A REMARK ON JACQUET-LANGLANDS CORRESPONDENCE AND INVARIANT s

Kazutoshi Kariyama

(Received September 5, 2014, revised April 28, 2015)

Abstract

Let F be a non-Archimedean local field, and let G be an inner form of $\mathrm{GL}_{N}(F)$ with $N \geq 1$. Let $\mathbf{J L}$ be the Jacquet-Langlands correspondence between $\mathrm{GL}_{N}(F)$ and G. In this paper, we compute the invariant s associated with the essentially squareintegrable representation $\mathbf{J L}^{-1}(\rho)$ for a cuspidal representation ρ of G by using the recent results of Bushnell and Henniart, and we restate the second part of a theorem given by Deligne, Kazhdan, and Vignéras in terms of the invariant s. Moreover, by using the parametric degree, we present a proof of the first part of the theorem.

Introduction. Let F be a non-Archimedean local field, and let D be a central division F-algebra of dimension d^{2} with $d \geq 1$. We fix positive integers N, m with $N=m d$ and denote by G the group $\mathrm{GL}_{m}(D)$. For an element x of F^{\times}, we denote by $|x|_{F}$ the normalized absolute value of x.

The Jacquet-Langlands correspondence, denoted by $\mathbf{J L}$, is a canonical bijection between the isomorphism classes of essentially square-integrable representations of $\mathrm{GL}_{N}(F)$ and G. The existence of JL was proved by Deligne, Kazhdan, and Vignéras [7] and Rogawski [9] for F of characteristic zero, and by Badulescu [1] for F of positive characteristic (see Theorem 2.7 for the definition of $\mathbf{J L}$). In [7, Théorèm 2.B.b], the correspondence $\mathbf{J L}$ is described by using an invariant s. In fact, for a cuspidal representation ρ of G, the invariant $s=s(\rho)$ is defined as a positive integer k uniquely determined by the essentially square-integrable representation $\mathbf{J} \mathbf{L}^{-1}(\rho)$ of $\mathrm{GL}_{N}(F)$.

In the present paper, we define the invariant $s(\pi)$ for an essentially square-integrable representation π of G. It is proved by Sécherre and Stevens [12], [13] that the representation π contains a simple type (J, λ), in the sense of [12], consisting of a compact open subgroup J of G and its irreducible smooth representation λ. The simple type is associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$, defined in [5], [10], consisting of a principal hereditary order \mathfrak{A} of $A=\mathrm{M}_{m}(D)$, a positive integer n, and an element $\beta \in A$ that generates a subfield $E=F[\beta]$. The invariant is defined by

$$
s(\pi)=d^{\prime} / \ell
$$

where d^{\prime} and ℓ are the positive integers determined by the simple type (J, λ). It turns out that $s(\pi)$ is a positive integer that does not depend on the choice of the simple type (J, λ)

[^0]and depends only on the isomorphism class of π. Let B be the A-centralizer of β. Then, the invariant $s(\pi)$ is closely related to the parametric degree $\delta(\pi)$, introduced by Bushnell and Henniart [3], [4] as
$$
s(\pi) \delta(\pi)=N / r,
$$
where r is the period of the order $\mathfrak{B}=B \cap \mathfrak{A}$ for a simple type (J, λ) in G contained in π. Thus, by [13], π is cuspidal if and only if
$$
s(\pi) \delta(\pi)=N
$$
is satisfied. In particular, if $G=\mathrm{GL}_{N}(F)$, then we have $s(\pi)=1$, so that π is cuspidal if and only if $\delta(\pi)=N$ is satisfied. This fact was obtained in [3]. By using these equalities, we obtain the following result, which is the main theorem of this paper.

THEOREM 0.1. Let π be an essentially square-integrable representation of $\mathrm{GL}_{N}(F)$, and assume that $\pi^{\prime}=\mathbf{J L}(\pi)$ is a cuspidal representation of G. Then, there exists a cuspidal representation ρ of $\mathrm{GL}_{N / s}(F)$, for $s=s\left(\pi^{\prime}\right)$ determined above, such that π is equivalent to a subquotient of the parabolically induced representation

$$
I_{\mathrm{GL}_{N / s}(F)^{s}}^{\mathrm{GL}_{N}(F)}\left(\rho \otimes \rho v \otimes \cdots \otimes \rho v^{s-1}\right),
$$

where $\nu(g)=|\operatorname{det}(g)| F$ for $g \in \mathrm{GL}_{N / s}(F)$.
The theorem implies that the invariant $s=s\left(\pi^{\prime}\right)$ is equal to the integer k associated with the essentially square-integrable representation $\pi=\mathbf{J L}^{-1}\left(\pi^{\prime}\right)$.

