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RAMIFICATION AND NEARBY CYCLES FOR ¢-ADIC SHEAVES ON
RELATIVE CURVES
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Abstract. Deligne and Kato proved a formula computing the dimension of the nearby
cycles complex of an £-adic sheaf on a relative curve over an excellent strictly henselian trait.
In this article, we reprove this formula using Abbes-Saito’s ramification theory.
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1. Introduction.

1.1. Let R be an excellent strictly henselian discrete valuation ring of residue charac-
teristic p > 0, § = Spec(R), s (resp. n, resp. 1) the closed point (resp. the generic point, resp.
a geometric generic point) of S. Let X be a smooth relative curve over S, x a closed point of
the special fiber X, X the strict henselization of X at x, U a non-empty open sub-scheme of
Xy, and u : U — X, the canonical injection. Let A be a finite field of characteristic £ # p,
and .# a locally constant constructible étale sheaf of A-modules on U. The spaces of nearby
cycles of .7

wiuF) = Hy (X5, wF) (i >0)
vanish when i > 2 ([SGA7II, XIII], [Fu, 9.2.2]) and the dimension of l1/)9 (u\F) is easy
to compute. The aim of this article is to reprove a Deligne-Kato’s formula that computes
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the dimension of lllx1 (u).#) [Laul, Katol, Kato2] using Abbes-Saito’s ramification theory
[AS1, AS2].

1.2. Let p be the generic point of the special fiber X;. We denote by « (p) the residue
field of p, which is the fraction field of a strictly henselian discrete valuation ring. Assume first
that .% can be extended to a locally constant constructible sheaf Z onan open sub-scheme U
of X containing p. Then Deligne computes the dimension of lI/x1 (u.F). Let swy (/5~~ ) be the
Swan conductor of the pull-back of Z on Spec(x (p)) and let

9(s) = swy(F) + rank(F) .

On the other hand, for any € X5 — Uy, let sw; (%) be the Swan conductor of the pull-back
of .# on Spec(Ox; 1) xx U, and let

) = Y (sWi(F)+rank(.F)).
teX;—Ujy

Then, Deligne’s formula is ([Laul, 5.1.1])
(1.2.1) dim 4 on(ugﬁ) — dimy lI/x1 .F) = o(s) — p(n) .

1.3. Kato generalized Deligne’s formula for any .%. His formula has the same form as
(1.2.1). The definition of the invariant ¢ (1) is the same as above, but ¢ (s) cannot be defined by
the same method. He provided two definitions of ¢ (s). The first one uses a ramification theory
for valuation rings of rank two, which he developed for this purpose [Kato1]. The second one
uses his notion of Swan conductors with differential values [Kato2]. Both methods rely on
Epp’s partial semi-stable reduction theorem [Epp]. In this article, we define the invariant ¢(s)
in terms of ramification theory of Abbes and Saito [AS1, AS2]. The case when .# has rank 1
is due to Abbes and Saito ([AS4, Appendix A]).

1.4. Let K be a complete discrete valuation field, Ok its integer ring, mg the maximal
ideal of Ok and F the residue field of Og. We assume that F' is of finite type over a perfect
field Fy of characteristic p. We denote by K a separable closure of K, by O the integral
closure of Ok in K, by F the residue field of O, by v the valuation of K normalized by
v(K*) = Z and by G the Galois group of K/K. Abbes and Saito defined a decreasing
filtration G%’log (r € Qx0) of Gk, called the logarithmic ramification filtration. For any

rational number r > 0, we put G;(+log = Up~r Gl}( log- Then P = G(I)(+log is the wild inertia

subgroup of G g ([AS1, 3.15]). For any rational number » > 0, the graded piece

r — r+
Grlog Gk = GK,log/GK,log

is abelian and killed by p ([Sa2, 1.24], [Sa3, Theorem 2]).
For any r € QQ, we denote by m’f (resp. m%“ ) the set of elements of K such that v(x) > r

(resp. v(x) > r). Let 2 }p (log) be the F-vector space

2p(log) = (255, & (F®z K*))/(da—a®a; a € OF),
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where a is the residue class of a in F. We have a canonical exact sequence of finite dimen-
sional F-vector spaces

0— .Q}p — .Q};(log) — F— 0.
For any rational number » > 0, there exists a canonical injective homomorphism ([Sa2, 1.24],
[Sa3, Theorem 2]), called the refined Swan conductor,

rsw : Homp, (GlrfOg

Gk, Fp) > Qp(log) @ me! /m ™.
Let M be a finite dimensional A-vector space on which P acts through a finite discrete
quotient,
M= @re@;oM(r)
the slope decomposition of M (cf. Lemma 4.5), and for any rational number r > 0,
M = ®y M)((r)

the central character decomposition of M), where the sum runs over finitely many characters
X : Grlrog Gg — A; such that A, is a finite extension of A (cf. Lemma 4.7). Enlarging A,
we may assume that for all rational number r > 0 and for all central characters y of M),
A = Ay. We fix a non-trivial character ¥ : F, — A*. Since GrfOg G g 1s abelian and

killed by p, x factors uniquely through Grlrog Gk — F, Yo, A*. We denote abusively by
x : Grjy, Gg — F) the induced character. We fix a uniformizer 7 of Ok . We define Abbes-
Saito’s characteristic cycle of M and denote by CCy, (M) the following section (4.12.1)

CCyy (M) = Q) Q) (rsw() @ 7)™ M ¢ (2L (log) @p F)®dima /M

reQ-o xeX ()

1.5. In the following, we assume that p is not a uniformizer of K (i.e., either K has
characteristic p or K has characteristic zero and p is not a uniformizer of Og). Let L be a
finite Galois extension of K of group G. We assume that L /K has ramification index one and
that the residue field extension is non-trivial, purely inseparable and monogenic ; we say that
the extension L/K is of type (I) (cf. Subsection 3.3). Let M be a finite A-vector space on
which G acts through G. We prove that, for any rational number r > 0, and any central
character x : Grj,, Gk — F) of M (") we have (Proposition 5.7)

rsw(y) € .Q}v QF m%’/m%’Jr .

Hence, we have CCy, (M) € (2} ®F F)®", where m = dimy M/M©® (Corollary 5.10). On
the other hand, using Kato’s theory of Swan conductors with differential values, we can define
Kato’s characteristic cycle KCCy(1y(M) (3.17.1). Our main result (10.7.4) is the following
equality
(L.5.1) CCyy (M) = KCCyy(1y(M) .
Using Kato’s theory, we deduce a Hasse-Atrf type theorem (Corollary 10.5)

CCyy(M) € (2p)" C (2F ®F F)",

and an induction formula (10.6.1) for Abbes-Saito’s characteristic cycle.
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1.6. Under the assumptions of Subsection 1.1, we can now give a new definition of
@(s). Firstly, by Epp’s results [Epp], we can reduce to the case where .7 is trivialized by a
Galois étale connected covering U’ of U such that the special fiber of the normalization X’
of X in U’ is reduced. We denote by Oy p the completion of Oy p, by K, the fraction field
of 6}(, P aEd by %, the representation of Gal(K f,ep /Kp) corresponding to the pull-back of %
on Spec(Ox,p) xx U. The latter factors through the Galois group of a finite Galois extension
Ly, of Ky, which is of type (II) over an unramified extension of Kj,. We fix a uniformizer
7 of R and a non-trivial character ¥ : F, — A*. We still have CCy, (%) € (.Qli(p))@’”
(cf. Remark 10.7). We denote by ord,, the valuation of « (p) normalized by ordy (k (p)*) = Z
and abusively by ordy : Qi(p) — {0} — Z the map defined by ord,(xdf) = ordp (@), if

o, B € k(p)* and ordp(B) = 1. The latter can be uniquely extended to (Qﬁ(p))@” — {0} for

any integer r > 1. We denote by ?p the restriction to Spec(x (p)) of the direct image of 3‘}
by the map Spec(Kp) — Spec(Oyx,p). It corresponds to a representation of Gal(x (p)/x ().
The invariant ¢(s) is defined by

(1.6.1) ¢(s) = —ordy (CCy (Fp)) + swx(F ) + rank(F ) .

In fact, Kato’s second definition of ¢(s) ([Kato2, 4.4]) is obtained by replacing CCy,, (%)
by KCCy,(1)(Z%p) in (1.6.1). Hence, from (1.5.1), we deduce that Deligne-Kato’s formula
(1.2.1) holds true with our definition (cf. Theorem 11.9).

1.7. Deligne-Kato’s formula has already had important applications. For instance,
Deligne’s formula could be used in Laumon’s work on local Fourier transform ([Lau2, 2.4.3])
and Kato’s formula was recently used in the work of Obus and Wewers on local lifting prob-
lem [OW]. We would like to mention that Laumon’s formula of the rank of the local Fourier
transform is a direct application of the formulation of Deligne-Kato’s formula using (1.6.1).
Indeed, it was reproved in ([AS4, Appendix B]) by reducing to the rank 1 case by Brauer
theorem.

1.8. This article is organized as follows. We briefly introduce Kato’s Swan conductors
with differential values and Abbes-Saito’s ramification theory in §3 and §4, respectively. We
study in §5 the ramification of extensions of type (II). We recall tubular neighborhoods and
normalized integral models in §6. We study the isogeny associated to an extension of type
(I) in §7 in the equal character case and in §8 in the unequal characteristic case. Using the
results of these two sections, we prove the main theorem 5.9 in §9. In §10, the heart of this
article, we compare Kato’s characteristic cycle and Abbes-Saito’s characteristic cycle. The
last section is devoted to Deligne-Kato’s formula by using Abbes-Saito’s characteristic cycle.

Acknowledgment. This article is a part of the author’s thesis at Université Paris-Sud and Nankai
University. The author would like to express his deepest gratitude to his supervisors Ahmed Abbes and
Lei Fu for leading him to this area and for patiently guiding him in solving this problem. The author is

also grateful to Fonds Chern and Fondation Mathématiques Jacques Hadamard for their support during
his stay in France.



RAMIFICATION AND NEARBY CYCLES FOR ¢-ADIC SHEAVES 157

2. Notation.

2.1. In this article, K denotes a complete discrete valuation field, O its integer ring,
mg the maximal ideal of Ok and F the residue field of Og. We assume that the characteristic
of Fis p > 0. We fix a uniformizer 7w of Og. Let K be a separable closure of K, G the
Galois group of K over K, O the integral closure of Ok in K, F the residue field of O and
v the valuation of K normalized by v(K*) = Z. We denote by FE /k the category of finite
étale K -algebras. For any object K’ of FE /k» we denote by Ok the integer ring of K and by
mg- the radical of Og.

2.2. For a field k and one dimensional k-vector spaces Vi, ..., V,, we denote by
k(V1,..., Vi) the k-algebra

@ vie-evym,

and by (k(V1, ..., V) its group of units. An element of (k(Vy, ..., V,;))™ is contained in
some vector space V1®i' ®---@V,E™ . Such an element x will be denoted by [x] and we adopt
the additive notation, i.e. [x]+ [y] = [x - y]land —[x] = [x~!]. If foreach | <i < m,¢;isa
non-zero element of V;, we have an isomorphism

K(Vi, oo, Vi) = kX1, o X, X7 XL e X

m

and hence an isomorphism
(2.2.1) kVi, ..., Va)* S kKX @Z™.

3. Kato’s Swan conductors with differential values.

3.1. In this section, we fix a finite separable extension L of K of ramification index e
contained in K. We denote by Oy its integer ring and by E the residue field of O .

