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ON THE HOLOMORPHIC AUTOMORPHISM GROUP
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Abstract. In this paper, we completely determine the structure of the holomorphic
automorphism group of a generalized Hartogs triangle and obtain natural generalizations of
some results due to Landucci and Chen-Xu. These give affirmative answers to some open
problems posed by Jarnicki and Pflug.

1. Introduction. For any positive integers �i,mj and any positive real numbers pi, qj

with 1 ≤ i ≤ I , 1 ≤ j ≤ J , we set

� = (�1, . . . , �I ) , m = (m1, . . . ,mJ ) , p = (p1, . . . , pI ) , q = (q1, . . . , qJ )

and define a generalized Hartogs triangle Hp,q
�,m in CN by

Hp,q
�,m =

{
(z,w) ∈ CN ;

I∑
i=1

‖zi‖2pi <

J∑
j=1

‖wj‖2qj < 1

}
,

where
z = (z1, . . . , zI ) ∈ C�1 × · · · × C�I = C|�|, |�| = �1 + · · · + �I ,

w = (w1, . . . , wJ ) ∈ Cm1 × · · · × CmJ = C|m|, |m| = m1 + · · · + mJ ,

and CN = C|�| × C|m|, N = |�| + |m| .
For convenience and no loss of generality, in this paper we always assume that

p2, . . . , pI �= 1 , q2, . . . , qJ �= 1

if I ≥ 2 or J ≥ 2. Clearly, this domain is not geometrically convex and its boundary is not
smooth and contains the origin 0 = (0, 0) of C|�| × C|m| = CN . In the special case where
all the �i = mj = 1 and all the pi, qj are positive integers, the structure of the holomorphic
automorphism group Aut(Hp,q

�,m) of Hp,q

�,m was already clarified by Landucci [8] and Chen-Xu
[3], [4]. Here we would like to remark that these papers contain the following crucial fact:
Let Φ ∈ Aut(Hp,q

�,m) and express Φ = (f, g) with respect to the coordinate system (z,w) in

C|�| × C|m| = CN . Then the w-component mapping g : Hp,q
�,m → C|m| does not depend on

the variables z; and hence, it has the form g(z,w) = g(w). And, a glance at their proofs of
this fact tells us that the assumptions �i,mj = 1 and pi, qj ∈ N cannot be avoided with their
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techniques. This raises new difficulties to analyze the structure of Aut(Hp,q
�,m) in our general

case.
The purpose of this paper is to overcome these difficulties and obtain more general results

for arbitrary generalized Hartogs triangles Hp,q
�,m. In fact, employing some group-theoretic

method, we can avoid their hard part and prove that g is always independent on the variables
z for every element Φ = (f, g) ∈ Aut(Hp,q

�,m). Once this is accomplished, our previous results
in [6] can be applied to establish the following theorems:

THEOREM 1. Let Hp,q
�,m be a generalized Hartogs triangle in C|�| ×C|m| with |m| = 1.

Then the holomorphic automorphism group Aut(Hp,q

�,m) consists of all transformations

Φ : (z1, . . . , zI , w) �−→ (z̃1, . . . , z̃I , w̃)

of the following form:
(I) p1 = 1, q ∈ N : In this case, we have

z̃1 = wqH(z1/w
q) , z̃i = γi(z1/w

q)Aizσ(i) (2 ≤ i ≤ I) , w̃ = Bw

(think of zi as column vectors), where

(1) H ∈ Aut(B�1), where B�1 denotes the unit ball in C�1;
(2) γi are nowhere vanishing holomorphic functions on B�1 defined by

γi(z1) =
(

1 − ‖a‖2

(
1 − 〈z1, a〉)2

)1/2pi

, a = H−1(o) ∈ B�1 ,

where 〈·, ·〉 denotes the standard Hermitian inner product on C�1 and o ∈ B�1 is the
origin of C�1;

(3) Ai ∈ U(�i), the unitary group of degree �i , and B ∈ C with |B| = 1;
(4) σ is a permutation of {2, . . . , I } satisfying the following: σ(i) = s can only hap-

pen when (�i, pi) = (�s, ps).

(II) p1 �= 1 or q /∈ N : In this case, we have

z̃i = Aizσ(i) (1 ≤ i ≤ I) , w̃ = Bw ,

where Ai ∈ U(�i), B ∈ C with |B| = 1, and σ is a permutation of {1, . . . , I } satisfying the
condition: σ(i) = s can only happen when (�i, pi) = (�s, ps).

THEOREM 2. Let Hp,q
�,m be a generalized Hartogs triangle in C|�| × C|m| with |m| ≥ 2.

Then the holomorphic automorphism group Aut(Hp,q

�,m) consists of all transformations

Φ : (z1, . . . , zI , w1, . . . , wJ ) �−→ (z̃1, . . . , z̃I , w̃1, . . . , w̃J )

of the form
z̃i = Aizσ(i) (1 ≤ i ≤ I) , w̃j = Bjwτ(j) (1 ≤ j ≤ J )

(think of zi, wj as column vectors), where Ai ∈ U(�i), Bj ∈ U(mj ) and σ, τ are permuta-
tions of {1, . . . , I }, {1, . . . , J } respectively, satisfying the condition: σ(i) = s, τ (j) = t can
only happen when (�i, pi) = (�s, ps), (mj , qj ) = (mt , qt ).
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Considering the special case where all the �i,mj = 1 in this paper, we obtain natural
generalizations of some results due to Landucci [8] and Chen-Xu [3], [4]. In particular, our
Theorems 1 and 2 give affirmative answers to some open problems posed in Jarnicki and Pflug
[5; Remarks 2.5.15 and 2.5.17].

After some preparations in the next Section 2, we prove our Theorems 1 and 2 in Sections
3 and 4, respectively.

2. Preliminaries and several Lemmas. Throughout this paper, we write H = Hp,q

�,m

for the sake of simplicity. Also, we often use the following notation: For the given points z =
(z1, . . . , zI ) ∈ C|�|, w = (w1, . . . , wJ ) ∈ C|m| and p = (p1, . . . , pI ), q = (q1, . . . , qJ ) as
in the Introduction, we set

ζ = (ζ1, . . . , ζN ) = (z,w) ∈ C|�| × C|m| = CN ,

ρp(z) =
I∑

i=1

‖zi‖2pi , ρq(w) =
J∑

j=1

‖wj‖2qj , and

Ep = {z ∈ C|�| ; ρp(z) < 1
}
, Eq = {w ∈ C|m| ; ρq(w) < 1

}
.