Consequently, we can restate the assertion of [7, Théorème B.2.b(2)] as a generalization of Theorem 0.1 as follows.

THEOREM 0.2. Let π be an essentially square-integrable representation of $\mathrm{GL}_{N}(F)$, and let $\pi^{\prime}=\mathbf{J L}(\pi)$. Then, there exist a positive integer r dividing m, a cuspidal representation ρ^{\prime} of $\mathrm{GL}_{m / r}(D)$ and a cuspidal representation ρ of $\mathrm{GL}_{N / r s}(F)$ for $s=s\left(\rho^{\prime}\right)$, such that

1. π^{\prime} is equivalent to a subquotient of the parabolically induced representation

$$
\left.I_{\mathrm{GL}_{m / r}(D)^{r}}^{\mathrm{GL}_{m}\left(\rho^{\prime}\right.} \otimes \rho^{\prime} v_{\rho^{\prime}} \otimes \cdots \otimes \rho^{\prime} v_{\rho^{\prime}}^{r-1}\right)
$$

where $v_{\rho^{\prime}}(g)=|\operatorname{Nrd}(g)|_{F}^{s}$ for $g \in \mathrm{GL}_{m / r}(D)$ and Nrd denotes the reduced norm map $\mathrm{GL}_{m / r}(D) \rightarrow F^{\times}$;
2. π is equivalent to a subquotient of the parabolically induced representation

$$
I_{\mathrm{GL}_{N / r s}(F)^{r s}}^{\mathrm{GL}_{N}(F)}\left(\rho \otimes \rho v \otimes \cdots \otimes \rho v^{r s-1}\right)
$$

where $\nu(g)=|\operatorname{det}(g)|_{F}$ for $g \in \mathrm{GL}_{N / r s}(F)$.
The remainder of the present paper is organized as follows. In Section 1, we recall the definition of simple type, as given in [10], [11], [12]. In Section 2, we prove Theorem 0.1. Moreover, by using the parametric degree, we present a proof of [7, Théorème B.2.b(1)] for the base field F of arbitrary characteristic.

1. Simple types. Hereafter, a representation of a totally disconnected, locally compact group means a smooth complex representation.

In this section, we recall the results of Sécherre [10], [11], [12].
Let F be a non-Archimedean local field, and let D be a central division F-algebra of dimension $d^{2}, d \geq 1$. Set $A=\mathrm{M}_{m}(D), m \geq 1$. Then, A is a simple central F-algebra of dimension N^{2} with $N=m d$. Set $G=A^{\times}$. For a finite field extension K / F, we denote by \mathfrak{o}_{K} its ring of integers, by \mathfrak{p}_{K} the maximal ideal of \mathfrak{o}_{K}, and by k_{K} the residue field of K.

Let \mathfrak{A} be a hereditary \mathfrak{o}_{F}-order in A, and let \mathfrak{P} be the Jacobson radical of \mathfrak{A}. An integer e, also denoted by $e=e\left(\mathfrak{A} \mid \mathfrak{o}_{D}\right)$, is referred to as the \mathfrak{o}_{D}-period of \mathfrak{A} if $\mathfrak{p}_{D} \mathfrak{A}=\mathfrak{P}^{e}$ is satisfied. Then, we define the compact open subgroups of G by

$$
U(\mathfrak{A})=U^{0}(\mathfrak{A})=\mathfrak{A}^{\times}, U^{k}(\mathfrak{A})=1+\mathfrak{P}^{k}, k \geq 1,
$$

and write the G-normalizer of \mathfrak{A} as $\mathfrak{K}(\mathfrak{A})$. The latter is an open, compact-mod-center subgroup of G. There exists a canonical homomorphism $\nu_{\mathfrak{A}}: \mathfrak{K}(\mathfrak{A}) \rightarrow \mathbb{Z}$ defined by $g \mathfrak{A}=\mathfrak{A} g=$ $\mathfrak{P}^{v_{\mathcal{L}}(g)}, g \in \mathfrak{K}(\mathfrak{A})$. A hereditary \mathfrak{o}_{F}-order \mathfrak{A} in A is referred to as principal if there exists an element $x \in \mathfrak{K}(\mathfrak{A})$ such that $\mathfrak{P}=x \mathfrak{A}=\mathfrak{A} x$.

