence

(x1, x2, x3)←→ x1i+ x2j+ x3k =
( √−1 x3 −x2 +

√−1 x1

x2 +
√−1 x1 −√−1 x3

)
.

Denote by {E1, E2, E3} the left translated vector fields of {i, j,k}. Then a left invariant
Sasakian structure ofG is given by

(8)
ξ1 := E3 , η1 = g1(E3, ·) ,

ϕ1(E1) = −E2 , ϕ1(E2) = E1 , ϕ1(E3) = 0 .

Note that the commutation relations of {E1, E2, E3} are

[E1, E2] = 2E3 , [E2, E3] = 2E1 , [E3, E1] = 2E2 .

The Lie groupG acts isometrically on the Lie algebra g by the Ad-action.

Ad : G× g→ g; Ad(a)X = aXa−1, a ∈ G, X ∈ g .
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The Ad-orbit of k/2 is a sphere of radius 1/2 in the Euclidean 3-space E3 = g. The Ad-action
of G on S2(1/2) is isometric and transitive. The isotropy subgroup of G at k/2 is

U(1) =
{
at =

(
e
√−1t 0

0 e−
√−1t

) ∣∣∣∣ t ∈ R

}
.

Hence S2(1/2) is represented by SU(2)/U(1) as a Riemannian symmetric space. The natural
projection

π1 : S3 → S2(1/2) , π1(a) = Ad(a)(k/2)

is a Riemannian submersion and defines a principal U(1)-bundle over S2(1/2).
Since the Sasakian structure (η1, ξ1, ϕ1, g1) is left invariant, its D-homothetic deforma-

tion is also left invariant. Hence the elliptic Sasakian space form M3(c) is identified with
SU(2) endowed with the left invariant contact metric structure:

η := αη1 , ξ := ξ1/α , ϕ := ϕ1 ,

g(X, Y ) = αg1(X, Y )+ α(α − 1)η1(X)η1(Y ) , c = 4/α − 3 ,

where α is a positive real number. The Reeb vector field ξ generates a one parameter group
of transformations on M3(c). Since ξ is a Killing vector field, this transformation group acts
isometrically on G. The transformation group generated by ξ is identified with the following
Lie subgroupK of G:

K =
{(

e

√−1
α t 0

0 e−
√−1
α t

) ∣∣∣∣ t ∈ R

}
∼= U(1) .

Furthermore, the action of the transformation group generated by ξ corresponds to the natural
right action of K on G:

G×K → G ; (a, k) �→ ak .

By using the curvature formula due to O’Neill, one can see that the orbit space G/K is a 2-
sphere of radius

√
α/2, namely the constant curvature (c+3)-sphere. The Riemannian metric

g is not only G-left invariant but also K-right invariant. Hence G × K acts isometrically on
G. The elliptic Sasakian space form M3(c) is represented by G × K/K = G as a naturally
reductive homogeneous space. For c 	= 1, M3(c) has 4-dimensional isometry group.

In particular, g is G-bi-invariant if and only if c = 1. In this case M3(1) is represented
byG×G/G as a Riemannian symmetric space. Note that M3(1) has 6-dimensional isometry
group.

Now we shall take an orthonormal frame field {e1, e2, e3} of M3(c) by

e1 := 1√
α
E1 , e2 := 1√

α
E2 , e3 := 1

α
ξ1 .

Then the commutation relations of this basis are

[e1, e2] = 2e3 , [e2, e3] = c + 3

2
e1 , [e3, e1] = c + 3

2
e2 .
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The Levi-Civita connection ∇ of (M3(c), g) is described by

∇e1e1 = 0 , ∇e1e2 = e3 , ∇e1e3 = −e2 ,

∇e2e1 = −e3 , ∇e2e2 = 0 , ∇e2e3 = e1 ,

∇e3e1 = c + 1

2
e2 , ∇e3e2 = −c+ 1

2
e1 , ∇e3e3 = 0 .