(2.1)

We denote by B(ζo, δ) the Euclidean open ball of radius δ > 0 and center ζo ∈ CN . For a
subset S of CN , the boundary (resp. closure) of S in CN will be denoted by ∂S (resp. S).
Also, we write as usual

ζ α = ζ
α1
1 · · · ζ αN

N for ζ = (ζ1, . . . , ζN ) ∈ CN, α = (α1, . . . , αN) ∈ ZN .

Let SH = {α ∈ ZN ; ζ α ∈ O(H), ‖ζ α‖A2(H) < ∞}, where O(H) denotes the set of all
holomorphic functions on H and A2(H) is the Bergman space of H with the norm ‖ · ‖A2(H).
Then it is known [1] that the Bergman kernel function K = KH for H can be expressed as

(2.2) K(ζ, η) =
∑

α∈SH

cαζ αη̄α , ζ, η ∈ H ,

with cα > 0 for each α ∈ SH. Let r = (r1, . . . , rN ) ∈ RN+, ζ = (ζ1, . . . , ζN) ∈ CN and set

r · ζ := (r1ζ1, . . . , rN ζN) , 1/r := (1/r1, . . . , 1/rN) .

It then follows from (2.2) that, for r, s ∈ RN+ and ζ, η ∈ CN ,

(2.3) K (r · ζ, (1/r) · η) = K (s · ζ, (1/s) · η)

whenever r · ζ, s · ζ, (1/r) · η, (1/s) · η ∈ H; hence, for any points ζ, η ∈ H,

(2.4) K(r · ζ, (1/r) · η) = K(ζ, η) if r · ζ, (1/r) · η ∈ H .

Although, in the proofs of Lemmas 1 and 2 below, there are some overlaps with the
papers by Barrett [1], Landucci [8] and Chen-Xu [3], we carry out the proofs in details for the
sake of completeness and self-containedness.

LEMMA 1. The Bergman kernel function K(ζ, η) extends holomorphically in ζ and
anti-holomorphically in η to an open neighborhood of

(H \ {0})× H in C2N .
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PROOF. First of all, let us take two points ζo ∈ ∂H \ {0}, ηo ∈ H arbitrarily and
represent ζo = (zo,wo) by the (z,w)-coordinates in C|�|×C|m| = CN . Since ζo = (zo,wo) �=
(0, 0), one can choose two constants ro, so with 0 < ro < so < 1 in such a way that ζ̂o :=
(rozo, sowo) ∈ H. Now we fix small balls B

ζ̂o
, Bηo in CN with centers ζ̂o, ηo, respectively,

such that B
ζ̂o

∪ Bηo ⊂ H. Set

Aζo := {(z,w) ∈ C|�| × C|m| ; (roz, sow) ∈ B
ζ̂o

}
.

Then Oζoηo := Aζo × Bηo is a geometrically convex open neighborhood of (ζo, ηo) in C2N .
We may assume that ro, so are selected so close to 1 that

{
(u/ro, v/so) ∈ C|�| × C|m| ; (u, v) ∈ Bηo

} ⊂ H .

Accordingly we can define a real-analytic function K̂ = K̂ζoηo on Oζoηo by

K̂((z,w), (u, v)) = K((roz, sow), (u/ro, v/so)) , ((z,w), (u, v)) ∈ Oζoηo .

In this way, we obtain a collection

K = {(Oζoηo , K̂ζoηo) ; (ζo, ηo) ∈ (∂H \ {0}) × H}
satisfying the following: For any elements

(
Oζη, K̂ζη

)
,
(
Oζ ′η′, K̂ζ ′η′

) ∈ K, we have that

K̂ζη = K on Oζη ∩ (H × H) and K̂ζη = K̂ζ ′η′ on Oζη ∩ Oζ ′η′

by (2.4) and (2.3). Therefore these local extensions K̂ζη together provide a global extension
of K required in Lemma 1. �

Here let us recall the structure of the holomorphic automorphism group Aut(H) (cf. [9]).
Since H is a bounded domain in CN , it has the structure of a real Lie group with respect to
the compact-open topology by a well-known theorem of H. Cartan. Note that Aut(H) has
a countable basis for the open sets and a sequence {Φν} in Aut(H) converges if and only if
{Φν} converges uniformly on compact subsets of H to an element Φ ∈ Aut(H). From now
on, we denote by

G(H) the identity component of Aut(H) with Lie algebra g(H) .

As is well-known, g(H) can be canonically identified with the real Lie algebra of all complete
holomorphic vector fields on H. With this notation, we prove the following:

LEMMA 2. Let ζo be an arbitrary point of ∂H\ {0}. Then there exist a connected open
neighborhood Uζo of ζo in CN \ {0} and a connected open neighborhood Wζo of the identity
element idH in G(H) such that every element Φ ∈ Wζo extends to a holomorphic mapping
Φ̂ : H ∪ Uζo → CN .

PROOF. Let P : L2(H) → A2(H) be the Bergman projection defined by

Pf (ζ ) =
∫
H

K(ζ, η)f (η) dVη , f ∈ L2(H) .
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It then follows from Lemma 1 that Pf can be extended to a holomorphic function, say P̂ f ,
defined on some domainH∪Uζo , where Uζo is a connected open neighborhood of ζo contained
in CN \ {0}.

Let φ ∈ C∞
0 (H) be a non-negative function such that φ(ζ1, . . . , ζN ) = φ(|ζ1|, . . . , |ζN |)

and
∫
H φ(ζ )dVζ = 1. For any α = (α1, . . . , αN ) ∈ ZN with αj ≥ 0, 1 ≤ j ≤ N , we set

φα(ζ ) = (cαα!)−1(−1)|α|∂ |α|φ(ζ )/∂ζ̄
α1
1 · · · ∂ζ̄

αN

N , ζ ∈ H ,

where cα is the same constant appearing in (2.2) and α! = α1! · · · αN !, |α| = α1 + · · · + αN .
Then, thanks to the concrete description of the expansion of K as in (2.2), we can compute
explicitly Pφα as Pφα(ζ ) = ζ α, ζ ∈ H. Consequently, by analytic continuation

(2.5) P̂ φα(ζ ) = ζ α, ζ ∈ H ∪ Uζo .