Definition 1.1. A stratum in A is a 4 -tuple $[\mathfrak{A}, n, m, \beta]$ consisting of a hereditary \mathfrak{o}_{F}-order \mathfrak{A}, two integers m, n such that $0 \leq m<n$ and an element $\beta \in \mathfrak{P}^{-n}$.

Let $[\mathfrak{A}, n, m, \beta]$ be a stratum in A and denote by E the F-subalgebra $F[\beta]$ of A generated by β. This stratum is referred to as pure if E is a field, \mathfrak{A} is E-pure, that is, $E^{\times} \subset \mathfrak{K}(\mathfrak{A})$, and $\nu_{\mathfrak{A}}(\beta)=-n$.

Let $[\mathfrak{A}, n, m, \beta]$ be a pure stratum, let $E=F[\beta]$ and let B be the A-centralizer of β. Write $B=C_{A}(E)$. For each $k \in \mathbb{Z}$, we set $\mathfrak{n}_{k}(\beta, \mathfrak{A})=\left\{x \in \mathfrak{A}: \beta x-x \beta \in \mathfrak{P}^{k}\right\}$. Set

$$
k_{0}(\beta, \mathfrak{A})=\min \left\{k \in \mathbb{Z}: k \geq v_{\mathfrak{A}}(\beta), \mathfrak{n}_{k+1}(\beta, \mathfrak{A}) \subset \mathfrak{A} \cap B+\mathfrak{P}\right\} .
$$

Definition 1.2. A stratum $[\mathfrak{A}, n, m, \beta]$ in A is referred to as simple if it is pure and $m \leq-k_{0}(\beta, \mathfrak{A})-1$.

Hereafter, we assume that $[\mathfrak{A}, n, 0, \beta]$ is a simple stratum in A. Then, the stratum [$\mathfrak{A}, n, 0, \beta]$ gives rise to a pair

$$
\mathfrak{H}(\beta, \mathfrak{A}) \subset \mathfrak{J}(\beta, \mathfrak{A})
$$

of \mathfrak{o}_{F}-orders in A. We have the standard filtration subgroups of unit groups

$$
\begin{aligned}
H^{k}(\beta, \mathfrak{A}) & =\mathfrak{H}(\beta, \mathfrak{A}) \cap U^{k}(\mathfrak{A}), \\
J^{k}(\beta, \mathfrak{A}) & =\mathfrak{J}(\beta, \mathfrak{A}) \cap U^{k}(\mathfrak{A}),
\end{aligned}
$$

for $k \in \mathbb{Z}, k \geq 0$. In particular, we write $J=J(\beta, \mathfrak{A})=J^{0}(\beta, \mathfrak{A})$.
DEFInition 1.3 ([8, §0.6], [11, §2.5.1]). A simple type of level zero in G is a pair (U, τ) satisfying

1. $U=U(\mathfrak{A})$ for a principal hereditary \mathfrak{o}_{F}-order \mathfrak{A} of A with $r=e\left(\mathfrak{A} \mid \mathfrak{o}_{D}\right)$;
2. $\quad \tau$ is an irreducible representation of $U=U(\mathfrak{A})$, trivial on $U^{1}(\mathfrak{A})$ and inflated from a representation $\sigma_{0}^{\otimes r}$ of the quotient group $U(\mathfrak{A}) / U^{1}(\mathfrak{A})$ that is isomorphic to $\mathrm{GL}_{s}\left(k_{D}\right)^{r}$ with $r s=m$, where σ_{0} is a cuspidal representation of $\mathrm{GL}_{s}\left(k_{D}\right)$. Hereinafter, we write $\tau=\sigma_{0}^{\otimes r}$.
We refer to a simple type $(U(\mathfrak{A}), \tau)$ of level zero in G as associated with the null simple stratum $[\mathfrak{A}, 0,0,0]$ in A (cf. [11, Remark 4.1]).

A finite set $\mathcal{C}(\mathfrak{A}, 0, \beta)$ of simple characters of the group $H^{1}(\beta, \mathfrak{A})$ was defined in [10, §3.3] (cf. [13, §2]).

