UMBILICAL SURFACES OF PRODUCTS OF SPACE FORMS

Jaime Orjuela* and Ruy Tojeiro ${ }^{\dagger}$

(Received August 7, 2014, revised February 2, 2015)

Abstract

We give a complete classification of umbilical surfaces of arbitrary codimension of a product $\mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$ of space forms whose curvatures satisfy $k_{1}+k_{2} \neq 0$.

1. Introduction. A submanifold of a Riemannian manifold is umbilical if it is equally curved in all tangent directions. More precisely, an isometric immersion $f: M^{m} \rightarrow \tilde{M}^{n}$ between Riemannian manifolds is umbilical if there exists a normal vector field H along f such that its second fundamental form $\alpha_{f} \in \operatorname{Hom}\left(T M \times T M, N_{f} M\right)$ with values in the normal bundle satisfies

$$
\alpha_{f}(X, Y)=\langle X, Y\rangle H \text { for all } X, Y \in \mathfrak{X}(M)
$$

The classification of umbilical submanifolds of space forms is very well known. For a general symmetric space N, it was shown by Nikolayevsky (see Theorem 1 of [6]) that any umbilical submanifold of N is an umbilical submanifold of a product of space forms totally geodesically embedded in N. This makes the classification of umbilical submanifolds of a product of space forms an important problem. For submanifolds of dimension $m \geq 3$ of a product $\mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$ of space forms whose curvatures satisfy $k_{1}+k_{2} \neq 0$, the problem was reduced in [3] to the classification of m-dimensional umbilical submanifolds with codimension two of $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$, where \mathbb{S}^{n} and \mathbb{H}^{n} stand for the sphere and hyperbolic space, respectively. The case of $\mathbb{S}^{n} \times \mathbb{R}$ (respectively, $\mathbb{H}^{n} \times \mathbb{R}$) was carried out in [4] (respectively, [5]), extending previous results in [7] and [8] (respectively, [1]) for hypersurfaces.

In this paper we extend the results of [3] to the surface case. In this case, the argument in one of the steps of the proof for the higher dimensional case (see Lemma 8.2 of [3]) does not apply, and requires more elaborate work. This is carried out in Lemma 4 below, which shows that the difficulty is due to the existence of new interesting families of examples in the surface case. Indeed, our main result (see Theorem 5 below) states that, in addition to the examples that appear already in higher dimensions, there are precisely two distinct twoparameter families of complete embedded flat umbilical surfaces that lie substantially in $\mathbb{H}_{k}^{3} \times$ \mathbb{R}^{2} and $\mathbb{H}_{k_{1}}^{3} \times \mathbb{H}_{k_{2}}^{3}$, respectively. These are discussed in Section 3.

[^0]2. Preliminaries. Let $f: M \rightarrow \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$ be an isometric immersion of a Riemannian manifold. We always assume that M is connected. Denote by \mathcal{R} and \mathcal{R}^{\perp} the curvature tensors of the tangent and normal bundles $T M$ and $N_{f} M$, respectively, by $\alpha=\alpha_{f} \in$ $\Gamma\left(T^{*} M \otimes T^{*} M \otimes N_{f} M\right)$ the second fundamental form of f and by $A_{\eta}=A_{\eta}^{f}$ its shape operator in the normal direction η, given by
$$
\left\langle A_{\eta} X, Y\right\rangle=\langle\alpha(X, Y), \eta\rangle
$$
for all $X, Y \in \mathfrak{X}(M)$. Set
$L=L^{f}:=\pi_{2} \circ f_{*} \in \Gamma\left(T^{*} M \otimes T \mathbb{Q}_{k_{2}}^{n_{2}}\right)$ and $K=K^{f}:=\left.\pi_{2}\right|_{N_{f} M} \in \Gamma\left(\left(N_{f} M\right)^{*} \otimes T \mathbb{Q}_{k_{2}}^{n_{2}}\right)$, where $\pi_{i}: \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}} \rightarrow \mathbb{Q}_{k_{i}}^{n_{i}}$ denotes the canonical projection, $1 \leq i \leq 2$, and by abuse of notation also its derivative, which we regard as a section of $T^{*}\left(\mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}\right) \otimes T \mathbb{Q}_{k_{i}}^{n_{i}}$.
2.1. The fundamental equations. The tensors $R \in \Gamma\left(T^{*} M \otimes T M\right), S \in \Gamma\left(T^{*} M \otimes\right.$ $\left.N_{f} M\right)$ and $T \in \Gamma\left(\left(N_{f} M\right)^{*} \otimes N_{f} M\right)$ given by
\[

$$
\begin{equation*}
R=L^{t} L, \quad S=K^{t} L \quad \text { and } \quad T=K^{t} K \tag{1}
\end{equation*}
$$

\]

or equivalently, by

$$
L=f_{*} R+S \text { and } K=f_{*} S^{t}+T
$$

were introduced in [2] (see also [3]), where they were shown to satisfy the algebraic relations

$$
\begin{equation*}
S^{t} S=R(I-R), \quad T S=S(I-R) \quad \text { and } \quad S S^{t}=T(I-T), \tag{2}
\end{equation*}
$$

as well as the differential equations

$$
\begin{gather*}
\left(\nabla_{X} R\right) Y=A_{S Y} X+S^{t} \alpha(X, Y) \tag{3}\\
\left(\nabla_{X} S\right) Y=T \alpha(X, Y)-\alpha(X, R Y) \tag{4}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} T\right) \xi=-S A_{\xi} X-\alpha\left(X, S^{t} \xi\right) \tag{5}
\end{equation*}
$$

for all $X, Y \in \mathfrak{X}(M)$ and all $\xi \in \Gamma\left(N_{f} M\right)$. In particular, from the first and third equations of (1) and (2), respectively, it follows that R and T are nonnegative operators whose eigenvalues lie in $[0,1]$.

The Gauss, Codazzi and Ricci equations of f are, respectively,
(6) $\mathcal{R}(X, Y) Z=\left(k_{1}(X \wedge Y-X \wedge R Y-R X \wedge Y)+\kappa R X \wedge R Y\right) Z+A_{\alpha(Y, Z)} X-A_{\alpha(X, Z)} Y$,

$$
\begin{equation*}
\left(\nabla_{X}^{\perp} \alpha\right)(Y, Z)-\left(\nabla_{Y}^{\perp} \alpha\right)(X, Z)=\left\langle k_{1} X-\kappa R X, Z\right\rangle S Y-\left\langle k_{1} Y-\kappa R Y, Z\right\rangle S X \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{R}^{\perp}(X, Y) \eta=\alpha\left(X, A_{\eta} Y\right)-\alpha\left(A_{\eta} X, Y\right)+\kappa(S X \wedge S Y) \eta, \tag{8}
\end{equation*}
$$

where $\kappa=k_{1}+k_{2}$.
2.2. The flat underlying space. In order to study isometric immersions $f: M \rightarrow$ $\mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$, it is useful to consider their compositions $F=h \circ f$ with the canonical isometric embedding

$$
h: \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}} \rightarrow \mathbb{R}_{\sigma\left(k_{1}\right)}^{N_{1}} \times \mathbb{R}_{\sigma\left(k_{2}\right)}^{N_{2}}=\mathbb{R}_{\mu}^{N_{1}+N_{2}}
$$

Here, for $k \in \mathbb{R}$ we set $\sigma(k)=1$ if $k<0$ and $\sigma(k)=0$ otherwise, and as a subscript of an Euclidean space it means the index of the corresponding flat metric. Also, we denote $\mu=\sigma\left(k_{1}\right)+\sigma\left(k_{2}\right), N_{i}=n_{i}+1$ if $k_{i} \neq 0$ and $N_{i}=n_{i}$ otherwise, in which case $\mathbb{Q}_{k_{i}}^{n_{i}}$ stands for $\mathbb{R}^{n_{i}}$.

Let $\tilde{\pi}_{i}: \mathbb{R}_{\mu}^{N_{1}+N_{2}} \rightarrow \mathbb{R}_{\sigma\left(k_{i}\right)}^{N_{i}}, 1 \leq i \leq 2$, denote the canonical projection. Then, the normal space of h at each point $z \in \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$ is spanned by $k_{1} \tilde{\pi}_{1}(h(z))$ and $k_{2} \tilde{\pi}_{2}(h(z))$, and its second fundamental form is given by

$$
\begin{equation*}
\alpha_{h}(X, Y)=-k_{1}\left\langle\pi_{1} X, Y\right\rangle \tilde{\pi}_{1} \circ h-k_{2}\left\langle\pi_{2} X, Y\right\rangle \tilde{\pi}_{2} \circ h . \tag{9}
\end{equation*}
$$

Therefore, if $k_{i} \neq 0,1 \leq i \leq 2$, then, setting $r_{i}=\left|k_{i}\right|^{-1 / 2}$, the unit vector field $\nu_{i}=v_{i}^{F}=$ $\frac{1}{r_{i}} \tilde{\pi}_{i} \circ F$ is normal to F and we have

$$
\tilde{\nabla}_{X} \nu_{1}=\frac{1}{r_{1}} \tilde{\pi}_{1} F_{*} X=\frac{1}{r_{1}}\left(F_{*} X-h_{*} L X\right)=\frac{1}{r_{1}}\left(F_{*}(I-R) X-h_{*} S X\right)
$$

and

$$
\tilde{\nabla}_{X} \nu_{2}=\frac{1}{r_{2}} \tilde{\pi}_{2} F_{*} X=\frac{1}{r_{2}} h_{*} L X=\frac{1}{r_{2}}\left(F_{*} R X+h_{*} S X\right),
$$

where $\tilde{\nabla}$ stands for the derivative in $\mathbb{R}_{\mu}^{N_{1}+N_{2}}$. Hence

$$
\begin{gather*}
{ }^{F} \nabla_{X}^{\perp} \nu_{1}=-\frac{1}{r_{1}} h_{*} S X, \quad A_{\nu_{1}}^{F}=-\frac{1}{r_{1}}(I-R), \tag{10}\\
{ }^{F} \nabla_{X}^{\perp} \nu_{2}=\frac{1}{r_{2}} h_{*} S X \quad \text { and } \quad A_{\nu_{2}}^{F}=-\frac{1}{r_{2}} R .
\end{gather*}
$$

2.3. Reduction of codimension. An isometric immersion $f: M^{m} \rightarrow \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$ is said to reduce codimension on the left by ℓ if there exists a totally geodesic inclusion $j_{1}: \mathbb{Q}_{k_{1}}^{m_{1}} \rightarrow \mathbb{Q}_{k_{1}}^{n_{1}}$, with $n_{1}-m_{1}=\ell$, and an isometric immersion $\bar{f}: M^{m} \rightarrow \mathbb{Q}_{k_{1}}^{m_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$ such that $f=\left(j_{1} \times i d\right) \circ \bar{f}$. Similarly one defines what it means by f reducing codimension on the right.

