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RAMIFICATION AND NEARBY CYCLES FOR �-ADIC SHEAVES ON
RELATIVE CURVES
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Abstract. Deligne and Kato proved a formula computing the dimension of the nearby
cycles complex of an �-adic sheaf on a relative curve over an excellent strictly henselian trait.
In this article, we reprove this formula using Abbes-Saito’s ramification theory.
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1. Introduction.
1.1. Let R be an excellent strictly henselian discrete valuation ring of residue charac-

teristic p > 0, S = Spec(R), s (resp. η, resp. η̄) the closed point (resp. the generic point, resp.
a geometric generic point) of S. Let X be a smooth relative curve over S, x a closed point of
the special fiber Xs , X the strict henselization of X at x, U a non-empty open sub-scheme of
Xη, and u : U → Xη the canonical injection. Let Λ be a finite field of characteristic � �= p,
and F a locally constant constructible étale sheaf of Λ-modules on U . The spaces of nearby
cycles of F

Ψ i
x (u!F ) = Hi

ét(Xη̄, u!F ) (i � 0)

vanish when i � 2 ([SGA7II, XIII], [Fu, 9.2.2]) and the dimension of Ψ 0
x (u!F ) is easy

to compute. The aim of this article is to reprove a Deligne-Kato’s formula that computes
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the dimension of Ψ 1
x (u!F ) [Lau1, Kato1, Kato2] using Abbes-Saito’s ramification theory

[AS1, AS2].

1.2. Let p be the generic point of the special fiber Xs . We denote by κ(p) the residue
field of p, which is the fraction field of a strictly henselian discrete valuation ring. Assume first
that F can be extended to a locally constant constructible sheaf ˜F on an open sub-scheme ˜U

of X containing p. Then Deligne computes the dimension of Ψ 1
x (u!F ). Let swx( ˜F ) be the

Swan conductor of the pull-back of ˜F on Spec(κ(p)) and let

ϕ(s) = swx( ˜F )+ rank(F ) .

On the other hand, for any t ∈ Xη̄ − Uη̄, let swt (F ) be the Swan conductor of the pull-back
of F on Spec(OXη̄,t )×X U , and let

ϕ(η) =
∑

t∈Xη̄−Uη̄

(swt (F )+ rank(F )) .

Then, Deligne’s formula is ([Lau1, 5.1.1])

(1.2.1) dimΛ Ψ 0
x (u!F )− dimΛ Ψ 1

x (u!F ) = ϕ(s)− ϕ(η) .

1.3. Kato generalized Deligne’s formula for any F . His formula has the same form as
(1.2.1). The definition of the invariantϕ(η) is the same as above, but ϕ(s) cannot be defined by
the same method. He provided two definitions of ϕ(s). The first one uses a ramification theory
for valuation rings of rank two, which he developed for this purpose [Kato1]. The second one
uses his notion of Swan conductors with differential values [Kato2]. Both methods rely on
Epp’s partial semi-stable reduction theorem [Epp]. In this article, we define the invariant ϕ(s)
in terms of ramification theory of Abbes and Saito [AS1, AS2]. The case when F has rank 1
is due to Abbes and Saito ([AS4, Appendix A]).

1.4. Let K be a complete discrete valuation field, OK its integer ring, mK the maximal
ideal of OK and F the residue field of OK . We assume that F is of finite type over a perfect
field F0 of characteristic p. We denote by K a separable closure of K , by OK the integral
closure of OK in K , by F the residue field of OK , by v the valuation of K normalized by
v(K×) = Z and by GK the Galois group of K/K . Abbes and Saito defined a decreasing
filtration Gr

K,log (r ∈ Q�0) of GK , called the logarithmic ramification filtration. For any

rational number r � 0, we put Gr+
K,log =

⋃

b>r G
b
K,log. Then P = G0+

K,log is the wild inertia
subgroup of GK ([AS1, 3.15]). For any rational number r > 0, the graded piece

Grrlog GK = Gr
K,log

/

Gr+
K,log

is abelian and killed by p ([Sa2, 1.24], [Sa3, Theorem 2]).
For any r ∈ Q, we denote by mr

K
(resp. mr+

K
) the set of elements of K such that v(x) � r

(resp. v(x) > r). Let Ω1
F (log) be the F -vector space

Ω1
F (log) = (Ω1

F/F0
⊕ (F ⊗Z K×))/(dā − ā ⊗ a ; a ∈ O×K) ,
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where ā is the residue class of a in F . We have a canonical exact sequence of finite dimen-
sional F -vector spaces

0→ Ω1
F → Ω1

F (log)→ F → 0 .

For any rational number r > 0, there exists a canonical injective homomorphism ([Sa2, 1.24],
[Sa3, Theorem 2]), called the refined Swan conductor,

rsw : HomFp (Grrlog GK,Fp)→ Ω1
F (log)⊗F m−r

K
/m−r+

K
.

Let M be a finite dimensional Λ-vector space on which P acts through a finite discrete
quotient,

M = ⊕r∈Q�0M
(r)

the slope decomposition of M (cf. Lemma 4.5), and for any rational number r > 0 ,

M(r) = ⊕χM
(r)
χ

the central character decomposition of M(r), where the sum runs over finitely many characters
χ : Grrlog GK → Λ×χ such that Λχ is a finite extension of Λ (cf. Lemma 4.7). Enlarging Λ,

we may assume that for all rational number r > 0 and for all central characters χ of M(r),
Λ = Λχ . We fix a non-trivial character ψ0 : Fp → Λ×. Since Grrlog GK is abelian and

killed by p, χ factors uniquely through Grrlog GK → Fp
ψ0−→ Λ×. We denote abusively by

χ : Grrlog GK → Fp the induced character. We fix a uniformizer π of OK . We define Abbes-
Saito’s characteristic cycle of M and denote by CCψ0(M) the following section (4.12.1)

CCψ0(M) =
⊗

r∈Q>0

⊗

χ∈X(r)

(rsw(χ)⊗ πr)dimΛ M
(r)
χ ∈ (Ω1

F (log)⊗F F)⊗ dimA M/M(0)
.

1.5. In the following, we assume that p is not a uniformizer of K (i.e., either K has
characteristic p or K has characteristic zero and p is not a uniformizer of OK ). Let L be a
finite Galois extension of K of group G. We assume that L/K has ramification index one and
that the residue field extension is non-trivial, purely inseparable and monogenic ; we say that
the extension L/K is of type (II) (cf. Subsection 3.3). Let M be a finite Λ-vector space on
which GK acts through G. We prove that, for any rational number r > 0, and any central
character χ : Grrlog GK → Fp of M(r), we have (Proposition 5.7)

rsw(χ) ∈ Ω1
F ⊗F m−r

K
/m−r+

K
.

Hence, we have CCψ0(M) ∈ (Ω1
F ⊗F F)⊗m, where m = dimAM/M(0) (Corollary 5.10). On

the other hand, using Kato’s theory of Swan conductors with differential values, we can define
Kato’s characteristic cycle KCCψ0(1)(M) (3.17.1). Our main result (10.7.4) is the following
equality

(1.5.1) CCψ0(M) = KCCψ0(1)(M) .

Using Kato’s theory, we deduce a Hasse-Arf type theorem (Corollary 10.5)

CCψ0(M) ∈ (Ω1
F )

m ⊂ (Ω1
F ⊗F F)m ,

and an induction formula (10.6.1) for Abbes-Saito’s characteristic cycle.
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1.6. Under the assumptions of Subsection 1.1, we can now give a new definition of
ϕ(s). Firstly, by Epp’s results [Epp], we can reduce to the case where F is trivialized by a
Galois étale connected covering U ′ of U such that the special fiber of the normalization X′
of X in U ′ is reduced. We denote by ̂OX,p the completion of OX,p, by Kp the fraction field
of ̂OX,p and by Fp the representation of Gal(Ksep

p /Kp) corresponding to the pull-back of F

on Spec(̂OX,p)×X U . The latter factors through the Galois group of a finite Galois extension
Lp of Kp, which is of type (II) over an unramified extension of Kp. We fix a uniformizer
π of R and a non-trivial character ψ0 : Fp → Λ×. We still have CCψ0(Fp) ∈ (Ω1

κ(p))
⊗m

(cf. Remark 10.7). We denote by ordp the valuation of κ(p) normalized by ordp(κ(p)×) = Z

and abusively by ordp : Ω1
κ(p) − {0} → Z the map defined by ordp(αdβ) = ordp(α), if

α, β ∈ κ(p)× and ordp(β) = 1. The latter can be uniquely extended to (Ω1
κ(p))

⊗r − {0} for

any integer r � 1. We denote by F p the restriction to Spec(κ(p)) of the direct image of Fp

by the map Spec(Kp)→ Spec(̂OX,p). It corresponds to a representation of Gal(κ(p)/κ(p)).
The invariant ϕ(s) is defined by

(1.6.1) ϕ(s) = − ordp(CCψ0(Fp))+ swx(F p)+ rank(F p) .

In fact, Kato’s second definition of ϕ(s) ([Kato2, 4.4]) is obtained by replacing CCψ0(Fp)

by KCCψ0(1)(Fp) in (1.6.1). Hence, from (1.5.1), we deduce that Deligne-Kato’s formula
(1.2.1) holds true with our definition (cf. Theorem 11.9).

1.7. Deligne-Kato’s formula has already had important applications. For instance,
Deligne’s formula could be used in Laumon’s work on local Fourier transform ([Lau2, 2.4.3])
and Kato’s formula was recently used in the work of Obus and Wewers on local lifting prob-
lem [OW]. We would like to mention that Laumon’s formula of the rank of the local Fourier
transform is a direct application of the formulation of Deligne-Kato’s formula using (1.6.1).
Indeed, it was reproved in ([AS4, Appendix B]) by reducing to the rank 1 case by Brauer
theorem.

1.8. This article is organized as follows. We briefly introduce Kato’s Swan conductors
with differential values and Abbes-Saito’s ramification theory in §3 and §4, respectively. We
study in §5 the ramification of extensions of type (II). We recall tubular neighborhoods and
normalized integral models in §6. We study the isogeny associated to an extension of type
(II) in §7 in the equal character case and in §8 in the unequal characteristic case. Using the
results of these two sections, we prove the main theorem 5.9 in §9. In §10, the heart of this
article, we compare Kato’s characteristic cycle and Abbes-Saito’s characteristic cycle. The
last section is devoted to Deligne-Kato’s formula by using Abbes-Saito’s characteristic cycle.
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2. Notation.
2.1. In this article, K denotes a complete discrete valuation field, OK its integer ring,

mK the maximal ideal of OK and F the residue field of OK . We assume that the characteristic
of F is p > 0. We fix a uniformizer π of OK . Let K be a separable closure of K , GK the
Galois group of K over K , OK the integral closure of OK in K , F the residue field of OK and
v the valuation of K normalized by v(K×) = Z. We denote by FÉ/K the category of finite
étale K-algebras. For any object K ′ of FÉ/K , we denote by OK ′ the integer ring of K ′ and by
mK ′ the radical of OK ′ .

2.2. For a field k and one dimensional k-vector spaces V1, . . . , Vm, we denote by
k〈V1, . . . , Vm〉 the k-algebra

⊕

(i1,...,im)∈Zm

V
⊗i1
1 ⊗ · · · ⊗ V ⊗imm ,

and by (k〈V1, . . . , Vm〉)× its group of units. An element of (k〈V1, . . . , Vm〉)× is contained in
some vector space V ⊗i11 ⊗· · ·⊗V ⊗imm . Such an element x will be denoted by [x] and we adopt
the additive notation, i.e. [x] + [y] = [x · y] and −[x] = [x−1]. If for each 1 � i � m, ei is a
non-zero element of Vi , we have an isomorphism

k〈V1, . . . , Vm〉 ∼−→ k[X1, . . . , Xm,X
−1
1 , . . . , X−1

m ] , ei �→ Xi ,

and hence an isomorphism

(2.2.1) (k〈V1, . . . , Vm〉)× ∼−→ k× ⊕ Z
m .

3. Kato’s Swan conductors with differential values.
3.1. In this section, we fix a finite separable extension L of K of ramification index e

contained in K . We denote by OL its integer ring and by E the residue field of OL.

3.2. We denote the group (F 〈mK/m
2
K 〉)× by RK and the group (E〈mL/m

2
L〉)× by RL

(cf. Subsection 2.2). The canonical isomorphisms

(3.2.1) E ⊗F (mK/m
2
K)
∼−→ me

L/m
e+1
L ,

(3.2.2) (mL/m
2
L)
⊗e ∼−→ me

L/m
e+1
L ,

induce an injective homomorphism of F -algebras

F 〈mK/m
2
K 〉 → E〈mL/m

2
L〉

and hence an injective homomorphism RK → RL.

3.3. Kato’s theory applies if the extensionL/K is of one of the following types ([Kato2,
1.5]):

(I) L/K is totally ramified (i.e., F = E);
(II) the ramification index of L/K is 1 and the residue field extension E/F is purely

inseparable and monogenic.
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Observe that in both cases, OL is monogenic over OK . These two cases do not cover all finite
separable extensions.

In the remaining part of this section, we assume that L/K is of type (II). We denote by
pn the degree of the residue extension E/F . We choose an element h ∈ OL such that its
reduction h̄ ∈ E is the generator of E/F and a lifting a ∈ OK of ā = h̄p

n ∈ F .

LEMMA 3.4. Let V be the kernel of the canonical morphism Ω1
F → Ω1

E . Denote by
� the morphism E → F, b �→ bp

n
, by φ the morphism F → F, b �→ bp

n
, and by ϕ the

morphism E→ E, b �→ bp
n
.

(i) The F -vector space V is of dimension 1, generated by dā.
(ii) The E-vector space Ω1

E/F is of dimension 1, generated by dh̄.

(iii) The canonical morphism F ⊗�,E Ω1
E/F → Ω1

F/φ(F ) = Ω1
F associated to F → E

�−→
F is injective with image V .

(iv) For any 1-dimensional E vector space W , the morphism

E ⊗ϕ,E W → W⊗pn

, y ⊗ z �→ yz⊗pn

is an isomorphism.
(v) There exists a canonical E-linear isomorphism

(3.4.1) E ⊗F V
∼−→ (Ω1

E/F )
⊗pn

,

that maps y ⊗ dā to y(dh̄)⊗pn
.