Let $[\mathfrak{A}, n, 0, \beta]$ be a simple stratum in A, let $E=F[\beta]$ and let $B=C_{A}(E)$. Then, we have $B \simeq \mathrm{M}_{m^{\prime}}\left(D^{\prime}\right)$, where D^{\prime} is a central division algebra of dimension $d^{\prime 2}$ over E.

Proposition 1.4 ([11, §2.2]). Let $\theta \in \mathcal{C}(\mathfrak{A}, 0, \beta)$.

1. There exists a unique irreducible representation η_{θ} of $J^{1}(\beta, \mathfrak{A})$ such that $\eta_{\theta} \mid H^{1}(\beta, \mathfrak{A})$ is equal to θ.
2. There exists an irreducible representation κ of $J=J^{0}(\beta, \mathfrak{A})$ such that
(a) $\kappa \mid J^{1} \simeq \eta_{\theta}$;
(b) κ is intertwined by every element of B^{\times}.

Following [4, §2.5], we refer to a representation κ of J as in Proposition 1.4 (2) as a wide extension of η_{θ}.

DEFINITION 1.5. A simple type of positive level in G is a pair (J, λ), given as follows:

1. there exists a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A such that $J=J^{0}(\beta, \mathfrak{A})$ and that if $E=F[\beta], B=C_{A}(E) \simeq \mathrm{M}_{m^{\prime}}\left(D^{\prime}\right)$ and $\mathfrak{B}=\mathfrak{A} \cap B$, then \mathfrak{B} is an \mathfrak{o}_{E}-order in B with $r=e\left(\mathfrak{B} \mid \mathfrak{o}_{D^{\prime}}\right)$;
2. there exist a simple character $\theta \in \mathcal{C}(\mathfrak{A}, 0, \beta)$ and a simple type $(U(\mathfrak{B}), \tau)$ of level zero in B^{\times}such that λ is a representation of J of the form

$$
\lambda=\kappa \otimes \tau
$$

where
(a) κ is a wide extension of η_{θ};
(b) $\tau=\sigma_{0}^{\otimes r}$ is regarded as the inflation of a representation of $J / J^{1} \simeq U(\mathfrak{B}) / U^{1}(\mathfrak{B})$ $\simeq \mathrm{GL}_{s}\left(k_{D^{\prime}}\right)^{r}$ as in Definition 1.3.
Denote by Z the center of the group $G=\mathrm{GL}_{m}(D)$. A representation π of G is referred to as cuspidal if π is irreducible and has a nonzero coefficient that is compactly supported modulo Z. A representation π of G is referred to as essentially square-integrable if π is irreducible and there exists a character χ of G such that $\chi \otimes \pi$ is unitary and has a nonzero coefficient which is square-integrable over G / Z.

THEOREM 1.6 ([13, Corollaire 5.20]). Let π be an irreducible representation of G that contains a simple type (J, λ) in G associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in A. Set $E=F[\beta], B=C_{A}(\beta) \simeq \mathrm{M}_{m^{\prime}}\left(D^{\prime}\right)$ and $\mathfrak{B}=\mathfrak{A} \cap B$. Then, π is cuspidal if and only if \mathfrak{B} is a maximal order in B, that is, $e\left(\mathfrak{B} \mid \mathfrak{o}_{D^{\prime}}\right)=1$.
2. Jacquet-Langlands correspondence and invariant s. We first recall the definition of the parametric degree of an essentially square-integrable representation π of $G=$ $\mathrm{GL}_{m}(D)$.

Proposition 2.1. Let π be an essentially square-integrable representation of $G=$ $\mathrm{GL}_{m}(D)$. Then, there exist a positive integer r dividing m and a cuspidal representation ρ^{\prime} of $G_{0}=\mathrm{GL}_{m / r}(D)$ such that the cuspidal support of π consists of unramified twists of ρ^{\prime}. The integer r is uniquely determined by the representation π.

Proof. The first assertion follows directly from [4, A.1.1, Proposition], and the second one follows from [5, (7.3.11)]. In fact, it is proved by [6, (6.3.7), (6.3.11)].

In the situation of Proposition 2.1, let M be a Levi subgroup of G that is isomorphic to $G_{0}^{r}=G_{0} \times \cdots \times G_{0}$. Then, the inertial (equivalence) class of π is represented by the cuspidal pair $\left(M,\left(\rho^{\prime}\right)^{\otimes r}\right)$. We write $\left[M,\left(\rho^{\prime}\right)^{\otimes r}\right]_{G}$ for the inertial class.