We will need the following result from [3] on reduction of codimension. In the statement, U and V stand for $\operatorname{ker} T$ and $\operatorname{ker}(I-T)$, respectively. Notice that the third equation in (2) implies that $S(T M)^{\perp}$ splits orthogonally as $S(T M)^{\perp}=U \oplus V$, with $U=(I-T)\left(S(T M)^{\perp}\right)$ and $V=T\left(S(T M)^{\perp}\right)$. Also, given an isometric immersion $f: M \rightarrow \tilde{M}$ between Riemannian manifolds, its first normal space at $x \in M$ is the subspace $N_{1}(x)$ of $N_{f} M(x)$ spanned by the image of its second fundamental form at x.

Proposition 1. Let $f: M^{m} \rightarrow \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$ be an isometric immersion. If $U \cap N_{1}^{\perp}$ (respectively, $V \cap N_{1}^{\perp}$) is a vector subbundle of $N_{f} M$ with rank ℓ satisfying $\nabla^{\perp}\left(U \cap N_{1}^{\perp}\right) \subset$ $N_{1}^{\perp}\left(\right.$ respectively, $\left.\nabla^{\perp}\left(V \cap N_{1}^{\perp}\right) \subset N_{1}^{\perp}\right)$, then f reduces codimension on the left (respectively, on the right) by ℓ.
2.4. Frenet formulae for space-like curves in \mathbb{R}_{1}^{4}. We briefly recall the definition of the Frenet curvatures and the Frenet frame of a unit-speed space-like curve $\gamma: I \rightarrow \mathbb{R}_{1}^{4}$ in the four dimensional Lorentz space, as well as the coresponding Frenet formulae, which will be needed in the sequel.

Thus, we assume that $t(s)=\gamma^{\prime}(s)$ satisfies $\langle t(s), t(s)\rangle=1$ for all $s \in I$. Assume first that $\left\langle\gamma^{\prime \prime}(s), \gamma^{\prime \prime}(s)\right\rangle \neq 0$ for all $s \in I$. Define $\hat{k}_{1}(s)=\left\|\gamma^{\prime \prime}(s)\right\|=\left|\left\langle\gamma^{\prime \prime}(s), \gamma^{\prime \prime}(s)\right\rangle\right|^{1 / 2}$ and $n_{1}(s)=\gamma^{\prime \prime}(s) / \hat{k}_{1}(s)$ for all $s \in I$. Denote $\epsilon_{1}=\left\langle n_{1}, n_{1}\right\rangle$. Suppose that $v(s)=n_{1}^{\prime}(s)+$ $\epsilon_{1} \hat{k}_{1}(s) t(s)$ satisfies $\langle v(s), v(s)\rangle \neq 0$ for all $s \in I$. Define $\hat{k}_{2}(s)=\|v(s)\|$ and $n_{2}(s)=$ $v(s) / \hat{k}_{2}(s)$. Let $n_{3}(s)$ be chosen so that $\left\{t(s), n_{1}(s), n_{2}(s), n_{3}(s)\right\}$ is a positively-oriented orthonormal basis of \mathbb{R}_{1}^{4} and set $\epsilon_{3}=\left\langle n_{3}, n_{3}\right\rangle$. Then the following Frenet formulae hold, where \hat{k}_{3} is defined by the third equation:

$$
\left\{\begin{array}{l}
t^{\prime}=\hat{k}_{1} n_{1}, \\
n_{1}^{\prime}=-\epsilon_{1} \hat{k}_{1} t+\hat{k}_{2} n_{2}, \\
n_{2}^{\prime}=\epsilon_{3} \hat{k}_{2} n_{1}+\hat{k}_{3} n_{3} \\
n_{3}^{\prime}=\epsilon_{1} \hat{k}_{3} n_{2}
\end{array}\right.
$$

Lesser known are the formulae in the case in which $\gamma^{\prime \prime}(s)$ is a nonzero light-like vector everywhere, i.e., $\tilde{n}_{1}(s)=\gamma^{\prime \prime}(s)$ satisfies $\left\langle\tilde{n}_{1}(s), \tilde{n}_{1}(s)\right\rangle=0$ for all $s \in I$. We carry them out in more detail below.

First notice that $\left\langle t, \tilde{n}_{1}\right\rangle=0$. Here, and in the next computations, we drop the "s" for simplicity of notation and understand that all equalities hold for all $s \in I$. Thus,

$$
\left\langle\tilde{n}_{1}^{\prime}, t\right\rangle=-\left\langle t^{\prime}, \tilde{n}_{1}\right\rangle=-\left\langle\tilde{n}_{1}, \tilde{n}_{1}\right\rangle=0 .
$$

Moreover, $\left\langle\tilde{n}_{1}^{\prime}, \tilde{n}_{1}\right\rangle=0$, hence \tilde{n}_{1}^{\prime} is space-like. Define $\tilde{k}_{1}=\left\|\tilde{n}_{1}^{\prime}\right\|$ and \tilde{n}_{2} by $\tilde{n}_{1}^{\prime}=\tilde{k}_{1} \tilde{n}_{2}$. Now let $\tilde{n}_{3} \in\left\{t, \tilde{n}_{2}\right\}^{\perp}$ be the unique vector such that

$$
\left\langle\tilde{n}_{3}, \tilde{n}_{3}\right\rangle=0 \text { and }\left\langle\tilde{n}_{1}, \tilde{n}_{3}\right\rangle=1,
$$

that is, $\left\{\tilde{n}_{1}, \tilde{n}_{3}\right\}$ is a pseudo-othonormal basis of the time-like plane $\left\{t, \tilde{n}_{2}\right\}^{\perp}$. Since

$$
\left\langle\tilde{n}_{2}^{\prime}, t\right\rangle=-\left\langle\tilde{n}_{2}, t^{\prime}\right\rangle=-\left\langle\tilde{n}_{2}, \tilde{n}_{1}\right\rangle=0
$$

and

$$
\left\langle\tilde{n}_{2}^{\prime}, \tilde{n}_{1}\right\rangle=-\left\langle\tilde{n}_{2}, \tilde{n}_{1}^{\prime}\right\rangle=-\tilde{k}_{1},
$$

we have

$$
\tilde{n}_{2}^{\prime}=\left\langle\tilde{n}_{2}^{\prime}, \tilde{n}_{1}\right\rangle \tilde{n}_{3}+\left\langle\tilde{n}_{2}^{\prime}, \tilde{n}_{3}\right\rangle \tilde{n}_{1}=-\tilde{k}_{1} \tilde{n}_{3}-\tilde{k}_{2} \tilde{n}_{1},
$$

where

$$
\tilde{k}_{2}=\left\langle\tilde{n}_{3}^{\prime}, \tilde{n}_{2}\right\rangle
$$

Finally, since

$$
0=\left\langle\tilde{n}_{3}^{\prime}, t\right\rangle=\left\langle\tilde{n}_{3}^{\prime}, \tilde{n}_{1}\right\rangle=\left\langle\tilde{n}_{3}^{\prime}, \tilde{n}_{3}\right\rangle
$$

we have

$$
\tilde{n}_{3}^{\prime}=\left\langle\tilde{n}_{3}^{\prime}, \tilde{n}_{2}\right\rangle \tilde{n}_{2}=\tilde{k}_{2} \tilde{n}_{2} .
$$

In summary, for a unit-speed space-like curve $\gamma: I \rightarrow \mathbb{R}_{1}^{4}$ with light-like curvature vector $\gamma^{\prime \prime}$, one can define two Frenet curvatures \tilde{k}_{1} and \tilde{k}_{2} and a pseudo-orthonormal Frenet frame $\left\{t, \tilde{n}_{1}, \tilde{n}_{2}, \tilde{n}_{3}\right\}$ with respect to which the Frenet formulae are

$$
\left\{\begin{array}{l}
t^{\prime}=\tilde{n}_{1}, \\
\tilde{n}_{1}^{\prime}=\tilde{k}_{1} \tilde{n}_{2}, \\
\tilde{n}_{2}^{\prime}=-\tilde{k}_{2} \tilde{n}_{1}-\tilde{k}_{1} \tilde{n}_{3}, \\
\tilde{n}_{3}^{\prime}=\tilde{k}_{2} \tilde{n}_{2}
\end{array}\right.
$$

In both cases, a unit-speed space-like curve $\gamma: I \rightarrow \mathbb{R}_{1}^{4}$ is completely determined by its Frenet curvatures, up to an isometry of \mathbb{R}_{1}^{4}.
3. Flat umbilical surfaces in $\mathbb{H}_{k}^{3} \times \mathbb{R}^{2}$ and $\mathbb{H}_{k_{1}}^{3} \times \mathbb{H}_{k_{2}}^{3}$. We present below two families of complete flat properly embedded umbilical surfaces, the first one in $\mathbb{H}_{k}^{3} \times \mathbb{R}^{2}$ and the second in $\mathbb{H}_{k_{1}}^{3} \times \mathbb{H}_{k_{2}}^{3}$, each of which depending on two parameters.