PROOF. (i), (ii), (iv) are obvious. We have two canonical exact sequences of differential

modules corresponding to the extensions φ : F → E
�−→ F and ϕ : E �−→ F → E,

F ⊗�,E Ω1
E/F

β−→ Ω1
F → Ω1

F/�(E)→ 0 ,

E ⊗F Ω1
F/�(E) → Ω1

E → Ω1
E/F → 0 .

Since the canonical morphism Ω1
F → Ω1

E factors as

Ω1
F → Ω1

F/�(E)→ E ⊗F Ω1
F/�(E)→ Ω1

E ,

the image of F ⊗�,E Ω1
E/F in Ω1

E is {0}. Hence the image of β lies in V . Since the kernel of

Ω1
F → Ω1

F/�(E) is not zero (as it contains dā) and since F ⊗�,E Ω1
E/F is of dimension 1, β is

injective. Hence β induces an isomorphism

β : F ⊗�,E Ω1
E/F

∼−→ V .

From (ii) and (iv), we obtain an isomorphism

β ′ : E ⊗ϕ,E Ω1
E/F → (Ω1

E/F )
⊗pn

, y ⊗ zdh̄ �→ yzp
n

(dh̄)⊗pn

.

We take for (3.4.1) the isomorphism β ′ ◦ (idE ⊗ β)−1. �
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3.5. Let V be the kernel of the canonical morphism Ω1
F → Ω1

E (Lemma 3.4). We put
(Subsection 2.2)

SK,L = (F 〈mK/m
2
K, V 〉)× and SL/K = (E〈mL/m

2
L,Ω

1
E/F 〉)× .

From (3.2.1) and (3.4.1), we obtain an injective homomorphism of F -algebras

F 〈mK/m
2
K, V 〉 ↪→ E〈mL/m

2
L,Ω

1
E/F 〉 ,

which induces an injective homomorphism

(3.5.1) SK,L ↪→ SL/K .

3.6. Let L′ be a subfield of L containing K , OL′ its integer ring and E′ its residue field.
When L′ �= L (resp. L′ �= K), the extension L/L′ (resp. L′/K) is of type (II) ; we consider
SL′,L (resp. SL′/K ) as a subgroup of SL/K containing SK,L, by functoriality. If K �= L′ �= L,
the following canonical maps

ker(Ω1
F → Ω1

E′)→ ker(Ω1
F → Ω1

E) ,

Ω1
E/F → Ω1

E/E′ ,

ker(Ω1
E′ → Ω1

E)→ Ω1
E′/F

are isomorphisms by considering dimensions, which give the following relations:

SK,L = SK,L′ ⊂ SL′/K = SL′,L ⊂ SL/L′ = SL/K .

3.7. Let i be the maximal integer such that TrL/K(mi
L) = OK . The surjective homo-

morphism TrL/K : mi
L/m

i+1
L → OK/mK = F induces an E-isomorphism

mi
L/m

i+1
L

∼−→ HomF (E, F ) , b �→ (a �→ TrL/K(ab)) ,

and hence a basis of (mL/m
2
L)
⊗(−i) ⊗E HomF (E, F ), that we call Kato’s different of L/K

and denote by D(L/K) ([Kato2, 2.1]).
3.8. Following Kato ([Kato2, 2.3]), there is an F -linear map TrE/F : Ω1

E → Ω1
F

characterized by

TrE/F

(

dx

x

)

= dxp
n

xp
n , TrE/F

(

xi
dx

x

)

= 0 ,

for any x ∈ E× and 1 � i � pn − 1. Its image is V (Lemma 3.4) and it induces an
isomorphism

(3.8.1) Ω1
E/F

∼−→ HomF (E, V ), ω �→ (a �→ TrE/F (aω)) .

Hence we obtain a sequence of isomorphisms
(3.8.2)

HomF (E, F )
(3.8.1)−−−→ Ω1

E/F ⊗F V ⊗(−1) (3.4.1)−−−→ Ω1
E/F ⊗E (Ω1

E/F )
⊗(−pn) = (Ω1

E/F )
⊗(1−pn),

by which E〈mL/m
2
L〉 ⊗E HomF (E, F ) is a sub-E〈mL/m

2
L〉-module of E〈mL/m

2
L,Ω

1
E/F 〉.

Hence we may consider D(L/K) (Subsection 3.7) as an element of SL/K .
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PROPOSITION 3.9 ([Kato2, 2.2]). Let L′ be a subfield of L containing K . If L = L′
(resp. L′ = K), we put D(L/L′) = [1] (resp. D(L′/K) = [1]). Then, we have

(3.9.1) D(L/K) = D(L/L′)+D(L′/K) ∈ SL/K .

We consider D(L′/K) ∈ SL′/K ⊆ SL/K .
3.10. In the rest of this section, we assume that the extension L/K is of Galois group

G. For any σ ∈ G− {1}, we put

sG(σ) = [dh̄] − [h− σ(h)] ∈ SL/K ,

where the term [dh̄] corresponds to the element dh̄ in Ω1
E/F and the term [h − σ(σ)] corre-

sponds abusively to the class of h − σ(h) ∈ (mL/m
2
L)
⊗v(h−σ(h)). The definition of sG(σ) is

independent of the choice of the generator h ([Kato2, 1.8]). We also put

(3.10.1) sG(1) = −
∑

σ∈G−{1}
sG(σ) ∈ SL/K .

We have ([Kato2, (2.4)])

(3.10.2) sG(1) = D(L/K).

PROPOSITION 3.11 ([Kato2, Proposition 1.9]). Let H be a normal subgroup of G.
Then for any element τ ∈ G/H − {1}, we have

sG/H (τ) =
∑

σ∈G
σ �→τ

sG(σ ) .

3.12. In the following of this section, let C be an algebraically closed field of character-
istic zero, ξ a primitive p-th root of 1 in C and ˜Z the integral closure of Z in C. For any finite
group H , we denote by RC(H) the Grothendieck group of finitely generated C[H ]-modules.
For an element χ ∈ R(H), let 〈χ, 1〉 = 1

�H

∑

σ∈H trχ(σ ).
3.13. For an element χ ∈ RC(G), we put

sG(χ)=
∑

σ∈G
sG(σ)⊗ trχ (σ ) ∈ SL/K ⊗Z

˜Z ,

ε(ξ)=
∑

r∈F×p⊆E×
[r] ⊗ ξr ∈ SL/K ⊗Z

˜Z .

Kato defined the Swan conductor with differential values of χ as

(3.13.1) swξ (χ) = sG(χ)+ (dimχ − 〈χ, 1〉)ε(ξ) ∈ SL/K ⊗˜Z .

For any r ∈ F
×
p , we have swξ r (χ) = swξ (χ)+ (dimχ − 〈χ, 1〉)[r].

PROPOSITION 3.14 ([Kato2, 3.3(1)]). Let H be a normal subgroup of G, ϑ an ele-
ment in RC(G/H) and ϑ ′ the image of ϑ under the canonical map RC(G/H) → RC(G).
Then, we have

sG(ϑ
′) = sG/H (ϑ) and swξ (ϑ

′) = swξ (ϑ) .
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PROPOSITION 3.15 ([Kato2, 3.3(2)]). Let H be a subgroup of G. For any θ ∈
RC(H), we have

sG(IndGH θ) = [G : H ](sH (θ)+ dim θ ·D(LH /K)
)

(3.15.1) swξ (IndGH θ) = [G : H ]( swξ (θ)+ (dim θ − 〈θ, 1〉) ·D(LH /K)
)

.

By (3.10.1), (3.10.2) and (3.9.1), equation (3.15.1) can be written as
(3.15.2)

swξ (IndGH θ) = [G : H ]
(

swξ (θ)− (dim θ − 〈θ, 1〉)
(

∑

σ∈G−H
([dh̄] − [h− σ(h)])

))

.

THEOREM 3.16. ([Kato2, 3.4]). For any χ ∈ RC(G), we have

swξ (χ) ∈ SK,L ⊂ SL/K ⊗Z
˜Z .

This is a generalization of Hasse-Arf’s theorem. It can be reduced to the case where
G is cyclic of rank ps and χ is 1-dimensional by the induction formula (3.15.1) and Brauer
theorem. Then the proof relies on the higher dimensional class field theory of Kato ([Kato2,
3.6, 3.7]).

3.17. For an element χ ∈ RC(G), the Swan conductor with differential values swξ (χ)

is given by

swξ (χ) = −�G(dimC χ − 〈χ, 1〉)[dh̄] +Δ ,

where

Δ =
∑

σ∈G−{1}
[h− σ(h)] ⊗ (dimC χ − trχ (σ ))+ (dimC χ − 〈χ, 1〉)ε(ξ) ∈ RL ⊗Z

˜Z .

From (3.4.1) and Theorem 3.16, we have �G[dh̄] = [dā] and Δ ∈ RK . Hence, we get

swξ (χ) = [πc] + [Δ′] −m[dā] ∈ SK,L ,

where π is the uniformizer ofOK fixed in Subsection 2.1, c is an integer, m = dimC χ−〈χ, 1〉
and Δ′ ∈ F such that [πcΔ′] = Δ. We define Kato’s characteristic cycle of χ and denote by
KCCξ (χ) the element

(3.17.1) KCCξ (χ) = Δ′(dā)m ∈ (Ω1
F )
⊗m .

REMARK 3.18 ([Kato2, 3.15]). If the extension L/K is not of type (II), but there
exists a subfield K ′ of L containing K such that K ′/K is an unramified extension and L/K ′
is of type (II), we define

swξ (χ) = swξ (ResGGal(L/K ′) χ) .

Denote by OK ′ the integer ring of K , mK ′ the maximal ideal of OK ′ and F ′ the residue field
of OK ′ . Observe that swξ (χ) is fixed by Gal(K ′/K) and that the Gal(K ′/K)-invariant part
of F ′〈mK ′/m2

K ′, ker(Ω1
F ′ → Ω1

E)〉 is F 〈mK/m
2
K, ker(Ω1

F → Ω1
E)〉. Thus swξ (χ) is still

contained in SK,L.
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REMARK 3.19 ([Kato2, 3.16]). Let A be an algebraically closed field of characteris-
tic � /∈ {0, p}. We denote by A′ an algebraic closure of the fraction field of the ring of Witt
vectors W(A). Let χ be an element of RA(G) and let χ̂ be a pre-image of χ in RA′(G) ([Se2,
16.1 Theorem 33]). We denote by ξ̂ the p-th root of unity in A′ lifting of a primitive p-th root
of unity ξ in A. Then we put

swξ (χ) = sw
ξ̂
(χ̂ ) .

This definition is independent of the choice of χ̂ because of ([Se2, 18.2 Theorem 42]) and
(3.13.1).

4. Abbes-Saito’s ramification theory.

4.1. Abbes and Saito defined two decreasing filtrations Gr
K and Gr

K,log (r ∈ Q>0) of
GK by closed normal subgroups called the ramification filtration and the logarithmic ramifi-
cation filtration, respectively ([AS1, 3.1, 3.2]).

4.2. We denote by G0
K the group GK . For any r ∈ Q�0, we put

Gr+
K =

⋃

s∈Q>r

Gs
K and Grr GK = Gr

K/G
r+
K .

Let L be a finite separable extension of K . For a rational number r � 0, we say that the ramifi-
cation of L/K is bounded by r (resp. by r+) if Gr

K (resp. Gr+
K ) acts trivially on HomK(L,K)

via its action on K . We define the conductor c of L/K as the infimum of rational numbers
r > 0 such that the ramification of L/K is bounded by r . Then c is a rational number and
L/K is bounded by c+ ([AS1, 6.4]). If c > 0, the ramification of L/K is not bounded by c.

4.3. We denote by G0
K,log the inertia subgroup of GK . For any r ∈ Q�0, we put

Gr+
K,log =

⋃

s∈Q>r

Gs
K,log and GrrlogGK = Gr

K,log

/

Gr+
K,log .

By ([AS1, 3.15]), P = G0+
K,log is the wild inertia subgroup of GK , i.e., the p-Sylow subgroup

of G0
K,log. Let L be a finite separable extension of K . For a rational number r � 0, we say that

the logarithmic ramification of L/K is bounded by r (resp. by r+) if Gr
K,log (resp. Gr+

K,log)

acts trivially on HomK(L,K) via its action on K . We define the logarithmic conductor c of
L/K as the infimum of rational numbers r > 0 such that the ramification of L/K is bounded
by r . Then c is a rational number and L/K is bounded by c+ ([AS1, 9.5]). If c > 0, the
ramification of L/K is not bounded by c.

THEOREM 4.4 ([AS2, Theorem 1]). For every rational number r > 0, the group
GrrlogGK is abelian and is contained in the center of P/Gr

K,log.

LEMMA 4.5 ([Katz, 1.1]). Let M be a Z[ 1
p
]-module on which P = G0+

K,log acts
through a finite discrete quotient, say by ρ : P → AutZ(M). Then,
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(i) The module M has a unique direct sum decomposition

(4.5.1) M =
⊕

r∈Q�0

M(r)

into P -stable submodules M(r), such that M(0) = MP and for every r > 0,

(M(r))
Gr

K,log = 0 and (M(r))
Gr+

K,log = 0 .

(ii) If r > 0, then M(r) = 0 for all but the finitely many values of r for which ρ(Gr+
K,log) �=

ρ(Gr
K,log).

(iii) For any r � 0, the functor M �→ M(r) is exact.
(iv) For M , N as above, we have HomP−mod(M

(r), N(r ′)) = 0 if r �= r ′.

The decomposition (4.5.1) is called the slope decomposition of M . The values r � 0 for
which M(r) �= 0 are called the slopes of M . We say that M is isoclinic if it has only one slope.

4.6. In the following of this section, we fix a prime number � different from p, a local
Z�-algebra Λ which is of finite type as a Z�-module and a non-trivial character ψ0 : Fp →
Λ×.

