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Abstract. We study the existence of strong Kähler with torsion (SKT) metrics and
of symplectic forms taming invariant complex structures J on solvmanifolds G/Γ providing
some negative results for some classes of solvmanifolds. In particular, we show that if either J
is invariant under the action of a nilpotent complement of the nilradical ofG or J is abelian or
G is almost abelian (not of type (I)), then the solvmanifold G/Γ cannot admit any symplectic
form taming the complex structure J , unless G/Γ is Kähler. As a consequence, we show
that the family of non-Kähler complex manifolds constructed by Oeljeklaus and Toma cannot
admit any symplectic form taming the complex structure.

1. Introduction. A symplectic formΩ on a complex manifold (M, J ) is said taming
the complex structure J if

Ω(X, JX) > 0

for any non-zero vector field X on M or, equivalently, if the (1, 1)-part of Ω is positive. The
pair (Ω, J ) was called in [28] a Hermitian-symplectic structure and it was shown that these
structures appear as static solutions of the so-called pluriclosed flow. By [22, 28] a compact
complex surface admitting a Hermitian-symplectic structure is necessarily Kähler (see also
Proposition 3.3 in [13]) and it follows from [26] that non-Kähler Moishezon complex struc-
tures on compact manifolds cannot be tamed by a symplectic form (see also [31]). However,
it is still an open problem to find out an example of a compact Hermitian-symplectic mani-
fold non admitting Kähler structures. It is well known that Hermitian-symplectic structures
can be viewed as special strong Kähler with torsion structures ([15]) and that their existence
can be characterized in terms of currents ([29]). Here we recall that a Hermitian metric is
called strong Kähler with torsion (SKT) if its fundamental form is ∂∂-closed (see for instance
[17, 7] and the references therein). SKT nilmanifolds were first studied in [16] in six dimen-
sion and recently in [15] in any dimension, where by nilmanifold we mean a compact quotient
of a simply connected nilpotent Lie group G by a co-compact lattice Γ . Very few results are
known for the existence of SKT metrics on solvmanifolds endowed with an invariant complex
structure. By solvmanifoldG/Γ we mean a compact quotient of a simply connected solvable
Lie group G by a lattice Γ and by invariant complex structure on G/Γ we mean a complex
structure induced by a left invariant complex structure on G. We will call a solvmanifold
endowed with an invariant complex structure a complex solvmanifold.

2010 Mathmatics Subject Classification. Primary 32J27; Secondary 53C55, 53C30, 53D05.
Key words and phrases. Special Hermitian metrics, solvmanifolds.
This work was partially supported by the project PRIN Varietà reali e complesse: geometria, topologia e analisi

armonica, the project FIRB Differential Geometry and Geometric functions theory and GNSAGA (Indam) of Italy.



20 A. FINO, H. KASUYA AND L. VEZZONI

From [15] it is known that a nilmanifoldG/Γ endowed with an invariant complex struc-
ture J cannot admit any symplectic form taming J unless it admits a Kähler structure (or
equivalently G/Γ is a complex torus). Then it is quite natural trying to extend the result to
complex solvmanifolds.

By [18] a solvmanifold G/Γ admits a Kähler structure if and only if it is a finite quo-
tient of a complex torus. This in particular implies that when G is not of type (I) and non
abelian, then G/Γ is not Kähler. We recall that being of type (I) means that for any X ∈ g all
eigenvalues of the adjoint operator adX are pure imaginary.

Given a solvable Lie algebra g we denote by n its nilradical which is defined as the
maximal nilpotent ideal of g. It is well known that there always exists a nilpotent complement
c of n in g, i.e., there exists a nilpotent subalgebra c of g such that g = c+n (see [10, Theorem
2.2]). In general the complement c is not unique and we do not expect to have a direct sum
between c and n.

The first main result of the paper consists in proving the following theorem about the non-
existence of Hermitian-symplectic and SKT structures on homogeneous spaces of splitting Lie
groups.