Example 2. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}_{1}^{6}=\mathbb{R}_{1}^{4} \times \mathbb{R}^{2}$, where \mathbb{R}_{1}^{4} has signature $(-,+,+,+)$, be given by

$$
\begin{equation*}
F(s, t)=\left(a_{1} \cosh \frac{s}{c}, a_{1} \sinh \frac{s}{c}, a_{2} \cos \frac{t}{c}, a_{2} \sin \frac{t}{c}, b_{1} \frac{s}{c}, b_{2} \frac{t}{c}\right), \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{1}^{2}-a_{2}^{2}=r^{2} \quad \text { and } \quad a_{1}^{2}+b_{1}^{2}=c^{2}=a_{2}^{2}+b_{2}^{2} \tag{13}
\end{equation*}
$$

Then $F\left(\mathbb{R}^{2}\right) \subset \mathbb{H}_{k}^{3} \times \mathbb{R}^{2}$, where $k=-1 / r^{2}$, by the first relation in (13). If $\left\{e_{1}, \ldots, e_{6}\right\}$ is the orthonormal basis of \mathbb{R}_{1}^{6} with respect to which F is given by (12), then the subspaces V_{1} and V_{2} of \mathbb{L}^{6} spanned by $\left\{e_{1}, e_{2}, e_{5}\right\}$ and $\left\{e_{3}, e_{4}, e_{6}\right\}$ can be identified with \mathbb{R}_{1}^{3} and \mathbb{R}^{3}, respectively, and

$$
F=\gamma_{1} \times \gamma_{2}: \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2} \rightarrow V_{1} \times V_{2}=\mathbb{R}_{1}^{3} \times \mathbb{R}^{3}=\mathbb{R}_{1}^{6}
$$

where γ_{1} and γ_{2} are the helices in \mathbb{R}_{1}^{3} and \mathbb{R}^{3}, respectively, parameterized by

$$
\gamma_{1}(s)=\left(a_{1} \cosh \frac{s}{c}, a_{1} \sinh \frac{s}{c}, b_{1} \frac{s}{c}\right)
$$

and

$$
\gamma_{2}(t)=\left(a_{2} \cos \frac{t}{c}, a_{2} \sin \frac{t}{c}, b_{2} \frac{t}{c}\right) .
$$

By the relations on the right in (13), both γ_{1} and γ_{2} are unit-speed curves, hence F is an isometric immersion. Since $F\left(\mathbb{R}^{2}\right) \subset \mathbb{H}_{k}^{3} \times \mathbb{R}^{2}$, there exists an isometric immersion $f: \mathbb{R}^{2} \rightarrow$
$\mathbb{H}_{k}^{3} \times \mathbb{R}^{2}$ such that $F=h \circ f$, where $h: \mathbb{H}_{k}^{3} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{1}^{6}$ denotes the inclusion. It is easily checked that the second fundamental form of f satisfies

$$
\alpha_{f}\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right)=0
$$

and

$$
\alpha_{f}\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial s}\right)=H(s, t)=\alpha_{f}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right),
$$

where

$$
h_{*} H(s, t)=\frac{k a_{1} a_{2}}{c^{2}}\left(a_{2} \cosh \frac{s}{c}, a_{2} \sinh \frac{s}{c}, a_{1} \cos \frac{t}{c}, a_{1} \sin \frac{t}{c}, 0,0\right) .
$$

Hence f is umbilical with mean curvature vector field H.
In view of (13), one can write
$a_{1}^{2}=r^{2} \frac{\left(1-\lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}, \quad a_{2}^{2}=r^{2} \frac{\left(1-\lambda_{2}\right)}{\lambda_{2}-\lambda_{1}}, \quad b_{1}^{2}=r^{2} \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}}, \quad b_{2}^{2}=r^{2} \frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}}, \quad c^{2}=\frac{r^{2}}{\lambda_{2}-\lambda_{1}}$, with $0<\lambda_{1}<\lambda_{2}<1$. Then, one can check that the curvature vector $\gamma_{i}^{\prime \prime}$ of $\gamma_{i}, 1 \leq i \leq 2$, satisfies

$$
\begin{equation*}
\left\langle\gamma_{i}^{\prime \prime}, \gamma_{i}^{\prime \prime}\right\rangle=k\left(\lambda_{j}-\lambda_{i}\right)\left(1-\lambda_{i}\right), \quad 1 \leq i \neq j \leq 2, \tag{14}
\end{equation*}
$$

and that the second Frenet curvature (torsion) of γ_{i} satisfies

$$
\begin{equation*}
\tau_{i}^{2}=-k \lambda_{i}\left|\lambda_{j}-\lambda_{i}\right|, \quad 1 \leq i \neq j \leq 2 \tag{15}
\end{equation*}
$$

Example 3. Let $\mathbb{R}_{2}^{8}=\mathbb{R}_{1}^{4} \times \mathbb{R}_{1}^{4}$ denote Euclidean space of dimension 8 endowed with an inner product of signature $(-,+,+,+,-,+,+,+)$, and let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}_{2}^{8}$ be given by
$F(s, t)=\left(a_{1} \cosh \frac{s}{c}, a_{1} \sinh \frac{s}{c}, a_{2} \cos \frac{t}{c}, a_{2} \sin \frac{t}{c}, a_{3} \cosh \frac{t}{d}, a_{3} \sinh \frac{t}{d}, a_{4} \cos \frac{s}{d}, a_{4} \sin \frac{s}{d}\right)$,
with

$$
\begin{equation*}
a_{1}^{2}-a_{2}^{2}=r_{1}^{2}, \quad a_{3}^{2}-a_{4}^{2}=r_{2}^{2} \quad \text { and } \quad \frac{a_{1}^{2}}{c^{2}}+\frac{a_{4}^{2}}{d^{2}}=1=\frac{a_{2}^{2}}{c^{2}}+\frac{a_{3}^{2}}{d^{2}} . \tag{17}
\end{equation*}
$$

The first pair of relations in (17) implies that $F\left(\mathbb{R}^{2}\right) \subset \mathbb{H}_{k_{1}}^{3} \times \mathbb{H}_{k_{2}}^{3} \subset \mathbb{R}_{1}^{4} \times \mathbb{R}_{1}^{4}$, with $k_{i}=-1 / r_{i}^{2}$ for $1 \leq i \leq 2$. If $\left\{e_{1}, \ldots, e_{4}, f_{1}, \ldots, f_{4}\right\}$ is the orthonormal basis of \mathbb{R}_{2}^{8} with respect to which F is given by (16), then the subspaces V_{1} and V_{2} of \mathbb{R}_{2}^{8} spanned by $\left\{e_{1}, e_{2}, f_{3}, f_{4}\right\}$ and $\left\{f_{1}, f_{2}, e_{3}, e_{4}\right\}$ can also be identified with \mathbb{R}_{1}^{4}, and

$$
F=\gamma_{1} \times \gamma_{2}: \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2} \rightarrow V_{1} \times V_{2},
$$

where γ_{1} and γ_{2} are the curves parameterized by

$$
\gamma_{1}(s)=\left(a_{1} \cosh \frac{s}{c}, a_{1} \sinh \frac{s}{c}, a_{4} \cos \frac{s}{d}, a_{4} \sin \frac{s}{d}\right)
$$

and

$$
\gamma_{2}(t)=\left(a_{3} \cosh \frac{t}{d}, a_{3} \sinh \frac{t}{d}, a_{2} \cos \frac{t}{c}, a_{2} \sin \frac{t}{c}\right)
$$

In view of the second pair of relations in (17), both γ_{1} and γ_{2} are unit-speed curves, hence F is an isometric immersion. Since $F\left(\mathbb{R}^{2}\right) \subset \mathbb{H}_{k_{1}}^{3} \times \mathbb{H}_{k_{2}}^{3}$, there exists an isometric immersion $f: \mathbb{R}^{2} \rightarrow \mathbb{H}_{k_{1}}^{3} \times \mathbb{H}_{k_{2}}^{3}$ such that $F=h \circ f$, where $h: \mathbb{H}_{k_{1}}^{3} \times \mathbb{H}_{k_{2}}^{3} \rightarrow \mathbb{R}_{2}^{8}$ denotes the inclusion. One can easily check that the second fundamental form of f satisfies

$$
\alpha_{f}\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right)=0
$$

and

$$
\alpha_{f}\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial s}\right)=H(s, t)=\alpha_{f}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)
$$

where

$$
\begin{aligned}
h_{*} H(s, t)= & \frac{k_{1} a_{1} a_{2}}{c^{2}}\left(a_{2} \cosh \frac{s}{c}, a_{2} \sinh \frac{s}{c}, a_{1} \cos \frac{t}{c}, a_{1} \sin \frac{t}{c}, 0,0,0,0\right) \\
& +\frac{k_{2} a_{3} a_{4}}{d^{2}}\left(0,0,0,0, a_{4} \cosh \frac{t}{d}, a_{4} \sinh \frac{t}{d}, a_{3} \cos \frac{s}{d}, a_{3} \sin \frac{s}{d}\right) .
\end{aligned}
$$