LEMMA 4.7 ([AS5, 6.7]). Let M be a Λ-module on which P acts Λ-linearly through
a finite discrete quotient, which is isoclinic of slope r > 0. So the P action on M factors
through the group P/Gr+

K,log.

(i) Let X(r) be the set of isomorphism classes of finite characters χ : GrrlogGK → Λ×χ
such that Λχ is a finite étale Λ-algebra, generated by the image of χ , and having a
connected spectrum. Then M has a unique direct sum decomposition

(4.7.1) M =
⊕

χ∈X(r)

Mχ .

Each Mχ is a P stable sub-Λ-module such that Λ[Gr
K,log] acts on Mχ through Λχ .

(ii) There are finitely many characters χ ∈ X(r) for which Mχ �= 0.
(iii) For a fixed χ ∈ X(r), the functor M → Mχ is exact.
(iv) For M , N as above, we have HomΛ(Mχ,Nχ ′ ) = 0 if χ �= χ ′.

The decomposition (4.7.1) is called the central character decomposition of M . The char-
acters χ : GrrlogGK → Λ×χ for which Mχ �= 0 are called the central characters of M ([AS5,
6.8]).

Let P0 be a finite discrete quotient of P/Gr+
K,log through which P acts on M and let C0

be the image of GrrlogGK in P0. By Theorem 4.4, we know that C0 is contained in the center
of P0. The connected components of Spec(Λ[C0]) correspond to the isomorphism classes of
characters χ : C0 → Λ×χ , where Λχ is finite étale Λ-algebra, generated by the image of χ ,
and having a connected spectrum. If pnC = 0, and Λ contains a primitive pn-th root of 1,
then Λχ = Λ for every χ such that Mχ �= 0.

LEMMA 4.8 ([Katz, 1.4], [AS5, 6.10]). Let A be a Λ-algebra and M a left A-module
on which P acts A-linearly through a finite discrete quotient. Then,
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(i) In the slope decomposition M =⊕

r M
(r), each M(r) is a sub-A-module of M . For

any A-algebra B, the decomposition of B ⊗A M is given by B ⊗A M =⊕

r (B ⊗A

M(r)).
(ii) If M is isoclinic, then in the central character decomposition M =⊕

χ Mχ , eachMχ

is a sub-A-module of M . For any A-algebra B, the central character decomposition
of B ⊗A M is given by B ⊗A M =⊕

χ (B ⊗A Mχ).

4.9. Let V be a finite dimensional F -vector space and we denote by V ∗ its dual space.
We consider V as a smooth abelian algebraic group over F , i.e. Spec(Sym(V ∗)). Let πalg

1 (V )

be the quotient of πab
1 (V ) classifying étale isogenies. Then π

alg
1 (V ) is a profinite group killed

by p and the group Hom(π
alg
1 (V ),Fp) is canonically identified with the dual space V ∗ by

pulling-back the Lang’s isogeny A
1→ A

1 : t �→ tp − t by linear forms (cf. [Sa4, 1.19]).
4.10. For the rest of this section, we assume that F is of finite type over a perfect

subfield F0. We define the F -vector space Ω1
F (log) by

Ω1
F (log) = (Ω1

F/F0
⊕ (F ⊗Z K×))/(dā − ā ⊗ a ; a ∈ O×K) .

Then we have an exact sequence of finite dimensional F -vector spaces

(4.10.1) 0 −→ Ω1
F −→ Ω1

F (log)
res−→ F −→ 0 ,

where res((0, a ⊗ b)) = a · v(b) for a ∈ F and b ∈ K×. If K has characteristic p, we put

̂Ω1
OK/F0

= lim←−
n

Ω1
(OK/mn

K)/F0
.

We have an exact sequence of F -vector spaces

(4.10.2) 0→ mK/m
2
K → ̂Ω1

OK/F0
⊗OK

F → Ω1
F → 0 .

If K has characteristic zero and p is not a uniformizer of OK , we denote by OK0 the ring of
Witt vectors W(F0) regarded as a sub-algebra of OK . Then, we put

̂Ω1
OK/OK0

= lim←−
n

Ω1
(OK/mn

K)/OK0
.

We have an exact sequence of F -vector spaces

(4.10.3) 0→ mK/m
2
K → ̂Ω1

OK/OK0
⊗OK

F → Ω1
F → 0 .

For any rational number r , we put

mr

K
= {x ∈ K ; v(x) � r}, mr+

K
= {x ∈ K ; v(x) > r} ,

Θ
(r)

F ,log
= HomF

(

Ω1
F (log),mr

K
/m(r+)

K

)

,

Ξ
(r)

F
= HomF

(

Ω1
F ,m

r

K
/m(r+)

K

)

.(4.10.4)

When K has characteristic p (resp. characteristic zero and p is not a uniformizer of OK ), for
any rational number r > 0, we denote by Θ

(r)

F
the F -vector space

(4.10.5) Θ
(r)

F
= HomF

(

̂Ω1
OK/F0

⊗OK
F,mr

K
/m

(r+)
K

)
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(

resp. Θ
(r)

F
= HomF

(

̂Ω1
OK/OK0

⊗OK
F,mr

K
/m(r+)

K

) )

.

By (4.10.1), (4.10.2) and (4.10.3), whenp is not a uniformizer of K , we have homomorphisms

Θ
(r)

F ,log
→ Ξ

(r)

F
→ Θ

(r)

F
.

By ([AS2, 5.12]), we have a canonical surjection

(4.10.6) πab
1 (Θ

(r)

F ,log
)→ GrrlogGK .

THEOREM 4.11 ([Sa2, 1.24], [Sa3, Theorem 2]). For every rational number r > 0,
the canonical surjection (4.10.6) factors through the quotient πalg

1 (Θ
(r)

F ,log
). In particular,

the abelian group GrrlogGK is killed by p and the surjection (4.10.6) induces an injective
homomorphism

(4.11.1) rsw : Hom(GrrlogGK,Fp)→ HomF (m
r

K
/mr+

K
,Ω1

F (log)⊗ F) .

The morphism (4.11.1) is called the refined Swan conductor.
4.12. Let M be a free Λ-module of finite type on which P acts Λ-linearly through a

finite discrete quotient. Let

M =
⊕

r∈Q�0

M(r)

be the slope decomposition of M and for each rational number r > 0, let

M(r) =
⊕

χ∈X(r)

M(r)
χ

be the central character decomposition of M(r). We notice that each M
(r)
χ is a free Λ-module.

Enlarging Λ, we may assume that for all rational number r > 0 and χ ∈ X(r), Λ = Λχ

(Lemma 4.7). Each χ factors uniquely through ψ0 (Subsection 4.6)

Grrlog GK → Fp
ψ0−→ Λ× .

We denote abusively by χ the induced character Grrlog GK → Fp. We define the Abbes-Saito
characteristic cycle CCψ0(M) of M by

(4.12.1) CCψ0(M) =
⊗

r∈Q>0

⊗

χ∈X(r)

(rsw(χ)⊗πr)dimΛ M
(r)
χ ∈ (Ω1

F (log)⊗F F )⊗ dimΛ M/M(0)
.

5. Ramification of extensions of type (II).
5.1. In this section, we assume that the residue field F of OK is of finite type over a

perfect field F0 of characteristic p. Let L be a finite Galois extension of K of group G and
type (II) (Subsection 3.3), OL the integer ring of L and E the residue field of OL. We denote
by pn the degree of the residue extension E/F . We choose an element h ∈ OL such that its
residue class h̄ ∈ E is a generator of E/F . We have OL = OK [h]. Let f (T ) ∈ OK [T ] be
the minimal polynomial of h:

(5.1.1) f (T ) = T pn + apn−1T
pn−1 + · · · + a0 .



166 H. HU

Notice that ā0 = −h̄pn ∈ F . We put

(5.1.2) c = sup
σ∈G−{1}

v(h− σ(h))+
∑

σ∈G−{1}
v(h − σ(h)) ,

which is an integer � pn.
For any rational number r � 0, we denote by Gr (resp. Gr

log) the image of Gr
K (resp.

Gr
K,log) in G ([AS1, 3.1]). Using the monogenic presentation OL = OK [T ]/(f (T )), we

obtain that, for any rational number r > 1, Gr = Gr
log([AS1, 3.1, 3.2]) and that the conductor

of L/K is c ([AS1, 6.6]). By Theorem 4.11, the normal subgroup Gc of G is commutative
and killed by p. In the following, we put �Gc = ps .

5.2. For any integer j � 1, we denote by Dj the j -dimensional closed poly-disc of
radius one over K and by D̊j the j -dimensional open disc of radius one over K . For a
rational number r � 0, the j -dimensional closed poly-disc of radius r is denoted by Dj,(r) =
{(x1, . . . , xj ) ∈ Dj ; v(xi) � r}. Let

f̃ : D1 → D1, x �→ f (x) ,

be the morphism induced by f . For any rational number r � 0, it is easy to see that
f̃−1(D1,(r)) is a disjoint union of closed discs with the same radius, i.e. there exists a ra-
tional number ρ(r) � 0 such that

f̃−1(D1,(r)) =
∐

1�j�i

(

xj +D1,(ρ(r))
)

,

where the xj ’s are zeros of f . The function ρ : Q�0 → Q�0 is called the Herbrand function
of the extension L/K . By ([AS2, 6.6]), we have ρ(c) = supσ∈G−{1} v(h − σ(h)) and

(5.2.1) Gc = {σ ∈ G; v(h− σ(h)) � ρ(c)} .
5.3. We denote by u the map

(5.3.1) u : G→ E, σ �→
{

uσ =
(

h−σ(h)
πv(h−σ(h))

)

, if σ �= 1,

uσ = 0, if σ = 1 .

The restriction u|Gc : Gc → E of u to Gc is an injective homomorphism of groups. Indeed,
for any σ ∈ Gc − {1}, we have v(h − σ(h)) = ρ(c). Hence, for σ1, σ2 ∈ Gc, we have

uσ1σ2 =
(

h− σ1σ2(h)

πρ(c)

)

=
(

h− σ1(h)+ σ1(h− σ2(h))

πρ(c)

)

= uσ1 + uσ2 .

PROPOSITION 5.4. The polynomial fc(T ) = f (πρ(c)T + h)/πc ∈ L[T ] has integral
coefficients. Its reduction fc ∈ E[T ] is an additive polynomial of degree ps = �Gc with a
non-zero linear term.

PROOF. We have

fc(T ) = T
∏

σ∈G−{1}

πρ(c)T + h− σ(h)

πv(h−σ(h)) ∈ OL[T ] .
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Hence

(5.4.1) fc(T ) = T
∏

σ∈G−{1}

(

πρ(c)T + h− σ(h)

πv(h−σ(h))

)

=
∏

σ∈G−Gc

uσ ·
∏

σ∈Gc

(T + uσ ) .

Choose an Fp-basis τ1, . . . , τs of Gc, we get
∏

σ∈Gc

(T + uσ )=
∏

(j1,...,js)∈Fsp
(T + j1uτ1 + · · · + jsuτs ) .

We conclude by the lemma below. �

LEMMA 5.5. Let C be a field of characteristic p. For any integer r � 0, let x1, . . . , xr

be r elements of C such that for any (j1, . . . , jr ) ∈ F
r
p −{0}, j1x1+ · · · + jrxr �= 0. Then we

have

(5.5.1)
∏

(j1,...,jr )∈Frp
(T +j1x1+· · ·+jrxr) = T pr +λr−1T

pr−1+· · ·+λ1T
p+λ0T ∈ C[T ] ,

where

λ0 =
∏

(j1,...,jr )∈Frp−{0}
(j1x1 + · · · + jrxr) �= 0 .

PROOF. We proceed by induction on r . If r = 1,
∏

j1∈Frp
(T + j1x1) = T p − x

p−1
1 T ,

which satisfies (5.5.1). Assume that (5.5.1) holds for (r − 1)-tuples where r � 2, let
(x1, . . . , xr) ∈ Cr be as in the lemma. We put

gr−1(T ) =
∏

(j1,...,jr−1)∈Fr−1
p

(T + j1x1 + · · · + jr−1xr−1) .

Then, we have
∏

(j1,...,jr )∈Frp
(T + j1x1 + · · · + jrxr )=

∏

jr∈Fp
(gr−1(T + jrxr))

=
∏

jr∈Fp
(gr−1(T )+ jrgr−1(xr))

= g
p

r−1(T )− g
p−1
r−1 (xr)gr−1(T ) ,

which satisfies (5.5.1) since gr−1 does. �

In the following of this section, we assume that p is not a uniformizer of K .

LEMMA 5.6. Suppose c > 2. Then, for any 1 � i � pn−1, we have v(ai) � 2 (5.1.1).
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PROOF. From the equation f (T ) = ∏

σ∈G(T − σ(h)), for any 1 � i � pn − 1, we
obtain

ai = (−1)(p
n−i) ∑

{σ1,...,σpn−i}⊆G
σ1(h)σ2(h) · · ·σpn−i (h)(5.6.1)

= (−1)(p
n−i) ∑

{σ1,...,σpn−i}⊆G
(σ1(h)− h+ h) · · · (σpn−i (h)− h+ h)

= (−1)(p
n−i)

((

pn

i

)

hp
n−i +

(

pn − 1

i

)

hp
n−i−1

∑

σ∈G
(σ(h)− h)+Δ

)

,

where v(Δ) � 2. Since the integer
(

pn

i

)

is divisible by p, v(
(

pn

i

)

hp
n
) � 2. Hence it is

sufficient to show that

v

(

∑

σ∈G
(σ(h)− h)

)

� 2 .

Assume first that for any σ ∈ G− {1}, v(h − σ(h)) = ρ(c), i.e. G = Gc. It suffices to
treat the case where ρ(c) = 1. In this case, �G = c > 2 (5.1.2). From Subsection 5.1, G is an
Fp-vector space of dimension n and we choose an Fp-basis τ1, . . . , τn of G. By Subsection
5.3, we have

∑

σ∈G
uσ =

∑

(j1,...,jn)∈Fnp
(j1uτ1 + · · · + jnuτn)

= pn(p − 1)

2
(uτ1 + · · · + uτn) = 0 ,

which means that v(
∑

σ∈G−{1}(σ (h)− h)) � ρ(c)+ 1 = 2.
Assume next that for σ ∈ G−{1}, the v(h−σ(h))’s are not equal. Let c′ be the smallest

jump of the ramification filtration of G and let �(Gc′+) = pn′ for some integer n′ < n. Let
ς1 = 1, ς2, . . . , ςpn−n′ be liftings of all the elements of G/Gc′+ in G. Observe that for any

ς ∈ G−Gc′+ and σ ∈ Gc′+, we have uςσ = uς . Hence

∑

ς∈G−Gc′+
uς =

pn−n′
∑

j=2

∑

σ∈Gc′+
uςj = pn′

pn−n′
∑

j=2

uςj = 0 .