3.2. We denote the group (F(mK/m%))X by Rk and the group (E(mL/m%))X by Ry,
(cf. Subsection 2.2). The canonical isomorphisms

(3.2.1) E ®p (mg/m%) — m§ /mth

(3.2.2) (mz/m?)® 5 m¢ /met!
induce an injective homomorphism of F-algebras
F(my /mi) — E{m/m])

and hence an injective homomorphism Rg — Ry
3.3. Kato’s theory applies if the extension L/ K is of one of the following types ([Kato2,
1.5]):
(D L/K is totally ramified (i.e., F = E);
(II) the ramification index of L/K is 1 and the residue field extension E/F is purely
inseparable and monogenic.
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Observe that in both cases, Oy is monogenic over Ok . These two cases do not cover all finite
separable extensions.

In the remaining part of this section, we assume that L/K is of type (II). We denote by
p" the degree of the residue extension E/F. We choose an element 7 € O such that its
reduction /2 € E is the generator of E/F and a lifting a € Og of a = h?”" € F.

LEMMA 3.4. Let V be the kernel of the canonical morphism .Q}, — .Q}E Denote by
o the morphism E — F, b — bP", by ¢ the morphism F — F, b + b"", and by ¢ the
morphism E — E, b+ P,

(i) The F-vector space V is of dimension 1, generated by da.
(i1) The E-vector space .Q}Y/F is of dimension 1, generated by dh.

(iii) The canonical morphism F ®, .Q}E/F — 9117/¢(F) = .Q}, associatedto F — E >
F is injective with image V.
(iv) For any 1-dimensional E vector space W, the morphism

EQpr W —> W y@zr yz®"

is an isomorphism.
(v) There exists a canonical E-linear isomorphism

(3.4.1) E®FV > (2%

that maps y @ da to y(dh)®?".

PROOF. (i), (ii), (iv) are obvious. We have two canonical exact sequences of differential
modules corresponding to the extensions ¢ : F — E 2 Fand o E L FSE ,

1 B 41 1
F ®oF .QE/F — Q2F —> .QF/Q(E) — 0,
EQF .Q},/Q(E) — .Q}E — .QZI;/F — 0.
Since the canonical morphism 2 }, — 2 }3 factors as
1 1 1 1
Qp — .QF/Q(E) — EQf .QF/Q(E) — 2F,

the image of F' ®,, .Q}E/F in .Q}E is {0}. Hence the image of B lies in V. Since the kernel of
.Q}, — .Q}V/Q(E) is not zero (as it contains da) and since F ®,, g .Q}E/F is of dimension 1, 8 is
injective. Hence 8 induces an isomorphism

B:F ®orRpp— V.
From (ii) and (iv), we obtain an isomorphism
B E Q@ 'Qllf/F — (_Q],l;/F)(XJpn7 y ® zdh > yzp”(dﬁ)@)p”.

We take for (3.4.1) the isomorphism 8’ o (idg ® B)~!. O
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3.5. Let V be the kernel of the canonical morphism §2 }v - 2 }E (Lemma 3.4). We put

(Subsection 2.2)
Sk,p = (F(mg/mg, V))* and  Sp/x = (E(mp/my, 25,:) .
From (3.2.1) and (3.4.1), we obtain an injective homomorphism of F-algebras
F(mg/my, V) < E(mp/m7, 2k/5)

which induces an injective homomorphism
(3.5.1) Sk.L = Sr/k -

3.6. Let L’ be asubfield of L containing K, Oy its integer ring and E’ its residue field.
When L’ # L (resp. L' # K), the extension L/L’ (resp. L'/K) is of type (II) ; we consider
Sy, (resp. Sp//k) as a subgroup of Sz ,/x containing Sk, 7, by functoriality. If K # L’ # L,
the following canonical maps

ker(2} — 24) — ker(2} — 21,
‘QIIE/F - 9115/15’ ’
ker(2y — Qp) —> 2pp
are isomorphisms by considering dimensions, which give the following relations:
Sk, =Sk,r CSpyk =S, CSpyr =Sk -
3.7. Leti be the maximal integer such that Try , K(mi) = Og. The surjective homo-

morphism Try /g : mi /m’LJrl — Ok /mg = F induces an E-isomorphism

mi /m ™ = Homp(E, F), b+ (a+> Trpk(ab)),

and hence a basis of (mL/m%)‘g’(_i) ®g Homp(E, F), that we call Kato’s different of L/K
and denote by ©(L/K) ([Kato2, 2.1]).
3.8. Following Kato ([Kato2, 2.3]), there is an F-linear map Trg/r : .Q}E - 2 }v

characterized by
Tre/r (d—x) :%, Tre/F (xid—x) =0,
X xP X
forany x € EXand 1 < i < p" — 1. Its image is V (Lemma 3.4) and it induces an
isomorphism
(3.8.1) Qpr — Homp(E, V), o> (@ Trgp(aw)).

Hence we obtain a sequence of isomorphisms

(3.83.2)
(3.8.1) _1y G410 _pn _pn
Homp (E, F) —— Qp,p @ V¥V == @} ®p (1) = (@p,)® ",

by which E(m;/m?) ® Homp(E, F) is a sub-E (mz /m? )-module of E(m /m3, Q}E/F).
Hence we may consider ©(L/K) (Subsection 3.7) as an element of S /.
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PROPOSITION 3.9 ([Kato2,2.2]). Let L' be a subfield of L containing K. If L = L’
(resp. L' = K), we put D(L/L") = [1] (resp. D(L'/K) = [1]). Then, we have

(3.9.1) D(L/K) =D(L/L) +D(L'/K) € Sk .

We consider ©(L'/K) € Sp//xk S Sk -
3.10. In the rest of this section, we assume that the extension L/K is of Galois group
G. Forany o € G — {1}, we put

sG(0) = [dh] — [h — o (h)] € Sp/k ,
where the term [dﬁ] corresponds to the element dh in 2 }E JF and the term [h — o (0)] corre-
sponds abusively to the class of h — o' (h) € (my/m3)®*"=o(M)_ The definition of 55 (c) is
independent of the choice of the generator /4 ([Kato2, 1.8]). We also put
(3.10.1) sc()=— Y s56(0)€SL/k .

oeG—{l}

We have ([Kato2, (2.4)])
(3.10.2) sg(1) =9D(L/K).

PROPOSITION 3.11 ([Kato2, Proposition 1.9]).  Let H be a normal subgroup of G.
Then for any element T € G/H — {1}, we have

soiH(T) =) 56(0).

oeG
o>t

3.12. Inthe following of this section, let C be an algebraically closed field of character-
istic zero, £ a primitive p-th root of 1 in C and Z the integral closure of Z in C. For any finite
group H, we denote by Rc (H) the Grothendieck group of finitely generated C[H ]-modules.
For an element x € R(H), let (x, 1) = j:LH Y ogen try (o).

3.13. Foranelement x € Rc(G), we put

sc()=Y_ s6(0) ®try(0) € Sp/k ®z L,

oeG

e®)= Y [r®& eSyk®sl.

refF, CEX
Kato defined the Swan conductor with differential values of x as
(3.13.1) swe(x) =sc(x) +dimx — (x, 1))e) € SL/k ® 7.
For any r € %, we have swgr (x) = swe (x) + (dim x — (x, I)[r].

PROPOSITION 3.14 ([Kato2, 3.3(1)]). Let H be a normal subgroup of G, ¥ an ele-
ment in Rc(G/H) and ¥ the image of ¥ under the canonical map Rc(G/H) — Rc(G).
Then, we have

sc(®) = sg/H(¥) and  swg ) = swe (D) .
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PROPOSITION 3.15 ([Kato2, 3.3(2)]). Let H be a subgroup of G. For any 6 €
Rc(H), we have

s¢(Ind§; 6) = [G : H](su(0) + dim6 - D(LY /K))

(3.15.1) SWg(Indg 0) =[G : H](SWg(Q) + (dim6 — (0, 1)) -D(LH/K)).
By (3.10.1), (3.10.2) and (3.9.1), equation (3.15.1) can be written as
(3.15.2)
SWe (Indg 0)=1[G : H] (sws (0) — (dim6 — (0, 1)) ( Z ([dh] = [h — a(h)]))) .
oeG—H

THEOREM 3.16. ([Kato2, 3.4]). Forany x € Rc(G), we have

swe(x) € Sk, C SL/k ®z Z.

This is a generalization of Hasse-Arf’s theorem. It can be reduced to the case where
G is cyclic of rank p® and x is 1-dimensional by the induction formula (3.15.1) and Brauer
theorem. Then the proof relies on the higher dimensional class field theory of Kato ([Kato2,
3.6,3.7]).

3.17. For an element x € Rc(G), the Swan conductor with differential values swg ()
is given by

swe (x) = —fG(dime x — (x, 1)[dr] + A,

where

A=Y [h=oM]® dime x —try (@) + (dime x — (x. 1)e(€) € RL @z L.
oeG—{1}

From (3.4.1) and Theorem 3.16, we have ﬂG[dfl] = [da] and A € Rk. Hence, we get
swe (x) =[]+ [A'] — m[da] € Sk,1 .

where 7 is the uniformizer of Ok fixed in Subsection 2.1, c is an integer, m = dim¢ x —(x, 1)
and A’ € F such that [7¢A’] = A. We define Kato’s characteristic cycle of x and denote by
KCC¢ () the element

(3.17.1) KCCe (x) = A'(da)" € (21)%".

REMARK 3.18 ([Kato2, 3.15]). If the extension L/K is not of type (II), but there
exists a subfield K’ of L containing K such that K’/K is an unramified extension and L/K’
is of type (II), we define

SWe(x) = swe (Resgal(L/K,) X) -
Denote by Ok the integer ring of K, mg+ the maximal ideal of Ok’ and F’ the residue field
of Oks. Observe that swe (x) is fixed by Gal(K'/K) and that the Gal(K'/K )-invariant part
of F'(mg:/m%, ker(2}, — £21)) is F(mg/m% ker(2}. — $21)). Thus swg(x) is still
contained in Sk 1.
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REMARK 3.19 ([Kato2, 3.16]). Let A be an algebraically closed field of characteris-
tic £ ¢ {0, p}. We denote by A’ an algebraic closure of the fraction field of the ring of Witt
vectors W(A). Let x be an element of R4 (G) and let x be a pre-image of x in R4 (G) ([Se2,
16.1 Theorem 33]). We denote by £ the p-th root of unity in A’ lifting of a primitive p-th root
of unity £ in A. Then we put

swe (x) = swz(X) -

This definition is independent of the choice of x because of ([Se2, 18.2 Theorem 42]) and
(3.13.1).

4. Abbes-Saito’s ramification theory.

4.1. Abbes and Saito defined two decreasing filtrations G and G;{’log (r € Qx9) of
G i by closed normal subgroups called the ramification filtration and the logarithmic ramifi-
cation filtration, respectively ([AS1, 3.1, 3.2]).

4.2. We denote by G(}( the group Gk . For any r € Q30, we put

Gr=J G% and Gr Gk =Gy/Gy .
s€Qsr
Let L be a finite separable extension of K. For a rational number » > 0, we say that the ramifi-
cation of L/K is bounded by r (resp. by r+) if G’ (resp. G;;r) acts trivially on Homg (L, K)
via its action on K. We define the conductor ¢ of L/K as the infimum of rational numbers
r > 0 such that the ramification of L/K is bounded by r. Then c is a rational number and
L/K is bounded by c+ ([AS1, 6.4]). If ¢ > 0, the ramification of L/K is not bounded by c.
4.3. We denote by G(}(’log the inertia subgroup of Gk . For any r € Q>, we put
+ +
G;(,log = U GSK,log and Gr{ogGK = GrK,log/G}}(,IOg .
s€Qsr

By ([AS1, 3.15]), P = G(I)(+log is the wild inertia subgroup of G, i.e., the p-Sylow subgroup
of G(}(’log. Let L be a finite separable extension of K. For a rational number r > 0, we say that
the logarithmic ramiﬁcation_ of L/K is bounde(E)y r (resp. by r+) if G%Jog (resp. G;:log)
acts trivially on Homg (L, K) via its action on K. We define the logarithmic conductor ¢ of
L/K as the infimum of rational numbers r > 0 such that the ramification of L/K is bounded

by r. Then c is a rational number and L/K is bounded by c+ ([AS1, 9.5]). If ¢ > 0, the
ramification of L/K is not bounded by c.