It follows that f is umbilical with mean curvature vector field H.
By the conditions in (17), one can write

$$
\begin{aligned}
a_{1}^{2}=r_{1}^{2} \frac{\left(1-\lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}, \quad a_{2}^{2} & =r_{1}^{2} \frac{\left(1-\lambda_{2}\right)}{\lambda_{2}-\lambda_{1}}, \quad a_{3}^{2}=r_{2}^{2} \frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}}, \quad a_{4}^{2}=r_{2}^{2} \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} \\
c^{2} & =\frac{r_{1}^{2}}{\lambda_{2}-\lambda_{1}} \text { and } d^{2}=\frac{r_{2}^{2}}{\lambda_{2}-\lambda_{1}},
\end{aligned}
$$

with $0<\lambda_{1}<\lambda_{2}<1$. Then, the curvature vector $\gamma_{i}^{\prime \prime}$ of the curve $\gamma_{i}, 1 \leq i \leq 2$, satisfies

$$
\begin{equation*}
\left\langle\gamma_{i}^{\prime \prime}, \gamma_{i}^{\prime \prime}\right\rangle=\left(\lambda_{i}-\lambda_{j}\right)\left(\kappa \lambda_{i}-k_{1}\right), \quad 1 \leq i \neq j \leq 2, \quad \kappa=k_{1}+k_{2} . \tag{18}
\end{equation*}
$$

If $\kappa \lambda_{i}-k_{1} \neq 0$, one can check that $\gamma_{i}, 1 \leq i \leq 2$, has constant Frenet curvatures \hat{k}_{ℓ}^{i}, $1 \leq \ell \leq 3$, given by

$$
\begin{align*}
& \left(\hat{k}_{1}^{i}\right)^{2}=\left|\left(\lambda_{i}-\lambda_{j}\right)\left(\kappa \lambda_{i}-k_{1}\right)\right|, \tag{19}\\
& \left(\hat{k}_{2}^{i}\right)^{2}=\frac{\kappa^{2}\left|\lambda_{i}-\lambda_{j}\right| \lambda_{i}\left(1-\lambda_{i}\right)}{\left|\kappa \lambda_{i}-k_{1}\right|} \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\hat{k}_{3}^{i}\right)^{2}=\frac{k_{1} k_{2}\left|\lambda_{i}-\lambda_{j}\right|}{\left|\kappa \lambda_{i}-k_{1}\right|}, \quad 1 \leq j \neq i \leq 2 . \tag{21}
\end{equation*}
$$

If $\kappa \lambda_{i}-k_{1}=0$, that is, the curvature vector of γ_{i} is light-like, then one can check that γ_{i} has constant Frenet curvatures \tilde{k}_{1}^{i} and $\tilde{k}_{2}^{i}, 1 \leq i \leq 2$ (see Subsection 2.4), given by

$$
\begin{equation*}
\left(\tilde{k}_{1}^{i}\right)^{2}=\frac{k_{1} k_{2}\left(\kappa \lambda_{j}-k_{1}\right)^{2}}{\kappa^{2}}, \quad 1 \leq j \neq i \leq 2 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\tilde{k}_{2}^{i}\right)^{2}=\frac{\left(k_{1}-k_{2}\right)^{2}}{4 k_{1} k_{2}}, \quad 1 \leq i \leq 2 \tag{23}
\end{equation*}
$$

It is also easily checked that the isometric immersions in both of the preceding examples have the frame of coordinate vector fields $\left\{\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right\}$ as a frame of principal directions for the associated tensor R, with corresponding eigenvalues λ_{1} and λ_{2}, respectively. Moreover, they are clearly injective and proper, hence embeddings. Therefore, all surfaces in both families are properly embedded and isometric to the plane.
4. The main step. Umbilical submanifolds of $\mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$ were studied in [3] according to the possible structures of the tensor S. When $\operatorname{ker} S=\{0\}$, it was shown that R must be a constant multiple of the identity tensor whenever the dimension of the submanifold is at least three (see [3], Lemma 8.2), which corresponds to case (i) in the statement of Lemma 4 below. We now show that in the surface case the only exceptions are the surfaces of the two families in the preceding section.

Lemma 4. Let $f: M^{2} \rightarrow \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}, k_{1}+k_{2} \neq 0$, be an umbilical isometric immersion. Assume that $\operatorname{ker} S=\{0\}$ at some point $x \in M^{2}$. Then one of the following holds:
(i) there exist umbilical isometric immersions $f_{i}: M^{2} \rightarrow \mathbb{Q}_{\tilde{k}_{i}}^{n_{i}}, 1 \leq i \leq 2$, with $\tilde{k}_{1}=$ $k_{1} \cos ^{2} \theta$ and $\tilde{k}_{2}=k_{2} \sin ^{2} \theta$ for some $\theta \in(0, \pi / 2)$, such that $f=\left(\cos \theta f_{1}, \sin \theta f_{2}\right)$;
(ii) after interchanging the factors, if necessary, we have $k_{2}=0, n_{1} \geq 3, n_{2} \geq 2$ and $f=j \circ \tilde{f}$, where $j: \mathbb{Q}_{k_{1}}^{3} \times \mathbb{R}^{2} \rightarrow \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{R}^{n_{2}}$ and $\tilde{f}: M^{2} \rightarrow \mathbb{Q}_{k_{1}}^{3} \times \mathbb{R}^{2}$ are isometric immersions such that j is totally geodesic and $\tilde{f}\left(M^{2}\right)$ is an open subset of a surface as in Example 2;
(iii) $k_{i}<0$ and $n_{i} \geq 3,1 \leq i \leq 2$, and $f=j \circ \tilde{f}$, where $j: \mathbb{Q}_{k_{1}}^{3} \times \mathbb{Q}_{k_{2}}^{3} \rightarrow \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$ and $\tilde{f}: M^{2} \rightarrow \mathbb{Q}_{k_{1}}^{3} \times \mathbb{Q}_{k_{2}}^{3}$ are isometric immersions such that j is totally geodesic and $\tilde{f}\left(M^{2}\right)$ is an open subset of a surface as in Example 3.
Proof. Let λ_{1} and λ_{2} be the eigenvalues of R. If $\lambda_{1}=\lambda_{2}$ on M then f is as in (i) by Proposition 5.2 of [3]. Now assume that $\lambda_{1} \neq \lambda_{2}$ at x and let $\mathcal{U} \subset \mathcal{M}$ be the maximal connected open neighborhood of x where $\operatorname{ker} S=\{0\}$ and $\lambda_{1} \neq \lambda_{2}$. In particular, λ_{1} and λ_{2} are differentiable on \mathcal{U}.

Fix an orthonormal frame $\left\{X_{1}, X_{2}\right\}$ of eigenvectors of R, with X_{i} associated to λ_{i}, and define $\xi_{i}:=S X_{i}$ for $i=1,2$. Thus, from (2) we have

$$
\begin{equation*}
\left\langle\xi_{i}, \xi_{j}\right\rangle=\left\langle S^{t} S X_{i}, X_{j}\right\rangle=\delta_{i j} \lambda_{i}\left(1-\lambda_{i}\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
T \xi_{i}=T S X_{i}=\left(1-\lambda_{i}\right) \xi_{i} \tag{25}
\end{equation*}
$$

for $i, j=1,2$. We can write equations (6)-(8) in the frames $\left\{X_{1}, X_{2}\right\}$ and $\left\{\xi_{1}, \xi_{2}\right\}$, in terms of the Gaussian curvature K of M^{2} and the mean curvature vector H of f, as

$$
\begin{gather*}
K=k_{1}\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)+k_{2} \lambda_{1} \lambda_{2}+|H|^{2}, \tag{26}\\
\nabla \frac{1}{X_{i}} H=\left(\kappa \lambda_{j}-k_{1}\right) \xi_{i}, \quad 1 \leq i \neq j \leq 2, \tag{27}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{R}^{\perp}\left(X_{1}, X_{2}\right)=\kappa\left(\xi_{1} \wedge \xi_{2}\right), \tag{28}
\end{equation*}
$$

whereas equations (3)-(5) become

$$
\begin{gather*}
\left(\nabla_{X_{i}} R\right) X_{j}=\left\langle\xi_{j}, H\right\rangle X_{i}+\delta_{i j} S^{t} H, \tag{29}\\
\left(\nabla_{X_{i}} S\right) X_{j}=\delta_{i j}\left(T-\lambda_{j} I\right) H \tag{30}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X_{i}} T\right) \xi=-\langle\xi, H\rangle \xi_{i}-\left\langle\xi, \xi_{i}\right\rangle H \tag{31}
\end{equation*}
$$

for $i, j=1,2$ and all $\xi \in \Gamma\left(N_{f} M^{2}\right)$. Define the Christoffel symbols Γ_{11}^{2} and Γ_{22}^{1} by

$$
\begin{equation*}
\nabla_{X_{1}} X_{1}=\Gamma_{11}^{2} X_{2} \quad \text { and } \quad \nabla_{X_{2}} X_{2}=\Gamma_{22}^{1} X_{1} \tag{32}
\end{equation*}
$$

Substituting

$$
\begin{aligned}
\left(\nabla_{X_{i}} R\right) X_{j} & =\nabla_{X_{i}} R X_{j}-R \nabla_{X_{i}} X_{j} \\
& =X_{i}\left(\lambda_{j}\right) X_{j}+\left(\lambda_{j} I-R\right) \nabla_{X_{i}} X_{j}
\end{aligned}
$$

into (29) yields

$$
\begin{equation*}
X_{i}\left(\lambda_{j}\right)=\delta_{i j} 2\left\langle\xi_{i}, H\right\rangle \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\xi_{i}, H\right\rangle=\left(\lambda_{j}-\lambda_{i}\right) \Gamma_{j j}^{i}, \quad 1 \leq i \neq j \leq 2 . \tag{34}
\end{equation*}
$$

On the other hand, from (30) we get

$$
\begin{equation*}
\nabla_{X_{i}}^{\perp} \xi_{j}=-\Gamma_{i i}^{j} \xi_{i}, \quad 1 \leq i \neq j \leq 2 . \tag{35}
\end{equation*}
$$