THEOREM 1.1. Let G be a Lie group endowed with a left-invariant complex structure
J and suppose that

1) the Lie algebra g of G is a semidirect product g = s�φ h, where s is a solvable Lie
algebra and h a Lie algebra;

2) φ : s → Der (h) is a representation on the space of derivations of h;
3) φ is not of type (I) and the image φ(s) is a nilpotent subalgebra of Der (h);
4) J (h) ⊂ h;
5) J|h ◦ φ(X) = φ(X) ◦ J|h for any X ∈ s.

Then g does not admit any symplectic structure taming J . Moreover if s is nilpotent and
J (s) ⊂ s, then g does not admit any J -Hermitian SKT metric.

The previous theorem can be in particular applied to compact homogeneous complex
spaces of the form (G/Γ, J ), where (G, J ) satisfies conditions 1), . . . , 5) in the theorem and
Γ is a discrete subgroup of G. This type of homogeneous spaces covers a large class of
examples including the so-called Oeljeklaus-Toma manifolds (see [23]).

In general a simply connected solvable Lie group is not of splitting type (i.e., its Lie al-
gebra does not satisfy conditions 1), 2), 3) of Theorem 1.1). The following theorem provides
a non-existence result in the non-splitting case.

THEOREM 1.2. Let (G/Γ, J ) be a complex solvmanifold. Assume that J is invariant
under the action of a nilpotent complement of the nilradical n. ThenG/Γ admits a symplectic
form taming J if and only if (G/Γ, J ) is Kähler.

A special class of invariant complex structures on solvmanifolds is provided by abelian
complex structures (see [4]). A complex structure J on a Lie algebra g is called abelian if
[JX, JY ] = [X,Y ] for every X,Y ∈ g. In the abelian case the Lie subalgebra g1,0 of the
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complexification gC of g is abelian and that motivates the name. In Section 6 we will prove
the following

THEOREM 1.3. Let (G/Γ, J ) be a solvmanifold endowed with an invariant abelian
complex structure J . Then (G/Γ, J ) doesn’t admit a symplectic form taming J unless it is a
complex torus.

In the last section of the paper we take into account solvmanifoldsG/Γ with G almost-
abelian. The almost-abelian condition means that the nilradical n of the Lie algebra g of G
has codimension 1 and n is abelian. About this case we will prove the following

THEOREM 1.4. Let (G/Γ, J ) be a complex solvmanifold with G almost-abelian. As-
sume g being either not of type (I) or 6-dimensional. Then (G/Γ, J ) does not admit any
symplectic form taming J .

Acknowledgements. The authors are grateful to Weiyi Zhang for useful observations on the pre-
vious version of the present paper.

2. Preliminary results on representations of Lie algebras. In this section we prove
some preliminary results which will be useful in the sequel.

2.1. Representations of solvable Lie algebras. Let g be a solvable Lie algebra and
let ρ : g → End(V ) be a representation on a real vector space V whose image ρ(g) is a
nilpotent subalgebra of End(V ). For every X ∈ g we can consider the Jordan decomposition

ρ(X) = (ρ(X))s + (ρ(X))n

which induces two maps ρs and ρn from g onto End(V ). The following facts can be easily
deduced from [11]:

• The maps ρs : g � X �→ (ρ(X))s ∈ End(V ) and ρn : g � X �→ (ρ(X))n ∈ End(V )
are Lie algebra homomorphisms.

• The images ρs(g) and ρn(g) are subalgebras of End(V ) satisfying [ρs(g), ρn(g)] = 0.