Hence v(
∑

σ∈G−Gc′+(σ (h) − h)) � 2. Meanwhile, v(
∑

σ∈Gc′+(σ (h) − h)) � 2, hence we
obtain the inequality v(

∑

σ∈G(σ(h)− h)) � 2. �

PROPOSITION 5.7. The composition of the canonical homomorphisms (Theorem 4.11)

π
alg
1 (Θ

(c)

F ,log
)→ Grclog GK → Gc

factors through π
alg
1 (Ξ

(c)

F
) (4.10.4). In particular, for any non-trivial character χ : Gc →

Fp, we have rsw(χ) ∈ Ω1
F ⊗F m−c

K
/m−c+

K
.

The proof of this proposition is given in Subsection 9.3.
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5.8. For a non-trivial character χ : Gc → Fp, we denote by f̄c,χ (T ) the polynomial
(Subsection 5.3)

(5.8.1) f̄c,χ (T ) =
∏

σ∈kerχ

(T + uσ ) ∈ F [T ] ,

and by τ ∈ Gc a lifting of 1 ∈ Fp. Recall that f̄c,χ is an additive polynomial with a non-zero
linear term (Lemma 5.5), and that f̄c,χ (uτ ) is independent of the choice of τ .

THEOREM 5.9. For any non-trivial character χ : Gc → Fp, the refined Swan conduc-
tor rsw(χ) is given by

rsw(χ) = −dā0 ⊗ π−c
(∏

σ∈G−Gc uσ
)

f̄
p
c,χ (uτ )

∈ Ω1
F ⊗F m−c

K
/m−c+

K
.

The proof of this theorem is given in Subsection 9.4.

COROLLARY 5.10. Let M be a finite dimensional Λ-vector space with a non-trivial
linear G-action. Then, with the notation of Subsection 4.6, we have (4.12.1)

CCψ0(M) ∈ (Ω1
F ⊗F F)⊗r ,

where r = dimΛM/M(0) (Lemma 4.5).

6. Tubular neighborhoods and normalized integral models.
6.1. Let R be an OK -algebra. Following ([AS2, 1]), we say that R is formally of finite

type over OK if it is semi-local with radical mR , mR-adically complete, Noetherian and if the
quotient R/mR is of finite type over F . We say that R is topologically of finite type over OK

if it is π-adically complete, Noetherian and if the quotient R/πR is of finite type over F .
6.2. We denote by AFSOK

the category of affine Noetherian adic formal schemes X

over Spf(OK) such that the closed sub-scheme Xred defined by the largest ideal of definition
of X, is a scheme of finite type over Spec(F ). Let A be a finite flat algebra over OK , and
i : Spf(A) → X a closed immersion in AFSOK

. For any rational number r > 0, follow-
ing ([deJ, 7.1] and [AM, 2.1]), we associate to i a K-affinoid variety Xr , called the tubular
neighborhood of i of thickening r , as follows. Let X = Spf(A), I be the ideal of A which
defines the immersion i and t, s > 0 be two integer such that r = t/s. Let A〈I s/πt 〉 be
the π-adic completion of the subalgebra of A⊗OK

K generated by A and f/πt for f ∈ I s .
Then A〈I s/πt 〉 ⊗OK

K is a K-affinoid algebra which depends only on r . We denote by Xr

the K-affinoid variety Sp(A〈I s/πt 〉 ⊗OK
K). For rational numbers r ′ > r > 0, there exists

a canonical morphism Xr ′ → Xr which makes Xr ′ a rational sub-domain of Xr . The ad-
missible union of the affinoid spaces Xr for r ∈ Q�0 is a quasi-separated rigid variety over
K .

PROPOSITION 6.3 (Finiteness theorem of Grauert-Remmert, [BGR, 6.4.1/3],
[AS1, 4.2]). Let R be a geometrically reduced K-affinoid algebra. Then, there exists a fi-
nite separable extension K ′ of K such that the supremum norm unit ball ([BGR, 3.8.1])

(6.3.1) ROK′ = {f ∈ R⊗K K ′; |f |sup � 1} ⊆ R⊗K K ′
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has a reduced geometric closed fiber ROK′ ⊗OK′ F . Moreover, the formation of ROK′ com-
mutes with any finite extension of K ′.

6.4. Let R be a geometrically reduced K-affinoid algebra. We consider the collection
of OK ′-formal scheme Spf(ROK′ ), where K ′ and ROK′ are as in Proposition 6.3, as a unique
model of Sp(R) over OK . We call it the normalized integral model over OK . We say that the
normalized integral model of Sp(R) is defined over K ′ if the supremum norm unit ball ROK′
has a reduced geometric special fiber. We call this reduced geometric special fiber over F the
special fiber of the normalized integral model of Sp(R) over OK .

PROPOSITION 6.5 ([AS1, 4.4]). Let X be a geometrically reduced affinoid variety
over K , X its normalized integral model over OK and X the special fiber of X. Then the
set of geometric connected components of X and X are isomorphic.

6.6. Let X be a geometrically reduced affinoid variety over K , X its normalized integral
model over OK and X the special fiber of X. If X is defined over a finite Galois extension K ′
of K , we denote by XOK′ the normalized integral model of X over OK ′ . The natural K ′-semi-
linear action of GK on X⊗K K ′ extends to an OK ′-semi-linear action of GK on XOK′ . If K ′′
is another finite Galois extension of K containing K ′, then X′OK′′

= XOK′ ⊗OK′ OK ′′ and the

semi-linear action of GK on both sides are compatible. Hence, it induces an F -semi-linear
action of GK on the special fiber X, called the geometric monodromy ([AS1, 4.5]).

7. Isogenies associated to extensions of type (II): the equal characteristic case.
7.1. In this section, we assume that K has characteristic p and that the residue field F

of OK is of finite type over a perfect field F0. For an object L of FÉ/K and an integer r � 1,
we denote by (OL/m

r
L)̂⊗F0OK the completion of (OL/m

r
L) ⊗F0 OK relatively to the kernel

of the homomorphism

(7.1.1) (OL/m
r
L)⊗F0 OK → OL/m

r
L, a ⊗ b �→ ab ,

and by OL
̂
̂⊗F0OK the projective limit

lim←−
r

(OL/m
r
L)̂⊗F0OK .

We will always consider OL
̂
̂⊗F0OK as an OK -algebra by the homomorphism

(7.1.2) OK → OL
̂
̂⊗F0OK, u �→ 1⊗ u ,

(in the following, we always abbreviate 1⊗ u by u) and we will consider it as an OL-algebra
by

OL → OL
̂
̂⊗F0OK, v �→ v ⊗ 1 .

There is a canonical surjective homomorphism

(7.1.3) OL
̂
̂⊗F0OK → OL

induced by the surjections (7.1.1). We denote by IL its kernel.
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PROPOSITION 7.2 ([AS2, 2.3]). Let L be an object of FÉ/K .

(i) The OK -algebra OL
̂
̂⊗F0OK is formally of finite type and formally smooth over OK

and the morphism (OL
̂
̂⊗F0OK)/mOL

̂
̂⊗F0OK

→ OL/mOL
(7.1.3) is an isomorphism.

(ii) Any morphism L→ L′ of FÉ/K induces an isomorphism

(7.2.1) OL′ ⊗OL
(OL

̂
̂⊗F0OK)

∼−→ OL′̂̂⊗F0OK.

7.3. Let L be an object of FÉ/K . By Proposition 7.2, Spf(OL
̂
̂⊗F0OK) is an object of

AFSOK
(Subsection 6.2). For any rational number r > 0 and integer numbers s, t > 0 such

that r = t/s, we denote by Rr
L the K-affinoid algebra

(7.3.1) Rr
L = (OL

̂
̂⊗F0OK)〈I sL/πt 〉 ⊗OK

K,

by Xr
L = Sp(Rr

L) the tubular neighborhood of thickening r of the closed immersion
Spf(OL)→ Spf(OL

̂
̂⊗F0OK) (7.1.3), (Subsection 6.2), which is smooth over K ([AS2, 1.7]).

By Proposition 6.3, there exists a finite separable extension K ′ of K such that the normalized
integral model of Xr

L over OK is defined over K ′ (Subsection 6.4). We denote by Rr
L,OK′

the

supremum norm unit ball of Rr
L ⊗K K ′ (6.3.1), by Xr

L the normalized integral model of Xr
L

over OK and by X
r

L the special fiber of Xr
L (Subsection 6.4).

7.4. Let m be the dimension of the F -vector space Ω1
F , which is finite. By ([AS2,

1.14.3]), there is an isomorphism of OK -algebras

(7.4.1) OK [[T0, . . . , Tm]] ∼−→ OK
̂
̂⊗F0OK ,

such that the composition of it and (7.1.3) OK [[T0, . . . , Tm]] ∼−→ OK
̂
̂⊗F0OK → OK maps Ti

to 0. Here the OK -algebra structure of OK
̂
̂⊗F0OK is as in (7.1.2). If r is an integer � 1, we

have an isomorphism of K-affinoid algebras

(7.4.2) K〈T0/π
r , . . . , Tm/π

r 〉 ∼−→ Rr
K .

The normalized integral model Xr
K is defined over OK , and we have an isomorphism

(7.4.3) OK 〈T0/π
r , . . . , Tm/π

r 〉 ∼−→ (OK
̂
̂⊗F0OK)〈IK/πr〉 = Rr

K,OK
.

Hence the closed fiber X
r

K is isomorphic to the affine scheme

SpecF [T0/π
r , . . . , Tm/π

r ] .
In general, for any rational number r > 0, the K-affinoid variety Xr

K is isomorphic to
Dm+1,(r) and the rigid space XK = ∪r>0X

r
K is isomorphic to D̊m+1 (Subsection 5.2).

By ([AS2, 1.13, 2.4]), for any rational number r > 0, there exists a canonical isomor-
phism X

r

K

∼−→ Θ
(r)

F
(4.10.5) which is compatible with the geometric monodromy on X

r

K and

the natural GK -action on Θ
(r)

F
(via its action on mr

K
/mr+

K
). If r is an integer, it is constructed

as follows. Firstly, we have a natural ring isomorphism

(7.4.4)
∞

⊕

i=0

I iK/I
i+1
K ⊗OK

m−irK /m−ir+1
K → Rr

K,OK
/mKRr

K,OK
, b ⊗ c �→ bc ,
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by (7.4.1) and (7.4.3). Extending scalars, we have

(7.4.5) X
r

K

∼−→ Spec

( ∞
⊕

i=0

I iK/I
i+1
K ⊗OK

m−ir
K

/m−ir+
K

)

.

Then, from ([AS2, 1.14.3, 2.4]), we have an isomorphism of free OK -modules

(7.4.6) ̂Ω1
OK/F0

→ IK/I
2
K, dt �→ 1⊗ t − t ⊗ 1 ,

which induces the isomorphism X
r

K → Θ
(r)

F
.

7.5. Let L be a finite Galois extension of K of group G and conductor r > 1. By
([AS1, 7.2]), the natural action of G on OL

̂
̂⊗F0OK induces an OK -linear action of G on

Xr
L making it an étale G-torsor over Xr

K . In particular, Xr
L and X

r

L are étale G-torsors of

Xr
K and X

r

K , respectively. The geometric monodromy action of GK on X
r

L (Subsection 6.6)

commutes with the action of G. Let X
r

L,0 be a connected component of X
r

L. The stabilizers of

X
r

L,0 via these two actions are Gr and Gr
K , respectively. Then, we get an isomorphism Gr ∼−→

Aut(X
r

L,0/X
r

K) and a surjection Gr
K → Aut(X

r

L,0/X
r

K) which implies that Gr is commutative

(cf. [AS2, 2.15.1]). Composing with X
r

K

∼−→ Θ
(r)

F
, the étale covering X

r

L,0→ Θ
(r)

F
induces a

surjective homomorphism ([AS2, 2.15.1])

πab
1 (Θ

(r)

F
)→ Grr GK → Gr .

7.6. In the rest of this section, let L/K be a finite Galois extension of type (II) and we
take again the notation and assumptions of Subsections 5.1 and 5.2. By (7.2.1) and the proof
of ([AS2, 1.6]), for any rational number r > 0, we have an isomorphism

(7.6.1) Rr
K ⊗OK

̂
̂⊗F0OK

(OL
̂
̂⊗F0OK)

∼−→ Rr
L .

It induces, for any rational numbers r > r ′ > 0, an isomorphism

Rr
K ⊗Rr′

K

Rr ′
L

∼−→ Rr
L ,

which gives a Cartesian diagram of rigid spaces

(7.6.2) Xr
L

��

�� XL

��
Xr
K

�� XK

where XK =⋃

r>0 X
r
K and XL =⋃

r>0 X
r
L.

We put

�(T ) = T pn + (apn−1 ⊗ 1)T pn−1 + · · · + (a0 ⊗ 1) ∈ (OK
̂
̂⊗F0OK)[T ] .

From (7.2.1) and (7.6.1), we have a surjection

τL : Rr
K 〈T 〉 → Rr

L, T �→ h⊗ 1 ,
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which induces an isomorphism that we denote abusively also by

(7.6.3) τL : Rr
K 〈T 〉/�(T ) ∼−→ Rr

L .

In other terms, we have a co-Cartesian diagram of homomorphisms of Rr
K -algebras

(7.6.4) Rr
L Rr

K 〈T 〉
τL��

Rr
K

��

Rr
K 〈T 〉

φ

��

τK��

where φ(T ) = �(T ) and τK(T ) = 0. Hence, taking the union of the K-affinoid varieties
associated to each of the K-affinoid algebras in (7.6.4) for r ∈ Q>0, we have a Cartesian
diagram

(7.6.5) XL

��

iL �� XK ×D1

f
��

XK
iK �� XK ×D1

where iL, f and iK are the morphisms induced by τL, φ and τK .