Using (27), (32), (33) and (35) we obtain

$$
\begin{aligned}
\mathcal{R}^{\perp}\left(X_{1}, X_{2}\right) H= & \nabla_{X_{1}}^{\perp} \nabla_{X_{2}}^{\perp} H-\nabla_{X_{2}}^{\perp} \nabla_{X_{1}}^{\perp} H-\nabla_{\left[X_{1}, X_{2}\right]}^{\perp} H \\
= & \nabla_{X_{1}}^{\perp}\left(\kappa \lambda_{1}-k_{1}\right) \xi_{2}-\nabla_{X_{2}}^{\perp}\left(\kappa \lambda_{2}-k_{1}\right) \xi_{1}+\left(\kappa \lambda_{2}-k_{1}\right) \Gamma_{11}^{2} \xi_{1} \\
& -\left(\kappa \lambda_{1}-k_{1}\right) \Gamma_{22}^{1} \xi_{2} \\
= & \kappa X_{1}\left(\lambda_{1}\right) \xi_{2}+\left(\kappa \lambda_{1}-k_{1}\right) \nabla_{X_{1}}^{\perp} \xi_{2}-\kappa X_{2}\left(\lambda_{2}\right) \xi_{1}-\left(\kappa \lambda_{2}-k_{1}\right) \nabla_{X_{2}}^{\perp} \xi_{1} \\
& +\left(\kappa \lambda_{2}-k_{1}\right) \Gamma_{11}^{2} \xi_{1}-\left(\kappa \lambda_{1}-k_{1}\right) \Gamma_{22}^{1} \xi_{2} \\
= & 2 \kappa\left\langle\xi_{1}, H\right\rangle \xi_{2}-\left(\kappa \lambda_{1}-k_{1}\right) \Gamma_{11}^{2} \xi_{1}-2 \kappa\left\langle\xi_{2}, H\right\rangle \xi_{1}+\left(\kappa \lambda_{2}-k_{1}\right) \Gamma_{22}^{1} \xi_{2} \\
& +\left(\kappa \lambda_{2}-k_{1}\right) \Gamma_{11}^{2} \xi_{1}-\left(\kappa \lambda_{1}-k_{1}\right) \Gamma_{22}^{1} \xi_{2} \\
= & -\kappa\left(2\left\langle\xi_{2}, H\right\rangle+\left(\lambda_{1}-\lambda_{2}\right) \Gamma_{11}^{2}\right) \xi_{1}+\kappa\left(2\left\langle\xi_{1}, H\right\rangle+\left(\lambda_{2}-\lambda_{1}\right) \Gamma_{22}^{1}\right) \xi_{2} .
\end{aligned}
$$

In view of (34), the above equation becomes

$$
\mathcal{R}^{\perp}\left(X_{1}, X_{2}\right) H=-3 \kappa\left(\left\langle\xi_{2}, H\right\rangle \xi_{1}-\left\langle\xi_{1}, H\right\rangle \xi_{2}\right) .
$$

Comparing the preceding equation with

$$
\mathcal{R}^{\perp}\left(X_{1}, X_{2}\right) H=\kappa\left(\left\langle\xi_{2}, H\right\rangle \xi_{1}-\left\langle\xi_{1}, H\right\rangle \xi_{2}\right)
$$

which follows from (28), and using that $\kappa \neq 0$, we get $\left\langle\xi_{1}, H\right\rangle=0=\left\langle\xi_{2}\right.$, H , i.e.,

$$
\begin{equation*}
H \in \Gamma\left(S(T M)^{\perp}\right) \tag{36}
\end{equation*}
$$

In particular, we obtain from (33) that λ_{1} and λ_{2} assume constant values in $(0,1)$ everywhere on \mathcal{U}. If \mathcal{U} were a proper subset of M^{2}, then λ_{1} and λ_{2} would assume the same values on the boundary of \mathcal{U}, hence $\lambda_{i}\left(1-\lambda_{i}\right) \neq 0$ on an open connected neighborhood of $\overline{\mathcal{U}}, 1 \leq i \leq 2$, contradicting the maximality of \mathcal{U} as an open connected neighborhood of x where $\operatorname{ker} S=\{0\}$ and $\lambda_{1} \neq \lambda_{2}$. It follows that $\mathcal{U}=M^{2}$.

We obtain from (34) and (36) that $\Gamma_{11}^{2}=0=\Gamma_{22}^{1}$. In particular, we have $K=0$ everywhere, and then (26) gives

$$
\begin{equation*}
|H|^{2}=-k_{1}\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)-k_{2} \lambda_{1} \lambda_{2} . \tag{37}
\end{equation*}
$$

Set $\xi=H$ in (31). By using (25), (27) and (37), we obtain

$$
\begin{equation*}
\nabla_{X_{i}}^{\perp} T H=k_{2} \lambda_{j} \xi_{i}, \quad 1 \leq i \neq j \leq 2, \tag{38}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\nabla_{X_{i}}^{\perp}(I-T) H=-\left(1-\lambda_{j}\right) k_{1} \xi_{i}, \quad 1 \leq i \neq j \leq 2 . \tag{39}
\end{equation*}
$$

In particular, bearing in mind (36) and the fact that T leaves $S(T M)$ invariant, as follows from the second equation in (2), we obtain that both $T H$ and $(I-T) H$ have constant length on M^{2}, hence either $T H=0, T H=H$ or both $T H$ and $(I-T) H$ are nonzero everywhere. Therefore $L_{1}=U \cap\{H\}^{\perp}=U \cap N_{1}^{\perp}$ and $L_{2}=V \cap\{H\}^{\perp}=V \cap N_{1}^{\perp}$ have constant dimensions on M^{2}, which are, accordingly, (rank $U-1$, rank V), (rank U, rank $V-1$) or (rank $U-1$, rank $V-1$). Moreover, equations (27) and (36) imply that $\nabla_{T M}^{\perp} L_{i} \subset\{H\}^{\perp}$ for $i=1,2$. Hence, the assumptions of Proposition 1 are satisfied, and we conclude that there are three corresponding possibilities for the pairs (n_{1}, n_{2}) of substantial values of n_{1} and n_{2} : $(3,2),(2,3)$ and $(3,3)$.

We first consider the case $\left(n_{1}, n_{2}\right)=(3,2)$. This is the case in which $T H=0$, and hence $k_{2}=0$ by (38). Thus we have $k_{1}<0$ from (37), and we may assume that f takes values in $\mathbb{H}_{k}^{3} \times \mathbb{R}^{2}$, with $k=k_{1}<0$.

Set $F=h \circ f$, where $h: \mathbb{H}_{k}^{3} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{1}^{6}$ denotes the inclusion. By (9), the second fundamental form of F is given by

$$
\alpha_{F}(X, Y)=\langle X, Y\rangle h_{*} H+\frac{1}{r}\langle(I-R) X, Y\rangle v,
$$

where $r=(-k)^{-1 / 2}$ and $v=\frac{1}{r} \tilde{\pi}_{1} \circ F$. Therefore

$$
\begin{equation*}
\alpha_{F}\left(X_{i}, X_{j}\right)=\delta_{i j}\left(h_{*} H+\frac{1}{r}\left(1-\lambda_{i}\right) v\right):=\delta_{i j} Z_{i}=\tilde{\nabla}_{X_{j}} F_{*} X_{i}, \quad 1 \leq i, j \leq 2 . \tag{40}
\end{equation*}
$$

Notice that

$$
\left\langle Z_{1}, Z_{2}\right\rangle=|H|^{2}+k\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)=0
$$

by (37), and that

$$
\begin{equation*}
\left\langle Z_{i}, Z_{i}\right\rangle=k\left(\lambda_{j}-\lambda_{i}\right)\left(1-\lambda_{i}\right), \quad 1 \leq i \neq j \leq 2 . \tag{41}
\end{equation*}
$$

Moreover, since

$$
\tilde{\pi}_{2}\left(h_{*} H\right)=h_{*} \pi_{2} H=h_{*}\left(f_{*} S^{t} H+T H\right)=0,
$$

it follows that

$$
\tilde{\pi}_{2} Z_{i}=0, \quad 1 \leq i \leq 2
$$

Using (27), we have

$$
\begin{aligned}
\tilde{\nabla}_{X_{i}} h_{*} H & =h_{*} \hat{\nabla}_{X_{i}} H+\alpha_{h}\left(f_{*} X_{i}, H\right) \\
& =-F_{*} A_{H}^{f} X_{i}+h_{*} \nabla_{X_{i}}^{\perp} H+\frac{1}{r}\left\langle\pi_{1} f_{*} X_{i}, H\right\rangle v \\
& =-|H|^{2} F_{*} X_{i}-k\left(1-\lambda_{j}\right) h_{*} \xi_{i}+\frac{1}{r}\left\langle f_{*}(I-R) X_{i}-S X_{i}, H\right\rangle v \\
& =k\left(1-\lambda_{j}\right)\left(\left(1-\lambda_{i}\right) F_{*} X_{i}-h_{*} \xi_{i}\right), \quad 1 \leq i \neq j \leq 2 .
\end{aligned}
$$

On the other hand, by (10) we have

$$
\tilde{\nabla}_{X_{i}} v=\frac{1}{r}\left(F_{*}(I-R) X_{i}-h_{*} S X_{i}\right)=\frac{1}{r}\left(\left(1-\lambda_{i}\right) F_{*} X_{i}-h_{*} \xi_{i}\right) .
$$

Therefore

$$
\begin{equation*}
\tilde{\nabla}_{X_{i}} Z_{j}=0, \text { if } i \neq j \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\nabla}_{X_{i}} Z_{i}=k\left(\lambda_{i}-\lambda_{j}\right)\left(\left(1-\lambda_{i}\right) F_{*} X_{i}-h_{*} \xi_{i}\right), \quad 1 \leq i \neq j \leq 2 . \tag{43}
\end{equation*}
$$

Also, using that

$$
\nabla_{X_{i}}^{\perp} \xi_{i}=-\frac{1}{|H|^{2}}\left\langle\nabla_{X_{i}} H, \xi_{i}\right\rangle H=-\lambda_{i} H
$$

as follows from (24), (27) and (37), we obtain that

$$
\begin{align*}
\tilde{\nabla}_{X_{i}} h_{*} \xi_{j} & =h_{*} \hat{\nabla}_{X_{i}} \xi_{j}+\alpha_{h}\left(f_{*} X_{i}, \xi_{j}\right) \\
& =-F_{*} A_{\xi_{j}}^{f} X_{i}+h_{*} \nabla \nabla_{X_{i}}^{\perp} \xi_{j}+\frac{1}{r}\left\langle\pi_{1} f_{*} X_{i}, \xi_{j}\right\rangle \nu \\
& =-\delta_{i j} \lambda_{i} Z_{i}, \quad 1 \leq i, j \leq 2 . \tag{44}
\end{align*}
$$

It follows from (40), (42), (43) and (44) that the subspaces $V_{i}=\operatorname{span}\left\{F_{*} X_{i}, Z_{i}, h_{*} \xi_{i}\right\}, 1 \leq$ $i \leq 2$, are constant. Moreover, they are orthogonal to each other, hence \mathbb{R}_{1}^{6} splits orthogonally as $\mathbb{R}_{1}^{6}=V_{1} \oplus V_{2}$.