Corollary 2.2. Let π be an essentially square-integrable representation of G that has the inertial class $\left[M,\left(\rho^{\prime}\right)^{\otimes r}\right]_{G}$, and let (J, λ) be a simple type in G contained in π. Then, there exists a maximal simple type $\left(J_{0}, \lambda_{0}\right)$, with $\lambda_{0}=\kappa_{0} \otimes \sigma_{0}$, in $G_{0}=\mathrm{GL}_{m / r}(D)$ contained in ρ^{\prime} such that $\lambda=\kappa \otimes \sigma_{0}^{\otimes r}$ for some wide extension κ of J.

Proof. This follows from [13, Theorem 5.23] (cf. [4, (A1.3.1)]).
Assume that π is an essentially square-integrable representation of G that has the inertial class $\left[M,\left(\rho^{\prime}\right)^{\otimes r}\right]_{G}$ and contains a simple type (J, λ) in G associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in $A=\mathrm{M}_{m}(D)$. Then, from Corollary 2.2, we have $\lambda=\kappa \otimes \sigma_{0}^{\otimes r}$. Set $E=F[\beta]$, $B=C_{A}(E)$ and $\mathfrak{B}=B \cap \mathfrak{A}$. Then, we have $B \simeq \mathrm{M}_{m^{\prime}}\left(D^{\prime}\right)$, where D^{\prime} is a central division algebra of dimension $d^{\prime 2}$ over E, and we have $J / J^{1} \simeq U(\mathfrak{B}) / U^{1}(\mathfrak{B}) \simeq \mathrm{GL}_{s}\left(k_{D^{\prime}}\right)^{r}$. Let ℓ be the number of $\operatorname{Gal}\left(k_{D^{\prime}} / k_{E}\right)$-orbits of the representation σ_{0} of $\mathrm{GL}_{s}\left(k_{D^{\prime}}\right)$ (cf. Definition 1.5).

Definition 2.3. Let the notation and assumptions be as above. The parametric degree, denoted by $\delta(\pi)$, of the representation π is defined by

$$
\delta(\pi)=s \ell[E: F] .
$$

From Corollary 2.2, the parametric degree $\delta(\pi)$ in the definition coincides with that defined in [4, 2.6, 2.8], that is,

$$
\delta(\pi)=\delta\left(\rho^{\prime}\right)=\delta_{0}\left(\lambda_{0}\right),
$$

where $\lambda_{0}=\kappa_{0} \otimes \sigma_{0}$ is as in Corollary 2.2. Thus, by [4, 2.7, Proposition], the parametric degree $\delta(\pi)$ does not depend on the choice of the simple type (J, λ) in G contained in π.

The parametric degree can be expressed in another form as follows.
Proposition 2.4. Let π be an essentially square-integrable representation of G that contains a simple type (J, λ) in G with $\lambda=\kappa \otimes \sigma_{0}^{\otimes r}$, as above. Then, we have

$$
\delta(\pi)=N \ell / r d^{\prime} .
$$

Proof. This follows immediately from the equalities $r s d^{\prime}=m^{\prime} d^{\prime}=N /[E: F]$.
We define another invariant for such a representation π of G.
Definition 2.5. In the situation of Proposition 2.4, we define the quantity $s(\pi)$ by

$$
s(\pi)=d^{\prime} / \ell .
$$

By the definition of the positive integer $\ell, s(\pi)$ is a positive integer that divides d^{\prime} and so d, because $d^{\prime}=d / \operatorname{gcd}(d,[E: F])$ by [16, Proposition 1]. From Proposition 2.4, we obtain

$$
\begin{equation*}
s(\pi) \delta(\pi)=N / r . \tag{1}
\end{equation*}
$$

The integer r and the parametric degree $\delta(\pi)$ do not depend on the choice of the simple type (J, λ) in G contained in π as was seen above. Thus, from Eq. (1), $s(\pi)$ is well defined.

Proposition 2.6. Let π be an essentially square-integrable representation of G. Then, π is cuspidal if and only if

$$
s(\pi) \delta(\pi)=N
$$

In particular, if G is equal to $\mathrm{GL}_{N}(F)$, then π is cuspidal if and only if $\delta(\pi)=N$.
Proof. By Theorem 1.6, the first assertion follows immediately from Eq. (1). If $G=$ $\mathrm{GL}_{N}(F)$, then we have $s(\pi)=d^{\prime} / \ell=1$ and so $\delta(\pi)=N$.