THEOREM 4.4 ([AS2, Theorem 1]).  For every rational number r > 0, the group
GrngGK is abelian and is contained in the center of P/G%’log.

LEMMA 4.5 ([Katz, 1.1]). Let M be a Z[%]-module on which P = Gt

K log 4Cts
through a finite discrete quotient, say by p : P — Autz(M). Then,
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(i) The module M has a unique direct sum decomposition

4.5.1) M= M

rEQ>0

into P-stable submodules M, such that M©® = M? and for everyr > 0,
(M(r))G;(.log =0 and (M(V))G?.log =0.

(i) Ifr > 0, then M) = O for all but the finitely many values of r for which ,o(GrKflOg) #*
p(G}}(,log)'

(iii) Foranyr > 0, the functor M — M ™ s exact.

(iv) For M, N as above, we have Homp _moq(M ), N(r/)) =0ifr #r.

The decomposition (4.5.1) is called the slope decomposition of M. The values r > 0 for
which M) # 0 are called the slopes of M. We say that M is isoclinic if it has only one slope.

4.6. In the following of this section, we fix a prime number ¢ different from p, a local
Zg-algebra A which is of finite type as a Zg-module and a non-trivial character ¥ : F, —
AX.

LEMMA 4.7 ([ASS, 6.7]). Let M be a A-module on which P acts A-linearly through
a finite discrete quotient, which is isoclinic of slope r > 0. So the P action on M factors

through the group P/G;(—‘,_log'

(i) Let X (r) be the set of isomorphism classes of finite characters x : GrngG Kk —> A ;((
such that Ay is a finite étale A-algebra, generated by the image of x, and having a
connected spectrum. Then M has a unique direct sum decomposition

4.7.1) M= @ M, .
XE€X(r)
Each My is a P stable sub- A-module such that A[G' 1Og] acts on My through Ay.

(ii) There are finitely many characters x € X (r) for which M, # 0.
(iii) For a fixed x € X(r), the functor M — M, is exact.
(iv) For M, N as above, we have Hom (M, Ny+) =0 if x # x'.

The decomposition (4.7.1) is called the central character decomposition of M. The char-
acters x : GrI’OgG K — A; for which M, # 0 are called the central characters of M ([ASS,
6.8]).

Let Py be a finite discrete quotient of P/ G;(fl og through which P acts on M and let Cy
be the image of GrngG k in Pp. By Theorem 4.4, we know that Cy is contained in the center
of Py. The connected components of Spec(A[Cg]) correspond to the isomorphism classes of
characters x : Cop — A;, where A, is finite étale A-algebra, generated by the image of y,
and having a connected spectrum. If p”C = 0, and A contains a primitive p”-th root of 1,
then A, = A for every x such that M, # 0.

LEMMA 4.8 ([Katz, 1.4], [ASS, 6.10]). Let A be a A-algebra and M a left A-module
on which P acts A-linearly through a finite discrete quotient. Then,
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(i) In the slope decomposition M = P, M® each M) is a sub-A-module of M. For
any A-algebra B, the decomposition of B @4 M is given by B @4 M = D, (B ®a
M(r)).

(ii) If M is isoclinic, then in the central character decomposition M = @ X M, , each M,
is a sub-A-module of M. For any A-algebra B, the central character decomposition

of B®a M is givenby B ®s M = D, (B ®a My).
4.9. Let V be a finite dimensional F-vector space and we denote by V* its dual space.
We consider V as a smooth abelian algebraic group over F, i.e. Spec(Sym(V*)). Let nf 1g(V)
be the quotient of nf‘b(V) classifying étale isogenies. Then nf lg( V) is a profinite group killed

by p and the group Hom(rrflg(V), Fp) is canonically identified with the dual space V* by
pulling-back the Lang’s isogeny A! — A! : 7 +> 17 — ¢ by linear forms (cf. [Sa4, 1.19]).

4.10. For the rest of this section, we assume that F is of finite type over a perfect
subfield Fy. We define the F-vector space Q}p(log) by

2p(log) = (2p/p, & (F®z K*))/(dd—a®a; a € OF).
Then we have an exact sequence of finite dimensional F'-vector spaces
(4.10.1) 0— 2} — 2+(log) = F — 0,
where res((0, a ® b)) = a - v(b) fora € F and b € K*. If K has characteristic p, we put
Qo ir = Lii_ng(lox/m'p/& :
We have an exact sequence of F-vector spaces
(4.10.2) 0— mg/my — 24, /5 ®0x F—> 2} — 0.

If K has characteristic zero and p is not a uniformizer of Ok, we denote by Ok, the ring of
Witt vectors W (Fp) regarded as a sub-algebra of Og. Then, we put

51 T 1
20y 10k, =M L0 ) /0, -
n
We have an exact sequence of F-vector spaces
2 51 1
(4.10.3) 0— mg/my — ‘QOK/OKO ®ox F— 25— 0.
For any rational number r, we put

me={xeK; o) 2r), mF={xek; v >r},

(r) 1 -
Hfr,log = Homp (£2f(log). m%/mf’ ),
(4.10.4) Eg) = Homp (,Q},’ m%/m%“‘)).

When K has characteristic p (resp. characteristic zero and p is not a uniformizer of Og), for
any rational number r > 0, we denote by @(fr) the F-vector space

(4.10.5) O = Homp (25, /5, ®0, F.mip/m ")
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(resp. @(f’) = Homp (§(19K/OK0 ®oy F, m%/m%ﬂ) ).

By (4.10.1), (4.10.2) and (4.10.3), when p is not a uniformizer of K, we have homomorphisms

(r) = (r) (r)
@Flog - & = @f .

By ([AS2, 5.12]), we have a canonical surjection

(4.10.6) rrf‘b(@%)log) — Grj,,Gx .

THEOREM 4.11 ([Sa2, 1.24], [Sa3, Theorem 2]). For every rational number r > 0,
the canonical surjection (4.10.6) factors through the quotient nflg(@%r)log). In particular,
the abelian group GrlrogG k is killed by p and the surjection (4.10.6) induces an injective
homomorphism

4.11.1) Isw : Hom(GrngGK, Fp,) — Homf(m%/m%, .Q};(log) ®F).

The morphism (4.11.1) is called the refined Swan conductor.
4.12. Let M be a free A-module of finite type on which P acts A-linearly through a
finite discrete quotient. Let
M = @ M®

rEQ>0

be the slope decomposition of M and for each rational number r > 0, let

" _ ")
M = P u
XEX ()

be the central character decomposition of M "), We notice that each M )((r) is a free A-module.
Enlarging A, we may assume that for all rational number » > O and x € X(r), A = Ay
(Lemma 4.7). Each x factors uniquely through 1o (Subsection 4.6)

Gy, Gx — F, 25 A%

We denote abusively by x the induced character Grlrog Gk — IF,. We define the Abbes-Saito
characteristic cycle CCy, (M) of M by

4.12.1) CCyy(M) = Q) K) @sw(x)@x" )™ M & (2L (og) @ F)@dima M/
reQ.o xeX(r)

5. Ramification of extensions of type (II).

5.1. In this section, we assume that the residue field F of O is of finite type over a
perfect field Fy of characteristic p. Let L be a finite Galois extension of K of group G and
type (II) (Subsection 3.3), Oy, the integer ring of L and E the residue field of Or. We denote
by p" the degree of the residue extension E/F. We choose an element 2 € O such that its
residue class 1 € E is a generator of E/F. We have Op = Ok|h]. Let f(T) € Og[T] be
the minimal polynomial of 4:

(5.1.1) F) =T +ap TP 4 +a.
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Notice that ag = —h”" € F. We put

(5.1.2) c= sup v(h—o(h)+ Z v(h — o (h)),
oeG—{1} seG{1)
which is an integer > p”".

For any rational number r > 0, we denote by G” (resp. Glrog) the image of G’ (resp.
GrK,log) in G ([AS1, 3.1]). Using the monogenic presentation O, = Ok[T]1/(f(T)), we
obtain that, for any rational numberr > 1, G" = Gl’0 g([ASl, 3.1, 3.2]) and that the conductor
of L/K is ¢ ([AS1, 6.6]). By Theorem 4.11, the normal subgroup G¢ of G is commutative
and killed by p. In the following, we put G = p°.

5.2. For any integer j > 1, we denote by D/ the j-dimensional closed poly-disc of
radius one over K and by D/ the j-dimensional open disc of radius one over K. For a
rational number r > 0, the j-dimensional closed poly-disc of radius r is denoted by D/ =
{(x1,...,x)) € D/ v(x;) = r}. Let

f:D'> D' x> f(x),
be the morphism induced by f. For any rational number r > O, it is easy to see that

f (D) is a disjoint union of closed discs with the same radius, i.e. there exists a ra-
tional number p(r) > 0 such that

ooy = ] (xj+D1*<f’(’”),
1<j<i

where the x;’s are zeros of f. The function p : Q>9 — Qx is called the Herbrand function
of the extension L/K. By ([AS2, 6.6]), we have p(c) = sup,cg_1y v(h — o (h)) and

(5.2.1) G ={oeG;vth—oh) = p)}.
5.3. We denote by u the map
_ h—o (h) .
(5.3.1) u:G—-E, o~ u”_<m)’ if o1,
us =0, ifo=1.

The restriction u|ge : G¢ — E of u to G€ is an injective homomorphism of groups. Indeed,
for any o € G° — {1}, we have v(h — o (h)) = p(c). Hence, for o1, 02 € G¢, we have

- <h—6162(h)> _ (h—Ul(h)-l-Ul(h—Gz(h)))
010 — -

JT'O(C) ;-[ﬂ(C)

=u0'1 +MO'2‘

PROPOSITION 5.4. The polynomial f-(T) = f(mP©OT + h)/n¢ € L[T] has integral
coefficients. Its reduction f. € E[T] is an additive polynomial of degree p* = #G€ with a
non-zero linear term.

PROOF. We have

7POT + h — o (h)
fm=1 [] —aoay € OulT].

oeG—{l1}
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Hence

_ POT +h —o(h
G4 Fm=1 [] (” nv(;r_a(h))"( )>: T o [] T +uo.

oeG—{1} oeG—-G°¢ oeG°

Choose an I ,-basis 71, ..., 7y of G, we get

[] @T+ur= ] @ +jiue+-+jsuz,).

oeGe (venrJs)EFS,
We conclude by the lemma below. O
LEMMA 5.5. Let C be a field of characteristic p. For any integerr > 0, let x1, ..., X,

be r elements of C such that for any (ji, ..., jr) € F), ={0}, jix1 + -+ =+ jrx, # 0. Then we
have

550 [ THimit i) =TV 43,0 T? 4+ TP 42T € CIT],
s dr)EFY,

where
Ay = l_[ (ixt+ -+ jrxr) #0.
(Jtsewes jr) €F—{0}
PROOF. We proceed by inductionon r. If r = 1,

[]@+hx)=17—xI"
Ji€Fy,

T

which satisfies (5.5.1). Assume that (5.5.1) holds for (r — 1)-tuples where r > 2, let
(x1,...,x,) € C" be as in the lemma. We put

gr—1(T) = l—[ (T + jixi+ -+ jro1xr—1) .
(roeesdr1) €F, !

Then, we have

[T @+ixi+-+jx)=[] @@ +jrx)

(teee i) EF7, Jrel,
=[] @™+ jrgr—1(xr)
jr€F,
= g7 (1) = ¢! e gr—1(T)
which satisfies (5.5.1) since g-—1 does. O

In the following of this section, we assume that p is not a uniformizer of K .