Now, let us take a sequence {Φν} in G(H) converging to the identity element idH and
express Φν = (Φν

1 , . . . , Φν
N ) with respect to the ζ -coordinate system in CN . Let JΦν (ζ )

be the Jacobian determinant of Φν at ζ ∈ H. Then, applying the transformation law by the
Bergman projection under proper holomorphic mapping (cf. [2]) and using the fact (2.5), we
have that (

JΦν · (Φν
1 )α1 · · · (Φν

N )αN
)
(ζ ) = (JΦν · Pφα ◦ Φν)(ζ )

= P(JΦν · φα ◦ Φν)(ζ ) =
∫
H

K(ζ, η)(JΦν · φα ◦ Φν)(η) dVη

(2.6)

for ζ ∈ H. Here, since the last term extends holomorphically to the function P̂ (JΦν ·φα ◦Φν)

on H ∪ Uζo , we may assume that JΦν · (Φν
1 )α1 · · · (Φν

N)αN is also a holomorphic function
defined on H ∪ Uζo and satisfies the same equalities there. Moreover, since {Φν} converges
to idH uniformly on compact subsets of H, we obtain by the Cauchy estimates that

lim
ν→∞ JΦν (η) = 1 and lim

ν→∞(φα ◦ Φν)(η) = φα(η)

uniformly on compact subsets of H and supp(φα ◦Φν) are contained in some compact subset
of H for all ν. Hence, the fact (2.5) immediately yields that

lim
ν→∞

(
JΦν · (Φν

1 )α1 · · · (Φν
N)αN

)
(ζ ) =

∫
H

K(ζ, η)φα(η) dVη = ζ α , ζ ∈ H ∪ Uζo ,

uniformly on compact subsets of H ∪ Uζo . Thus, considering the special cases where α = 0
and αj = 1, αk = 0 (1 ≤ j, k ≤ N, j �= k), we obtain that

(2.7) lim
ν→∞ JΦν (ζ ) = 1 and lim

ν→∞
(
JΦν · Φν

j

)
(ζ ) = ζj , 1 ≤ j ≤ N ,

uniformly on compact subsets of the domain H ∪ Uζo . Clearly this says that, after shrinking
Uζo and passing to a subsequence if necessary, JΦν are nowhere vanishing holomorphic func-
tions on H∪Uζo and so Φν : H∪Uζo → CN are holomorphic mappings for all ν = 1, 2, . . . .

Since the conclusion of the preceding paragraph is valid for any sequence {Φν} con-
verging to idH, it is obvious that there exist an open neighborhood Uζo of ζo and an open
neighborhood Wζo of idH satisfying the requirement of the lemma. �
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We now define compact subsets ∂rH of ∂H \ {0} by setting

∂rH = {ζ ∈ ∂H ; ‖ζ‖ ≥ r} , 0 < r < 1 .

Then we can prove the following:

LEMMA 3. For any compact subset ∂rH of ∂H \ {0} defined as above, there exist a
bounded Reinhardt domain Dr in CN \ {0} and a connected open neighborhood Or of idH in
G(H) satisfying the following:

(1) H ∪ ∂rH ⊂ Dr ;
(2) every element Φ ∈ Or extends to a holomorphic mapping Φ̂ : Dr → CN .

PROOF. For each point ζo ∈ ∂H \ {0}, we take a connected open neighborhood Uζo

of ζo and a connected open neighborhood Wζo of idH satisfying the condition in Lemma 2.
Then, by the compactness of ∂rH there are finitely many points ζ i ∈ ∂rH, 1 ≤ i ≤ n0, such
that ∂rH ⊂⋃n0

i=1 Uζi . Since ∂rH is invariant under the standard action of the N-dimensional
torus T N on CN as well as H, we can now find a Reinhardt domain Dr satisying

(2.8) H ∪ ∂rH ⊂ Dr ⊂ H ∪
(

n0⋃
i=1

Uζi

)
.

Let Or be the connected component of
⋂n0

i=1 Wζi containing the identity idH. Then it is clear
that the pair (Dr,Or) satisfies the requirement of Lemma 3. �

LEMMA 4. For any compact subset ∂rH of ∂H \ {0}, there exists a bounded Reinhardt
domain D̂r in CN \ {0} satisfying the following:

(1) H ∪ ∂rH ⊂ D̂r ;
(2) every element X ∈ g(H) extends to a holomorphic vector field X̂ on D̂r .

PROOF. By Lemma 3 there exist a bounded Reinhardt domain Dr in CN and a con-
nected open neighborhood Or of idH in G(H) such that every element Φ ∈ Or extends to a
holomorphic mapping Φ̂ : Dr → CN . Moreover, for any ε > 0 and any compact set L ⊂ Dr ,
it follows from (2.7) and (2.8) that

(2.9) ‖Φ̂(ζ ) − ζ‖ < ε for all ζ ∈ L, Φ ∈ Or ,

provided that Or is sufficiently small.
Now, let X ∈ g(H) and {Φt = exp tX}t∈R the one-parameter subgroup of G(H) gen-

erated by X. Then, thanks to the fact (2.9), one can choose a constant εo > 0 satisfy-
ing the following conditions: Let ζo ∈ ∂rH and let B(ζo, δ(ζo)) be a small ball such that
B(ζo, 2δ(ζo)) ⊂ Dr . Then

(2.10) Φt extends to a holomorphic mapping Φ̂t : Dr → CN ; and

(2.11) Φ̂t (B(ζo, δ(ζo))) ⊂ B(ζo, 2δ(ζo))
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for every t ∈ R with |t| < εo. Under this situation, since {Φt }t∈R is a global one-parameter
subgroup of G(H), we obtain by analytic continuation that

Φ̂s

(
Φ̂t (ζ )

) = Φ̂s+t (ζ ) , ζ ∈ B(ζo, δ(ζo)) , whenever |s|, |t|, |s + t| < εo ;
accordingly {Φ̂t }|t |<εo is a one-parameter local group of local holomorphic transformations.
Let X̂ be the holomorphic vector field on B(ζo, δ(ζo)) induced by {Φ̂t }|t |<εo . Then it is ob-
vious that X̂ is a unique holomorphic extension of X to B(ζo, δ(ζo)). Since ζo ∈ ∂rH is
arbitrary and ∂rH is compact, by repeating the same argument as in the proof of Lemma 3,
we can find a Reinhardt domain D̂r satisfying the requirement of Lemma 4. �

Before proceeding, we need to introduce some terminology. Let T N = (U(1))N be the
N-dimensional torus. Then T N acts as a group of holomorphic automorphisms on CN by the
standard rule

α · ζ = (α1ζ1, . . . , αNζN) for α = (αi) ∈ T N , ζ = (ζi) ∈ CN .