The last assertion in Proposition 2.6 is already obtained in [3]. We denote by $\mathcal{A}^{(2)}(G)$ the set of isomorphism classes of essentially square-integrable representations of G. In particular, write $H=\operatorname{GL}_{N}(F)$ with $N=m d$.

Theorem 2.7 ([7], [9], [1]). There exists a unique bijection

$$
\mathbf{J L}: \mathcal{A}^{(2)}(H) \rightarrow \mathcal{A}^{(2)}(G)
$$

such that, for $\pi \in \mathcal{A}^{(2)}(H)$, we have

$$
\operatorname{tr} \pi(g)=(-1)^{N-m} \operatorname{tr} \mathbf{J L}(\pi)\left(g^{\prime}\right),
$$

where $g \in H$ and $g^{\prime} \in G$ are elliptic regular elements that have the same characteristic polynomial over F.

We refer to the map JL as the Jacquet-Langlands correspondence between H and G. By using Proposition 2.6, we can give a condition for $\mathbf{J L}(\pi)$ to be cuspidal, which is different from that of $[7$, Théorème B.2.b(1)], as follows.

THEOREM 2.8. Let $\pi \in \mathcal{A}^{(2)}(H)$, and set $\pi^{\prime}=\mathbf{J L}(\pi) \in \mathcal{A}^{(2)}(G)$. Assume that π contains a simple type (J, λ) in H associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in $A=$ $\mathrm{M}_{N}(F)$. Set $E=F[\beta], B=C_{A}(E)$ and $\mathfrak{B}=\mathfrak{A} \cap B$. Then, π^{\prime} is cuspidal if and only if

$$
s\left(\pi^{\prime}\right)=e\left(\mathfrak{B} \mid \mathfrak{o}_{E}\right) .
$$

Proof. Assume that π^{\prime} is cuspidal. Then, from Proposition 2.6, we obtain $s\left(\pi^{\prime}\right) \delta\left(\pi^{\prime}\right)=$ N. Since JL preserves the parametric degree by [4, $\S 2.8$, Corollary 1], we thus obtain

$$
\delta(\pi)=\delta(\mathbf{J L}(\pi))=\delta\left(\pi^{\prime}\right)=N / s\left(\pi^{\prime}\right) .
$$

While, since $s(\pi)=1$ is satisfied for $H=\mathrm{GL}_{N}(F)$ as in the proof of Proposition 2.6, we have

$$
\delta(\pi)=N / r,
$$

where $r=e\left(\mathfrak{B} \mid \mathfrak{o}_{E}\right)$. Hence, we obtain

$$
s\left(\pi^{\prime}\right)=r=e\left(\mathfrak{B} \mid \mathfrak{o}_{E}\right) .
$$

Conversely, if $s\left(\pi^{\prime}\right)=e\left(\mathfrak{B} \mid \mathfrak{o}_{E}\right)$ is satisfied, we obtain similarly

$$
N / s\left(\pi^{\prime}\right)=N / r=\delta(\pi)=\delta\left(\pi^{\prime}\right),
$$

and, again from Proposition 2.6, π^{\prime} is cuspidal.
In view of the result of [15], Theorem 0.1 follows from Theorem 2.8. The proof of Theorem 0.1 is complete.

A proof of [7, Théorème B.2.b(1)] for the base field F of arbitrary characteristic was given by Lemma 2.4 and comments after the proof in [2]. However, by using the results of [4], we give an alternate proof of the theorem.

Proposition 2.9 ([7, Théorème B.2.b(1)]). Let $\pi \in \mathcal{A}^{(2)}(H)$, and set $\pi^{\prime}=\mathbf{J L}(\pi) \in$ $\mathcal{A}^{(2)}(G)$. Assume that the representation π has a cuspidal support $\left\{\rho, \rho v, \ldots, \rho v^{k-1}\right\}$ for some positive integer k. Then, π^{\prime} is cuspidal if and only if $N=\operatorname{lcm}(d, N / k)$.