The Riemannian curvature tensor field R of (M3(c), g,∇) is described by

R1212 = c , R1313 = R2323 = 1 ,

and the sectional curvatures are:

K12 = c , K13 = K23 = 1 .

The Ricci tensor Ric and the scalar curvature scal are computed to be

Ric11 = Ric22 = c + 1 , Ric33 = 2 , scal = 2(c+ 2) .

4. Magnetic trajectories in 3-dimensional Berger spheres. Let us consider a nor-
mal magnetic curve with respect to the magnetic field Fq = qΩ , where q ∈ R is the strength
and Ω is the fundamental 2-form defined by (3) on the Berger sphere M3(c). Thus, the
Lorentz force is φ = qϕ.

If we expand the tangent vector field T (s) = γ ′(s) as T (s) = T1(s)e1 + T2(s)e2 +
T3(s)e3, then the acceleration vector field ∇γ ′γ ′ is

∇γ ′γ ′ =
{
T ′1 −

1

2
(c − 1)T2T3

}
e1 +

{
T ′2 +

1

2
(c − 1)T1T3

}
e2 + T ′3e3 .

Hence, the magnetic equation ∇γ ′γ ′ = qϕT together with (8) yield T3 = constant and

T ′1(s) = q̃ T2(s) ,

T ′2(s)= −q̃ T1(s) ,

where we put cos θ := T3 and q̃ = q + 1
2 (c − 1) cos θ.

Integrating, we obtain

T1(s)= cos(q̃s) T1(0)+ sin(q̃s) T2(0) ,

T2(s)= sin(q̃s) T1(0)− cos(q̃s) T2(0) ,

T3(s)= cos θ .

One can see that the curvature of γ is κ = |q| sin θ .
If we consider α = 1, then c = 1 and q̃ = q .

REMARK 4.1. For an arc length parametrized curve γ (s) in a 3-dimensional contact
metric manifold, its contact angle θ(s) is defined by cos θ(s) = η(γ ′(s)). An arc length
parametrized curve γ (s) is said to be Legendre if η(γ ′) = 0. More generally, γ (s) is said to
be slant if its contact angle is constant. Thus, every normal contact magnetic curve in M3(c)

is slant.
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REMARK 4.2. If γ (s) is a normal magnetic curve in M3(1), for a certain strength q ,
then, after an affine change of the parameter, γ becomes a normal magnetic curve in M3(c)

with a different strength q̂. See for details [9].

As we have seen in Section 3 we have a circle bundle

U(1) �� M3(c)

π

��
S2(r)

where the projection π is defined by π(a) = Ad(a)(rk). If S2(r) ⊂ su(2) ≡ E3 is en-
dowed with the induced metric from 〈 , 〉1 then π becomes a Riemannian submersion from
(M3(c), g) onto S2(r) if and only if r = √α/2.

The correspondence a �→ ker ηa , a ∈ M3(c) defines a connection in this principal U(1)
bundle, hence if A ∈ ker ηa then |π∗,a(A)| = |A|. Take ηa as the connection form (the
standard choice).

Consider a regular curve β : R −→ S2(r) ⊂ (
su(2), 〈 , 〉1

)
, u �→ β(u). As usual, β

will be parametrized by the arc length and let β̂ be a horizontal lift of β. This means that

π(β̂(u)) = β(u) for all u ∈ R and 〈β̂(u)∗β̂ ′(u),k〉 = 0. Here β̂(u)∗ = β̂(u)T , and aT

denotes the transpose of the matrix a. The inner product on su(2), the tangent space of M3(c)

at the identity, is 〈X,Y 〉 = α〈X,Y 〉1 + α(α − 1)〈X,k〉1〈Y,k〉1.
The complete lift of β, namely π−1(β) is a flat surface in M3(c) and it is usually called

the Hopf tube over β.
Denote π−1(β) by Hβ . It can be naturally parametrized by

F : R×R −→M3(c) , (t, u) �−→ F(t, u) = β̂(u)at .
In fact, we can show that the metric g restricted to Hβ can be expressed as

gHβ = α2dt2 + du2 .