7.7. In the following, for any 0 � i � pn−1, we denote by αi the element ai−ai⊗1 ∈
IK (Subsection 7.1). When the conductor c > 2, for each 1 � i � pn−1, v(ai) � 2 (Lemma
5.6). Let a′i = π−2ai ∈ OK . We denote by α′i the element a′i − a′i ⊗ 1 ∈ IK and by β the
element π − π ⊗ 1 ∈ IK . Then, we have

αi = (a′i − α′i )(2πβ − β2)+ π2α′i .

Since α′i , β ∈ IK ⊂ πcRc
K,OK

, we have αi ∈ πc+1Rc
K,OK

.

When c = 2, we have p = 2, �G = 2, ρ(c) = 1 and a′′1 = π−1a1 ∈ OK . We denote by
α′′1 the element a′′1 − a′′1 ⊗ 1 ∈ IK . Then we have

α1 = (a′′1 − α′′1 )β + πα′′1 .

Since α′′1 , β∈πcRc
K,OK

, we have α1∈πcRc
K,OK

, and α1/πc=a′′1β/πc ∈ Rc
K,OK

/

πRc
K,OK

.
We put

�0(T ) =
∑

0�i�pn−1

(αi/π
c) · T i ∈ Rc

K,OK
[T ] .

We have

�(T ) = f (T )−
∑

0�i�pn−1

αiT
i = f (T )− πc�0(T ) .

In the rest of this section, we fix an embedding L→ K . Recall that we put �(Gc) = ps

(Subsection 5.1).
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PROPOSITION 7.8. The K-affinoid Xc
L has �(G/Gc) = pn−s geometric connected

components. Let σ1, . . . , σpn−s be liftings of all the elements of G/Gc in G. We have

(7.8.1) iL(X
c
L) ⊆

∐

1�j�pn−s
Xc
K × (σj (h)+D1,(ρ(c))) ⊆ XK ×D1 ,

and each disc of the disjoint union contains exact one geometric connected component of Xc
L.

PROOF. By the Cartesian diagrams (7.6.2) and (7.6.5), we have

iL(X
c
L) = f−1(iK(X

c)) ⊆ Xc
K ×D1 ⊆ XK ×D1 .

Taking in account the isomorphisms (7.4.2) and (7.4.3), for any point

(t0, . . . , tm, t) ∈ Xc
K ×D1 −

∐

1�k�pn−s
Xc
K × (σk(h)+D1,(ρ(c))) ,

we have v(f (t)) < c and v((αi/π
c)(t0, . . . , tm)t

i) � 0. Hence v(f (t)− πc�0(t0, . . . , tm, t))

< c which means f(t0, . . . , tm, t) = (t1, . . . , tm, �(t0, . . . , tm, t)) �∈ iK(X
c
K). Thus (7.8.1)

holds. By the proof of ([AS2, 2.15]), Xc
L has exactly pn−s geometric connected components.

Moreover, for any 1 � j � pn−s , f (σj (h)) − πc�0(0, . . . , 0, σj (h)) = 0, hence each disc
Xc
K × (σj (h)+D1,(ρ(c))) contains at least one geometric connected component of Xc

L. �

In the following, we denote by X
c

L,0 the connected component of X
c

L corresponding to
the connected component Xc

L,0 of Xc
L containing (0, . . . , 0, h) ∈ Xc

K ×D1 defined over L.

PROPOSITION 7.9. There exists a canonical Cartesian diagram

(7.9.1) X
c

L,0

��

ν �� A1
F

fc

��
Θ

(c)

F

μ �� A1
F

where fc is defined in (5.4.1), such that if ξ is the canonical coordinate of A1
F

, we have

μ∗(ξ) =
{

da0 ⊗ π−c, if c > 2 ,
(a′′1hdπ + da0)⊗ π−2, if c = 2 .

Moreover, for any σ ∈ Gc, the following diagram

(7.9.2) X
c

L,0

σ

��

ν �� A1
F

dσ

��
X
c

L,0
ν �� A1

F

where d∗σ (ξ) = ξ − uσ (Subsection 5.3), is commutative.
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PROOF. We consider the K-affinoid algebra Rc
K (resp. Rc

L) as a sub-ring of the L-
affinoid algebra Rc

K ⊗K L (resp. Rc
L ⊗K L). By Proposition 7.8, we have

Xc
L,0 = i−1

L (Xc
K × (h+D1,(ρ(c)))) ∩Xc

L .

Hence Xc
L,0 is presented by the L-affinoid algebra

(7.9.3) (Rc
L ⊗K L)〈T ′〉/(πρ(c)T ′ + h− h⊗ 1) .

By the isomorphism (7.6.3), (7.9.3) is isomorphic to

(Rc
K ⊗K L)〈T , T ′〉/(�(T ), πρ(c)T ′ + h− T ) ,

which, after eliminating T by the relation πρ(c)T ′ + h− T = 0, is

(7.9.4) (Rc
K ⊗K L)〈T ′〉/(�(πρ(c)T ′ + h)) .

In both cases, by Proposition 5.4 and Subsection 7.7, we have

�(πρ(c)T ′ + h)/πc ∈ Rc
K,OL
〈T ′〉 ,

�(πρ(c)T ′ + h)/πc+1 /∈ Rc
K,OL
〈T ′〉 .

Then the image of Rc
K,OL
〈T ′〉 by the canonical surjection

(Rc
K ⊗K L)〈T ′〉 → (Rc

K ⊗K L)〈T ′〉/(�(πρ(c)T ′ + h))

is

(7.9.5) Rc
K,OL
〈T ′〉/(�(πρ(c)T ′ + h)/πc) .

Extending the scalars from OL to F , we obtain the following F -algebra:

(i) if c > 2,

(7.9.6) (Rc
K,OL

⊗OL
F )[T ′]/(fc(T ′)− α0/πc) ;

(ii) if c = 2,

(7.9.7) (Rc
K,OL

⊗OL
F )[T ′]/(f2(T

′)− (α0 + a′′1hβ)/π2) .

From isomorphisms (7.4.4), (7.4.6) and the canonical exact sequence (4.10.2), we know that
when c > 2 (resp. c = 2), α0/πc (resp. (α0 + a′′1hβ)/π2) is a non-zero linear term in
F ⊗OL

Rc
K,OL

. Hence (7.9.6) and (7.9.7) are all reduced. Then, by ([AS1, 4.1]),

Spf(Rc
K,OL
〈T ′〉/(�(πρ(c)T ′ + h)/πc))

is the normalized integral model of Xc
K,0 defined over OL. Hence X

c

L,0 is defined by the

F -algebra (7.9.6) (resp. (7.9.7)) when c > 2 (resp. c = 2). We put

ν : Xc

L,0→ A
1
F
= Spec(F [ξ ]) , ν∗(ξ) = T ′ .

It follows form the isomorphism X
c

K

∼−→ Θ
(c)

F
(Subsection 7.4) that (7.9.1) is Cartesian.

For any σ ∈ Gc, let yσ (x) be a polynomial brxr +· · ·+b0 ∈ OK [x], where r � pn−1,
such that yσ (h) = (h− σ(h))/πρ(c) ∈ OL. We denote by �σ the polynomial

�σ (x) = (br ⊗ 1)xr + · · · + (b0 ⊗ 1) ∈ Rc
K [x] .
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The action of σ on Rc
K 〈T 〉/�(T ) (isomorphic to Rc

L (7.6.3)) is given by : T �→ T − (πρ(c)⊗
1)�(T ). Hence the action of σ on (7.9.4) is given by

T ′ �→ T ′ − �σ (π
ρ(c)T ′ + h)− ((πρ(c) ⊗ 1− πρ(c))/πρ(c))�σ (π

ρ(c)T ′ + h)

and the induced action on (7.9.5) is given by the same formula. Since πρ(c) ⊗ 1 − πρ(c) ∈
πcRc

K,OK
and c > ρ(c), the reduction of (πρ(c) ⊗ 1− πρ(c))/πρ(c) to the geometric special

fiber is 0. For any 0 � j � r , bj⊗1−bj ∈ πcRc
K,OK

. Then, the reduction of�σ (π
ρ(c)T ′+h)

to the geometric special fiber is (Subsection 5.3)

�σ (πρ(c)T ′ + h) = yσ (πρ(c)T ′ + h) = yσ (h) = uσ .

Hence, diagram (7.9.2) is commutative. �

8. Isogenies associated to extensions of type (II): the unequal characteristic case.
8.1. In this section, we assume that K has characteristic 0 and that the residue field F

of OK is of finite type over a perfect field F0. Let K0 be the fraction field of the ring of Witt
vectors W(F0) = OK0 considered as a subfield of K . We denote by m the dimension of the
F -vector space Ω1

F , which is finite.

8.2. Let L be an object of FÉ/K . We call an OK0 -presentation of Cartier type of OL

a pair (AL, j : AL → OL), where AL is a complete semi-local Noetherian OK0 -algebra
formally smooth of relative dimension m + 1 over OK0 and j a surjective homomorphism

of OK0-algebra inducing an isomorphism AL/mAL

∼−→ OL/mL such that the kernel of j is
generated by a non-zero divisor of AL.

Let L1, L2 be two objects of FÉ/K and (AL1, j1 : AL1 → OL1), (AL2, j2 : AL2 →
OL2) two OK0-presentations of Cartier type. A morphism (g,�) from (AL1, j1) to (AL2, j2)

is a pair of OK0 -homomorphisms g : OL1 → OL2 and � : AL1 → AL2 such that the diagram

(8.2.1) AL1

�

��

j1 �� OL1

g

��
AL2

j2 �� OL2

is commutative. We say that (g,�) is finite and flat if � is finite and flat and if the diagram
(8.2.1) is co-Cartesian.

PROPOSITION 8.3 ([AS2, 2.7, 2.8]).

(i) Any object of FÉ/K admits an OK0-presentation of Cartier type.
(ii) Let g : L1 → L2 be a morphism of FÉ/K , and (AL1, j1), (AL2, j2) two OK0-

presentations of Cartier type. Then there exist a morphism � : AL1 → AL2 such that
(g,�) is a morphism of OK0-presentations of Cartier type.

(iii) Let g : L1 → L2 be a morphism of FÉ/K and (g,�) a morphism between OK0-
presentations of Cartier type (AL1, j1) and (AL2, j2). If a uniformizer π0 of K0 is
not a uniformizer of any factor of OL1 , then (g,�) is finite and flat.
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8.4. Let L be an object of FÉ/K , and (AL, j : AL → OL) an OK0 -presentation of
Cartier type. We denote by (AL/m

r
AL

)̂⊗OK0
OK the formal completion of (AL/m

r
AL

)⊗OK0OK relatively to the kernel of the homomorphism

(8.4.1) (AL/m
r
AL

)⊗OK0
OK → OL/m

r
OL

, a ⊗ b �→ ab ,

and by AL
̂
̂⊗OK0

OK the projective limit

(8.4.2) AL
̂
̂⊗OK0

OK = lim←−
r

((AL/m
r
AL

)̂⊗OK0
OK) .

We will always consider AL
̂
̂⊗OK0

OK as an OK -algebra by the homomorphism

OK → AL
̂
̂⊗OK0

OK, u �→ 1⊗ u ,

(in the following, we always abbreviate 1⊗ u by u) and we will consider it as an AL-algebra
by

AL → AL
̂
̂⊗OK0

OK, v �→ v ⊗ 1 .

There is a canonical surjective homomorphism

(8.4.3) AL
̂
̂⊗OK0

OK → OL ,

induced by the surjections (8.4.1). We denote by IL its kernel.

PROPOSITION 8.5 ([AS2, 2.9]). Let L be an object of FÉ/K , and (AL, j : AL →
OL) an OK0-presentation of Cartier type. Then,

(i) The OK -algebra AL
̂
̂⊗OK0

OK is formally of finite type and formally smooth over

OK and the morphism AL
̂
̂⊗OK0

OK/mAL
̂
̂⊗OK0

OK
→ OL/mOL

(8.4.3) is an iso-

morphism.
(ii) Let L′ be another object in FÉ/K and (AL′ , j ′ : AL′ → OL′) an OK0-presentation

of Cartier type. If a uniformizer π0 is not a uniformizer of any factor of OL, then, any
morphism (AL, j)→ (AL′ , j ′) induces an isomorphism

(8.5.1) AL′ ⊗AL
(AL

̂
̂⊗OK0

OK)
∼−→ AL′̂̂⊗OK0

OK .

PROOF. Part (i) is proved in ([AS2, 2.9]). For part (ii), we may assume L and L′ are
fields. We denote by e the ramification index of the extension L′/L. For any integer r � 1,
we have the following canonical commutative diagram

AL

pr1 ��

��

(AL/m
r
AL

)⊗OK0
OK

��

(8.4.1) �� OL/m
r
L

��
AL′

pr′1 �� (AL′/mr
AL

AL′)⊗OK0
OK

gL′ �� OL′/mer
L′

such that each square is co-Cartesian. We denote by (AL′/mr
AL

AL′)̂⊗OK0
OK the formal

completion of (AL′/mr
AL

AL′)⊗OK0
OK relatively to the kernel of gL′ . Since AL is a Noether-

ian local ring, by proposition 8.3(iii) and Nakayama’s lemma, AL′ is a finite free AL-module.
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Then, we have

AL′ ⊗AL
(AL/m

r
AL

)̂⊗OK0
OK

∼−→ (AL′/m
r
AL

AL′)̂⊗OK0
OK .

After taking projective limit on both sides, we obtain

(8.5.2) AL′ ⊗AL
(AL

̂
̂⊗OK0

OK)
∼−→ lim←−

r

((AL′/m
r
AL

AL′)̂⊗OK0
OK) .