Since $\Gamma_{11}^{2}=\Gamma_{22}^{1}=0$, for each $x \in M^{2}$ there exists an isometry $\psi: W=I_{1} \times I_{2} \rightarrow U_{x}$ of a product of open intervals $I_{j} \subset \mathbb{R}, 1 \leq j \leq 2$, onto an open neighborhood of x, such that $\psi_{*} \frac{\partial}{\partial s}=X_{1}$ and $\psi_{*} \frac{\partial}{\partial t}=X_{2}$, where s and t are the standard coordinates on I_{1} and I_{2}, respectively. Write $g=F \circ \psi$. In terms of the coordinates (s, t), the fact that $\alpha_{F}\left(X_{1}, X_{2}\right)=0$ translates into

$$
\frac{\partial^{2} g}{\partial s \partial t}=0,
$$

which implies that there exist smooth curves $\gamma_{1}: I_{1} \rightarrow V_{1}$ and $\gamma_{2}: I_{2} \rightarrow V_{2}$ such that $g=$ $\gamma_{1} \times \gamma_{2}$. By (40), (43) and (44), each γ_{i} is a helix in V_{i} with curvature vector $\gamma_{i}^{\prime \prime}=Z_{i}$ and binormal vector $h_{*}\left(\xi_{i} /\left|\xi_{i}\right|\right), 1 \leq i \leq 2$. It follows from (41) that (14) holds for γ_{i}, whereas (41) and (44) imply that the second Frenet curvature of γ_{i} satisfies (15), i.e.,

$$
\tau_{i}^{2}=\frac{\lambda_{i}^{2}\left|\left\langle Z_{i}, Z_{i}\right\rangle\right|}{\left\langle\xi_{i}, \xi_{i}\right\rangle}=-k \lambda_{i}\left|\lambda_{j}-\lambda_{i}\right|, \quad 1 \leq i \neq j \leq 2
$$

Therefore, the helices γ_{1} and γ_{2} are precisely, up to congruence, those given in Example 2. Moreover, since the curvature vector Z_{i} along γ_{i} spans a two-dimensional subspace of V_{i} orthogonal to the axis of γ_{i} and $\tilde{\pi}_{2} Z_{i}=Z_{i}, 1 \leq i \leq 2$, it follows that the subspace \mathbb{R}^{2} in the orthogonal decomposition $\mathbb{R}_{1}^{6}=\mathbb{R}_{1}^{4} \oplus \mathbb{R}^{2}$ adapted to $\mathbb{H}_{k}^{3} \times \mathbb{R}^{2}$ is spanned by the axes of γ_{1} and γ_{2}. We conclude that g is (the restriction to W of) an isometric immersion as in Example 2.

We have shown that, for each $x \in M^{2}$, there exists an open neighborhood U_{x} of x such that $f\left(U_{x}\right)$ is contained in a surface as in Example 2 in a totally geodesic $\mathbb{Q}_{k_{1}}^{3} \times \mathbb{R}^{2} \subset$ $\mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{R}^{n_{2}}$. A standard connectedness argument now shows that f is as in the statement.

The case $\left(n_{1}, n_{2}\right)=(2,3)$ is entirely similar and leads to the same conclusion with the factors interchanged. Let us consider the case $\left(n_{1}, n_{2}\right)=(3,3)$, so we may now assume that f takes values in $\mathbb{Q}_{k_{1}}^{3} \times \mathbb{Q}_{k_{2}}^{3}$. Here both $T H$ and $(I-T) H$ are nonzero everywhere, and we can choose unit vector fields $\xi_{3} \in \operatorname{ker} T, \xi_{4} \in \operatorname{ker}(I-T)$ and write $H=\rho_{3} \xi_{3}+\rho_{4} \xi_{4}$, where $\rho_{k}=\left\langle\xi_{k}, H\right\rangle \neq 0$ for $k=3$, 4. Applying (31) to $\xi=\xi_{k}$, with $k=3$, 4, we get

$$
T \nabla \frac{X_{i}}{\perp} \xi_{3}=\rho_{3} \xi_{i} \quad \text { and } \quad(I-T) \nabla \nabla_{X_{i}}^{\perp} \xi_{4}=-\rho_{4} \xi_{i}
$$

for $i=1,2$. Therefore, for $i=1,2$ we obtain

$$
\begin{equation*}
\nabla_{X_{i}}^{\perp} \xi_{3}=\frac{\rho_{3}}{1-\lambda_{i}} \xi_{i} \quad \text { and } \quad \nabla_{X_{i}}^{\perp} \xi_{4}=-\frac{\rho_{4}}{\lambda_{i}} \xi_{i} \tag{45}
\end{equation*}
$$

Using (24), the preceding equations yield

$$
\begin{equation*}
\nabla_{X_{i}}^{\perp} \xi_{i}=-\lambda_{i} \rho_{3} \xi_{3}+\left(1-\lambda_{i}\right) \rho_{4} \xi_{4}, \quad 1 \leq i \leq 2 . \tag{46}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
(I-T) H=\rho_{3} \xi_{3} \quad \text { and } \quad T H=\rho_{4} \xi_{4} \tag{47}
\end{equation*}
$$

Thus, combining (38), (39) and (47) we get

$$
\begin{equation*}
\rho_{3}^{2}=-k_{1}\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right) \quad \text { and } \quad \rho_{4}^{2}=-k_{2} \lambda_{1} \lambda_{2} . \tag{48}
\end{equation*}
$$

In particular, we must have $k_{1}, k_{2}<0$, so f takes values in $\mathbb{H}_{k_{1}}^{3} \times \mathbb{H}_{k_{2}}^{3}$.
Set $F=h \circ f$, where $h: \mathbb{H}_{k_{1}}^{3} \times \mathbb{H}_{k_{2}}^{3} \rightarrow \mathbb{R}_{1}^{4} \times \mathbb{R}_{1}^{4}=\mathbb{R}_{2}^{8}$ denotes the inclusion. By (9), the second fundamental form of F is given by

$$
\alpha_{F}(X, Y)=\langle X, Y\rangle h_{*} H+\frac{1}{r_{1}}\langle(I-R) X, Y\rangle \nu_{1}+\frac{1}{r_{2}}\langle R X, Y\rangle \nu_{2},
$$

where $r_{i}=\left(-k_{i}\right)^{-1 / 2}$ and $v_{i}=\frac{1}{r_{i}} \tilde{\pi}_{i} \circ F, 1 \leq i \leq 2$. Therefore

$$
\begin{equation*}
\alpha_{F}\left(X_{i}, X_{j}\right)=\delta_{i j}\left(h_{*} H+\frac{1}{r_{1}}\left(1-\lambda_{i}\right) \nu_{1}+\frac{1}{r_{2}} \lambda_{i} \nu_{2}\right):=\delta_{i j} Z_{i}=\tilde{\nabla}_{X_{j}} F_{*} X_{i}, \quad 1 \leq i \leq 2 . \tag{49}
\end{equation*}
$$

Notice that

$$
\left\langle Z_{i}, Z_{j}\right\rangle=|H|^{2}+k_{1}\left(1-\lambda_{i}\right)\left(1-\lambda_{j}\right)+k_{2} \lambda_{i} \lambda_{j}, \quad 1 \leq i, j \leq 2 .
$$

It follows from (37) that

$$
\left\langle Z_{1}, Z_{2}\right\rangle=0
$$

and

$$
\begin{equation*}
\left\langle Z_{i}, Z_{i}\right\rangle=\left(\lambda_{i}-\lambda_{j}\right)\left(\kappa \lambda_{i}-k_{1}\right), \quad 1 \leq i \neq j \leq 2 . \tag{50}
\end{equation*}
$$

Using (27), we obtain

$$
\begin{aligned}
\tilde{\nabla}_{X_{i}} h_{*} H & =h_{*} \hat{\nabla}_{X_{i}} H+\alpha_{h}\left(f_{*} X_{i}, H\right) \\
& =-F_{*} A_{H}^{f} X_{i}+h_{*} \nabla_{X_{i}} H \\
& =-|H|^{2} F_{*} X_{i}+\left(\kappa \lambda_{j}-k_{1}\right) h_{*} \xi_{i} .
\end{aligned}
$$

On the other hand, by (10) and (11) we have

$$
\tilde{\nabla}_{X_{i}} \nu_{1}=\frac{1}{r_{1}}\left(F_{*}(I-R) X_{i}-h_{*} S X_{i}\right)=\frac{1}{r_{1}}\left(\left(1-\lambda_{i}\right) F_{*} X_{i}-h_{*} \xi_{i}\right)
$$

and

$$
\tilde{\nabla}_{X_{i}} \nu_{2}=\frac{1}{r_{2}}\left(F_{*} R X_{i}+h_{*} S X_{i}\right)=\frac{1}{r_{2}}\left(\lambda_{i} F_{*} X_{i}+h_{*} \xi_{i}\right) .
$$