LEMMA 5.6. Suppose c > 2. Then, forany 1 <i < p" — 1, we have v(a;) = 2 (5.1.1).
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PROOF. From the equation f(T) = [[,cg(T —o(h)), forany 1 < i < p" — 1, we
obtain

G601 ai=EDTT0 YT aioa(h) - opi(h)

{o1,...) apn,i}gG
=D N (oi(h) —h+h) - (opni(h) —h+ h)
{o1,...) apn,i}gG
n : n n : n - 1 n :
= (=D —”((". )h" T4 (” . )h" Y (o (h) = hy +A>,
1 1

oeG

where v(A) > 2. Since the integer (pl.") is divisible by p, v((pl.")hf’") > 2. Hence it is

sufficient to show that
v<Z}ﬁm—m>>2

oeG
Assume first that forany o € G — {1}, v(h — o (h)) = p(c), i.e. G = G°. It suffices to
treat the case where p(c) = 1. In this case, §G = ¢ > 2 (5.1.2). From Subsection 5.1, G is an

IF,-vector space of dimension n and we choose an I ,-basis 11, ..., 7, of G. By Subsection
5.3, we have
D ug= Z (rte, + -+ + jnltz,)
0eG (Jveerfin) EF
p'(p—1)

(e +---+ug) =0,

which means that v(ZaeG_{l}(a(h) —h) =2pl)+1=2.

Assume next that foro € G — {1}, the v(h — o (h))’s are not equal. Let ¢’ be the smallest
jump of the ramification filtration of G and let #(GEH) = p"/ for some integer n’ < n. Let
s1=1,¢,..., S pnn’ be liftings of all the elements of G/ G+ in G. Observe that for any

/ /
ce€G—G“Tando € G°T, we have uc, = u.. Hence

Z ”S_Z Z ug, =p" Zugj—O

ceG-G+ J=2 6eG+
Hence v(}_, _ge+ (0 (h) — h)) = 2. Meanwhlle v} e+ (@(h) — h)) = 2, hence we
obtain the inequality v(}_ .5 (o (h) — h)) > O

PROPOSITION 5.7. The composition of the canonical homomorphisms (Theorem 4.11)
%@“))—aGm%GK—aG‘
factors through n (S (C)) (4.10.4). In particular, for any non-trivial character x : G¢ —
ﬂﬂ%MWﬂWQMﬂﬂ@FmZN%

The proof of this proposition is given in Subsection 9.3.
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5.8. For a non-trivial character x : G° — ), we denote by fe. x (T') the polynomial
(Subsection 5.3)

(5.8.1) fex(M = ] (T +uo) €FIT],

oeker
and by T € G° alifting of 1 € IF;,. Recall that f_c  1s an additive polynomial with a non-zero
linear term (Lemma 5.5), and that f, , (u.) is independent of the choice of 7.

THEOREM 5.9. For any non-trivial character x : G — F, the refined Swan conduc-
tor rsw(y) is given by

7.[—(,‘

(HUEG—G” MU) fcl,)x (ug)

The proof of this theorem is given in Subsection 9.4.

sw(x) = —dag ® €2} ®F m=*/m

COROLLARY 5.10. Let M be a finite dimensional A-vector space with a non-trivial
linear G-action. Then, with the notation of Subsection 4.6, we have (4.12.1)

CCyy(M) € (2 ®F F)®",
where r = dimy M/M© (Lemma 4.5).

6. Tubular neighborhoods and normalized integral models.

6.1. Let R be an Ok -algebra. Following ([AS2, 1]), we say that R is formally of finite
type over O if it is semi-local with radical mg, mg-adically complete, Noetherian and if the
quotient R/mg is of finite type over F. We say that R is topologically of finite type over Ok
if it is w-adically complete, Noetherian and if the quotient R/z R is of finite type over F.

6.2. We denote by AFSe, the category of affine Noetherian adic formal schemes X
over Spf(Ok) such that the closed sub-scheme X4 defined by the largest ideal of definition
of X, is a scheme of finite type over Spec(F). Let A be a finite flat algebra over Ok, and
i : Spf(A) — X a closed immersion in AFSp, . For any rational number r > 0, follow-
ing ([deJ, 7.1] and [AM, 2.1]), we associate to i a K-affinoid variety X", called the tubular
neighborhood of i of thickening r, as follows. Let X = Spf(A), I be the ideal of A which
defines the immersion i and ¢, s > 0 be two integer such that » = t/s. Let A{I°/x") be
the 7-adic completion of the subalgebra of A ®,, K generated by A and f/n’ for f € I*.
Then A(I° /") ®p, K is a K-affinoid algebra which depends only on . We denote by X"
the K -affinoid variety Sp(A(I*/7") ® o, K). For rational numbers r’ > r > 0, there exists
a canonical morphism X " —> X" which makes X”" a rational sub-domain of X”. The ad-
missible union of the affinoid spaces X" for r € Q3 is a quasi-separated rigid variety over
K.

PROPOSITION 6.3 (Finiteness theorem of Grauert-Remmert, [BGR, 6.4.1/3],
[AS1, 4.2]). Let R be a geometrically reduced K -affinoid algebra. Then, there exists a fi-
nite separable extension K' of K such that the supremum norm unit ball ((BGR, 3.8.1])

(6.3.1) ROK/ ={feR®k K'; [flsup < 1} € R ®k K’
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has a reduced geometric closed fiber Ro,., ®0,, F. Moreover, the formation of Ro « com-
mutes with any finite extension of K'.

6.4. Let R be a geometrically reduced K -affinoid algebra. We consider the collection
of Ok -formal scheme Spf(Roy,), where K "and Rp « are as in Proposition 6.3, as a unique
model of Sp(R) over Og. We call it the normalized integral model over O. We say that the
normalized integral model of Sp(R) is defined over K’ if the supremum norm unit ball R !
has a reduced geometric special fiber. We call this reduced geometric special fiber over F the
special fiber of the normalized integral model of Sp(R) over O%.

PROPOSITION 6.5 ([AS1, 4.4]). Let X be a geometrically reduced affinoid variety
over K, X its normalized integral model over Ox and X the special fiber of X. Then the
set of geometric connected components of X and X are isomorphic.

6.6. Let X be a geometrically reduced affinoid variety over K, X its normalized integral
model over O and X the special fiber of X. If X is defined over a finite Galois extension K’
of K, we denote by X © the normalized integral model of X over Q.. The natural K’-semi-
linear action of Gk on X ®k K’ extends to an O--semi-linear action of Gx on Xp,,. If K”
is another finite Galois extension of K containing K’, then 3€’OKH =Xp v Q0 Ok and the
semi-linear action of G on both sides are compatible. Hence, it induces an 'F-semi-linear

action of G ¢ on the special fiber %, called the geometric monodromy ([AS1, 4.5]).

7. Isogenies associated to extensions of type (II): the equal characteristic case.

7.1. In this section, we assume that K has characteristic p and that the residue field F
of Ok is of finite type over a perfect field Fy. For an object L of FE/ x and an integer r > 1,
we denote by (Of, /m2)® F, Ok the completion of (O /m}) ®p, Ok relatively to the kernel
of the homomorphism

(7.1.1) Op/m}) ®F, Ok — Op/m}, a®b+> ab,
and by Oy, ® r, Ok the projective limit

Ligl(OL/mrL)®FOOK .

We will always consider Of, @ F,Ok as an Ok -algebra by the homomorphism
(7.1.2) Ok = OL®r, Ok, ur—1Qu,

(in the following, we always abbreviate 1 ® u by u) and we will consider it as an Oy -algebra
by

0L — (’)L§FOOK, v 1.
There is a canonical surjective homomorphism
(7.1.3) OL®r,Ok — O
induced by the surjections (7.1.1). We denote by I its kernel.
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PROPOSITION 7.2 ([Asz 2.3]). Let L be an object of FE k.
(i) The Ok-algebra O ®F0 Ok is formally of finite type and formally smooth over Ok
and the morphism (OL®F0(9K)/mOL®F o ™ Or/me, (7.1.3) is an isomorphism.

(i1) Any morphism L — L’ ofFE/K induces an isomorphism

7.2.1) O ®0, (OL®rOk) = OL®rOk.

7.3. Let L be an object of FE/K. By Proposition 7.2, Spf(OLgpo(’)K) is an object of
AFSo, (Subsection 6.2). For any rational number r > 0 and integer numbers s, ¢ > 0 such
that » = t/s, we denote by R} the K -affinoid algebra

(7.3.1) I = (OL®R OIS /7") @0y K,

by X; = Sp(R} ) the tubular neighborhood of thickening r of the closed immersion
Spf((’)L) — Spf((’)L(X)FOOK) (7.1.3), (Subsection 6.2), which is smooth over K ([AS2, 1.7]).
By Proposition 6.3, there exists a finite separable extension K’ of K such that the normalized
integral model of X, over O is defined over K’ (Subsection 6.4). We denote by RZ,OK/ the
supremum norm unit ball of R}, ®x K’ (6.3.1), by X/, the normalized integral model of X
over O and by ?rL the special fiber of X', (Subsection 6.4).

7.4. Let m be the dimension of the F-vector space §2., which is finite. By ([AS2,
1.14.3]), there is an isomorphism of Ok -algebras

(7.4.1) Okl[To. ... Tull > Ox®r, Ok ,

such that the composition of it and (7.1.3) OK[[TO, o Tl &> OK@FOOK — Ok maps T;
to 0. Here the Ok -algebra structure of Og ® F,Ok is asin (7.1.2). If r is an integer > 1, we
have an isomorphism of K -affinoid algebras

(7.4.2) K(To/n", ..., Tn/n") = R .

The normalized integral model 36% is defined over Ok, and we have an isomorphism
(7.4.3) O(To/n" ... Tu/7") = (Ox®rOx) Ik /7") =Ry . -
Hence the closed fiber %;( is isomorphic to the affine scheme

Spec F[To/n", ..., Tu/7"]

In general, for any rational number » > 0, the K-affinoid variety X% is isomorphic to
D"+ and the rigid space X = U,~0X is isomorphic to D™+ (Subsection 5.2).

By ([AS2, 1.13, 2.4]), for any rational number r > 0, there exists a canonical isomor-
phism ?;( > @(fr ) (4.10.5) which is compatible with the geometric monodromy on ?;( and
the natural G g-action on @_) (via its action on m_/m ). If r is an integer, it is constructed
as follows. Firstly, we have a natural ring 1somorphlsm

(7.4.4) @ I /I @0, mi /m™ ™ - Ry o /mkRYy o, b®T > b,
i=0
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by (7.4.1) and (7.4.3). Extending scalars, we have

o0
o~ i L
(7.4.5) X — Spec (@ I /1 ®0, me” /m?’“r) .
i=0
Then, from ([AS2, 1.14.3, 2.4]), we have an isomorphism of free Og-modules
(7.4.6) Qe = K/, dt—>TRI—1®1,

which induces the isomorphism ?;( — @(Fr).

7.5. Let L be a finite Galois extension of K of group G and conductor r > 1. By
([AS1, 7.2]), the natural action of G on 0L§ F, Ok induces an O-linear action of G on
X', making it an €tale G-torsor over X. In particular, X} and ¥2 are étale G-torsors of
X% and ?}, respectively. The geometric monodromy action of Gk on §2 (Subsection 6.6)
commutes with the action of G. Let ?2’0 be a connected component of ?2 The stabilizers of
?2’0 via these two actions are G" and G, respectively. Then, we get an isomorphism G" 5
Aut(?rL,o /%}) and a surjection G — Aut(%?o /%;() which implies that G” is commutative
(cf. [AS2, 2.15.1]). Composing with X — @(Fr), the étale covering ?2’0 — @(fr) induces a
surjective homomorphism ([AS2, 2.15.1])

n;*b(@(f”) — G Gg — G .