Hence, we have proved the following:

PROPOSITION 4.3. If β is a curve on S2(r) of length L, then the corresponding Hopf
tube Hβ is isometric to S1(α) × [0, L], where S1(α) is the unit circle endowed with the met-
ric α2dt2. Moreover, its mean curvature in M3(c) is H = 1

2κβ , where κβ is the geodesic
curvature of β in S2(r).

If β is a closed curve, i.e. β(u + L) = β(u) for all u ∈ R, then the relation F(t, u) =
β̂(u)at defines a covering of the (t, u) plane onto the immersed torus in M3(c), called the
Hopf torus corresponding to β. One can easily see that, if β is a great circle in S2(r), then the
Hopf torus Hβ is minimal in M3(c). In [15], a method for constructing all flat tori in S3 is
given. See also [16].

PROPOSITION 4.4. The magnetic curve γ is a geodesic of the Hopf tube Hβ .
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PROOF. We know that

∇γ ′γ ′ = q(T2e1 − T1e2) ,

which is orthogonal both to ξ and γ ′. It follows that ∇γ ′γ ′ is collinear to the normal vector to
Hβ . Hence, γ is a geodesic on Hβ . �

5. Periodic magnetic trajectories on the 3-dimensional Berger spheres. In this
section we show how the set of all periodic magnetic trajectories on M3(c) can be quantized
in the set of rational numbers.

First of all, we find a relation between the intrinsic geometry of the magnetic curve and
those of its projection on the sphere S2(r). We state the following result.

PROPOSITION 5.1. If γ is a magnetic curve on M3(c), then the projection curve β is
a circle on S2(r) of geodesic curvature

κβ = κ2 + τ 2 − 1

κ
,

where κ and τ are the (constant) curvature and torsion of γ in M3(c).

PROOF. For any a ∈M3(c) ≡ SU(2) we have

e1
∣∣
a

= 1√
α
ai , e2

∣∣
a

= 1√
α
aj , e3

∣∣
a

= 1

α
ak .

Let γ be a magnetic curve on M3(c) such that γ̇ = T1e1 + T2e2 + cos θe3, as in the previous
Section. If β = π(γ ), then

β ′ = π∗,γ (γ̇ ) = r(γ̇kγ ∗ + γkγ̇ ∗) = 2r√
α

(− T1γ jγ ∗ + T2γ iγ ∗
)
.

Since r = √α/2 we obtain

β ′ = γ (−T1j+ T2i)γ ∗ .

In the same manner we can compute

β ′′ = γV (s)γ ∗,
where

V (s) =
(
T ′2 +

2

α
cos θT1

)
i+

(
− T ′1 +

2

α
cos θT2

)
j− 2√

α
sin2 θk .

If
2∇ denotes the Levi-Civita connection on S2(r) we have

β ′′ = 2∇β ′ β ′ − sin2 θ

r2 β .

Since T ′1 = q̃ T2 and T ′2 = −q̃ T1, we get

(9)
2∇β ′ β ′ = (−q + 2 cos θ)γ

(
T1i+ T2j

)
γ ∗ .
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If ν1 denotes the first (unit) normal of γ , we have

ν1 = ε√
α sin θ

γ
(
T2i− T1j

)
,

where ε = sgn(q).
Thus, the unit normal to β can be considered

νβ := π∗,γ (ν1) = − ε

sin θ
γ
(
T1i+ T2j

)
γ ∗ .

Combing this with (9), we obtain

2∇β ′ β ′ = ε sin θ(q − 2 cos θ)νβ .

Therefore, the signed geodesic curvature of β is

κβ = q − 2 cos θ

ε sin θ
.

Concerning the magnetic curve γ , we know [9] that its curvature (the first curvature) is κ =
εq sin θ and its torsion (the signed second curvature) is τ = q cos θ − 1.

Since q2 = κ2 + (τ + 1)2, the conclusion follows immediately. �

Consider now a periodic magnetic trajectory γ on M3(c), i.e. γ (s + L) = γ (s) for all
s ∈ R. Then, the projection β is a circle on the sphere S2(r).