For a real-valued character α of g, we denote

Vα(V ) = {v ∈ V : ρs(X)v = α(X)v for every X ∈ g} ,
and for a complex-valued character α of g we set

Vα(VC) = {v ∈ VC : ρs(X)v = α(X)v for every X ∈ g} .
When α is real we have Vα(VC) = Vα(V ) ⊗ C. From the condition [ρs(g), ρn(g)] = 0, we
get

ρ(X)
(
Vα(VC)

) ⊂ Vα(VC) ,

for any X ∈ g (see [25]). Moreover, as a consequence of the Lie theorem, there exits a basis
of Vα(VC) such that for any X ∈ c the map ρ(X) is represented by an upper triangular matrix⎛

⎜
⎝

α ∗
. . .

0 α

⎞

⎟
⎠ .
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Therefore we obtain a decomposition

VC = Vα1(VC)⊕ · · · ⊕ Vαn(VC)

with α1, . . . , αn characters of g. Since ρ is a real-valued representation, the set {α1, . . . , αn}
is invariant under complex conjugation (i.e., αi ∈ {α1, . . . , αn}). We recall the following

DEFINITION 2.1. A representation ρ of g is of type (I) if for any X ∈ g all the eigen-
values of ρ(X) are pure imaginary.

The following lemma will be very useful in the sequel:

LEMMA 2.2. Let h and g be Lie algebras with g solvable. Let ρ : g → D(h) be a
representation on the space of derivations on h which we assume to not be of type (I). Then
there exists a complex character α of g satisfying

(2.1) Re(α) �= 0 , Vα(hC) �= 0 and [Vα(hC), Vα(hC)] = 0 .

PROOF. Since ρ is assumed to be not of type (I), then there exits a complex character
α1 such that Re(α1) �= 0 and Vα1(hC) �= 0. If [Vα1(hC), Vα1(hC)] = 0, then α1 satisfies
the three conditions required. Otherwise, since ρs : g � X �→ (adX)s ∈ D(h), we have
0 �= [Vα1(hC), Vα1(hC)] ⊂ Vα1+α1(hC) �= 0 and we take α2 = α1 + α1 = 2 Re(α1). Again
if [Vα2(hC), Vα2(hC)] = 0, then α2 satisfies all the conditions required, otherwise we have
0 �= [Vα2(hC), Vα2(hC)] ⊂ V2α2(hC) �= 0 and we consider α3 = 2α2. We claim that we
can iterate this operation until we get a character αk satisfying (2.1). Indeed, since h is finite
dimensional, we have a sequence of characters

α2, α3 = 2α2, α4 = 2α3, . . . , αk = 2αk−1

such that Vαs (hC) �= 0 and [Vαs (hC), Vαs (hC)] �= 0 for 2 ≤ s ≤ k − 1, and Vαk (hC) �= 0 and
[Vαk (hC), Vαk (hC)] = 0. Hence the claim follows. �

2.2. Nilpotent complements of nilradicals of solvable Lie algebras. Let g be a
solvable Lie algebra with nilradical n. As remarked in the introduction there always exists
a nilpotent subalgebra c of g such that g = c + n (not necessarily a direct sum) (see [10,
Theorem 2.2]). Such a nilpotent subalgebra c is called a nilpotent complement of n. Let us
consider ad : c → Der(g) and the semisimple ads : c � C �→ (adC)s ∈ Der(g) and the
nilpotent part adn : c � C �→ (adC)n ∈ Der(g) of ad . Then ads and adn are homomorphisms
from c. Since ker ads = c/c ∩ n ∼= g/n, ads can be regarded as a homomorphism from g. For
a real-valued character α of g, we denote

Vα(g) = {X ∈ g : adsYX = α(Y )X for every Y ∈ g} ,
and for a complex-valued character α,

Vα(gC) = {X ∈ gC : adsYX = α(Y )X for every Y ∈ g} .
If α is real valued we have Vα(gC) = Vα(g)⊗C. Since c is nilpotent, we have adC(Vα(gC)) ⊂
Vα(gC) for any C ∈ c. We can take a basis of Vα(gC) such that adC is represented as an upper
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triangular matrix ⎛

⎜
⎝

α ∗
. . .