Let D be an arbitrary Reinhardt domain in CN . Then, just by the definition, D is invariant
under this action of T N . Each element α ∈ T N then induces an automorphism πα of D

given by πα(ζ ) = α · ζ , and the mapping ρD sending α to πα is an injective continuous
group homomorphism of T N into Aut(D). The subgroup ρD(T N) of Aut(D) is denoted
by T (D). Analogously, the multiplicative group (C∗)N acts as a group of automorphisms on
CN . So, denoting by Π(D) = {α ∈ (C∗)N ; α · D ⊂ D

}
, we obtain the topological subgroup

Π(D) of Aut(D). We have one more important topological subgroup Autalg(D) of Aut(D)

consisting of all elements Φ of Aut(D) such that the i-th component function Φi of Φ is given
by a Laurent monomial having the form

(2.12) Φi(ζ ) = λiζ
ai1
1 · · · ζ aiN

N , 1 ≤ i ≤ N ,

where (aij ) ∈ GL(N, Z) and (λi) ∈ (C∗)N . We call Autalg(D) the algebraic automorphism
group of D and each element of Autalg(D) is called an algebraic automorphism of D. It
is known [7] that these groups are related in the following manner: The centralizer of the
torus T (D) in Aut(D) is given by Π(D), while the normalizer of T (D) in Aut(D) is given by
Autalg(D). Here we consider the mapping � : Autalg(D) → GL(N, Z) that sends an element
Φ of Autalg(D) whose i-th component is given by (2.12) into the element (aij ) ∈ GL(N, Z).
Then it is easy to see that � is a group homomorphism with ker � = Π(D); and hence it
induces a group isomorphism

Autalg(D)/Π(D)
∼=−→ G(D) := �(Autalg(D)) ⊂ GL(N, Z) .

Let G(D) be the identity component of Aut(D). Then we know the following fundamental
result due to Shimizu [11]:

Every element Φ ∈ Aut(D) can be written in the form Φ = Φ ′Φ ′′ ,
where Φ ′ ∈ G(D) and Φ ′′ ∈ Autalg(D) .

(2.13)

Now let us consider the special case where D is our generalized Hartogs triangle H.
Then we have the following:
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LEMMA 5. Every element Φ ∈ Autalg(H) can be written in the form

Φ(ζ ) = (λ1ζσ(1)ζ
b1
N , . . . , λ|�|ζσ(|�|)ζ

b|�|
N , λNζN

)
or

Φ(ζ ) = (λ1ζσ(1), . . . , λ|�|ζσ(|�|), λ|�|+1ζτ(|�|+1) , . . . , λN ζτ(N)

)
according as |m| = 1 or |m| ≥ 2, where (λi) ∈ T N , (bi) ∈ Z|�|, and σ, τ are permutations
of {1, . . . , |�|}, {|�| + 1, . . . , N} respectively.

PROOF. We assume that the i-th component function Φi of Φ is given by (2.12).
We first consider the case |m| = 1. Since every point of the form (0, w) ∈ C|�| × C with

w ∈ Δ∗ = Δ \ {0}, the punctured disc, belongs to H, it is easily seen that ΦN has the form
ΦN(ζ ) = λNζN, |λN | = 1, and the matrix �(Φ) ∈ GL(N, Z) can be written as

�(Φ) =

⎛
⎜⎜⎜⎝

a11 · · · a1|�| a1N

...
. . .

...
...

a|�|1 · · · a|�||�| a|�|N
0 · · · 0 1

⎞
⎟⎟⎟⎠ with aij ≥ 0 for 1 ≤ i, j ≤ |�| .

We claim here that the submatrix A := (aij )1≤i,j≤|�| is a permutation matrix, that is, there
exists a permutation σ of {1, . . . , |�|} such that aij = δσ(i)j for all 1 ≤ i, j ≤ |�|. In-
deed, notice that the mapping ζ �→ (

ζ1, . . . , ζ|�|, λ−1
N ζN

)
, ζ ∈ H, belongs to Autalg(H); and

hence one may assume that ΦN(ζ ) = ζN . Then, for any given point ζN ∈ Δ∗, the map-
ping Φ̃(z) := (

Φ1(z, ζN), . . . , Φ|�|(z, ζN)
)

gives rise to a holomorphic automorphism of the
bounded Reinhardt domain

{
z ∈ C|�| ; ρp(z) < |ζN |2q

}
containing the origin of C|�| and, in

particular, it maps the complex analytic subset H ∩ {ζ ∈ CN ; ζi = 0
}

of H onto some equi-
dimensional complex analytic subset of H for each 1 ≤ i ≤ |�|. This yields at once that A

is a permutation matrix, as claimed. Therefore, putting bi = aiN , 1 ≤ i ≤ |�|, we have seen
that Φ has the form

(2.14) Φ(ζ ) = (λ1ζσ(1)ζ
b1
N , . . . , λ|�|ζσ(|�|)ζ

b|�|
N , λNζN

)
.

In particular, this says that Φ extends to a holomorphic automorphism of C|�| × C∗ with
Φ(∂H \ {0}) ⊂ ∂H \ {0}. Using this fact, we would like to check that |λi | = 1 for every
1 ≤ i ≤ |�|. To this end, let σ(i) = s and choose an arbitrary element

ζ [s] := (0, . . . , 0, ζs , 0, . . . , 0, ζN) ∈ ∂H with ζN ∈ Δ∗ .

Then, by (2.14), Φ(ζ [s]) = (0, . . . , 0, λiζsζ
bi

N , 0, . . . , 0, λNζN

) ∈ ∂H. Thus we have

|λiζsζ
bi

N |2pa = |ζN |2q whenever |ζs |2pb = |ζN |2q < 1 ,

where pa, pb are some positive constants appearing in the definition of H = Hp,q

�,m. Therefore,
letting |ζN | → 1, we conclude that |λi | = 1, as desired.