By the proof of ([AS2, 2.7.3]), we obtain that me
AL′
⊆ mAL

AL′ ⊆ mAL′ . Hence, for any
integer r � 1, we have two surjections

(AL′/m
er
AL′ )

̂⊗OK0
OK � (AL′/m

r
AL

AL′)̂⊗OK0
OK � (AL′/m

r
AL′ )

̂⊗OK0
OK ,

which imply

(8.5.3) lim←−
r

((AL′/m
r
AL

AL′)̂⊗OK0
OK)

∼−→ AL′̂̂⊗OK0
OK .

Combining (8.5.2) and (8.5.3), we get (ii). �

8.6. Let L be an object of FÉ/K , and (AL, j : AL → OL) an OK0 -presentation of
Cartier type. We will introduce objects analogue of those defined in §7, and denote them by
the same notation. For any rational number r > 0 and integer numbers s, t > 0 such that
r = t/s, we denote by Rr

L the K-affinoid algebra

Rr
L = (AL

̂
̂⊗OK0

OK)〈I sK/πt 〉 ⊗OK
K ,

by Xr
L = Sp(Rr

L) the tubular neighborhood of thickening r of the immersion

Spf(OL)→ Spf(AL
̂
̂⊗OK0

OK) ,

which is smooth over K ([AS2, 1.7]). By Proposition 6.3, there exists a finite separable ex-
tension K ′ of K such that the normalized integral model of Xc

L is defined over K ′ (Subsection
6.4). We denote by Rr

L,OK′
the supremum norm unit ball of Rr

L ⊗K K ′ (6.3.1), by Xr
L the

normalized integral model of Xr
L over OK and by X

r

L the special fiber of Xr
L.

8.7. In the following of this section, we assume that p is not a uniformizer of K . By
([AS2] 1.14.3), there is an isomorphism of OK -algebras

(8.7.1) OK [[T0, . . . , Tm]] ∼−→ AK
̂
̂⊗OK0

OK ,

such that the composition of it and (8.4.3) OK [[T0, . . . , Tm]] → AK
̂
̂⊗OK0

OK → OK maps
Ti to 0. If r is an integer � 1, we have an isomorphism of K-affinoid algebras

(8.7.2) K〈T0/π
r , . . . , Tm/π

r 〉 ∼−→ Rr
K .

The normalized integral model Xr
K is defined over OK , and we have an isomorphism

(8.7.3) OK〈T0/π
r , . . . , Tm/π

r 〉 ∼−→ (AK
̂
̂⊗OK0

OK)〈IK/πr 〉 = Rr
K,OK

.

Hence the geometric closed fiber X
r

K is isomorphic to the affine scheme

SpecF [T0/π
r , . . . , Tm/π

r ] .
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In general, for any rational number r > 0, the K-affinoid variety Xr
K is isomorphic to

Dm+1,(r) and the rigid space XK =⋃

r>0 X
r
K is isomorphic to D̊m+1 (Subsection 5.2).

By ([AS2, 2.11.2]), we have an isomorphism

(8.7.4) (IK/I
2
K)⊗OK

F → ̂Ω1
OK/OK0

⊗OK
F ,

such that for any x ∈ OK and x̃ a lifting in AK , the image of (1⊗ x − x̃ ⊗ 1)⊗ 1 is dx ⊗ 1.
From ([AS2, 1.14.3, 2.11.2]), for any rational number r > 0, the inverse of (8.7.4) gives
an isomorphism X

r

K

∼−→ Θ
(r)

F
. When r is an integer, the construction of the isomorphism is

similar to the equal characteristic case (Subsection 7.4).

REMARK 8.8. From (8.7.4), we notice that for any element x̃ ∈ ker(AK → OK), the
class (̃x ⊗ 1)⊗ 1 vanishes in (IK/I

2
K)⊗OK

F . It is equivalent to say that x̃⊗ 1 ∈ I 2
K + πIK .

8.9. Let L be a finite Galois extension of K of group G and conductor c > 1. Let
(g,�) be a finite and flat morphism from (AK, jK : AK → OK) to (AL, jL : AL → OL)

(Subsection 8.2). By (8.5.1), � induces a finite flat morphism � ⊗ id : AK
̂
̂⊗OK0

OK →
AL

̂
̂⊗OK0

OK . Hence, for any rational number r > 0, it gives a morphism of smooth K-

affinoid varieties Xr
L → Xr

K ([AS2, 1.6]) which induces morphisms Xr
L → Xr

K and X
r

K →
X
r

L. For any σ ∈ G, there is a morphism �σ making the following diagram commutative
(Proposition 8.3(iii))

(8.9.1) AL

�σ

��

jL �� OL

σ

��
AL

jL �� OL.

The pair (σ,�σ ) induces automorphisms of Xr
L, Xr

L and X
r

L. Notice that, �σ is not unique
in general and may not be an AK -homomorphism. Hence the automorphisms of Xr

L, Xr
L and

X
r

L induced by all possible �σ may not be uniquely determined by σ ∈ G. Luckily, by ([AS2,
2.13]), the induced automorphism of X

c

L is X
c

K -invariant and independent of the choice of �σ .
Hence X

c

L→ X
c

K is a finite étale G-torsor ([AS2, 1.16.2]). The geometric monodromy action
of GK on X

c

L commutes with the action of G. Let X
c

L,0 be a connected component of X
c

L.

The stabilizers of X
c

L,0 via these two actions are Gc and Gc
K , respectively ([AS2, 2.15.1]).

Then, we get an isomorphism Gc ∼−→ Aut(X
c

L,0/X
c

K) and a surjection Gc
K → Aut(X

c

L,0/X
c

K)

which imply that Gc is commutative (cf. [AS2, 2.15.1]). Composing with X
r

K

∼−→ Θ
(r)

F
, the

étale covering X
c

L,0→ Θ
(r)

F
induces a surjective homomorphism ([AS2, 2.15.1])

πab
1 (Θ

(r)

F
)→ Grc GK → Gc .

8.10. In the following of this section, we assume that the finite Galois extension L/K

is of type (II) and we take again the notation and assumptions of Subsections 5.1 and 5.2. Let
(g,�) be a finite and flat morphism as in Subsection 8.9. Let ˜h be a lifting of h ∈ OL in AL.
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Since AK is a Noetherian local ring, by Proposition 8.3(iii) and Nakayama’s lemma, we have
that AL is a finite free AK -module of rank �G and that AL = AK [˜h]. Let

˜f (T ) = T pn + ãpn−1Tpn−1 + · · · + ã0 ∈ AK [T ] ,
be a lifting of f [T ] ∈ OK [T ] such that ˜h is a zero. We have an isomorphism

(8.10.1) AK [T ]/(˜f (T ))
∼−→ AL, T �→ ˜h .

By (8.5.1) and the proof of ([AS2, 1.6]), we have an isomorphism

(8.10.2) Rr
K ⊗AK

̂
̂⊗OK0

OK
(AL

̂
̂⊗OK0

OK)
∼−→ Rr

L .

It induces, for any rational numbers r > r ′ > 0, an isomorphism

Rr
K ⊗Rr′

K
Rr ′

L

∼−→ Rr
L ,

which gives a Cartesian diagram of rigid spaces

(8.10.3) Xr
L

��

�� XL

��
Xr
K

�� XK

where XK =⋃

r>0 X
r
K and XL =⋃

r>0 X
r
L. We put

˜�(T ) = T pn + (̃apn−1 ⊗ 1)T pn−1 + · · · + (̃a0 ⊗ 1) ∈ (AK
̂
̂⊗OK0

OK)[T ] .
From (8.5.1) and (8.10.2), we have a surjection

τL : Rr
K 〈T 〉 → Rr

L, T �→ ˜h⊗ 1 ,

which induces an isomorphism that we denote abusively also by

(8.10.4) τL : Rr
K 〈T 〉/˜�(T ) ∼−→ Rr

L .

In other terms, we have a co-Cartesian diagram of homomorphisms of Rr
K -algebras

(8.10.5) Rr
L Rr

K 〈T 〉
τL��

Rr
K

��

Rr
K 〈T 〉 ,

φ

��

τK��

where φ(T ) = ˜�(T ) and τK(T ) = 0. Hence, taking the union of the K-affinoid varieties
associated to each of the K-affinoid algebras in (8.10.5) for r ∈ Q�0, we obtain a Cartesian
diagram

(8.10.6) XL

��

iL �� XK ×D1

˜f
��

XK
iK �� XK ×D1 ,
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where iL,˜f and iK are the morphisms induced by τL, φ and τK .

8.11. In the following, for any 0 � i � pn−1, we denote by αi the element ai−ãi⊗1 ∈
IK and fix π̃ ∈ AK a lifting of π ∈ OK . When the conductor c > 2, for each 1 � i � pn−1,
v(ai) � 2 (Lemma 5.6). Let a′i = π−2ai ∈ OK and ã′i ∈ AK a lifting of a′i . Then we have
ãi = π̃2ã′i + ỹi , where ỹi ∈ ker(AK → OK). We denote by α′i the element a′i − ã′i ⊗ 1 ∈ IK

and by β the element π − π̃ ⊗ 1 ∈ IK . Then, we have

αi = (a′i − α′i )(2πβ − β2)+ π2α′i + ỹi ⊗ 1 .

Since α′i , β ∈ IK ⊂ πcRc
K,OK

and ỹi ⊗ 1 ∈ I 2
K + πIK ⊂ πc+1Rc

K,OK
(Remark 8.8), we

have αi ∈ πc+1Rc
K,OK

. When c = 2, we have p = 2, �G = 2, deg f = 2 and ρ(c) = 1. Let

ã′′1 ∈ AK be a lifting of a′′1 = π−1a1. We have α1 = π̃ ã′′1 + z̃1, where z1 ∈ ker(AK → OK).
We denote by α′′1 the element a′′1 − ã′′1 ⊗ 1 ∈ IK . Then we have

α1 = (a′′1 − α′′1 )β + πα′′1 + z̃1 ⊗ 1 .

Since α′′1 , β ∈ πcRc
K,OK

and z̃1 ⊗ 1 ∈ I 2
K + πIK ⊂ πc+1Rc

K,OK
, we have α1 ∈ πcRc

K,OK
,

and α1/πc = a′′1β/πc ∈ Rc
K,OK

/

πRc
K,OK

.
Put

˜�0(T ) =
∑

0�i�pn−1

(αi/π
c) · T i ∈ Rc

K,OK
[T ] .

We have
˜�(T ) = f (T )−

∑

0�i�pn−1

αiT
i = f (T )− πc̃�0(T ) .

In the following, we fix an embedding L→ K . Recall that we put �(Gc) = ps (Subsec-
tion 5.1).

PROPOSITION 8.12. The K-affinoid Xc
L has �(G/Gc) = pn−s geometric connected

components. Let σ1, . . . , σpn−s be liftings of all the elements of G/Gc in G. We have

iL(X
c
L) ⊆

∐

1�j�pn−s
Xc
K × (σj (h)+D1,(ρ(c))) ⊆ XK ×D1 .

PROOF. The proof is the same as in the equal characteristic case (Proposition 7.8). �

In the following, we denote by X
c

L,0 the connected component of X
c

L corresponding to
the connected component Xc

L,0 of Xc
L containing (0, . . . , 0, h) ∈ Xc

K ×D1 defined over L.

PROPOSITION 8.13. There exists a canonical Cartesian diagram

(8.13.1) X
c

L,0

��

ν �� A1
F

fc

��
Θ

(c)

F

μ �� A1
F
,
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where fc is defined in (5.4.1) and if ξ is the canonical coordinate of A1
F

, we have

μ∗(ξ) =
{

da0 ⊗ π−c, if c > 2,
(a′′1hdπ + da0)⊗ π−2, if c = 2.

Moreover, for any σ ∈ Gc, the following diagram

(8.13.2) X
c

L,0

σ

��

ν �� A1
F

dσ

��
X
c

L,0
ν �� A1

F
,

where d∗σ (ξ) = ξ − uσ (Subsection 5.3), is commutative.

PROOF. We consider the K-affinoid algebra Rc
K (resp. Rc

L) as a sub-ring of the L-
affinoid algebra Rc

K ⊗K L (resp. Rc
L ⊗K L). By (8.12), we have

Xc
L,0 = i−1

L (Xc
K × (h+D1,(ρ(c)))) ∩Xc

L .

Hence Xc
L,0 is presented by the L-affinoid algebra

(8.13.3) (Rc
L ⊗K L)〈T ′〉/(πρ(c)T ′ + h−˜h⊗ 1) .

By the isomorphism (8.10.4), (8.13.3) is isomorphic to

(Rc
K ⊗K L)〈T , T ′〉/(˜�(T ), πρ(c)T ′ + h− T ) ,

which, after eliminating T by the relation πρ(c)T ′ + h− T = 0, is

(8.13.4) (Rc
K ⊗K L)〈T ′〉/(˜�(πρ(c)T ′ + h)) .

In both cases, by Proposition 5.4 and Subsection 8.11, we have

˜�(πρ(c)T ′ + h)/πc ∈ Rc
K,OL
〈T ′〉 ,

˜�(πρ(c)T ′ + h)/πc+1 /∈ Rc
K,OL
〈T ′〉 .

Then the image of Rc
K,OL
〈T ′〉 in (8.13.4) through the canonical surjective map

(Rc
K ⊗K L)〈T ′〉 → (Rc

K ⊗K L)〈T ′〉/(˜�(πρ(c)T ′ + h)) ,

is

(8.13.5) Rc
K,OL
〈T ′〉/(˜�(πρ(c)T ′ + h)/πc) .

Extending scalars from OL to F , we obtain the following F -algebra:

(i) If c > 2,

(8.13.6) (Rc
K,OL

⊗OL
F )[T ′]/(fc(T ′)− α0/πc) .

(ii) If c = 2,

(8.13.7) (Rc
K,OL

⊗OL
F )[T ′]/(f2(T

′)− (α0 + a′′1hβ)/π2) .
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From the isomorphism (8.7.4) and the canonical exact sequence (4.10.3), we know that when
c > 2 (resp. c = 2), α0/πc (resp. (α0 + a′′1hβ)/π2) is a non-zero linear term in Rc

K,OL
⊗OL

F . Hence (8.13.6) and (8.13.7) are all reduced. Then, by ([AS1, 4.1]),

Spf(Rc
K,OL
〈T ′〉/(˜�(πρ(c)T ′ + h)/πc))

is the normalized integral model of Xc
K,0 defined over OL. Hence X

c

L,0 is defined by the

F -algebra (8.13.6) (resp. (8.13.7)) when c > 2 (resp. c = 2). We put

ν : Xc

L,0→ A
1
F
= Spec(F [ξ ]) , ν∗(ξ) = T ′ .