0 α

⎞

⎟
⎠ ,

for any C ∈ c. Then we obtain a decomposition

gC = V0(gC)⊕ Vα1(gC)⊕ · · · ⊕ Vαn(gC)

where 0 is the trivial character and α1, . . . , αn are some non-trivial characters. We also con-
sider

nC = V0(nC)⊕ Vα1(nC)⊕ · · · ⊕ Vαn(nC) .

Since c is nilpotent, c acts nilpotently on itself via ad . Hence we have c ⊂ V0(gC) and
Vαi (nC) = Vαi (gC) by g = c + n for each i and we get the decomposition

nC = V0(nC)⊕ Vα1(gC)⊕ · · · ⊕ Vαn(gC) .

DEFINITION 2.3. We say that a solvable Lie algebra g is of type (I) if for any X ∈ g

all the eigenvalues of the adjoint operator adX are pure imaginary.

Note that if we write g = c + n, where c is an abelian complement of the nilradical n,
then g is of type (I) if and only if the representation ad : c → Der(n) is of type (I). The
following lemma is readily implied by Lemma 2.2.

LEMMA 2.4. If g is a solvable Lie algebra which is not of type (I). Then there exists a
character α satisfying

Re(α) �= 0 , Vα(gC) �= 0 , and [Vα(gC), Vα(gC)] = 0 .

3. Proof of Theorem 1.1. In this section we provide a proof of Theorem 1.1. The
following easy-proof lemma will be useful in the sequel:

LEMMA 3.1. Let g be a nilpotent Lie algebra and let θ be a closed 1-form on g. Then
a 1-form η solves dη − η ∧ θ = 0 if and only if it is multiple of θ .

PROOF. Consider the differential operator d+θ∧ acting on
∧

g∗. Then it is known that
the cohomology of

∧
g∗ with respect to (d + θ∧) is trivial (see [12]). Hence if η ∈ ∧1 g∗

solves dη − η ∧ θ = 0, then η is (d + θ∧)-exact and so η ∈ spanR〈θ〉, as required. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Firstly we have

hC = Vα1(hC)⊕ · · · ⊕ Vαn(hC)

where α1, . . . , αn are some characters of s. Therefore gC splits as

gC = sC ⊕ Vα1(hC)⊕ · · · ⊕ Vαn(hC) .

Then we get
[s, Vαi (hC)] ⊂ Vαi (hC)
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and

JVαi (hC) ⊂ Vαi (hC)

since J|h ◦ φ(X) = φ(X) ◦ J|h for anyX ∈ s. In view of Lemma 2.4, we may assume that α1

satisfies

Re(α1) �= 0 , Vα1(hC) �= 0 , and [Vα1(hC), Vα1(hC)] = 0

and we can write
∧

g∗
C

=
∧ (

s∗
C

⊕ V ∗
α1
(hC)⊕ · · · ⊕ V ∗

αn
(hC)

)
.

Then we have

d(s∗
C
) = s∗

C
∧ s∗

C
,

and by [s, Vαi (hC)] ⊂ Vαi (hC) and [Vα1(hC), Vα1(hC)] = 0, we obtain

d(V ∗
αi
(hC)) ⊂ s∗

C
∧ V ∗

αi
(hC)⊕

⊕

(αk,αl ) �=(α1,α1)

V ∗
αk
(hC) ∧ V ∗

αl
(hC) .

Moreover

d(s∗
C

∧ V ∗
αi
(hC) ⊂ s∗

C
∧ s∗

C
∧ V ∗

αi
(hC)⊕

⊕

(αk,αl) �=(α1,α1)

s∗
C

∧ V ∗
αk
(hC) ∧ V ∗

αl
(hC)

and

d(V ∗
αi
(hC) ∧ V ∗

αj
(hC)) ⊂ s∗

C
∧ V ∗

αi
(hC) ∧ V ∗

αj
(hC)+ h∗

C
∧ h∗

C
∧ h∗

C
.