Conversely, take β a closed curve on S2(r) of length L enclosing an oriented area A,
A ∈ [−2πr2, 2πr2]. Let β̂ be a horizontal lift of β. Since β̂(0) and β̂(L) belong to the same
fibre, we have

β̂(L) = β̂(0)aδ , δ ∈ R .

Usually, δ is called the holonomy number of the canonical principal connection defined in the
circle bundle. See e.g. [18, 1]. For the classical Hopf fibration, β̂ closes up if and only if there
exists a positive integer m such that, after m consecutive liftings of β we get β̂(mL) = β̂(0)
and hencemδ = 2πp, with p ∈ Z.

We have seen that the Hopf torus Hβ is isometric to S1(α) × [0, L]. The isometry type
depends either on the length L of β, or on the area A enclosed by β on S2(r), namely A =∫∫
D
dA, where dA is the area element of S2(r), andD is a domain on S2(r) such that ∂D = β.

Notice that H2(S
2(r)) = Z and area(S2(r)) = 4πr2.

We have:

PROPOSITION 5.2. Let β be a closed curve on S2(r) of lengthL enclosing an oriented
area A. Then, the corresponding Hopf torus Hβ is isometric to R2/Γ , where the lattice Γ is
generated by the vectors (2πα, 0) and

(
A

2r2 , L
)
.
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PROOF. With previous notations we have that β̂(L) = β̂(0)aδ, for some δ. It is clear
(due to the form of the metric on Hβ) that the group of deck transformations for the covering
mentioned above is generated by the translations (2πα, 0) and (δ, L).

We have to find δ. It is known that δ = ∫∫
D
Ω , where Ω is the curvature 2-form of the

connection in the principal circle bundle π :M3(c) −→ S2(r). It should be a multiple of the
area element on S2(r), and one can computeΩ = 1

2r2 dA. Hence δ = A

2r2 . �

If β is the projection of a magnetic curve on M3(c), then it is a circle on S2(r). Denote
by R its radius, R ≤ r . We have

κβ =
√
r2 − R2

rR
, L = 2πR , A = 2πr(r −

√
r2 − R2) .

Since γ is a periodic (closed) geodesic on the Hopf torus Hβ , it corresponds to a segment in
R2 (with identified ends). This segment is in fact the diagonal of a parallelogram constructed
by taking m vectors in the fibre, hence m times (2πα, 0) and n vectors in the horizontal
direction, i.e. n times ( A

2r2 , L), n ∈ N. Thus, the direction of the magnetic trajectory γ is
given by ⎛

⎝2πmα + nπ
(

1−
√

1− R
2

r2

)
, 2πnR

⎞
⎠ .

If we put σ = cot θ (here θ is the contact angle of the curve γ ) and call this quantity the
slope of γ , we have

σ =
2mα + n

(
1−

√
1− R

2

r2

)
2nR

.

Hence we get

Rσ + 1

2

√
1− R

2

r2 =
m

n
α + 1

2
.

We can state the following result.

THEOREM 5.3. The set of all periodic magnetic curves of arbitrary strength on the
Sasakian space form M3(c) can be quantized in the set of rational numbers.

PROOF. Taking into account that r = √α/2 we conclude that the slope of a periodic
magnetic trajectory corresponding to the circle β of radius R on the sphere S2(r) satisfies the
following quantization principle

(10) Rσ + 1

2

√
1− 4R2

α
∈ Qα + 1

2
.

�
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6. Periodic magnetic curves on S3. Let S3 = {(z,w) ∈ C×C : |z|2+|w|2 = 1} be
the 3-dimensional sphere. It is known that S3 is parallelizable by the following three global
vector fields ξ = (iz, iw) (the Reeb vector field), ζ = (−w̄, z̄) and ς = (−iw̄, iz̄). The
group S1 acts (simply transitively) on S3 by

S3 × S1 −→ S3 : (z,w; eit ) �−→ (eit z, eitw) ,

and the Hopf projection

π : S3 −→ S2 : (z,w) �−→ (
zw̄, 1

2 (|z|2 − |w|2)
)

from the 3-sphere S3 to the 2-sphere S2( 1
2 ) ⊂ C×R has a structure of principal circle bundle.