It follows form the isomorphism X
c

K → Θ
(c)

F
that (8.13.1) is Cartesian.

For any σ ∈ Gc, let yσ (x) = brx
r + · · · + b0 ∈ OK [x] be a polynomial such that

yσ (h) = (h− σ(h))/πρ(c) ∈ OL. We denote by ỹσ (x) = ˜brx
r + · · · +˜b0 a lifting of yσ (x)

in AK [x] and by �̃(x) the polynomial

�̃(x) = (˜br ⊗ 1)xr + · · · + (˜b0 ⊗ 1) ∈ (AK
̂
̂⊗OK0

OK)[x] .
Let �σ : AL → AL be a homomorphism as in (8.9.1). We denote by gσ the induced morphism
of �σ on (8.13.5). By (8.10.1), we have

ker(AL → OL) =
pn−1
⊕

i=0

ker(AK → OK)˜h
i .

Hence, we have �σ (˜h) = ˜h − π̃ρ(c)ỹσ (˜h) + ε(˜h), where ε is a polynomial with coefficients
in ker(AK → OK). Then, we have

gσ (T ′) = T ′ − �̃σ (π
ρ(c)T ′ + h)+Δ(T ′) ,

where

Δ(T ′) = −((π̃ρ(c) ⊗ 1− πρ(c))/πρ(c))�̃σ (π
ρ(c)T ′ + h)+ ε̃(πρ(c)T ′ + h)/πρ(c) ,

and ε̃ is a polynomials with coefficients in J = {̃x ⊗ 1 ∈ Â
̂⊗OK0

OK ; x̃ ∈ ker(AK → OK)}.
Since J ⊆ πc+1RK,OK

(Remark 8.8), π̃ρ(c) ⊗ 1 − πρ(c) ∈ πcRK,OK
and c > ρ(c), it

is easy to see that the reduction of Δ(T ′) to X
c

L,0 is zero. For any 0 � j � r , we have
˜bj ⊗ 1− bj ∈ πcRc

K,OK
. Then

�̃σ (πρ(c)T ′ + h) = ỹσ (πρ(c)T ′ + h) = ỹσ (h) = uσ .

Hence, by ([AS2, 2.13]), the diagram (8.13.2) is commutative. �
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9. The refined Swan conductor of an extension of type (II).

9.1. In this section, we assume either that K has characteristic p or that it has charac-
teristic 0 and that p is not a uniformizer of K . Let L be a finitely generated extension of K
of type (II) and we take again the notation and assumptions of Subsections 5.1, 5.2, 7.9 and
8.13.

PROPOSITION 9.2. The fibre product X
c

L,0 ×Θ
(c)

F

Ξ
(c)

F
(4.10.4) is a connected affine

scheme.

PROOF. The image of da0 ⊗ 1 and (a′′1hdπ + da0) ⊗ 1 by the canonical map from
̂Ω1
OK/F0

⊗OK
F (resp. ̂Ω1

OK/OK0
⊗OK

F ) to Ω1
F ⊗F F is dā0 ⊗ 1, which is a non-zero

element. So we have a Cartesian diagram

(9.2.1) X
c

L,0 ×Θ
(c)

F

Ξ
(c)

F

��

�� A1
F

fc

��
Ξ

(c)

F

μ′ �� A1
F

where μ′∗(ξ) = dā0 ⊗ π−c. Since dā0 ⊗ π−c is a non-zero linear term in the affine space
Ξ

(c)

F
, X

c

L,0 ×Θ
(c)

F

Ξ
(c)

F
is connected. �

9.3. PROOF OF PROPOSITION 5.7. By ([AS2, 5.13]), both in the equal and unequal
characteristic case, we have a commutative diagram

(9.3.1) πab
1 (Θ

(c)

F ,log
) ��

γ1

����

πab
1 (Θ

(c)

F
)

γ2

����
Gc

log Gc .

The surjection γ1 factors through π
alg
1 (Θ

(c)

F ,log
) (Theorem 4.11). By Propositions 7.9 and 8.13,

γ2 also factors through π
alg
1 (Θ

(c)

F
). Combining (9.3.1) and the following canonical commuta-

tive diagram

πab
1 (Θ

(c)

F ,log
) ��

����

πab
1 (Ξ

(c)

F
)

����

�� πab
1 (Θ

(c)

F
)

����
π

alg
1 (Θ

(c)

F ,log
) �� πalg

1 (Ξ
(c)

F
) �� πalg

1 (Θ
(c)

F
) ,
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we obtain that

(9.3.2) π
alg
1 (Θ

(c)

F ,log
) ��

����

π
alg
1 (Ξ

(c)

F
) �� πalg

1 (Θ
(c)

F
)

����
Gc

log Gc

is commutative. The composition of morphismsπalg
1 (Ξ

(c)

F
)→ π

alg
1 (Θ

(c)

F
)→ Gc corresponds

to the isogenyX
c

L,0×Θ
(c)

F

Ξ
(c)

F
→ Ξ

(c)

F
(cf. (9.2.1)). Hence, by (9.3.2), we have a commutative

diagram

(9.3.3) Hom(π
alg
1 (Ξ

(c)

F
),Fp) ��

��

Ω1
F ⊗F m−c

K
/m−c+

K

��
Hom(Gc,Fp) ��

�����������������
Hom(π

alg
1 (Θ

(c)

F ,log
),Fp) �� Ω1

F (log)⊗F m−c
K
/m−c+

K
,

which concludes Proposition 5.7.

9.4. PROOF OF THEOREM 5.9. Since the surjection π
alg
1 (Ξ

(c)

F
) → Gc is obtained

by pulling-back the isogeny fc : A1
F
→ A

1
F

by μ′ (cf. (9.2.1)), it is an étale Gc-torsor with
the action of Gc given by dσ for σ ∈ Gc (7.9.2), (8.13.2). With notation in Subsection 5.8,
we denote by f̃c,χ (ξ) the polynomial

f̃c,χ (ξ) =
(

∏

σ∈G−Gc

uσ

)

(ξp − f̄
p−1
c,χ (uτ )ξ) ∈ F [ξ ] .

Observe that f̃c,χ (f̄c,χ (ξ)) = fc(ξ), hence the isogeny fc is the composition of two isogenies

A
1
F

f̄c,χ−−→ A
1
F

f̃c,χ−−→ A
1
F
.

For any σ ∈ kerχ , f̄ ∗c,χ (ξ − uσ ) = f̄ ∗c,χ (ξ), i.e. f̄c,χ dσ = f̄c,χ . Hence the isogeny f̃c,χ :
A

1
F
→ A

1
F

is an étale (Gc/ kerχ)-torsor. Then, the surjection π
alg
1 (Ξ

(c)

F
) → Gc χ−→ Fp

corresponds to the pull-back of f̃c,χ by μ′ and the Fp-action on this torsor is given by 1∗ :
ξ �→ ξ − f̄c,χ (uτ ). We have the following Cartesian diagram

(9.4.1) Fp

id

��

φ �� A1
F

λ2

��

f̃c,χ �� A1
F

λ1

��
Fp

�� A1
F

L �� A1
F
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where L denotes the Lang’s isogeny defined by L∗(ξ) = ξp − ξ . The morphisms λ1, λ2 and
φ are given as follows

λ∗1(ξ) = −ξ
/(

∏

σ∈G−Gc

uσ

)

f̄
p
c,χ (uτ ) ,

λ∗2(ξ) = −ξ/f̄c,χ (uτ ) ,
φ(1) = −f̄c,χ (uτ ) .

The sign is chosen in order that, for any σ ∈ Gc, the translation by φ(χ(σ)) is induced by dσ .

Consequently, πalg
1 (Ξ

(c)

F
)→ Gc χ−→ Fp corresponds to the pull-back of L by λ1μ

′. Hence the

image of χ ∈ Hom(Gc,Fp) in Ω1
F ⊗F m−c

K
/m−c+

K
(9.3.3) is

−dā0 ⊗ π−c
(∏

σ∈G−Gc uσ
)

f̄
p
c,χ (uτ )

∈ Ω1
F ⊗F m−c

K
/m−c+

K
.

Then the theorem follows from (9.3.3).

10. Comparison of Kato’s and Abbes-Saito’s characteristic cycles.
10.1. In this section, let L be a finite Galois extension of K of type (II) and we take

again the notation and assumptions of Subsections 5.1 and 5.2. Let C be an algebraically
closed field of characteristic zero. We fix a non-trivial character ψ0 : Fp → C×. Any

character χ : Gc → C× factors uniquely through Gc → Fp
ψ0−→ C×. We denote by χ̄

the induced character Gc → Fp.

PROPOSITION 10.2. Let χ : G → C× be a character of G such that its restriction to
Gc is non-trivial. Let τ ∈ Gc be a lifting of 1 ∈ Fp in Gc through χ̄ : Gc → Fp. Then Kato’s
Swan conductor with differential values swψ0(1)(χ) is given by

swψ0(1)(χ) = [πc] + [−f̄ p
c,χ̄ (uτ )] +

∑

σ∈G−Gc

[uσ ] − [dā0] ∈ SK,L

(Subsection 5.3, Subsection 5.8).

PROOF. By definition (3.13.1), we have

swψ0(1)(χ) =
∑

σ∈G−{1}
([h− σ(h)] − [dh̄])⊗ (1− χ(σ))+

∑

r∈F×p
[r] ⊗ ψ0(r)

=
∑

σ∈Gc−{1}
[h− σ(h)] ⊗ (1− χ(σ))+

∑

r∈F×p
[r] ⊗ ψ0(r)

+
∑

σ∈G−Gc

[h− σ(h)] −
∑

σ∈G−Gc

[h− σ(h)] ⊗ χ(σ)

−
∑

σ∈G−{1}
[dh̄] ⊗ (1− χ(σ)) .

(10.2.1)
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Choose an Fp-basis τ1 = τ, τ2, . . . , τs of Gc such that χ̄(τ1) = 1 ∈ Fp and that for any
2 � j � s, χ̄(τj ) = 0. Then, by Lemma 5.5, we have

∑

σ∈Gc−{1}
[h− σ(h)] ⊗ (1− χ(σ))+

∑

r∈F×p
[r] ⊗ ψ0(r)(10.2.2)

= [πρ(c)�Gc ] +
∑

{j1,...,js }∈Fsp−{0}
[j1uτ1 + · · · + jsuτs ] ⊗ (1− ψ0(j1))+

∑

r∈F×p
[r] ⊗ ψ0(r)

= [πρ(c)�Gc ] +
∑

r∈F×p
[f̄c,χ̄ (ruτ1)] ⊗ (1− ψ0(r))+

∑

r∈F×p
[r] ⊗ ψ0(r)

= [πρ(c)�Gc ] +
∑

r∈F×p
([f̄c,χ̄ (uτ1)] + [r])⊗ (1− ψ0(r))+

∑

r∈F×p
[r] ⊗ ψ0(r)

= [πρ(c)�Gc ] +
∑

r∈F×p
[f̄c,χ̄ (uτ1)] ⊗ (1− ψ0(r))+

∑

r∈F×p
[r]

= [πρ(c)�Gc ] + [−f̄ p
c,χ̄ (uτ1)] ∈ SL/K.

Let σ1 = 1, σ2, . . . , σpn−s be liftings of all the elements of G/Gc in G and denote by J the
set {σ2, . . . , σpn−s }. Observe that for any ς ∈ J and σ ∈ Gc, we have

[h− ςσ(h)] = [h− ς(h)+ ς(h− σ(h))] = [h− ς(h)] .
Hence

∑

σ∈G−Gc

[h− σ(h)] ⊗ χ(σ)=
∑

ς∈J

∑

σ∈Gc

[h− ςσ(h)] ⊗ χ(ςσ)(10.2.3)

=
∑

ς∈J

∑

σ∈Gc

[h− ς(h)] ⊗ χ(ς)χ(σ) = 0 .

Moreover, by the isomorphism (3.4.1), we have

(10.2.4)
∑

σ∈Gc−{1}
[dh̄] ⊗ (1− χ(σ)) = �G[dh̄] = [dā0] ∈ SK,L .

Hence, combining (10.2.1), (10.2.2), (10.2.3) and (10.2.4), we obtain that

swψ0(1)(χ)= [πρ(c)�Gc ] + [−f̄ p
c,χ (uτ1)] +

∑

σ∈G−Gc

[h− σ(h)] ⊗ 1− �G[dh̄]

= [πc] + [−f̄ p

c,χ̄ (uτ )] +
∑

σ∈G−Gc

[uσ ] − [dā0].

�

LEMMA 10.3. Let M be a finite dimensional C-vector space with an irreducible linear
action of G. Then, there exist a subgroup H of G satisfying Gc ⊆ H and a 1-dimensional
representation θ of H , such that M = IndGH θ .
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PROOF. Since M is irreducible and G is nilpotent (hence super-solvable), there exist a
subgroup H of G and a 1-dimensional representation θ of H , such that M = IndGH θ ([Se2,
8.5 Theorem 16]). Let ResGGc M = ⊕

i Mi be the canonical decomposition of ResGGc M into
isotypic Gc-representations (cf. [Se2, 2.6]). Since Gc is contained in the center of G, any
σ ∈ G defines an automorphism of the Gc-representation ResGGc M . In particular, for any i,
σ induces an automorphism of Mi . On the other hand, since M is irreducible, G permutes
transitively the Mi’s. Hence ResGGc M is isotypic. By ([Se2, 7.3 Propsition 22]), we have

(10.3.1) ResGGc M = ResGGc IndGH θ =
⊕

H\G/Gc

IndG
c

H∩Gc ResHH∩Gc θ .