Next we consider the case |m| ≥ 2. In this case, notice that the Reinhardt domain
H satisfies the condition that H ∩ {ζ ∈ CN ; ζi = 0

} �= ∅ for each 1 ≤ i ≤ N . Hence
every component function Φi of Φ extends to a holomorphic function on Ep × Eq , where Ep

and Eq are the generalized complex ellipsoids defined in (2.1) (cf. [9; p.15]). Consequently,
since Ep × Eq contains the origin (0, 0) ∈ C|�| × C|m|, every component aij of �(Φ) =
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(aij ) ∈ GL(N, Z) has to be non-negative. Hence �(Φ) reduces to a permutation matrix,
because Φ is a holomorphic automorphism of H and so it maps the complex hypersurface
H ∩ {ζ ∈ CN ; ζi = 0

}
of H onto another one for every 1 ≤ i ≤ N . This, combined with

the fact that H contains the points having the form (0, w), yields at once that the mapping
g := (Φ|�|+1, . . . , ΦN

)
does not depend on the variables z. From these facts, we deduce that

there exist permutations σ of {1, . . . , |�|} and τ of {|�| + 1, . . . , N} with respect to which Φ

can be written in the form

Φ(ζ ) = (λ1ζσ(1), . . . , λ|�|ζσ(|�|), λ|�|+1ζτ(|�|+1), . . . , λNζτ(N)

)
,

where (λi) ∈ (C∗)N . In particular, if we express Φ = (f, g) by coordinates (z,w) in C|�| ×
C|m| = CN , then f and g may be regarded as the linear automorphisms of C|�| and of C|m|,
respectively, such that f (∂Ep) ⊂ ∂Ep and g(∂Eq) ⊂ ∂Eq . These inclusions immediately
yield that |λi | = 1 for every 1 ≤ i ≤ N . Therefore we have completed the proof of Lemma
5. �

LEMMA 6. Let Ψ ∈ Aut(H) and write Ψ = (h, k) with respect to the coordinate
system (z,w) in C|�| × C|m| = CN . Then k : H → C|m| does not depend on the variables z;
accordingly it has the form k(z,w) = k(w) on H.

PROOF. Once it is shown that g does not depend on z for every Φ = (f, g) ∈ G(H),
then our conclusion immediately follows from the fact (2.13) and Lemma 5. Thus we have
only to show the lemma when Ψ ∈ G(H).

To this end, pick a point ζo = (0, wo) = (0, . . . , 0, wo
1, . . . , wo

J

) ∈ ∂H with

‖wo
1‖ · · · ‖wo

J ‖ �= 0 and ρq(wo) = 1 ,

where ρq is the function appearing in (2.1), and fix an r ∈ R with 0 < r < ‖ζo‖. Then ζo ∈
∂rH and by Lemma 3 there exist a bounded Reinhardt domain D := Dr in CN containing
H∪∂rH and an open neighborhood O := Or of idH in G(H) such that every element Φ ∈ O

extends to a holomorphic mapping, say again, Φ : D → CN . Here we choose sufficiently
small constants δ1, δ2 with 0 < δ1 < δ2 < 1 and set

Ui = {z ∈ C|�| ; ρp(z) < δi

}
,

Vi = {w ∈ C|m| ; 1 − δi < ρq(w) < 1 + δi, ‖w1‖ · · · ‖wJ ‖ �= 0
}

for i = 1, 2. Then Ui × Vi (i = 1, 2) are bounded Reinhardt domains in C|�| × C|m| = CN

satisfying the condition

ζo ∈ U1 × V1 ⊂ U1 × V1 ⊂ U2 × V2 ⊂ U2 × V2 ⊂ D

and the restriction of ρq to V2 gives a Cω-smooth strictly plurisubharmonic function on V2.
Moreover, after shrinking O if necessary, we may assume by (2.9) that Φ(U1×V1) ⊂ U2×V2

for every Φ ∈ O .
Now, taking an element Φ = (f, g) ∈ O and a point w ∈ V1 with ρq(w) = 1 arbitrarily,

we set gw(z) = g(z,w), z ∈ U1, for a while. Then, since gw(U1) ⊂ V2, we can define a
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Cω-smooth plurisubharmonic function ρ̂ on U1 by setting ρ̂(z) := ρq(gw(z)), z ∈ U1. It then
follows that ρ̂(z) = 1 on U1, since

Φ(U1 × {w}) ⊂ ∂H ∩ (U2 × V2) ⊂ {(u, v) ∈ U2 × V2 ; ρq(v) = 1
}

.

This combined with the strictly plurisubharmonicity of ρq on V2 implies that gw(z) is a con-
stant mapping on U1. As a result, defining the real-analytic hypersurface of V1 by setting
H := {w ∈ V1 ; ρq(w) = 1}, we have shown that

(2.15) for any w ∈ H , gw(z) = g(z,w) is constant on U1.

Now, being a holomorphic mapping on the Reinhardt domain D containing H ∪ ∂rH, g
can be expanded uniquely as

(2.16) g(z,w) = g(ζ ′, ζ ′′) =
∑
ν ′

aν ′(ζ ′′)(ζ ′)ν ′
, ζ = (ζ ′, ζ ′′) ∈ D ,

which converges uniformly on compact subsets of D, where

ζ ′ = (ζ1, . . . , ζ|�|) = z ∈ C|�|, ζ ′′ = (ζ|�|+1, . . . , ζN ) = w ∈ C|m| ,

aν ′(ζ ′′) = (
a1
ν ′(ζ ′′), . . . , a|m|

ν ′ (ζ ′′)
)

are |m|-tuples of holomorphic functions, and the summa-
tion is taken over all ν′ = (ν1, . . . , ν|�|) ∈ Z|�| with ν1, . . . , ν|�| ≥ 0 (cf. [9]). In particular,
the expansion of g in (2.16) converges uniformly on the domain U1 × V1 and every aν ′(ζ ′′) is
holomorphic on V1. Then the assertion (2.15) tells us that

aν ′(ζ ′′) = 0 , ζ ′′ ∈ H, for ν′ �= 0 .

Since aν ′(ζ ′′) are holomorphic on V1 and H is a real-analytic hypersurface of V1, it is obvious
that aν ′(ζ ′′) = 0 on V1 for ν′ �= 0; and hence, by analytic continuation g(z,w) = a0(ζ

′′) does
not depend on z = ζ ′ globally; proving our lemma for every element Φ = (f, g) contained
in the open neighborhood O of idH in G(H).