Using (37), it follows that

$$
\tilde{\nabla}_{X_{i}} Z_{j}=0, \text { if } i \neq j
$$

whereas

$$
\begin{equation*}
\tilde{\nabla}_{X_{i}} Z_{i}=-\left\langle Z_{i}, Z_{i}\right\rangle F_{*} X_{i}+\kappa\left(\lambda_{j}-\lambda_{i}\right) h_{*} \xi_{i}, \quad 1 \leq i \neq j \leq 2 \tag{51}
\end{equation*}
$$

Also,

$$
\begin{align*}
\tilde{\nabla}_{X_{i}} h_{*} \xi_{j} & =h_{*} \hat{\nabla}_{X_{i}} \xi_{j}+\alpha_{h}\left(f_{*} X_{i}, \xi_{j}\right) \\
& =-F_{*} A_{\xi_{j}}^{f} X_{i}+h_{*} \nabla \frac{\perp}{X_{i}} \xi_{j}+\frac{1}{r_{1}}\left\langle\pi_{1} f_{*} X_{i}, \xi_{j}\right\rangle \nu_{1}+\frac{1}{r_{2}}\left\langle\pi_{2} f_{*} X_{i}, \xi_{j}\right\rangle \nu_{2} \\
& =\delta_{i j}\left(-\lambda_{i} Z_{i}+\rho_{4} h_{*} \xi_{4}+\frac{\lambda_{i}}{r_{2}} \nu_{2}\right), \tag{52}
\end{align*}
$$

where we have used (46).
If $\kappa \lambda_{i}-k_{1} \neq 0$, that is, $\left\langle Z_{i}, Z_{i}\right\rangle \neq 0$, define

$$
W_{i}=\tilde{\nabla}_{X_{i}} h_{*} \xi_{i}-\frac{\left\langle\tilde{\nabla}_{X_{i}} h_{*} \xi_{i}, Z_{i}\right\rangle}{\left\langle Z_{i}, Z_{i}\right\rangle} Z_{i}=\frac{-k_{2} \lambda_{i}}{\kappa \lambda_{i}-k_{1}} Z_{i}+\rho_{4} h_{*} \xi_{4}+\frac{\lambda_{i}}{r_{2}} \nu_{2}, \quad 1 \leq i \leq 2 .
$$

Then the vectors $F_{*} X_{i}, Z_{i}, h_{*} \xi_{i}$ and W_{i} are pairwise orthogonal and the subspaces $V_{i}=$ $\operatorname{span}\left\{F_{*} X_{i}, Z_{i}, h_{*} \xi_{i}, W_{i}\right\}, 1 \leq i \leq 2$, are orthogonal to each other. Using the second equations in (48) and (45), we obtain that $\tilde{\nabla}_{X_{i}} W_{j}=0$ and

$$
\begin{equation*}
\tilde{\nabla}_{X_{i}} W_{i}=\frac{k_{1} k_{2}\left(\lambda_{i}-\lambda_{j}\right)}{\kappa \lambda_{i}-k_{1}} h_{*} \xi_{i}, \quad 1 \leq i \neq j \leq 2 . \tag{53}
\end{equation*}
$$

It follows that the subspaces V_{1} and V_{2} are constant, and that \mathbb{R}_{2}^{8} also splits orthogonally as $\mathbb{R}_{2}^{8}=V_{1} \oplus V_{2}$.

If $\kappa \lambda_{i}-k_{1}=0$, define

$$
\zeta_{i}=\frac{\kappa}{2 k_{1} k_{2}\left(\kappa \lambda_{j}-k_{1}\right)}\left(-2 \kappa \tilde{\nabla}_{X_{i}} h_{*} \xi_{i}+\left(k_{2}-k_{1}\right) Z_{i}\right), \quad 1 \leq i \neq j \leq 2 .
$$

Then $\left\langle\zeta_{i}, \zeta_{i}\right\rangle=0,\left\langle\zeta_{i}, Z_{i}\right\rangle=1$ and $\zeta_{i} \in \operatorname{span}\left\{F_{*} X_{i}, h_{*} \xi_{i}\right\}^{\perp}$. Moreover, the subspaces $V_{i}=$ $\operatorname{span}\left\{F_{*} X_{i}, Z_{i}, h_{*} \xi_{i}, \zeta_{i}\right\}, 1 \leq i \leq 2$, are orthogonal to each other. Furthermore, since

$$
\begin{equation*}
\tilde{\nabla}_{X_{i}} \zeta_{i}=\frac{k_{1}^{2}-k_{2}^{2}}{2 k_{1} k_{2}} h_{*} \xi_{i} \tag{54}
\end{equation*}
$$

it follows that V_{1} and V_{2} are constant and that \mathbb{R}_{2}^{8} also splits orthogonally as $\mathbb{R}_{2}^{8}=V_{1} \oplus V_{2}$.
Since $\Gamma_{11}^{2}=\Gamma_{22}^{1}=0$, for each $x \in M^{2}$ there exists an isometry $\psi: W=I_{1} \times I_{2} \rightarrow U_{x}$ of a product of open intervals $I_{j} \subset \mathbb{R}, 1 \leq j \leq 2$, onto a neighborhood of x, such that $\psi_{*} \frac{\partial}{\partial s}=X_{1}$ and $\psi_{*} \frac{\partial}{\partial t}=X_{2}$, where s and t are the standard coordinates on I_{1} and I_{2}, respectively. Write $g=F \circ \psi$. In terms of the coordinates (s, t), the fact that $\alpha_{F}\left(X_{1}, X_{2}\right)=0$ translates into

$$
\frac{\partial^{2} g}{\partial s \partial t}=0
$$

which implies that there exist smooth curves $\gamma_{1}: I_{1} \rightarrow V_{1}$ and $\gamma_{2}: I_{2} \rightarrow V_{2}$ such that $g=$ $\gamma_{1} \times \gamma_{2}$.

If $\kappa \lambda_{i}-k_{1} \neq 0$, it follows from (49), (51), (52) and (53) that γ_{i} is a unit-speed space like curve in V_{i} with constant Frenet curvatures $\hat{k}_{\ell}^{i}, 1 \leq \ell \leq 3$, and Frenet frame $\left\{F_{*} X_{i}, \hat{Z}_{i}, h_{*} \hat{\xi}_{i}, \hat{W}_{i}\right\}$, where $\hat{Z}_{i}, \hat{\xi}_{i}$ and \hat{W}_{i} denote the unit vectors in the direction of Z_{i}, ξ_{i} and W_{i}, respectively. Moreover, by (49) and (50) we have

$$
\left(\hat{k}_{1}^{i}\right)^{2}=\left|\left\langle Z_{i}, Z_{i}\right\rangle\right|=\left|\left(\lambda_{i}-\lambda_{j}\right)\left(\kappa \lambda_{i}-k_{1}\right)\right|,
$$

whereas from (43) and (53) we obtain, respectively, that

$$
\left(\hat{k}_{2}^{i}\right)^{2}=\frac{\kappa^{2}\left(\lambda_{j}-\lambda_{i}\right)^{2}\left\langle\xi_{i}, \xi_{i}\right\rangle}{\left|\left\langle Z_{i}, Z_{i}\right\rangle\right|}=\frac{\kappa^{2}\left|\lambda_{j}-\lambda_{i}\right| \lambda_{i}\left(1-\lambda_{i}\right)}{\left|\kappa \lambda_{i}-k_{1}\right|}
$$

and

$$
\left(\hat{k}_{3}^{i}\right)^{2}=\frac{k_{1}^{2} k_{2}^{2}\left(\lambda_{i}-\lambda_{j}\right)^{2}\left\langle\xi_{i}, \xi_{i}\right\rangle}{\left(\kappa \lambda_{i}-k_{1}\right)^{2}\left|\left\langle W_{i}, W_{i}\right\rangle\right|}=\frac{k_{1} k_{2}\left|\lambda_{i}-\lambda_{j}\right|}{\left|\kappa \lambda_{i}-k_{1}\right|}, \quad 1 \leq j \neq i \leq 2 .
$$

If $\kappa \lambda_{i}-k_{1}=0$, it follows from (49), (51), (52) and (54) that γ_{i} is a unit-speed space like curve in V_{i} with light-like curvature vector, constant Frenet curvatures $\tilde{k}_{\ell}^{i}, 1 \leq \ell \leq 2$, and Frenet frame $\left\{F_{*} X_{i}, Z_{i}, h_{*} \hat{\xi}_{i}, \zeta_{i}\right\}$, where $\hat{\xi}_{i}$ is the unit vector in the direction of ξ_{i}. Moreover, from (51) we obtain that

$$
\left(\tilde{k}_{1}^{i}\right)^{2}=\frac{k_{1} k_{2}\left(\kappa \lambda_{j}-k_{1}\right)^{2}}{\kappa^{2}}
$$

whereas from (54) it follows that

$$
\left(\tilde{k}_{2}^{i}\right)^{2}=\left\langle\xi_{i}, \xi_{i}\right\rangle \frac{\left(k_{1}^{2}-k_{2}^{2}\right)^{2}}{4 k_{1}^{2} k_{2}^{2}}=\frac{\left(k_{1}-k_{2}\right)^{2}}{4 k_{1} k_{2}} .
$$

Comparying with (19), (20) and (21) in the first case, and with (22) and (23) in the second, we see that γ_{1} and γ_{2} are precisely, up to congruence, the curves given in Example 3.