Proof. Let (J, λ) be a simple type in G contained in π^{\prime} that is associated with a simple stratum $[\mathfrak{A}, n, 0, \beta]$ in $A=\mathrm{M}_{m}(D)$. Set $E=F[\beta], B=C_{A}(E)$ and $\mathfrak{B}=\mathfrak{A} \cap B$. Then, we have $B \simeq \mathrm{M}_{m^{\prime}}\left(D^{\prime}\right)$, for a central division E-algebra D^{\prime} of dimension $d^{\prime 2}$, as before. Assume that π^{\prime} is cuspidal. Then, from Theorem 2.8, we have $k=s\left(\pi^{\prime}\right)$. We first prove

$$
\begin{equation*}
\operatorname{gcd}\left(m, s\left(\pi^{\prime}\right)\right)=1 . \tag{2}
\end{equation*}
$$

From [16, Proposition 1], we obtain

$$
m^{\prime}=\operatorname{gcd}(m, N /[E: F])=\operatorname{gcd}\left(m, m^{\prime} d^{\prime}\right),
$$

which implies that m / m^{\prime} is an integer and $\operatorname{gcd}\left(m / m^{\prime}, d^{\prime}\right)=1$. Since the invariant $s\left(\pi^{\prime}\right)$ divides d^{\prime}, we thus obtain

$$
\operatorname{gcd}\left(m / m^{\prime}, s\left(\pi^{\prime}\right)\right)=1
$$

and so

$$
\operatorname{gcd}\left(m, s\left(\pi^{\prime}\right)\right)=\operatorname{gcd}\left(m^{\prime}\left(m / m^{\prime}\right), s\left(\pi^{\prime}\right)\right)=\operatorname{gcd}\left(m^{\prime}, s\left(\pi^{\prime}\right)\right) .
$$

Hence, for Eq. (2), it is enough to show that $\operatorname{gcd}\left(m^{\prime}, s\left(\pi^{\prime}\right)\right)=1$. By the assumption, (J, λ) is the maximal simple type in G with $\lambda=\kappa \otimes \sigma$. Let ρ^{\prime} be a cuspidal representation of $\mathrm{GL}_{m^{\prime}}\left(D^{\prime}\right)$ that contains the maximal simple type $(U(\mathfrak{B}), \sigma)$. Then, we have

$$
\delta\left(\rho^{\prime}\right)=m^{\prime} \ell,
$$

where ℓ is the number of $\operatorname{Gal}\left(k_{D^{\prime}} / k_{E}\right)$-orbits of the representation σ of $U(\mathfrak{B}) / U^{1}(\mathfrak{B}) \simeq$ $\mathrm{GL}_{m^{\prime}}\left(k_{D^{\prime}}\right)$. Thus, applying [4, 2.4, Remark 2] to the representation ρ^{\prime}, we obtain

$$
\operatorname{gcd}\left(N /[E: F] \delta\left(\rho^{\prime}\right), m^{\prime}\right)=1
$$

By assumption, we have $r=e\left(\mathfrak{B} \mid \mathfrak{o}_{D^{\prime}}\right)=1$. Since we have $\delta\left(\pi^{\prime}\right)=m^{\prime} \ell[E: F]=\delta\left(\rho^{\prime}\right)[E$: F] by definition, we thus obtain

$$
1=\operatorname{gcd}\left(N /[E: F] \delta\left(\rho^{\prime}\right), m^{\prime}\right)=\operatorname{gcd}\left(N / \delta\left(\pi^{\prime}\right), m^{\prime}\right)=\operatorname{gcd}\left(s\left(\pi^{\prime}\right), m^{\prime}\right)
$$

by Eq. (1). Hence, Eq. (2) holds. Write $k=s\left(\pi^{\prime}\right)$ as above. Then, we obtain $k m=\operatorname{lcm}(k, m)$. Thus, we obtain

$$
\begin{aligned}
N=m d=(d / k)(k m) & =(d / k) \operatorname{lcm}(k, m) \\
& =\operatorname{lcm}(k(d / k), m(d / k))=\operatorname{lcm}(d, N / k),
\end{aligned}
$$

which proves the "only if" part of the proposition.
Conversely, assume that $N=\operatorname{lcm}(d, N / k)$. Then, from $N=m d$, we obtain $k \mid d$ and $\operatorname{gcd}(m, k)=1$. Again from Eq. (1), we obtain

$$
N / k=\delta(\pi)=\delta\left(\pi^{\prime}\right)=N / r s\left(\pi^{\prime}\right)
$$

as in the proof of Theorem 2.8. Hence, we have

$$
\operatorname{gcd}\left(m, r s\left(\pi^{\prime}\right)\right)=1
$$

Since r divides m, we obtain

$$
1=\operatorname{gcd}\left(m, r s\left(\pi^{\prime}\right)\right)=r \operatorname{gcd}\left(m / r, s\left(\pi^{\prime}\right)\right)
$$

which implies that $r=e\left(\mathfrak{B} \mid \mathfrak{o}_{D^{\prime}}\right)=1$. Hence, by Theorem $1.6, \pi^{\prime}$ is cuspidal.
By Proposition 2.9, we obtain the following result.
Corollary 2.10 (cf. [14, Sec. 2]). Let the notation and assumptions be as in Theorem 0.2. Then, the invariant $s\left(\rho^{\prime}\right)$ satisfies the following conditions:

1. $s\left(\rho^{\prime}\right)$ divides d;
2. $\operatorname{gcd}\left(m / r, s\left(\rho^{\prime}\right)\right)=1$.

Proof. Since ρ^{\prime} is a cuspidal representation of $\mathrm{GL}_{m / r}(D), \mathbf{J L}^{-1}\left(\rho^{\prime}\right)$ is an essentially square-integrable representation of $\mathrm{GL}_{N / r}(F)$. Thus, by replacing m, N and k by $m / r, N / r$ and $s\left(\rho^{\prime}\right)$, respectively, by Proposition 2.9 , we obtain

$$
N / r=\operatorname{lcm}\left(d, N / r s\left(\rho^{\prime}\right)\right),
$$

which is written by $r=\operatorname{lcm}(d, n / k)$ in [7, Théorème 2.B.b(2)]. Thus, the corollary is proved similarly as Proposition 2.9.

REFERENCES

[1] A. BADULESCU, Correspondence de Jacquet-Langlands pour les corps locaux de caractéristique non nulle, Ann. Sci. École Norm. Sup. 35 (2002), 695-747.
[2] A. Badulescu, Jacquet-Langlands et unitarisabilité, J. Inst. Math. Jussieu 6 (2007), 349-379.
[3] C. J. Bushnell and G. Henniart, Local Jacquet-Langlands correspondence and parametric degrees, Manuscripta Math. 114 (2004), 1-7.
[4] C. J. Bushnell and G. Henniart, The essentially tame Jacquet-Langlands correspondence for inner forms of GL(n), Pure and Appl. Math. Q. 7 (2011), no. 3, 469-538.
[5] C. J. Bushnell and P. C. Kutzko, The admissible dual of GL(N) via compact open subgroups, Ann. Math. Stud. 129, Princeton University Press, 1993.
[6] W. CASSELMAN, Introduction of the theory of admmisible representations of p-adic reductive groups, Unpublished manuscript, 1974.
[7] P. Deligne, D. Kazhdan and M.-F. Vignéras, Représentations des algèbres centrales simples padiques, in Représentations des groups réductifs sur un corps local, 33-117, Travaux en Cours, Hermann, Paris, 1984.
[8] G. Grabitz, A. Z. Silberger and E.-W. Zink, Level zero types and Hecke algebras for local central simple algebras, J. Number Theory 91 (2001), 92-125.
[9] J. Rogawski, Representations of $G L(n)$ and division algebras over a local field, Duke Math. J. 50 (1983), 161-196.
[10] V. SÉcherre, Représentations lisses de GL (m, D), I: caractères simples, Bull. Soc. Math. France 132 (2004), 327-396.
[11] V. Sécherre, Représentations lisses de GL(m, D), II: β-extensions, Compositio Math. 141 (2005), 15311550.
[12] V. SÉcherre, Représentations lisses de GL(m, D), III: types simples, Ann. Sci. École Norm. Sup. 38 (2005), 951-977.
[13] V. Sécherre and S. Stevens, Représentations lisse de GL (m, D), IV: Représentations supercuspidales, J. Inst. Math. Jussieu 7 (2008), 527-574.
[14] M. TADIĆ, Induced representations of $\operatorname{GL}(n, A)$ for p-adic division algebra A, J. Reine Angew. Math. 405 (1990), 48-77.
[15] A. Zelevinsky, Induced representations and reductive p-adic groups II, Ann. Sci. École Norm. Sup. 13 (1980), 165-210.
[16] E.-W. ZINK, More on embedding of local fields in simple algebras, J. Number Theory 77 (1989), $51-61$.

Onomichi City University
Onomichi 722-8506
Japan
E-mail address: kazutoshi.kariyama@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 22E50.
 Key words and phrases. Non-Archimedean local field, central simple algebra, essentially square-integrable representation, Jacquet-Langlands correspondence, simple type, parametric degree.