Finally, recall that a connected topological group is always generated by any neighbor-
hood of the identity id. Hence, replacing O by the open neighborhood O ∩ {Φ−1 ; Φ ∈ O}
of idH if necessary, we may assume that the given element Ψ = (h, k) ∈ G(H) can be
represented as a finite product Ψ = Φ1 · · · Φs of elements Φi ∈ O . This together with the
result of the preceding paragraph guarantees that k(z,w) does not depend on the variables z;
completing the proof of Lemma 6. �

We finish this section by the following:

LEMMA 7. Let Ω be a domain in Cn and let A : Ω → U(L) be a mapping from
Ω into the unitary group U(L) of degree L. Assume that all the ij -components aij of A are
holomorphic functions on Ω . Then A is a constant mapping.

PROOF. By our assumption we have

L∑
j=1

|aij (z)|2 = 1 , z ∈ Ω , for every 1 ≤ i ≤ L .
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Then, since all the aij are holomorphic on Ω , it is easily seen that ∂aij (z)/∂zk ≡ 0 on Ω for
all i, j and k. Clearly this implies that A is a constant mapping, as desired. �

3. Proof of Theorem 1. The proof will be carried out in the following two Subsec-
tions.

3.1. CASE (I). p1 = 1, q1 = q ∈ N: When I = 1, that is, for the case H = {(z,w) ∈
C�1 × C ; ‖z‖2 < |w|2q < 1

}
, we consider the mapping Λ1 : H → C�1+1 defined by

Λ1(z,w) = (z/wq,w
)
, (z,w) ∈ H .

Then Λ1 gives rise to a biholomorphic mapping from H onto B�1 × Δ∗. On the other hand,
if we denote by G(D) the identity component of Aut(D) for a given domain D, we have that
G(B�1 × Δ∗) = G(B�1) × G(Δ∗) by a well-known theorem of H. Cartan. Moreover, with
exactly the same argument as in the proof of Lemma 5, one can see that every element Φ ∈
Autalg(B

�1 ×Δ∗) can be written as in (2.14) with |�| = �1, ζ = (ζ1, . . . , ζ�1, ζN) ∈ B�1 ×Δ∗
and |λN | = 1. More precisely, we assert here that |λi | = 1, bi = 0 for every 1 ≤ i ≤ �1.
To verify this, notice that Φ is now regarded as a holomorphic automorphism of C�1 × C∗;
accordingly, it leaves the boundary of B�1 × Δ∗ invariant. Thus

�1∑
i=1

|λiζσ(i)ζ
bi

N |2 = 1 whenever
�1∑

i=1

|ζi |2 = 1 , ζN ∈ Δ∗ .

Clearly, this says that |λi | = 1, bi = 0 for every 1 ≤ i ≤ �1, as asserted. As a result, we
have shown that Autalg(B

�1 × Δ∗) = Autalg(B
�1) × Autalg(Δ

∗) and hence Aut(B�1 × Δ∗) =
Aut(B�1) × Aut(Δ∗) by (2.13). Therefore we conclude that every element Φ ∈ Aut(H) can
be described as

(3.1) Φ(z,w) = (wqH(z/wq), Bw
)
, (z,w) ∈ H ,

where H ∈ Aut(B�1) and B ∈ C with |B| = 1; proving Theorem 1, (I), in the case of I = 1.
Next, consider the case where I ≥ 2. By the identity in [10; Theorem 2.2.5, (2)], it is

easy to check that the mapping Φ having the form as in Theorem 1, (I), belongs to Aut(H).
So, taking an arbitrary element Φ ∈ Aut(H), we would like to show that Φ can be described
as in the theorem. To this end, write Φ = (f, g) with respect to the coordinate system (z,w)

in C|�| × C. Then g does not depend on the variables z by Lemma 6. Hence g induces a
holomorphic automorphism of Δ∗; so that g has the form g(w) = Bw with |B| = 1. Let us
define a holomorphic automorphism ΦB of H by ΦB(z,w) = (z, B−1w). Replacing Φ by
ΦBΦ if necessary, we may now assume that Φ has the form Φ(z,w) = (f (z,w),w) on H.
Therefore, if we set

(3.2) Ep
w = {z ∈ C|�| ; ρp(z) < |w|2q

}
, fw(z) = f (z,w), z ∈ Ep

w ,
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for an arbitrarily given point w ∈ Δ∗, then fw is a holomorphic automorphism of Ep
w. On the

other hand, putting

(3.3) Ep =
{

ξ ∈ C|�| ;
I∑

i=1

‖ξi‖2pi < 1

}
and ri = 1

|w|q/pi
, 1 ≤ i ≤ I ,

where ξ = (ξ1, . . . , ξI ) ∈ C�1 ×· · ·×C�I = C|�|, and noting the facts that p1 = 1 and q ∈ N,
we have the biholomorphic mapping Λ : Ep

w → Ep defined by

Λ(z) = (z1/w
q, r2z2, . . . , rI zI

)
, z = (z1, . . . , zI ) ∈ Ep

w .

Recall here our previous result in [6]: When p1 = 1, every holomorphic automorphism Ψ of
Ep has the form

Ψ (ξ) = (H(ξ1), γ2(ξ1)A2ξσ(2), . . . , γI (ξ1)AI ξσ(I )

)
,

where H ∈ Aut(B�1), Ai ∈ U(�i) and γi are nowhere vanishing holomorphic functions on
B�1 given as in Theorem 1, (I), with z1 = ξ1, and σ is a permutation of {2, . . . , I } having
the property: σ(i) = s can only happen when (�i , pi) = (�s, ps). Then, applying this result
to the holomorphic automorphism Λ ◦ fw ◦ Λ−1 of Ep and noting the fact that ri = rs if
σ(i) = s, one can see that fw has the form

(3.4) fw(z) = (wqH(z1/w
q), γ2(z1/w

q)A2zσ(2), . . . , γI (z1/w
q)AIzσ(I )