Now observe that

$$
\tilde{\pi}_{2} F_{*} \xi_{i}=h_{*} \pi_{2} f_{*} \xi_{i}=h_{*}\left(f_{*} \xi_{i}+S X_{i}\right)=\lambda_{i} F_{*} X_{i}+h_{*} \xi_{i},
$$

whereas

$$
\tilde{\pi}_{2} h_{*} \xi_{i}=h_{*} \pi_{2} \xi_{i}=h_{*}\left(f_{*} S^{t} \xi_{i}+T \xi_{i}\right)=\left(1-\lambda_{i}\right)\left(\lambda_{i} F_{*} X_{i}+h_{*} \xi_{i}\right),
$$

where we have used that

$$
S^{t} \xi_{i}=S^{t} S X_{i}=R(I-R) X_{i}=\lambda_{i}\left(1-\lambda_{i}\right) X_{i}
$$

and

$$
T \xi_{i}=T S X_{i}=S(I-R) X_{i}=\left(1-\lambda_{i}\right) S X_{i}=\left(1-\lambda_{i}\right) \xi_{i} .
$$

On the other hand,

$$
\tilde{\pi}_{2} Z_{i}=h_{*} \pi_{2} H+\frac{\lambda_{i}}{r_{2}} \pi_{2} v_{2}=\rho_{4} h_{*} \xi_{4}+\frac{\lambda_{i}}{r_{2}} v_{2}
$$

Since

$$
\tilde{\pi}_{2} h_{*} \xi_{4}=h_{*} \pi_{2} \xi_{4}=h_{*}\left(f_{*} S^{t} \xi_{4}+T \xi_{4}\right)=h_{*} \xi_{4},
$$

we obtain that

$$
\tilde{\pi}_{2}\left(\rho_{4} h_{*} \xi_{4}+\frac{\lambda_{i}}{r_{2}} \nu_{2}\right)=\rho_{4} h_{*} \xi_{4}+\frac{\lambda_{i}}{r_{2}} \nu_{2} .
$$

If $\left\langle Z_{i}, Z_{i}\right\rangle \neq 0$, it follows that $\tilde{\pi}_{2} W_{i}$ and $\tilde{\pi}_{2} Z_{i}$ are colinear. Similarly, $\tilde{\pi}_{2} \zeta_{i}$ and $\tilde{\pi}_{2} Z_{i}$ are colinear if $\left\langle Z_{i}, Z_{i}\right\rangle=0$. It follows that $\tilde{\pi}_{2}\left(V_{i}\right)$ is spanned by

$$
\lambda_{i} F_{*} X_{i}+h_{*} \xi_{i} \quad \text { and } \quad \rho_{4} h_{*} \xi_{4}+\frac{\lambda_{i}}{r_{2}} \nu_{2} .
$$

Therefore, the subspaces $\tilde{\pi}_{2}\left(V_{1}\right)$ and $\tilde{\pi}_{2}\left(V_{2}\right)$ (and hence also $\tilde{\pi}_{1}\left(V_{1}\right)$ and $\tilde{\pi}_{1}\left(V_{2}\right)$) are mutually orthogonal, thus the first (respectively, second) factor \mathbb{R}_{1}^{4} in the decomposition $\mathbb{R}_{1}^{4} \times \mathbb{R}_{1}^{4}$ adapted to the product $\mathbb{H}_{k_{1}}^{3} \times \mathbb{H}_{k_{2}}^{3}$ splits orthogonally as $\mathbb{R}_{1}^{4}=\tilde{\pi}_{1}\left(V_{1}\right) \oplus \tilde{\pi}_{1}\left(V_{2}\right)$ (respectively, $\left.\mathbb{R}_{1}^{4}=\tilde{\pi}_{2}\left(V_{1}\right) \oplus \tilde{\pi}_{2}\left(V_{2}\right)\right)$. We conclude that g is (the restriction to W of) an isometric immersion as in Example 3, and the conclusion follows as in the preceding case.
5. The main result. We are now in a position to state and prove our main result.

THEOREM 5. Let $f: M^{2} \rightarrow \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}, k_{1}+k_{2} \neq 0$, be an umbilical non totally geodesic isometric immersion. Then one of the following possibilities holds:
(i) f is an umbilical isometric immersion into a slice of $\mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$;
(ii) there exist umbilical isometric immersions $f_{i}: M^{2} \rightarrow \mathbb{Q}_{\tilde{k}_{i}}^{n_{i}}, 1 \leq i \leq 2$, with $\tilde{k}_{1}=$ $k_{1} \cos ^{2} \theta$ and $\tilde{k}_{2}=k_{2} \sin ^{2} \theta$ for some $\theta \in(0, \pi / 2)$, such that $f=\left(\cos \theta f_{1}, \sin \theta f_{2}\right) ;$
(iii) after interchanging the factors, if necessary, we have $k_{2}=0, n_{1} \geq 3, n_{2} \geq 2$ and $f=j \circ \tilde{f}$, where $j: \mathbb{Q}_{k_{1}}^{3} \times \mathbb{R}^{2} \rightarrow \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{R}^{n_{2}}$ and $\tilde{f}: M^{2} \rightarrow \mathbb{Q}_{k_{1}}^{3} \times \mathbb{R}^{2}$ are isometric immersions such that j is totally geodesic and $\tilde{f}\left(M^{2}\right)$ is an open subset of a surface as in Example 2;
(iv) $k_{i}<0$ and $n_{i} \geq 3,1 \leq i \leq 2$, and $f=j \circ \tilde{f}$, where $j: \mathbb{Q}_{k_{1}}^{3} \times \mathbb{Q}_{k_{2}}^{3} \rightarrow \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$ and $\tilde{f}: M^{2} \rightarrow \mathbb{Q}_{k_{1}}^{3} \times \mathbb{Q}_{k_{2}}^{3}$ are isometric immersions such that j is totally geodesic and $\tilde{f}\left(M^{2}\right)$ is an open subset of a surface as in Example 3;
(v) after possibly reordering the factors, we have $k_{1}>0$ (respectively, $k_{1} \leq 0$) and $f \circ \tilde{\Pi}=j \circ \Pi \circ \tilde{f}$ (respectively, $f=j \circ \Pi \circ \tilde{f}$), where $\tilde{\Pi}: \tilde{M}^{2} \rightarrow M^{2}$ is the universal covering of $M^{2}, \tilde{f}: \tilde{M}^{2} \rightarrow \mathbb{R} \times \mathbb{Q}_{k_{2}}^{2+\delta}$ (respectively, $\tilde{f}: M^{2} \rightarrow \mathbb{R} \times \mathbb{Q}_{k_{2}}^{2+\delta}$) is an umbilical isometric immersion with $\delta \in\{0,1\}, j: \mathbb{Q}_{k_{1}}^{1} \times \mathbb{Q}_{k_{2}}^{2+\delta} \rightarrow \mathbb{Q}_{k_{1}}^{n_{1}} \times \mathbb{Q}_{k_{2}}^{n_{2}}$ is totally geodesic and $\Pi: \mathbb{R} \times \mathbb{Q}_{k_{2}}^{2+\delta} \rightarrow \mathbb{Q}_{k_{1}}^{1} \times \mathbb{Q}_{k_{2}}^{2+\delta}$ is a locally isometric covering map (respectively, isometry).
Proof. If S vanishes everywhere on M^{2}, then f is as in (i) by Lemma 8.1 in [3]. If $\operatorname{ker} S=\{0\}$ at some point $x \in M^{2}$, then f is as in (ii), (iii) or (iv) by Lemma 4. Then, we are left with the case in which there is an open subset $\mathcal{U} \subset M^{2}$ where $\operatorname{ker} S$ has rank one. In this case, the argument in the proof of Theorem 1.4 of [3] applies and shows that f is as in (v).

References

[1] G. Calvaruso, D. Kowalczyk and J. Van der Veken, On extrinsically symmetric hypersurfaces in $\mathbb{H}^{n} \times \mathbb{R}$, Bull. Aust. Math. Soc. 82 (2010), 390-400.
[2] J. H. Lira, R. Tojeiro and F. Vitório, A Bonnet theorem for isometric immersions into products of space forms, Archiv der Math. 95 (2010), 469-479.
[3] B. MENDONÇA AND R. Tojeiro, Submanifolds of products of space forms, Indiana Univ. Math. J. 62 (2013), no. 4, 1283-1314.
[4] B. Mendonça and R. Tojeiro, Umbilical submanifolds of $\mathbb{S}^{n} \times \mathbb{R}$, Canadian J. Math. 66 (2014), no. 2, 400-428.
[5] B. MENDONÇA AND R. ToJEIRO, Umbilical submanifolds of $\mathbb{H}^{n} \times \mathbb{R}$, in preparation.
[6] Y. NiKOLAYEVSKY, Totally umbilical submanifolds of symmetric spaces, Mat. Fiz. Anal. Geom. 1 (1994), 314-357.
[7] R. Souam and E. Toubiana, Totally umbilic surfaces in homogeneous 3-manifolds, Comment. Math. Helv. 84 (2009), no. 3, 673-704.
[8] J. Van der Veken and L. Vrancken, Parallel and semi-parallel hypersurfaces of $\mathbb{S}^{n} \times \mathbb{R}$, Bull. Braz. Math. Soc. 39 (2008), 355-370.

Universidade Federal da Bahia
Avenida Adhemar de Barros s/n 40170-110 - SALVADOR-BA
BRAZIL
E-mail address: jlorjuelac@gmail.com

Universidade Federal de São Carlos
Via Washington Luiz Km 235
13565-905 - SÃO CARLOS-SP
BRAZIL
E-mail address: tojeiro@dm.ufscar.br

[^0]: 2010 Mathematics Subject Classification. Primary 53B25; Secondary 53C40.
 Key words and phrases. Umbilical surfaces, Riemannian product of space forms.

 * Supported by CAPES PNPD grant 02885/09-3.
 ${ }^{\dagger}$ Partially supported by CNPq grant 311800/2009-2 and FAPESP grant 2011/21362-2.