7.6. In the rest of this section, let L/K be a finite Galois extension of type (II) and we
take again the notation and assumptions of Subsections 5.1 and 5.2. By (7.2.1) and the proof
of ([AS2, 1.6]), for any rational number r > 0, we have an isomorphism

(7.6.1) Rk ®0,8;,0x (OL®F,0k) = R .

It induces, for any rational numbers r > r’ > 0, an isomorphism
R @y R, SR,

which gives a Cartesian diagram of rigid spaces

(7.6.2) X

L = XL
Xy — Xk

where Xx = |
We put

X% and X =, X].

r>0

£(T) = TP + (@p-1 @ DT "+ + (@ ® 1) € (Ox®rOK)IT].
From (7.2.1) and (7.6.1), we have a surjection

1 RY(T)> R, T—h®I,
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which induces an isomorphism that we denote abusively also by
(7.6.3) L R A(TY/E(T) S R

In other terms, we have a co-Cartesian diagram of homomorphisms of R’ -algebras

(7.6.4) R, < RIAT)

£

R, < RI(T)

where ¢(T) = f(T) and 7 (T) = 0. Hence, taking the union of the K -affinoid varieties
associated to each of the K-affinoid algebras in (7.6.4) for r € Q-¢, we have a Cartesian
diagram

(1.6.5) X, —Y > Xg x D!

|

Xx —%5 Xg x D!

where iy, f and i g are the morphisms induced by 77, ¢ and tg.

7.7. Inthe following, forany 0 < i < p” —1, we denote by «; the elementa; —a; ®1 €
Ik (Subsection 7.1). When the conductor ¢ > 2, foreach 1 <i < p" — 1, v(a;) > 2 (Lemma
5.6). Leta, = n%a; € Okg. We denote by o the element a —a/ ® 1 € Ix and by f the
element 1 — 7 ® 1 € Ix. Then, we have

o = (a] —a)2np — B + 71201;.

Since a/, B € Ix C ncR‘;(’OK, we have ¢; € nC“R%’OK.
When ¢ = 2, we have p = 2, #G = 2, p(c) = l and a] = 7~ 'a; € Og. We denote by

o the element a} —a{ ® 1 € Ix. Then we have

a) = (af —a)B+maf.

Since af, BeT“RE o » Wehavea TRy, ,and oy /¢ =a|B/m¢ € Ry o JnR Ok
We put
fo(T) = (i/7%)-T' € R o, [T].
0<i<p—1
We have

£T)=fM)— Y. T = f(T)—n(T).

0<i<p—1

In the rest of this section, we fix an embedding L — K. Recall that we put #(G¢) = p*
(Subsection 5.1).
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PROPOSITION 7.8. The K-affinoid X{ has 8(G/G) = p"~% geometric connected

components. Let 01, ..., 0pn-s be liftings of all the elements of G/ G in G. We have
(7.8.1) in(X$) C ]_[ X% x (0 (h) + DMy € Xy x D',
I<j<p™

and each disc of the disjoint union contains exact one geometric connected component of X1 .

PROOF. By the Cartesian diagrams (7.6.2) and (7.6.5), we have
in(X5) =tix (X)) € X$ x D' € Xg x D',
Taking in account the isomorphisms (7.4.2) and (7.4.3), for any point

(to.....tm) € Xg x D' =[] X x (ox(h) + D"y,
1<k p=s

we have v(f (1)) < c and v((o; /) (to, . . ., tw)t) > 0. Hence v(f (t) — w¢To(to, . .., tm, 1))

< ¢ which means f(to, ..., tm,1) = (t1, ... . tm, E(to, ..., tm, 1)) & ix(X%). Thus (7.8.1)
holds. By the proof of ([AS2, 2.15]), X{ has exactly p"~* geometric connected components.
Moreover, forany 1 < j < p"~°, f(oj(h)) — nfp(0,...,0,0;(h)) = 0, hence each disc
X% x (oj(h) + D) contains at least one geometric connected component of X§. O

In the following, we denote by ?CL"O the connected component of ?CL corresponding to
the connected component XZ o of Xz containing (0, ...,0,h) € X% x D! defined over L.

PROPOSITION 7.9. There exists a canonical Cartesian diagram

(7.9.1) X0 AL

o

o _H* 1
Of —>Af

where f. is defined in (5.4.1), such that if € is the canonical coordinate of Alf, we have

« dao @ w7°¢, if c>2,
W)= { (a/hdm + dag) @ 772, if c=2.
Moreover, for any o € G, the following diagram
(7.9.2) X0 AL
l lda
c v 1

where d}(§) = & — u, (Subsection 5.3), is commutative.
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PROOF. We consider the K-affinoid algebra R (resp. R{) as a sub-ring of the L-
affinoid algebra R ®x L (resp. R} ®k L). By Proposition 7.8, we have

X§ o =i (X% x (h+ D"y nxs .
Hence X 2’0 is presented by the L-affinoid algebra
(7.9.3) (RS @k LT /(7" OT' +h—h®1).
By the isomorphism (7.6.3), (7.9.3) is isomorphic to
(R ®k LY(T, T')/E(T), x* T +h —T),
which, after eliminating T by the relation 7T’ +h — T =0, is
(7.9.4) (R% ®k LYT)/(E@POT + h)).
In both cases, by Proposition 5.4 and Subsection 7.7, we have
fxPOT + h)/n¢ e R0, T
E@@POT + h)/a T ¢ RY o, (T').
Then the image of R o, (T') by the canonical surjection
(R @k LN(T') - (R @k LY(T")/E@" T + h))
is
(7.9.5) 0, (T E@"OT + ) /7).
Extending the scalars from Oy, to F, we obtain the following F-algebra:
@) ifc > 2,

(7.9.6) (R .0, ®0, PIUT'1/(fe(T") = ao/7°) ;
(i) ifc =2,
(1.9.7) (R .0, ®0, PIT'/(f(T") = (a0 +afhp)/m?) .

From isomorphisms (7.4.4), (7.4.6) and the canonical exact sequence (4.10.2), we know that
when ¢ > 2 (resp. ¢ = 2), ag/m¢ (resp. (o + a{hp)/n?) is a non-zero linear term in
F ®0, R%,OL' Hence (7.9.6) and (7.9.7) are all reduced. Then, by ([AS1, 4.1]),

SPR(R 0, (T")/E@P T + h) /7))
is the normalized integral model of X %’0 defined over Or. Hence ?CL"O is defined by the
F-algebra (7.9.6) (resp. (7.9.7)) when ¢ > 2 (resp. ¢ = 2). We put

v:X] o~ AL =Spec(FlgD), v =T

It follows form the isomorphism ?CK = @%) (Subsection 7.4) that (7.9.1) is Cartesian.

For any o € G¢, let y, (x) be a polynomial b,x" +- - - +bg € Ok|[x], where r < p" —1,
such that y, (h) = (h — o (h))/n”©) € Or. We denote by v, the polynomial

Yo(x) = (b @ Dx" +--- + (bo® 1) € Ri[x].
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The action of o on RS (T)/£(T) (isomorphic to RS (7.6.3)) is givenby : T > T — (n) ®
1)y (T). Hence the action of o on (7.9.4) is given by

T — T' — Yo (JTp(C)T/ +h) — ((nﬂ(c) Q1 — ]T,O(C))/]T,O(C))yg (]T,O(C)T/ +h)
and the induced action on (7.9.5) is given by the same formula. Since 7°© ® 1 — 77 ¢
TRE and ¢ > p(c), the reduction of (7°© ® 1 — 7)) /7P to the geometric special
K,Ok g P

fiberis 0. Forany 0 < j <r,b;®1—-b; € n"Rﬁ( Ox Then, the reduction of y (np(c)T/~|—h)
to the geometric special fiber is (Subsection 5.3)

YU(”p(C)T/+h) = )’a(”p(c)T/“"h) = Yo (h) = us .

Hence, diagram (7.9.2) is commutative. O

8. Isogenies associated to extensions of type (II): the unequal characteristic case.

8.1. In this section, we assume that K has characteristic O and that the residue field F
of Ok is of finite type over a perfect field Fp. Let K¢ be the fraction field of the ring of Witt
vectors W(Fp) = Ok, considered as a subfield of K. We denote by m the dimension of the
F-vector space .Q},, which is finite.

8.2. Let L be an object of FE/ k. We call an Ok, -presentation of Cartier type of O
apair (Az,j : AL — Or), where Ay is a complete semi-local Noetherian Ok, -algebra
formally smooth of relative dimension m + 1 over Ok, and j a surjective homomorphism
of Ok,-algebra inducing an isomorphism Az /m 4, 5 Oy /my such that the kernel of j is
generated by a non-zero divisor of Ay .

Let L, Ly be two objects of FE/K and (Ar,, j1 : AL, = Or)), (AL,, jo + AL, —
Or,) two Ok,-presentations of Cartier type. A morphism (g, g) from (Ar,, ji) to (Ar,, j2)
is a pair of Og,-homomorphisms g : Or, — O, and g : Ar, — A, such that the diagram

(8.2.1) AL. I OL.

)

-ALz —— 0y,

is commutative. We say that (g, g) is finite and flat if g is finite and flat and if the diagram
(8.2.1) is co-Cartesian.

PROPOSITION 8.3 ([AS2,2.7,2.8]).

(i) Any object of FE 1k admits an Ok, -presentation of Cartier type.
(ii) Let g : Ly — Ly be a morphism of FE/K, and (Ar,, j1), (AL,, j2) two Ok,-
presentations of Cartier type. Then there exist a morphism g : Ar, — Ar, such that
(g, 8) is a morphism of Ok, -presentations of Cartier type.
(iii) Let g : L1 — Lo be a morphism of FE/K and (g, g) a morphism between Ok, -
presentations of Cartier type (Apr,, j1) and (Ar,, j2). If a uniformizer wy of Ko is
not a uniformizer of any factor of Or,, then (g, ) is finite and flat.
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8.4. Let L be an object of FE/K, and (Ar, j : AL — Or) an Ok, -presentation of
Cartier type. We denote by (Ar/ mC4L)®O x, Ok the formal completion of (Az/m’y ) @0y,
Ok relatively to the kernel of the homomorphism

(8.4.1) (AL/m;‘L) ®0x, Ok — OL/mEQL, a®b+— ab,
and by Ap §O Xo Ok the projective limit

(8.4.2) AL®oy, Ok = lim((AL/m’y )80y, Ok) -

We will always consider A, §O Ko Ok as an Ok -algebra by the homomorphism

Ok — AL§OK00K7 u—1Q®u,
(in the following, we always abbreviate 1 ® u by u) and we will consider it as an .4y -algebra
by
A — .AL@(QKOOK, v U1,
There is a canonical surjective homomorphism
(8.4.3) AL8o,, Ok — OL
induced by the surjections (8.4.1). We denote by Iy, its kernel.
PROPOSITION 8.5 ([AS2, 2.91). Let L be an object of FEk, and (A, j : AL —
Opr) an Ok, -presentation of Cartier type. Then,
(i) The Ok-algebra AL§0KO Ok is formally of finite type and formally smooth over
Ok and the morphism AL®OK0 OK/mAL§0K0 ok Or/mp, (8.4.3) is an iso-
morphism.
(ii) Let L' be another object in FE/K and (A, j' + Ay — Opr) an Ok, -presentation

of Cartier type. If a uniformizer g is not a uniformizer of any factor of Oy, then, any
morphism (Ar, j) — (Ap, j') induces an isomorphism