We know that magnetic curves in Sasakian manifolds are helices of order 3 (see [9]). In
particular, for the unit sphere S3 we have a model helix given by(

cosψ cos(as), cosψ sin(as), sinψ cos(bs), sinψ sin(bs)
)
,(11)

where s is the arc length parameter and a, b and ψ satisfy

a2 cos2ψ + b2 sin2 ψ = 1 .

See e.g. [10, 20]. This helix lies on a torus whose mean curvature is constant H = cot(2ψ).
In fact, every helix with both curvature and torsion different from zero is congruent to one of
these helices.

It is not difficult to show that the helix (11) is periodic if and only if

a = 1/
√
p2 sin2ψ + cos2 ψ , b = pa ,

wherep is a rational number. Moreover, all these helices project (via Hopf fibration) to (small)
horizontal circles on S2( 1

2 ).
In the following we give an example of a periodic magnetic trajectory on the unit sphere

S3 and we draw the picture of its stereographic projection on R3.
Consider the curve γ : I −→ S3 defined by

(12) γ (s) = (
x0(s), x1(s), x2(s), x3(s)

)
,

with

x0(s) = cos( s2 ) cos(ωs)− 1
ω

(
cos θ − 1

2

)
sin( s2 ) sin(ωs)

x1(s) = sin( s2 ) cos(ωs)+ 1
ω

(
cos θ − 1

2

)
cos( s2 ) sin(ωs)

x2(s) = sin θ
ω

cos( s2 ) sin(ωs)

x3(s) = sin θ
ω

sin( s2 ) sin(ωs) ,

where ω = √5/4− cos θ and θ is constant. Then, γ is a normal magnetic curve correspond-
ing to the contact magnetic field of S3 and with strength 1, for which θ expresses its contact
angle. The curve above is slant with respect to the Reeb vector field induced from i (and not
from k as in previous sections). According to [12], the curve γ is periodic if and only if ω is
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FIGURE 1. cos θ = 29/37.

FIGURE 2. The curve and the tube after stereographic projection; two different view-points.

a rational number. In fact, the periodicity condition obtained by Ikawa in [12] is nothing but
the quantization result obtained by Cabrerizo et al. in [8].

In the following we take ω = 2
3 equivalently to θ = arccos 29

37 . Consider the stereo-
graphic projection of the sphere from its North pole. Then the image of γ is drawn in Figure 1.

We know that γ lies on a Hopf tube in S3. In Figure 2 we plot the image of this tube
under the stereographic projection we have mentioned before.

We conclude this paper with a criterion of periodicity for magnetic curves in S3. As a
consequence of Theorem 3.13 in [12] we may state the following:
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THEOREM 6.1. Let γ be a normal magnetic curve on the unit sphere S3. Then γ is
periodic if and only if

q√
q2 − 4q cos θ + 4

∈ Q ,

where q is the strength and θ is the constant contact angle of γ .

REMARK 6.2. As we have mentioned in Introduction, every closed L-minimal Le-
gendre curve in S3 is a magnetic curve. ClosedL-minimal Legendre curves in S3 are classified
as follows:

THEOREM 6.3 ([13], [19]). All of closed L-minimal Legendre curves in S3 are para-
metrized as

1√
m+ n

(√
n exp

(
i
√
m
n
s
)
, i
√
m exp

(
i
√
n
m
s
)) ⊂ S3 ⊂ C2 , 0 ≤ s ≤ 2π

√
mn ,

where (m, n) is a pair of relatively prime positive integers. These are so-called torus knots of
type (m, n).

One can see that these Legendre knots are contact magnetic curves satisfying
|q| = |n−m|√

mn
. Kajigaya [14] showed that these Legendre knots are L-unstable.
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