By these relations, we deduce:

(
1) the 3-forms which belongs to the space s∗
C

∧V ∗
α1
(hC)∧V ∗

α1
(hC) cannot appear in the

spaces d(s∗
C
∧s∗

C
), d(s∗

C
∧V ∗

αi
(hC)) and d(V ∗

αi
(hC)∧V ∗

αj
(hC)), excepting d(V ∗

α1
(hC)∧

V ∗
α1
(hC)) .

Consider the operator dc = J−1dJ . Then, assuming J s ⊂ s, we have

ddc(s∗
C

∧ V ∗
αi
(hC))

⊂s∗
C
∧s∗

C
∧s∗

C
∧V ∗

αi
(hC)

⊕

(αk,αl) �=(α1,α1)

s∗
C
∧s∗

C
∧V ∗

αk
(hC)∧V ∗

αl
(hC)⊕ s∗

C
∧h∗

C
∧h∗

C
∧h∗

C

and

ddc(V ∗
αi
(hC) ∧ V ∗

αj
(hC))

⊂ s∗
C

∧ s∗
C

∧ V ∗
αi
(hC) ∧ V ∗

αj
(hC)⊕ s∗

C
∧ h∗

C
∧ h∗

C
∧ h∗

C
⊕ h∗

C
∧ h∗

C
∧ h∗

C
∧ h∗

C
.

By these relations, we have:

(
2) if J s ⊂ s, then 4-forms in s∗
C
∧s∗

C
∧V ∗

α1
(hC)∧V ∗

α1
(hC) do not appear in ddc(s∗

C
∧s∗

C
),

ddc(s∗
C

∧V ∗
αi
(hC)) and ddc(V ∗

αi
(hC)∧V ∗

αj
(hC)), excepting ddc(V ∗

α1
(hC)∧V ∗

α1
(hC)) .
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We are going to prove the non-existence of taming symplectic (resp. SKT) structures by
showing that for any d-closed (resp. ddc-closed) 2-form Ω there exists a non-zero X ∈ g

such that Ω(X, JX) = 0. We treat the cases Im(α1) �= 0 and Im(α1) = 0, separately.
Case 1 : Im(α1) �= 0. In this case, we have V ∗

α1
(hC) �= V ∗

α1
(hC). The condition

J (V ∗
α1
(hC)) ⊂ V ∗

α1
(hC) together the assumption φ ◦J = J ◦φ implies the existence of a basis

{e1, . . . , ep} of V ∗
α1
(hC) triangularizing the action of s on V ∗

α1
(hC) and diagonalizing J . The

dual basis {e1, . . . , ep} satisfies

dei = δ ∧ ei mod s∗
C

∧ 〈e1, . . . , ei−1〉 ⊕ h∗
C

∧ h∗
C

for a closed 1-form δ ∈ s∗. Each ei could be either a (1, 0)-form or a (0, 1)-form; therefore√−1ei ∧ ei is a real (1, 1)-form. Since

d(ei ∧ ej ) = (δ + δ) ∧ ei ∧ ej
mod s∗

C
∧ 〈e1, . . . , ei−1〉 ∧ 〈ej 〉 + s∗

C
∧ 〈ei〉 ∧ 〈e1, . . . , ej−1〉 + h∗

C
∧ h∗

C
∧ h∗

C

condition (
1), then implies that every closed 2-form has no component along ep∧ep. There-
fore J cannot be tamed by any symplectic form.

Suppose now that J preserves s and s is nilpotent. Then we get

ddc(ei ∧ ej ) = (dJ (δ + δ)− J (δ + δ) ∧ (δ + δ)) ∧ ei ∧ ej
mod s∗

C
∧ s∗

C
∧ 〈e1, . . . , ei−1〉 ∧ 〈e1, . . . , ej 〉 + s∗

C
∧ s∗

C
∧ 〈e1, . . . , ei〉 ∧ 〈e1, . . . , ej−1〉

+ s∗
C

∧ h∗
C

∧ h∗
C

∧ h∗
C

+ h∗
C

∧ h∗
C

∧ h∗
C

∧ h∗
C
.