8.5.1) A ®.4, (ALBo,, Ox) = AL®oy Ok -

PROOF. Part (i) is proved in ([AS2, 2.9]). For part (ii), we may assume L and L’ are
fields. We denote by e the ramification index of the extension L’/L. For any integer r > 1,
we have the following canonical commutative diagram

T 8.4.1)
AL — = (A /mly ) 80y, Ok ——= O /m

. |

qr
Ay —— (Ap /m’y Ap) ®oy, Ok ——= Op//m¢,

such that each square is co-Cartesian. We denote by (A /m;lLAL/)®(9K0 Ok the formal
completion of (Az// m;lL Ap)®o %o Ok relatively to the kernel of g; /. Since Ay, is a Noether-
ian local ring, by proposition 8.3(iii) and Nakayama’s lemma, .4;- is a finite free .4, -module.
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Then, we have

Ar @4, (AL/my Y80y Ok — (Ap/my, AN®oy, Ok -
After taking projective limit on both sides, we obtain
(8.5.2) A ® 4, (ALB0y, Ox) = im((Ap /mly, AL)Bog, Ok) -

r
By the proof of ([AS2, 2.7.3]), we obtain that mily Cmy, A C my,,. Hence, for any
integer r > 1, we have two surjections
(A /m§ 0k, Ok — (AL/mly, ALN®oy Ok —~ (A /my )®0y Ok .

which imply

(8.5.3) lim((Ap /my, A)Boy, Ok) = AL®oy, O -
r
Combining (8.5.2) and (8.5.3), we get (ii). O

8.6. Let L be an object of FE/K, and (Az,j : A — Or) an Ok, -presentation of
Cartier type. We will introduce objects analogue of those defined in §7, and denote them by
the same notation. For any rational number » > 0 and integer numbers s, > 0 such that
r =t/s, we denote by R, the K-affinoid algebra

Ry, = (AL®o,, O /7") @0y K |
by X = Sp(R’) the tubular neighborhood of thickening r of the immersion
SPf(O1) — SPI(ALB oy, O)

which is smooth over K ([AS2, 1.7]). By Proposition 6.3, there exists a finite separable ex-
tension K’ of K such that the normalized integral model of X is defined over K’ (Subsection
6.4). We denote by R, Oy the supremum norm unit ball of R}, ®x K’ (6.3.1), by X/ the

normalized integral model of X; over O and by %rL the special fiber of X7 .
8.7. In the following of this section, we assume that p is not a uniformizer of K. By
([AS2] 1.14.3), there is an isomorphism of Ok -algebras

(8.7.1) Ok, ..., Tull > Ak B0y, Ok ,

such that the composition of it and (8.4.3) Ok|[[To, ..., Tu]] = Ak §OK0 Ok — Ok maps
T; to 0. If 7 is an integer > 1, we have an isomorphism of K -affinoid algebras

(8.7.2) K(To/n", ..., Tu/7") = R% .

The normalized integral model 36% is defined over Ok, and we have an isomorphism
(8.7.3) Ok (To/n", ..., T/7") = (AK®0KO Ox)Ik/7") =R o -
Hence the geometric closed fiber ?} is isomorphic to the affine scheme

Spec F[Ty/n", ..., Ty /7" ].
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In general, for any rational number » > 0, the K-affinoid variety X% is isomorphic to
D"+ and the rigid space Xgx = [, X} is isomorphic to D"*+! (Subsection 5.2).
By ([AS2, 2.11.2]), we have an isomorphism

(8.7.4) Uk /I3) ®0x F = 20, /0, ®0x F.

such that for any x € Ok and X a lifting in Ak, the imageof (1 @ x — ¥ ® 1) @ 1 isdx ® 1.
From ([AS2, 1.14.3, 2.11.2]), for any rational number » > 0, the inverse of (8.7.4) gives
an isomorphism ?2 5 @(Fr). When r is an integer, the construction of the isomorphism is
similar to the equal characteristic case (Subsection 7.4).

REMARK 8.8. From (8.7.4), we notice that for any element X € ker(Ax — Ok), the
class (X ® 1) ® 1 vanishes in (IK/II%) Qo F. Itis equivalent to say thatX ® 1 € 112( +mlk.

8.9. Let L be a finite Galois extension of K of group G and conductor ¢ > 1. Let
(g, ) be a finite and flat morphism from (Ag, jx : Ax — Ok) to (AL, jL : A — Or)
(Subsection 8.2). By (8.5.1), g induces a finite flat morphism g ® id : AK®OK0 Ok —
AL@OKO Ok . Hence, for any rational number » > 0, it gives a morphism of smooth K-
iffmoid varieties X} — X% ([AS2, 1.6]) which induces morphisms X, — X' and ?;( —
X, . For any 0 € G, there is a morphism g, making the following diagram commutative
(Proposition 8.3(iii))

(8.9.1) A 0

o)

.AL ——— OL.

The pair (o, g,) induces automorphisms of X', X and ?2 Notice that, g, is not unique
in general and may not be an Ak -homomorphism. Hence the automorphisms of X7} , X’ and
¥2 induced by all possible g, may no_tcbe ugiquely determined by o € G. Luckily, by ([AS2,
2.13]), the induced automorphism of X; is X -invariant and independent of the choice of g.
Hence X; — Xy is a finite étale G-torsor ([AS2, 1.16.2]). The geometric monodromy action
of Gk on ?CL commutes with the action of G. Let ?LL"O be a connected component of ?2
The stabilizers of ?2’0 via these two actions are G¢ and G%, respectively ([AS2, 2.15.1]).
Then, we get an isomorphism G¢ — Aut(X; ,/Xx) and a surjection G — Aut(X; o/Xy)
which imply that G¢ is commutative (cf. [AS2, 2.15.1]). Composing with ?;( 5 @(Fr), the

étale covering %2’0 — @(Fr ) induces a surjective homomorphism ([AS2, 2.15.1])
TP(OY) > G Gk — G°.

8.10. In the following of this section, we assume that the finite Galois extension L/K
is of type (II) and we take again the notation and assumptions of Subsections 5.1 and 5.2. Let
(g9, &) be a finite and flat morphism as in Subsection 8.9. Let & be a lifting of # € O in Aj.



180 H. HU
Since Ak is a Noetherian local ring, by Proposition 8.3(iii) and Nakayama’s lemma, we have
that Ay is a finite free Ag-module of rank G and that A; = Ag[h]. Let
FT) =T + a1 Tp_y + -+ 7 € Ak[T1,
be a lifting of f[T] € Og[T] such that 7 is a zero. We have an isomorphism
(8.10.1) AT/ (f(T) > AL, T h.
By (8.5.1) and the proof of ([AS2, 1.6]), we have an isomorphism
(8102) R}}( ®AK§0K0 Ok (AL®OK0 OK) — Rz .
It induces, for any rational numbers r > r’ > 0, an isomorphism
R @y R, SR,
which gives a Cartesian diagram of rigid spaces

(8.10.3) X, — =X,

|

Xy — Xk
where Xg = J,.o X% and X, =
ET) =T + @1 @ DT+ 4+ @ ® 1) € (Ax B0y, OK)IT].

From (8.5.1) and (8.10.2), we have a surjection

1t RY(T) - R, T—hel,

X' . We put

r>0

which induces an isomorphism that we denote abusively also by
(8.10.4) R (TY/ET) S R
In other terms, we have a co-Cartesian diagram of homomorphisms of R’ -algebras

L

(8.10.5) R} <~ R4 (T)
Tfp
Rl <% RIAT),

where ¢(T) = Fﬁ:(T) and tx(T) = 0. Hence, taking the union of the K-affinoid varieties
associated to each of the K -affinoid algebras in (8.10.5) for r € Q3(, we obtain a Cartesian
diagram

(8.10.6) X, —“ > Xg x D!

|

Xx —Xo Xxgx x D!,
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where i L,fand ig are the morphisms induced by 77, ¢ and tg.

8.11. In the following, forany 0 < i < p"—1, we denote by ; the elementa; —a; @1 €
Ik and fix T € Ak alifting of 7 € Ok . When the conductor ¢ > 2, foreach 1 <i < p"—1,
v(a;) > 2 (Lemma 5.6). Let a; = 7 2a; € Ok and a; € Ak alifting of a;. Then we have
a; = 7?25; + yi, where y; € ker(Ax — Ok). We denote by «; the elementa; —a; @ 1 € Ig
and by B the element 7 — 7 ® 1 € Ix. Then, we have

o= (a, —a)2ap — B+l +5i ® 1.

Since o/, B € Ix C TL’CRLI’(’OK and y; ® 1 € 112( +rwlx C ”CHR?(,OK (Remark 8.8), we
have o; € ”C+IR%,OK' When ¢ = 2, we have p = 2, #G = 2,deg f = 2 and p(c) = 1. Let
a| € Ak be alifting of a] = 7 a;. We have o) = mway +71, where 71 € ker(Ax — Ok).
We denote by o the element a} — @} ® 1 € Ig. Then we have

o=@ —a)B+maf +71®1.
Since af, B € nCRLII(,OK andZ1®1 e 112< 4+l C nCHR‘I'(’OK, we have a; € n’CRLII(,OK’
and oy /7€ = a{B/n¢ € RLII(,OK/”RCI'(,OK'

Put

oy = Y (ai/n%) T € R o, IT].
0<i<p—1

We have
By =fm)— Y T = f(T)— 7).

0<i<p—1

In the following, we fix an embedding L — K. Recall that we put #(G¢) = p* (Subsec-
tion 5.1).

PROPOSITION 8.12. The K-affinoid X{ has $(G/G) = p"~° geometric connected
components. Let o1, ..., 0 pn-s be liftings of all the elements of G/ G in G. We have
in(X$) C ]_[ X% x (0j(h) + DVPO)y C Xg x D'
I<j<p
PROOF. The proof is the same as in the equal characteristic case (Proposition 7.8). O

In the following, we denote by ?CL"O the connected component of ?CL corresponding to
the connected component XZ o of Xz containing (0, ...,0,h) € X% x D! defined over L.

PROPOSITION 8.13. There exists a canonical Cartesian diagram

~C v 1
(8.13.1) X0 —— AL

b

o M 1
O — Ax.
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where f. is defined in (5.4.1) and if € is the canonical coordinate of AIF, we have

dag ® m~°¢, if ¢ >2,

W) = { (a/hdr +dag) @ 772, if ¢ =2.

Moreover, for any o € G, the following diagram

- v
(8.13.2) X0 —— AL

l ld“

=<C
Xp0— AL,
where d}(§) = & — u, (Subsection 5.3), is commutative.

PROOF. We consider the K-affinoid algebra R% (resp. R}) as a sub-ring of the L-
affinoid algebra R ®x L (resp. R} ®x L). By (8.12), we have

X§ o=i (X% x (h+ D"y nxs.
Hence X7 , is presented by the L-affinoid algebra
(8.13.3) (R @k LTV /(P OT +h—h®1).
By the isomorphism (8.10.4), (8.13.3) is isomorphic to
(RS @k LT, T/ E(T), n"OT +h - T),
which, after eliminating T by the relation 7T’ +h — T =0, is
(8.13.4) (RS @k LYT")/E@"OT + h)).
In both cases, by Proposition 5.4 and Subsection 8.11, we have
F@POT +h)/n° € R o, (T
’f(np(c)T/ + h)/n"“ ¢ RLI'(’OL<T/> )
Then the image of R} o, (T’y in (8.13.4) through the canonical surjective map
(Rg ®k LI(T") = (R ®k LI(T)/E@" T + ),

is

(8.13.5) e o T/ EEPOT +h) /7).