We notice that, if H ∩Gc �= Gc, since Gc = H ∩Gc ⊕Gc/H ∩Gc, IndG
c

H∩Gc ResHH∩Gc θ is
isomorphic to the tensor of the regular representation of Gc/H ∩Gc with ResHH∩Gc θ which
is not isotypic. �

THEOREM 10.4. Assume thatp is not a uniformizer ofK . Let M be a finite dimensional
C-vector space with a linear action of G. Then,

(10.4.1) CCψ0(M) = KCCψ0(1)(M) .

PROOF. From the definitions, we may assume that M is irreducible. We denote by c0

the unique slope of M . By definitions and Proposition 3.14, both sides of (10.4.1) will not
change if replacing G by G/Gc0+. Hence we may assume further that the unique slope of
M is equal to c. By Lemma 10.3, M = IndGH θ where H is a subgroup of G containing Gc

and θ is a character of H . Since the slope of M is c, the restriction of θ to Gc is non-trivial
(10.3.1). We notice that [G : H ] = dimC M . Choose an Fp-basis τ1, . . . , τs of Gc such that
θ̄ (τ1) = 1 ∈ Fp and, for any 2 � j � s, θ̄ (τj ) = 0. Let c′ = ρ(c)+∑

σ∈H−{1} v(h− σ(h)).

Since L/LH is still of type (II), we obtain that the conductor of L/LH is c′, that Hc′ = Gc

and, denoting by ρ′ the Herbrand function of L/LH , that ρ′(c′) = ρ(c). Using Proposition
10.2 for the group H and the representation θ , we have

(10.4.2) swψ0(1)(θ) = [πc′ ] + [−f̄ p

c,θ̄
(uτ1)] +

∑

σ∈H−Hc′
[uσ ] − �H [dh̄] .

Meanwhile, we have

(10.4.3) −
∑

σ∈G−H
([dh̄] − [h− σ(h)]) = (�H − �G)[dh̄] + [πc−c′ ] +

∑

σ∈G−H
uσ .

Hence, combining (10.4.2), (10.4.3) and the induction formula for Kato’s Swan conduc-
tors (3.15.2), we have

swψ0(1)(M)= [G : H ]
(

swψ0(1)(θ)−
∑

σ∈G−H
([dh̄] − [h− σ(h)]

)

= [G : H ]
(

[πc] + [−f̄ p

c,θ̄
(uτ1)] − [dā0] +

∑

σ∈G−Gc

[uσ ]
)

.
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Hence Kato’s characteristic cycle KCCψ0(1)(M) is given by

KCCψ0(1)(M) = (−dā0)
⊗[G:H ]

( (∏

σ∈G−Gc uσ
)

f̄
p

c,θ̄
(uτ1)

)[G:H ] ∈ (Ω1
F )
⊗[G:H ] .

On the other hand, ResGGc M =⊕

G/H ResHGc θ (10.3.1). Hence the Abbes-Saito’s character-
istic cycle CCψ0(M) is given by

CCψ0(M)=
(

rsw(ResHGc(θ))⊗ πc
)[G:H ]

(10.4.4)

= (−dā0)
⊗[G:H ]

( (∏

σ∈G−Gc uσ
)

f̄
p

c,θ̄
(uτ1)

)[G:H ] ∈ (Ω1
F ⊗F F)⊗[G:H ] .

So, we have CCψ0(M) = KCCψ0(1)(M). �

COROLLARY 10.5. Assume that p is not a uniformizer of K . Let M be a finite dimen-
sional Λ-vector space with a linear action of G and r = dimΛM/M(0). Then, we have

CCψ0(M) ∈ (Ω1
F )

r ⊆ (Ω1
F ⊗F F )r .

It is a Hasse-Arf type result for Abbes-Saito characteristic cycle. We should mention that
T. Saito ([Sa4, 3.10]) and L. Xiao [Xiao] proved independently analogue results for smooth
varieties of any dimension over perfect fields

COROLLARY 10.6. Assume that p is not a uniformizer of K . Let H be a sub-group of
G, and N a finite dimensional C-linear representation of H . We denote by r the dimension of
N and by r ′ the dimension of N(0). Then, we have

(10.6.1) CCψ0(IndGH N) = CCψ0(N)⊗[G:H ] ⊗ (dā0)
⊗([G:H ]−1)

(∏

σ∈G−H uσ
)[G:H ] ∈ (Ω1

F )
⊗([G:H ]r−r ′) .

Indeed, (10.6.1) follows from the induction formula for Kato’s Swan conductor with
differential values (3.15.2) and Theorem 10.4.

REMARK 10.7. Assume that p is not a uniformizer of K . Let L′ be a finite Galois
extension of K of group G′ which contains a sub-extension K ′ of K such that K ′/K is un-
ramified and L′/K ′ is of type (II). We denote by P ′ the Galois group of the extension L′/K ′
and by F ′ the residue field of OK ′ . Let Λ be a finite field of characteristic � �= p which con-
tains a primitive (�P ′)-th root of unity and let N be a Λ-vector space of finite dimension with
a linear-G′ action. We fix a non-trivial character ψ : Fp → Λ×. By Remarks 3.18 and 3.19,
we can still define KCCψ(1)(N) ∈ (Ω1

F )
⊗r , where r = dimΛ N/N(0). On the other hand, the

wild inertia subgroup P of GK acts on N through P ′, we can define CCψ(N) (Subsection
4.12). By [Sa2, 1.22] and [Sa3, 3.1], we have

(10.7.1) CCψ(ResG
′

P ′ N) = CCψ(N) ∈ (Ω1
F (log)⊗F F)⊗r

through the canonical isomorphism Ω1
F (log) ⊗F F ′ ∼−→ Ω1

F ′(log). Moreover, let Λ′ be the
algebraic closure of the fraction field of the ring of Witt vectors W(Λ), N ′ a pre-image of the
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class of ResG
′

P ′ N in the Grothendieck ring RΛ′ (P ′) ([Se2, 16.1 Theorem 33] ) and ψ ′ : Fp →
Λ′× the unique lifting of ψ : Fp → Λ×. By Lemma 4.8, we deduce that

(10.7.2) CCψ ′(N
′) = CCψ(ResG

′
P ′ N) .

From Theorem 10.4, we have

(10.7.3) CCψ ′(N
′) = KCCψ(1)(N) .

By (10.7.1), (10.7.2) and (10.7.3), we conclude that

(10.7.4) CCψ(N) = KCCψ(1)(N) ∈ (Ω1
F )
⊗r .

11. Nearby cycles of �-sheaves on relative curves.
11.1. In this section, we denote by S = Spec(R) an excellent strictly henselian trait.

Assume that the residue field of R has characteristic p and that p is not a uniformizer of R.
We denote by s (resp. η, resp. η̄) the closed point (resp. generic point, a geometric generic
point) of S. A finite covering of (S, η, s) stands for a trait (S′, η′, s′) equipped with a finite
morphism S′ → S. Let Λ be a finite field of characteristic � �= p and fix a non-trivial
character ψ0 : Fp → Λ×.

11.2. We define a category CS as follows. An object of CS is a normal affine S-scheme
H for which there exist a flat S-scheme of relative dimension one X and a closed point x of
Xs , such that X− {x} is smooth over S and H is S-isomorphic to the henselization of X at x.
A morphism between two objects of CS is a generically étale finite morphism of S-schemes.
Let (S′, η′, s′) be a finite covering of (S, η, s). Then for any object H of CS , H ×S S′ is an
object of CS ′ ([Kato1, 5.4]).

11.3. Let H be an object of CS . We denote by P(H) the set of height 1 points of H ,
by

Ps(H) = P(H) ∩Hs, Pη(H) = P(H) ∩Hη .

We have ([Kato1, 5.2], [AS4, A.6]):

(i) Hη is geometrically regular over η and for any p ∈ Pη(H), the residue field κ(p) of
H at p is a finite extension of the fraction field K(S) of S.

(ii) Hs is a reduced henselian noetherian local scheme over s of dimension 1, hence
Ps(H) is a finite set.

We denote by ˜Hs the normalization of Hs , which is a finite union of strictly henselian traits.
We put

δ(H) = dimk(O˜Hs
/OHs ) .

11.4. Let H be an object of CS , U a non-empty open sub-scheme of Hη and F a
locally constant constructible étale sheaf of Λ-modules over U . For a triple (H,U,F ) and
a finite covering (S′, η′, s′) of (S, η, s), we denote by (H,U,F )S ′ the triple (H ′, U ′,F ′)
where H ′ = H ⊗S S′, U ′ is the inverse image of U in H ′ and F ′ is the inverse image of F

on U ′. We call the triple (H,U,F ) stable if there is an étale connected Galois covering ˜U of
U such that

(i) The pull-back of F to ˜U is constant.
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(ii) The normalization ˜H of H in ˜U belongs to CS and the residue field of ˜H at all points
of ˜Hη − ˜Uη are finite separable extensions of κ(η).

PROPOSITION 11.5 ([Kato1, 6.3]). Let (H,U,F ) be a triple as Subsection 11.4.

(i) If (H,U,F ) is stable, (H,U,F )S ′ is stable for any finite covering S′ of S.
(ii) For any triple (H,U,F ), there exist a finite covering (S′, η′, s′) of (S, η, s) such that

(H,U,F )S ′ is stable.

Proposition 11.5(i) follows form ([Kato1, 5.4]) and Proposition 11.5(ii) follows form
[Epp].

11.6. Let (H,U,F ) be a stable triple. For p ∈ P(H), we denote by ̂OH,p the com-
pletion of the local ring of H at p and by κ(p) its residue field. For p ∈ Ps(H), we denote
by ˜Hs,p the integral closure of Hs in κ(p), which is a strictly henselian trait. Let ords,p be the
valuation of κ(p) associated to ˜Hs,p normalized by ords,p(κ(p)×) = Z. We denote also by
ords,p : Ω1

κ(p) − {0} → Z the valuation defined by ords,p(αdβ) = ords,p(α), if α, β ∈ κ(p)×

and ords,p(β) = 1. It can be canonically extended, for any integer r > 0, to (Ω1
κ(p))

⊗r − {0}.
Following ([SGA7I, XVI], [Lau1] and [Kato1, 6.4]), we call the total dimension of F at a
point p ∈ P(H), and denote by dimtotp(F ) the integer defined as follows:

(i) For p ∈ Pη(H), we put

dimtotp(F ) = [κ(p) : κ(η)](swp(F )+ rank(F )) ,

where swp(F ) is the Swan conductor of the pull-back of F over Spec(̂OH,p)×H U .
(ii) For p ∈ Ps(H), we denote by Kp the fraction field of ̂OH,p. Since the triple

(H,U,F ) is stable, there exists a finite Galois extension Lp of Kp of ramification
index one, such that the representation Fp of Gal(Ksep

p /Kp) defined by F factors
through the quotient Gal(Lp/Kp). Notice that Lp/Kp factors through a field K ′p
such that K ′p/Kp is unramified and Lp/K

′
p is of type (II) (Subsection 3.3). Fixing a

uniformizer π of R (also a uniformizer of Kp), we have CCψ0(Fp) ∈ (Ω1
κ(p))

m (cf.

Remark 10.7). We denote by F p the restriction to Spec(κ(p)) of the direct image of
F under Spec(Kp)→ Spec(̂OH,p) and by dimtots,p(Fp) the sum of rank(Fp) and
the Swan conductor of F p over Spec(κ(p)). We put

(11.6.1) dimtotp(F ) = − ords,p(CCψ0(Fp))+ dimtots,p(F p) .

We notice that ords,p(CCψ0(F )) dose not depend on the choice of ψ0 (10.4.4) and
the choice of π .

We put

ϕη(H,U,F )=
∑

p∈Hη−U
dimtotp(F ) ,(11.6.2)

ϕs(H,U,F )=
∑

p∈Ps(H)

dimtotp(F ) .(11.6.3)
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LEMMA 11.7 ([Kato1, 6.5]). Let (H,U,F ) be a stable triple (Subsection 11.4),
(S′, η′, s′) a finite covering of (S, η, s). We put (H ′, U ′,F ′) = (H,U,F )S ′ .

(i) For any p ∈ Ps(H) and for the unique p′ ∈ Ps(H) above p, we have

dimtotp(F ) = dimtotp′(F
′) .

(ii) For any p ∈ Hη − U , we have

dimtotp(F ) =
∑

p′
dimtotp′(F

′) ,

where p′ runs over the points above p.

11.8. Let (H,U,F ) be a triple (Subsection 11.4). By Proposition 11.5, there exists a
finite covering (S′, η′, s′) of (S, η, s) such that (H,U,F )S ′ is stable. We put

ϕη(H,U,F )= ϕη′((H,U,F )S ′) ,

ϕs(H,U,F )= ϕs ′((H,U,F )S ′) .

By Lemma 11.7, they don’t depend on the choice of the covering (S′, η′, s′).

THEOREM 11.9 Let (H,U,F ) be a triple (Subsection 11.4), x the closed point of H ,
u : U → Hη the canonical open immersion. Then we have
(11.9.1)
dimΛ(Ψ

0
x (u!F ))− dimΛ(Ψ

1
x (u!F )) = ϕs(H,U,F )− ϕη(H,U,F )− 2δ(H) rank(F ) .

PROOF. Indeed, for a stable triple (H,U,F ) and any p ∈ Ps(H), dimtotp(F ) is the
same as Kato’s definition in [Kato2, 4.4] by (10.7.4). �

REMARK 11.10. The Theorem 11.9 is proved by Deligne if F is unramified at ev-
ery point of Ps(H) ([Lau1, 5.1.1]). In the general case, Kato proved the theorem with two
different definitions of the invariant ϕs(H,U,F ) ([Kato1, 6.7], [Kato2, 4.5]). T. Saito give
another proof with another definition of ϕs(H,U,F ) ([Sa1]) which corresponds to the lat-
ter definition of Kato ([Kato2, 4.5]). If F is of rank 1, Abbes and Saito gave a definition
of ϕs(H,U,F ) ([AS4, A.10]) using the refined Swan conductor in their ramification theory
([AS3]), which coincides with Kato’s latter definition ([Kato3, remark after 6.8]). Here, using
Abbes and Saito’s ramification theory, we give the definition of ϕs(H,U,F ) for any rank
sheaf F which is equal to Kato’s latter formula (Theorem 10.4).
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