By Re(α1) �= 0, we have δ + δ �= 0 and d(δ + δ) = 0. Hence Lemma 3.1 ensures

dJ (δ + δ)− J (δ + δ) ∧ (δ + δ) �= 0 .

By (
2), it follows that every ddc-closed (1, 1)-form has no component along ep∧ep and that
consequently J doesn’t admit any compatible SKT metric.

Case 2 : Im(α1) = 0. In this case, we have V ∗
α1
(hC) = V ∗

α1
(hC). Since α1 is real-

valued, we have V ∗
α1
(hC) = V ∗

α1
(h) ⊗ C. By using JV ∗

α1
(h) ⊂ V ∗

α1
(h) and φ ◦ J = J ◦ φ,

we can construct a bais {e1, . . . , e2p} such that the action of s on V ∗
α1
(h) is trigonalized and

J e2k−1 = e2k for every k = 1, . . . , p. For the dual basis {e1, . . . , e2p}, we have

dei = δ ∧ ei mod s∗
C

∧ 〈e1, . . . , ei−1〉 ⊕ h∗
C

∧ h∗
C

for a closed real 1-form δ ∈ s∗. Thus

d(ei∧ej )=2δ∧ei∧ej mod s∗
C

∧ 〈e1, . . . , ei−1〉∧〈ej 〉+s∗
C
∧〈ei〉∧〈e1, . . . , ej−1〉+h∗

C
∧h∗

C
∧h∗

C
.

By the condition Re(α1) �= 0, we obtain δ �= 0 and every closed 2-form Ω cannot have
component along e2p−1 ∧ e2p. Using (
1), we obtain

Ω1,1(e2p−1, J (e2p−1)) = Ω1,1(e2p−1, e2p) = 0

and J cannot be tamed by any symplectic form, as required.
Suppose now that J preserves s and s is nilpotent. Then we get
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ddc(ei ∧ ej ) = 2(dJ δ − 2J δ ∧ δ) ∧ ei ∧ ej
mod s∗

C
∧s∗

C
∧〈e1, . . . , ei−1〉∧〈e1, . . . , ej 〉 + s∗

C
∧s∗

C
∧〈e1, . . . , ei〉∧〈e1, . . . , ej−1〉

+ s∗
C

∧ h∗
C

∧ h∗
C

∧ h∗
C

+ h∗
C

∧ h∗
C

∧ h∗
C

∧ h∗
C
.

By Re(α1) �= 0, we have δ �= 0 and dδ = 0. Hence by Lemma 3.1, we have dJ δ − 2J δ ∧
δ �= 0 and from (
1) it follows that every ddc-closed (1, 1)-form has no component along
e2p−1 ∧ e2p. Therefore J doesn’t admit any compatible SKT metric and the claim follows. �

As a consequence we get the following

COROLLARY 3.2. Let G/Γ be a complex parallelizable solvmanifold (i.e., G is a
complex Lie group). Suppose that G is non-nilpotent. Then G/Γ does not admit any SKT-
structure.

PROOF. Let n be the nilradical of the Lie algebra g ofG. Take a complex 1-dimensional
subspace a ⊂ g such that a∩ n = {0} and consider a subspace h ⊂ g such that g = a ⊕ h and
n ⊂ h. Since a is a subalgebra of g and n ⊃ [g, g], h is an ideal of g and we have g = a� h.
By a∩n = {0}, the action of a on h is non-nilpotent and so the action is not of type (I). Hence
the corollary follows from Theorem 1.1. �

4. Examples. In this section we apply Theorem 1.1 to some examples.

EXAMPLE 1. Let G = C �φ C
2m where

φ(x + √−1y)(w1, w2, . . . , w2m−1, w2m) = (ea1xw1, e
−a1xw2, . . . , e

amxw2m−1, e
−amxw2m)

for some integers ai �= 0. We denote by J the natural complex structure onG. ThenG admits
the left-invariant pseudo-Kähler structure

ω = √−1dz ∧ dz+
m∑

i=1

(dw2i−1 ∧ dw2i + dw2i−1 ∧ dw2i ) .