Extending scalars from Oy, to F, we obtain the following F-algebra:
1) Ifc > 2,

(8.13.6) (R .0, ®0, OIT'/(fe(T") —ao/7).
(i) If c =2,

(8.13.7) (R .0, ®o, OIT1/((T") = (@ + ahB)/7?).
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From the isomorphism (8.7.4) and the canonical exact sequence (4.10.3), we know that when
¢ > 2 (resp. ¢ = 2), ap/7C (resp. (ao + a}hB)/m?) is a non-zero linear term in R% o, ®oy
F. Hence (8.13.6) and (8.13.7) are all reduced. Then, by ([AS1, 4.1]),

SPE(R o, {T'V/ E@ T + ) /7))

is the normalized integral model of X%  defined over Or. Hence ?CL"O is defined by the
f-algebra (8.13.6) (resp. (8.13.7)) when ¢ > 2 (resp. ¢ = 2). We put

v:Xp o~ Ap = Spec(FIED, V() =T".

It follows form the isomorphism ?CK — @(fc) that (8.13.1) is Cartesian.
For any 0 € G°, let y,(x) = b;x" + --- + by € Og[x] be a polynomial such that
Vo (h) = (h — o (h))/nP© € Or. We denote by V, (x) = b,x" + - - - + by a lifting of y, (x)
in Ag[x] and by ¥(x) the polynomial
F) = (b, ® Dx" + -+ (o ® 1) € (A B0y, Ox)lx].
Letgs : A, — Ar be ahomomorphismasin (8.9.1). We denote by g, the induced morphism
of g, on (8.13.5). By (8.10.1), we have

pt—1
ker(Ap, — Op) = @ ker(Ax — Og)h'.
i=0
Hence, we have g, (ﬁ) =h —7r© Vo (ﬁ) + s(ﬁ), where ¢ is a polynomial with coefficients
in ker(Ax — Ok). Then, we have
g (T) =T =5, OT + h) + AT,
where
AT = _((7"[‘/0(0) ®1— 7[/!7(6'))/7[/!7(6'))§(T (nP(C)T’ +h) +g(nP(C)T’ + h)/ﬂp(c') ,
and ¢ is a polynomials with coefficientsin J = {x ® 1 € A@oKo Ok; X € ker(Ax — Og)}.
Since J C n”“RK,@K (Remark 8.8), 77 ® 1 — 7P ¢ 7°Ri.0 and ¢ > p(c), it
is easy to see that the reduction of A(T’) to ?LL’O is zero. For any 0 < j < r, we have
bj ®1— bj € 7'[67361'< Ox" Then

Yo (POT" +h) =5 (P OT' + h) = Yo (h) = ug .
Hence, by ([AS2, 2.13]), the diagram (8.13.2) is commutative. |
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9. The refined Swan conductor of an extension of type (II).

9.1. In this section, we assume either that K has characteristic p or that it has charac-
teristic 0 and that p is not a uniformizer of K. Let L be a finitely generated extension of K
of type (II) and we take again the notation and assumptions of Subsections 5.1, 5.2, 7.9 and
8.13.

PROPOSITION 9.2. The fibre product ?2’0 X 5 E%) (4.10.4) is a connected affine
F
scheme.

PROOF. The image of dap ® 1 and (a{hdw + dag) ® 1 by the canonical map from
Q(IOK/FO ®oy F (resp. ‘9(19K/OK0 ®oy F) to 2} ®p F is dag ® 1, which is a non-zero

element. So we have a Cartesian diagram

9.2.1) X)X o B —— AL
F
| |
=(©) W |

where u* (&) = dag ® #¢. Since dag ® w ¢ is a non-zero linear term in the affine space

=(c) ¢ —~(c) .
E:5 X0 x@%) &7 is connected. O

9.3. PROOF OF PROPOSITION 5.7. By ([AS2, 5.13]), both in the equal and unequal
characteristic case, we have a commutative diagram

©3.D T (OF o) 7O
Y1 i lyz
Glcog —G".

The surjection y; factors through rrf le (@(fc )log) (Theorem 4.11). By Propositions 7.9 and 8.13,

y2 also factors through rrid le (@(fc)). Combining (9.3.1) and the following canonical commuta-
tive diagram

F\lo

| i |

,1 " ,1 ~(c :1 "
1O ) —m (EF)) —— ().

b ) (©) b = (0) b ) (©)
(O R ——n{°(E) ——=71°(05)
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we obtain that

.l " .l ~(c :1 N
(9.3.2) ”Tg(@§)log) —— 1 (B —— 7 E(O))
Glcog G*

is commutative. The composition of morphisms nf 1g(&?%")) — nf lg(@(fc)) — G corresponds
to the isogeny ?CL',O X O(() HL) "'%) (cf. (9.2.1)). Hence, by (9.3.2), we have a commutative

diagram

(9.3.3) Hom(r{"*(8), F)) —— 2} @F m=* /m=<*

| |

Hom(G*, F,) — Hom(nllg(ofj)log) Fj) — 2} (log) ®F m2*/m=F

which concludes Proposition 5.7.

9.4. PROOF OF THEOREM 5.9.  Since the surjection n?lg(E%)) — G¥¢ is obtained
by pulling-back the isogeny f, : Alf — Alf by u’ (cf. (9.2.1)), it is an étale G°-torsor with
the action of Gj’ given by d; for o € G¢ (7.9.2), (8.13.2). With notation in Subsection 5.8,
we denote by f , (§) the polynomial

fex® = ( I1 w)@" — f5 wo)E) e FlE).

ceG—-G°¢
Observe that ﬁ 5 ( ﬁ x (&) = f.(£), hence the isogeny f, is the composition of two isogenies

fex Jex

AL =5 AL =5 AL
For any o € ker yx, f* —Uy) = _* (&), ie. ﬁ.xda = fcx Hence the isogeny ﬁ x -
Alf — Al is an étale (G/ker x)-torsor. Then, the surjection nllg(’““)) - G 5 ]Fp

corresponds to the pull-back of fc, x by 1/ and the [ ,-action on this torsor is given by 1* :
Evrs E— fo x (u7). We have the following Cartesian diagram

] fex

(9.4.1) Fp ——= AL =% pl

KN

1 L 1
F,,—>Af—>Af
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where L denotes the Lang’s isogeny defined by L* (&) = &P — &. The morphisms A, A> and

¢ are given as follows
1) = —s/( I ua>ﬁ{’x(uf> :
oceG-G°

M (&) = =&/ fey (o),

¢(1) = —fo (ur) .
The sign is chosen in order that, for any o € G¢, the translation by ¢ (x (¢)) is induced by d,;.
Consequently, nf 1g(E%’ )) >G5 F p corresponds to the pull-back of L by A1 . Hence the
image of x € Hom(G¢, Fp,) in .Q}v QF m%"/m%"Jr (9.3.3) is

7.[—(,'

(HUEG—G‘ MU) J;Cpx (1)
Then the theorem follows from (9.3.3).

—dap ® € Qp@pm S /m Tt

10. Comparison of Kato’s and Abbes-Saito’s characteristic cycles.

10.1. In this section, let L be a finite Galois extension of K of type (II) and we take
again the notation and assumptions of Subsections 5.1 and 5.2. Let C be an algebraically
closed field of characteristic zero. We fix a non-trivial character ¥ : F, — C*. Any

character x : G¢ — C* factors uniquely through G — F), ﬂ C*. We denote by %
the induced character G¢ — F .

PROPOSITION 10.2. Let x : G — C* be a character of G such that its restriction to
G€ is non-trivial. Let T € G° be a lifting of 1 € ¥, in G° through x : G° — F,. Then Kato’s
Swan conductor with differential values swy,(1)(x) is given by

_ c _fpP —1d,
sWyo(y () = [T+ [= fL o)l + Y [uo] — [dao] € Sk.1
oceG-G°

(Subsection 5.3, Subsection 5.8).

PROOF. By definition (3.13.1), we have

Wy = Y. ([h—oM]—[d) ® (1 - x(@) + Y [r1® Yo(r)

oeG—(1} refy
= Y [h—oWI®U—x©@)+ Y [rl® o)
(10.2.1) oG-l reFy
+ Y. lh—oW]l— Y [h—om)]®x()
oceG—-G¢ oceG—-G¢

— Y [dhl® (1 —x(0)).

oeG—{l1}



RAMIFICATION AND NEARBY CYCLES FOR ¢-ADIC SHEAVES 187

Choose an [F)-basis 11 = 7, 12,..., T, of G such that x(r1) = 1 € F), and that for any
2 < j<s, x(rj) =0. Then, by Lemma 5.5, we have

(1022) Y [h—oWI® (1 —x©@)+ Y [r1® Yolr)

oeGe—{1} refFy

=[P+ YT Ly g 1® (L= YoG)) + Y 11 @ o)
{J1500Js JEF5,—{0) refy

= [P + Y [ fez rue)1 ® (L= Yo () + Y [r1® Yo (r)
refy refy

=[P+ D ez )]+ 17D ® (1= Yo(r) + D [r1® vo(r)
refy ref,

= [+ Y [ fez )] @ (L= Yo(r) + Y [r]
refy ref,

= 7T+ =y eV € Suyk.

Letoy = 1,02, ..., 0, be liftings of all the elements of G/G¢ in G and denote by J the
set {02, ..., 0pn—s}. Observe that for any ¢ € J and o € G°, we have

(h—go)]=[h—ch)+ch—oh)]=[h—gch)].

Hence
1023 ), h-oWl®x@)=), ) =508 x(so)
0eG-G* ceJ oeGe
=) Y h—sI®x()x(e)=0.
ceJ 0eG*

Moreover, by the isomorphism (3.4.1), we have

(10.2.4) Y [dh1® (1 — x(0)) = $G[dh] = [dag] € Sk L.
oeGe—{1}

Hence, combining (10.2.1), (10.2.2), (10.2.3) and (10.2.4), we obtain that

swyoh 00 = [P+ = fL w1+ ) [h—o (W] ® 1 —§Gldh]
oceG-G°
=[N+ =l wol+ Y [ug]—[daol.
ceG-G°¢
O
LEMMA 10.3. Let M be a finite dimensional C-vector space with an irreducible linear

action of G. Then, there exist a subgroup H of G satisfying G¢ C H and a 1-dimensional
representation 6 of H, such that M = Indg 0.
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PROOF. Since M is irreducible and G is nilpotent (hence super-solvable), there exist a
subgroup H of G and a 1-dimensional representation 6 of H, such that M = Indg 6 ([Se2,
8.5 Theorem 16]). Let Resgc M = P; M; be the canonical decomposition of Resg(, M into
isotypic G°¢-representations (cf. [Se2, 2.6]). Since G° is contained in the center of G, any
o € G defines an automorphism of the G¢-representation Resgf M. In particular, for any i,
o induces an automorphism of M;. On the other hand, since M is irreducible, G permutes
transitively the M;’s. Hence Resge M is isotypic. By ([Se2, 7.3 Propsition 22]), we have

(10.3.1) Resg. M = Res. Ind§; 0 = P Ind§,s Resfinge 0.
H\G/G¢

We notice that, if H N G¢ # G, since G° = H N G* & G¢/H N G, Ind§ ;e Resf .. 0 is
isomorphic to the tensor of the regular representation of G¢/H N G¢ with ResZmGC 6 which
is not isotypic. |

THEOREM 10.4. Assume that p is not a uniformizer of K. Let M be a finite dimensional
C-vector space with a linear action of G. Then,

(10.4.1) CCyy (M) = KCCyy(1y(M) .