)
,

where H ∈ Aut(B�1), Ai ∈ U(�i) and γi are nowhere vanishing holomorphic functions on
B�1 determined uniquely by H , and σ is a permutation of {2, . . . , I } having the property:
σ(i) = s occurs only when (�i, pi) = (�s, ps). Of course, all the H, Ai, γi and σ are
determined by the given point w ∈ Δ∗; accordingly, expressing them as Hw, Aw

i , γ w
i and

σw , we obtain a family F = {(
Hw,Aw

i , γ w
i , σw

)}
w∈Δ∗ . The only thing which has to be

proved now is that all the members
(
Hw,Aw

i , γ w
i , σw

)
of F are independent on the parameter

w. To prove this, put

H1 = {(z1, w) ∈ C�1 × C ; ‖z1‖2 < |w|2q < 1
}

and

E1
w = {

z1 ∈ C�1 ; ‖z1‖2 < |w|2q
}
, w ∈ Δ∗ ,

(3.5)

and regard these as complex submanifolds of H and of Ep
w, respectively, in the canonical

manner. It then follows from (3.4) that fw(E1
w) = E1

w and Φ(H1) = H1. Therefore, denot-
ing by f 1

w, Φ1 the restrictions of fw, Φ to E1
w, H1, respectively, we see that Φ1 defines a

holomorphic automorphism of H1 having the form

Φ1(z1, w
) = (wqHw(z1/w

q),w
) = (f 1

w(z1),w
)
, (z1, w) ∈ H1 ,

and the same situation as in the case I = 1 above occurs for the domain H1 and its automor-
phism Φ1 of H1. Consequently, by (3.1) we conclude that the automorphism Hw of B�1 is, in
fact, independent on w ∈ Δ∗; and so is γ w

i . This combined with the fact that fw(z) = f (z,w)

is holomorphic on H implies that every component of Aw
i is holomorphic in w ∈ Δ∗. Thus
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Aw
i is a unitary matrix independent on w by Lemma 7. Notice that the mapping Φo defined

by

Φo(z,w) = (wqH(z1/w
q), γ2(z1/w

q)A2z2, . . . , γI (z1/w
q)AIzI ,w

)
, (z,w) ∈ H ,

is now a holomorphic automorphism of H. Then Φ−1
o Φ is also a holomorphic automorphism

of H and it has the form

Φ−1
o Φ(z,w) = (z1, zσw(2), . . . , zσw(I ), w

)
, (z,w) ∈ H ,

from which it follows at once that σw is actually independent on w ∈ Δ∗. Therefore we have
completed the proof of Theorem 1, (I). �

3.2. CASE (II). p1 �= 1 or q1 = q /∈ N: Clearly we have only to show that every
element Φ ∈ Aut(H) can be described as in Theorem 1, (II).

First, consider the case p1 �= 1. By the same reasoning as in the previous Subsection, we
may assume that Φ has the form Φ(z,w) = (f (z,w),w) on H. Therefore, if we define the
domain Ep

w and the mapping fw by (3.2) for any given point w ∈ Δ∗, then fw is a holomorphic
automorphism of Ep

w . Moreover, letting Ep and ri be the same objects appearing in (3.3), we
obtain the biholomorphic mapping Λ : Ep

w → Ep defined by

(3.6) Λ(z) = (r1z1, . . . , rI zI ) , z = (z1, . . . , zI ) ∈ Ep
w .

Then, by recalling the result of [6] in the case p1 �= 1 and by repeating exactly the same
argument as in Subsection 3.1, it can be shown that fw has the form

(3.7) fw(z) = (A1zσ(1), . . . , AI zσ(I )

)
, z = (z1, . . . , zI ) ∈ Ep

w ,

where Ai ∈ U(�i) and σ is a permutation of {1, . . . , I } satisfying the following: σ(i) = s can
only happen when (�i, pi) = (�s, ps). Therefore we have completed the proof of Theorem 1,
(II), in the case p1 �= 1.

Next, consider the case q /∈ N. Of course, it suffices to consider the case q /∈ N and
p1 = 1. Take an element Φ ∈ Aut(H) arbitrarily. Again we may assume that Φ has the
form Φ(z,w) = (f (z,w),w) on H. For an arbitrarily given point w ∈ Δ∗, let Ep

w, fw

(resp. Ep, ri ) be the same objects appearing in (3.2) (resp. in (3.3)) and let Λ : Ep
w → Ep

be the biholomorphic mapping defined in (3.6). Then, by the same reasoning as above, fw

is a holomorphic automorphism of Ep
w. Once it is shown that fw is linear, that is, it is the

restriction to Ep
w of some linear transformation of C|�|, then the method used in the preceding

paragraph can be applied to prove that fw is independent on w and, in fact, it has the form as in
(3.7). Therefore we have only to verify that fw is linear. For this purpose, recall the following
fact in Lemma 5: Let Ψ be an element of Autalg(H) having the form Ψ (z,w) = (h(z,w),w)

on H. Then, for any point w ∈ Δ∗, hw(z) = h(z,w) is a linear mapping of z. This together
with the fact Aut(H) = G(H)Autalg(H) by (2.13) immediately yields that it suffices to show
the linearity of fw for every Φ = (f, g) ∈ G(H) with g(w) = w.

Now consider again the domain E1
w ⊂ C|�| defined in (3.5) and the holomorphic auto-

morphism Λ ◦ fw ◦ Λ−1 of Ep . Then, in exactly the same way as in Subsection 3.1, one can
see that fw(E1

w) = E1
w and fw is a linear automorphism of Ep

w if and only if the restriction
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f 1
w of fw to E1

w is a linear automorphism of E1
w . Consequently, the proof is now reduced to

showing that f 1
w is a linear automorphism of E1

w. Now, assume to the contrary that there exists
an element Φ = (f, g) ∈ G(H), g(w) = w, such that f 1

w is not a linear automorphism of
E1

w . Then, since Φ leaves all slices Ep
w × {w}, w ∈ Δ∗, invariant and fw(E1

w) = E1
w, one can

find a complete holomorphic vector field X on H satisfying the following two conditions: For
any point w ∈ Δ∗,

(3.8) X is tangent to the complex submanifold E1
w × {w} of H; and

(3.9) the restriction of X to E1
w×{w}, say again X, is a non-zero complete holomorphic vector

field having the form

X =
�1∑

k=1

(
αk(w) +

�1∑
μ,ν=1

βk
μν(w)ζμζν

)
∂

∂ζk

,

where αk, βk
μν are holomorphic functions on Δ∗ (cf. [12; Proposition 2]).

Here we know that X �= 0 if and only if αk(w) �= 0 for some k. Moreover, we may assume
by Lemma 4 that X extends holomorphically across the set ∂H \ {0}.

From now on, for any given point w ∈ Δ∗, we identify naturally E1
w × {w} with E1

w; so
that X is regarded as a complete holomorphic vector field on E1

w and

ρw(z1) = ρw(ζ1, . . . , ζ�1) :=
�1∑

j=1

|ζj |2 − |w|2q

is a defining function of E1
w in C�1 . Note that X is now defined on some domain in C�1

containing the closure E1
w of E1

w . It then follows from the tangency condition Re(Xρw) = 0
on the boundary ∂E1

w that

(3.10) Re

⎧⎨
⎩

�1∑
k=1

(
αk(w) +

�1∑
μ,ν=1

βk
μν(w)ζμζν

)
ζ̄k

⎫⎬
⎭ = 0 whenever ρw(ζ1, . . . , ζ�1) = 0 .

Fix an index k with αk(w) �= 0 and consider the points (0, . . . , 0, ζk, 0, . . . , 0) ∈ C�1 with
|ζk|2 = |w|2q . Then, by routine computations it follows from (3.10) that

αk(w) + βk
kk(w)|w|2q = 0 , w ∈ Δ∗ .

Hence we have (
dβk

kk(w)

dw

)
· |w|2q + βk

kk(w) · qw|w|2(q−1) = 0

or equivalently

dβk
kk(w)

dw
w + qβk

kk(w) = 0 .
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Let βk
kk(w) =∑ν Aνw

ν be the Laurent expansion of βk
kk on Δ∗, where ν ∈ Z. Inserting this

into the equation above, we then obtain that

(q + ν)Aν = 0 for all ν ∈ Z .

Since 0 < q /∈ N by our assumption, this implies that Aν = 0 for all ν ∈ Z. Thus βk
kk(w) = 0

and so αk(w) = 0 on Δ∗, a contradiction. Eventually we have shown that every automor-
phism fw is linear; and accordingly, Aut(H) consists only of linear automorphisms having
the description as in Theorem 1, (II), as desired. �

4. Proof of Theorem 2. Clearly the mapping Φ having the form as in Theorem 2
belongs to Aut(H). Conversely, take an arbitrary element Φ ∈ Aut(H) and write Φ =
(Φ1, . . . , ΦN) with respect to the coordinate system ζ = (ζ1, . . . , ζN ) in CN . Then, since
|m| ≥ 2, by the same reasoning as in the proof of Lemma 5 every component function Φi

extends to a unique holomorphic function Φ̂i defined on Ep × Eq . Accordingly, we obtain
a holomorphic extension Φ̂ := (Φ̂1, . . . , Φ̂N ) : Ep × Eq → CN of Φ. We first assert that
Φ̂(Ep×Eq ) ⊂ Ep×Eq . To prove this, represent again Φ = (f, g) and f = (f1, . . . , fI ), g =
(g1, . . . , gJ ) by coordinates (z,w) = (z1, . . . , zI , w1, . . . , wJ ) in C|�|×C|m| = CN . Let f̂ , ĝ

be the holomorphic extensions of f, g to Ep × Eq , respectively. Since g(z,w) does not de-
pend on the variables z by Lemma 6, ĝ gives now a holomorphic automorphism of Eq with
ĝ(0) = 0; consequently it follows from our result of [6] that ĝ can be written in the form

(4.1) ĝ(w) = (B1wτ(1), . . . , BJ wτ(J )

)
, w = (w1, . . . , wJ ) ∈ Eq ,

where Bj ∈ U(mj ), 1 ≤ j ≤ J, and τ is a permutation of {1, . . . , J } such that τ (j) = t

if and only if (mj , qj ) = (mt , qt ). On the other hand, picking a point zo ∈ Ep arbi-
trarily, we have (zo,w) ∈ H for all points w ∈ C|m| with ρp(zo) < ρq(w) < 1; and
hence ρp(f (zo,w)) < ρq(g(w)) < 1 for such points. So, taking account of the maximum
principle for the continuous plurisubharmonic function ρp(f̂ (zo,w)) on Eq , we obtain that
ρp(f̂ (zo,w)) < 1 for all w ∈ Eq . Thus f̂ (Ep × Eq ) ⊂ Ep and so Φ̂(Ep × Eq) ⊂ Ep × Eq .
Also, repeating exactly the same argument for the holomorphic extension Ψ̂ of the inverse
Ψ := Φ−1 of Φ, we obtain the same conclusion Ψ̂ (Ep × Eq) ⊂ Ep × Eq . Then

Φ̂ ◦ Ψ̂ (z,w) = Ψ̂ ◦ Φ̂(z,w) = (z,w) , (z,w) ∈ Ep × Eq ,

by analytic continuation. Hence Φ̂ is a holomorphic automorphism of the bounded Reinhardt
domain Ep × Eq . Moreover, since

I∑
i=1

‖fi(z,w)‖2pi <

J∑
j=1

‖gj (w)‖2qj =
J∑

j=1

‖wj‖2qj , (z,w) ∈ H ,

by (4.1), it follows that Φ̂(0, 0) = (0, 0) by taking the limit (z,w) → (0, 0) throughH. Then,
as an immediate consequence of a well-known theorem of H. Cartan, it follows that Φ̂ is a
linear automorphism of Ep × Eq .

Let us define the mapping f̂o : Ep → C|�| by setting f̂o(z) := f̂ (z, 0), z ∈ Ep. Then
it is easily seen that f̂o is a holomorphic automorphism of Ep . So, our previous result [6]
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implies that it can be expressed as

(4.2) f̂o(z) = (A1zσ(1), . . . , AI zσ(I )

)
, z = (z1, . . . , zI ) ∈ Ep ,

where Ai ∈ U(�i), 1 ≤ i ≤ I , and σ is a permutation of {1, . . . , I } such that σ(i) = s occurs
only when (�i , pi) = (�s, ps). Now define the linear automorphism Φ̂o of Ep × Eq by

Φ̂o(z,w) = (f̂o(z), ĝ(w)
)
, (z,w) ∈ Ep × Eq ,

and consider the holomorphic automorphism

(4.3) Γ (z,w) = Φ̂−1
o ◦ Φ̂(z,w) , (z,w) ∈ Ep × Eq ,

of Ep × Eq . Then Γ can be written in the form

Γ (z,w) = (z + Mw,w) , (z,w) ∈ Ep × Eq ,

(think of z, w as column vectors), where M is a certain |�| × |m| matrix. Thus, denoting by
Γ n the n-th iteration of Γ , we have

Γ n(z,w) = (z + nMw,w) , (z,w) ∈ Ep × Eq, n = 1, 2, . . . .

Hence M has to be the zero matrix, that is, Γ is the identity transformation of Ep × Eq , since
{Γ n}∞n=1 is contained in the isotropy subgroup K0 of Aut(Ep × Eq ) at the origin 0 = (0, 0) ∈
Ep × Eq and K0 is compact, as is well-known. Therefore we have shown that Φ̂ = Φ̂o has
the form described in Theorem 2; thereby completing the proof. �
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