PROOF. From the definitions, we may assume that M is irreducible. We denote by ¢y
the unique slope of M. By definitions and Proposition 3.14, both sides of (10.4.1) will not
change if replacing G by G/G™". Hence we may assume further that the unique slope of
M is equal to c. By Lemma 10.3, M = Indg 6 where H is a subgroup of G containing G¢
and 6 is a character of H. Since the slope of M is c, the restriction of 6 to G¢ is non-trivial
(10.3.1). We notice that [G : H] = dimc M. Choose an IF,-basis 71, ..., 7y of G such that
6(t1) =1 €Fpand, forany 2 < j <s,0(tj) = 0. Let = p(c) + Y gepy_qy v(h — o (h)).
Since L/LH is still of type (II), we obtain that the conductor of L/L¥ is ¢/, that H® = G¢
and, denoting by p’ the Herbrand function of L/L | that p’(c’) = p(c). Using Proposition
10.2 for the group H and the representation 6, we have

(10.4.2) swyo( (0) = [T+ (= )1+ D luo] — HIdA].
oceH—H
Meanwhile, we have
(10.4.3) - Z ([dh] = [h — o (W)]) = (8H — 8G)[dh] + [n"_c/] + Z Uy .
oceG—H oceG—H

Hence, combining (10.4.2), (10.4.3) and the induction formula for Kato’s Swan conduc-
tors (3.15.2), we have

SWyo(hH(M) =[G : H]<SW1110(1)(9) - Z ([dh] — [h — G(h)]>

ceG—H

=[G : H] ([n"] + 1= Fl5 )] = [daol + ) [”U])'

oeG—-G°¢
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Hence Kato’s characteristic cycle KCCyy,1)(M) is given by
(—daig)®19+11]
z [
((Myeg-ge o) fc{)g (uz,))

On the other hand, Res&. M = P JH Resf. 6 (10.3.1). Hence the Abbes-Saito’s character-
istic cycle CCy, (M) is given by

KCCyyy(M) = € (21)®l0:H]

G:H]

H \[G:H]
(10.44)  CCyy(M) = (rsw(ResfL. () @ 7)
(_dao)@l[GiH] — .
= v e € (2F @F -
((Myeg-ge o) c,é(”n))

So, we have CCy, (M) = KCCy1)(M). O

COROLLARY 10.5. Assume that p is not a uniformizer of K. Let M be a finite dimen-
sional A-vector space with a linear action of G and r = dimpy M /M. Then, we have

CCyy(M) € (21) C (2} ®F F) .

It is a Hasse-Arf type result for Abbes-Saito characteristic cycle. We should mention that
T. Saito ([Sa4, 3.10]) and L. Xiao [Xiao] proved independently analogue results for smooth
varieties of any dimension over perfect fields

COROLLARY 10.6. Assume that p is not a uniformizer of K. Let H be a sub-group of
G, and N a finite dimensional C-linear representation of H. We denote by r the dimension of
N and by r' the dimension of N©. Then, we have
(d&0)®([GIH]—1)
)[G:H

(10.6.1) CCy,(Ind% N) = CCy, (N)®ICH] g ;€ (2})BUGHIr=r")
( oceG—H Uo
Indeed, (10.6.1) follows from the induction formula for Kato’s Swan conductor with

differential values (3.15.2) and Theorem 10.4.

REMARK 10.7. Assume that p is not a uniformizer of K. Let L’ be a finite Galois
extension of K of group G’ which contains a sub-extension K’ of K such that K’/K is un-
ramified and L'/K’ is of type (II). We denote by P’ the Galois group of the extension L’/ K’
and by F’ the residue field of Ok-. Let A be a finite field of characteristic £ # p which con-
tains a primitive (§P’)-th root of unity and let N be a A-vector space of finite dimension with
a linear-G” action. We fix a non-trivial character ¢ : F, — A*. By Remarks 3.18 and 3.19,
we can still define KCCy,(1)(N) € (.Q},)‘g”, where r = dimy N/N(O). On the other hand, the
wild inertia subgroup P of Gk acts on N through P’, we can define CCy, (V) (Subsection
4.12). By [Sa2, 1.22] and [Sa3, 3.1], we have

(10.7.1) CCy (ResY, N) = CCy (N) € (2}-(log) @ F)®"

through the canonical isomorphism §2 }v(log) QF F 5> },, (log). Moreover, let A" be the
algebraic closure of the fraction field of the ring of Witt vectors W (A), N’ a pre-image of the
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class of Resg: N in the Grothendieck ring R 4/ (P’) ([Se2, 16.1 Theorem 33]) and ' : F, —
A" the unique lifting of ¢ : F, - A*. By Lemma 4.8, we deduce that

(10.7.2) CCy/(N") = CCy (ResY, N) .
From Theorem 10.4, we have

(10.7.3) CCy/(N") = KCCy1)(N) .

By (10.7.1), (10.7.2) and (10.7.3), we conclude that

(10.7.4) CCy (N) =KCCy1)(N) € (0% .

11. Nearby cycles of £-sheaves on relative curves.

11.1. In this section, we denote by S = Spec(R) an excellent strictly henselian trait.
Assume that the residue field of R has characteristic p and that p is not a uniformizer of R.
We denote by s (resp. 7, resp. 1) the closed point (resp. generic point, a geometric generic
point) of S. A finite covering of (S, 1, s) stands for a trait (S, ', s") equipped with a finite
morphism §* — §. Let A be a finite field of characteristic £ # p and fix a non-trivial
character o : F), — A*.

11.2. We define a category s as follows. An object of €5 is a normal affine S-scheme
H for which there exist a flat S-scheme of relative dimension one X and a closed point x of
X, such that X — {x} is smooth over S and H is S-isomorphic to the henselization of X at x.
A morphism between two objects of € is a generically étale finite morphism of S-schemes.
Let (8', n’, s) be a finite covering of (S, n, s). Then for any object H of €5, H x5 S’ is an
object of €5 ([Katol, 5.4]).

11.3. Let H be an object of ¥s. We denote by P(H) the set of height 1 points of H,
by

Py(H)=P(H)NH;, Py(H)=PH)NH,.
We have ([Katol, 5.2], [AS4, A.6]):

(i) Hj is geometrically regular over n and for any p € P,(H), the residue field « (p) of
H at p is a finite extension of the fraction field K (S) of S.

(i1) Hy is a reduced henselian noetherian local scheme over s of dimension 1, hence
Py (H) is a finite set.

We denote by Hy the normalization of H, which is a finite union of strictly henselian traits.
We put
§(H) = dim(Of [/ OHy) -

11.4. Let H be an object of €5, U a non-empty open sub-scheme of H, and .# a
locally constant constructible étale sheaf of A-modules over U. For a triple (H, U, %) and
a finite covering (5, 1, s”) of (S, n, s), we denote by (H, U, .%)g the triple (H',U’, F')
where H' = H ®g §’, U’ is the inverse image of U in H’ and %’ is the inverse image of &
on U’. We call the triple (H, U, .%) stable if there is an étale connected Galois covering U of
U such that

(i) The pull-back of .7 to U is constant.
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(ii) The normalization H of H in U belongs to €s and the residue field of H atall points
of H,) — U, are finite separable extensions of « (17).

PROPOSITION 11.5 ([Katol, 6.3]). Let (H,U, F) be a triple as Subsection 11.4.
(1) If (H,U, %) is stable, (H, U, F) is stable for any finite covering S’ of S.

(i1) Forany triple (H, U, %), there exist a finite covering (S, v, s') of (S, n, s) such that
(H,U, %)y is stable.

Proposition 11.5(@1) follows form ([Katol, 5.4]) and Proposition 11.5(ii) follows form
[Eppl.

11.6. Let (H, U, %) be a stable triple. For p € P(H), we denote by (/’)\H,;3 the com-
pletion of the local ring of H at p and by «(p) its residue field. For p € P;(H), we denote
by I-NIS, p the integral closure of Hy in k (p), which is a strictly henselian trait. Let ordy , be the
valuation of « (p) associated to I-NIS, p normalized by ord; p(x (p)*) = Z. We denote also by
ordy p : .Qk(p) {0} — Z the valuation defined by ordy, , (@dB) = ordy p (@), if &, B € K (p)*
and ord; , (B) = 1. It can be canonically extended, for any integer r > 0, to (.Ql(p))@’ {0}.
Following ([SGA7I, XVI], [Laul] and [Katol, 6.4]), we call the total dimension of .F at a
point p € P(H), and denote by dimtoty, (%) the integer defined as follows:

(1) Forp € P,(H), we put
dimtot, (F) = [k (p) : k (M) ]1(sWp (F) + rank(F)),

where swy, (%) is the Swan conductor of the pull-back of .7 over Spec(@ Hyp) xHU.
(ii) For p € P;(H), we denote by K, the fraction field of (,’)\H,p. Since the triple
(H, U, .%) is stable, there exists a finite Galois extension Ly of Ky, of ramification
index one, such that the representation .7, of Gal(K ;CP /Ky) defined by .# factors
through the quotient Gal(Ly/Kyp). Notice that Ly/K factors through a field K,
such that K| p/ Ky is unramified and L, /K, ' is of type (II) (Subsection 3.3). Fixing a
unlformlzer 7 of R (also a uniformizer of Kp) we have CCy, (%) € (2} (p))m (cf.

Remark 10.7). We denote by F p the restriction to Spec(k (p)) of the direct image of
Z under Spec(Kj) — Spec(OH p) and by dimtoty, p(/ ) the sum of rank(/ ) and
the Swan conductor of .%, over Spec(k (p)). We put

(11.6.1) dimtot, (#) = — ordy p(CCy, (Fp)) + dimtots p(Fp) .

We notice that ordg ;(CCy, (%)) dose not depend on the choice of g (10.4.4) and
the choice of 7.

We put

(11.6.2) op(H. U, Z)= Y dimtoty(F),
peH,—-U

(11.6.3) o(H. U, F)= Y dimtoty(F).

pePs(H)
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LEMMA 11.7 ([Katol, 6.5]). Let (H,U,.¥) be a stable triple (Subsection 11.4),
(8,71, s") afinite covering of (S, n,s). We put (H',U’, ') = (H, U, F)g.

(1) Forany p € Py(H) and for the unique p' € P;(H) above p, we have
dimtoty, (%) = dimtoty (F) .
(ii) Foranyp € Hy — U, we have

dimtoty (F) = Y _ dimtoty (F) ,
p/

where p' runs over the points above p.

11.8. Let (H, U, %) be a triple (Subsection 11.4). By Proposition 11.5, there exists a
finite covering (S’, 1/, s”) of (S, n, s) such that (H, U, .%)g is stable. We put

Wn(H» Us y):%;’((Hy U, y)S’),
ws(H’ Ua g\) =§0s’((Ha Ua E)S’) .

By Lemma 11.7, they don’t depend on the choice of the covering (S, 1/, s”).

THEOREM 11.9 Let (H, U, F) be a triple (Subsection 11.4), x the closed point of H,
u : U — H) the canonical open immersion. Then we have
(11.9.1)
dimy (0 (7)) — dims (W) (u.7)) = ¢os(H, U, F) — ¢, (H, U, F) — 28(H) rank(.F) .

PROOF. Indeed, for a stable triple (H, U, %) and any p € Py(H), dimtot, (%) is the
same as Kato’s definition in [Kato2, 4.4] by (10.7.4). O

REMARK 11.10. The Theorem 11.9 is proved by Deligne if .% is unramified at ev-
ery point of Ps(H) ([Laul, 5.1.1]). In the general case, Kato proved the theorem with two
different definitions of the invariant ¢5(H, U, %) ([Katol, 6.7], [Kato2, 4.5]). T. Saito give
another proof with another definition of ¢;(H, U, %) ([Sal]) which corresponds to the lat-
ter definition of Kato ([Kato2, 4.5]). If .% is of rank 1, Abbes and Saito gave a definition
of ps(H, U, ) ([AS4, A.10]) using the refined Swan conductor in their ramification theory
([AS3]), which coincides with Kato’s latter definition ([Kato3, remark after 6.8]). Here, using
Abbes and Saito’s ramification theory, we give the definition of ¢s(H, U, %) for any rank
sheaf . which is equal to Kato’s latter formula (Theorem 10.4).
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