MoreoverG has a co-compact lattice Γ such that (G/Γ, J ) satisfies the Hodge symmetry and
decomposition (see [21]). In view of Theorem 1.1, (G/Γ, J ) does not admit neither a taming
symplectic structure nor an SKT structure. Moreover by Theorem 1.4, G/Γ does not admit
an invariant complex structure tamed by any symplectic form.

EXAMPLE 2 (Oeljeklaus-Toma manifolds). Theorem 1.1 can be applied to the family
of non-Kähler complex manifolds constructed by Oeljeklaus and Toma in [23]. We brightly
describe the construction of these manifolds:
Let K be a finite extension field of Q with the degree s + 2t for positive integers s, t . Sup-
pose K admits embeddings σ1, . . . , σs, σs+1, . . . , σs+2t into C such that σ1, . . . , σs are real
embeddings and σs+1, . . . , σs+2t are complex ones satisfying σs+i = σ s+i+t for 1 ≤ i ≤ t .
We can choose K admitting such embeddings (see [23]). Denote OK the ring of algebraic
integers of K , O∗

K the group of units in OK and

O∗ +
K = {a ∈ O∗

K : σi > 0 for all 1 ≤ i ≤ s} .
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Define l : O∗ +
K → Rs+t by

l(a) = (log |σ1(a)|, . . . , log |σs(a)|, 2 log |σs+1(a)|, . . . , 2 log |σs+t (a)|)
for a ∈ O∗ +

K . Then by Dirichlet’s units theorem, l(O∗ +
K ) is a lattice in the vector space

L = {x ∈ Rs+t : ∑s+t
i=1 xi = 0}. Let p : L → Rs be the projection given by the first s

coordinate functions. Then there exists a subgroupU of O∗ +
K of rank s such that p(l(U)) is a

lattice in Rs . We have the action of U �OK on Hs × Ct such that

(a, b) · (x1 + √−1y1, . . . , xs + √−1ys, z1, . . . , zt )

= (σ1(a)x1 + σ1(b)+
√−1σ1(a)y1, . . . , σs(a)xs + σs(b)+

√−1σs(a)ys,

σs+1(a)z1 + σs+1(b), . . . , σs+t (a)zt + σs+t (b)) .
In [23] it is proved that the quotient X(K,U) = Hs × Ct /U �OK is compact. We call one
of these complex manifolds a Oeljeklaus-Toma manifold of type (s, t).

Consider the Lie groupG = R
s
�φ (R

s × C
t ) with

φ(t1, . . . , ts ) = diag(et1, . . . , ets , eψ1+
√−1ϕ1 , . . . , eψt+

√−1ϕt )

where ψk = 1
2

∑s
i=1 bikti and ϕk = ∑s

i=1 cikti for some bik, cik ∈ R. Let g be the Lie
algebra ofG. Then

∧
g∗ is generated by basis {α1, . . . , αs, β1, . . . , βs, γ1, γ2, . . . , γ2t−1, γ2t }

satisfying
dαi = 0, dβ = −αi ∧ βi ,

dγ2i−1 = ψi ∧ γ2i−1 + ϕi ∧ γ2i, dγ2i = −ϕi ∧ γ2i−1 + ψi ∧ γ2i ,

where ψi = 1
2

∑s
i=1 bikαi and ϕi = ∑s

i=1 cikαi . Consider wi = αi + √−1βi for 1 ≤ i ≤
s and ws+i = γ2i−1 + √−1γ2i as (1, 0)-forms. Then w1, . . . , ws+t gives a left-invariant
complex structure J on G. In [20], it is proved that any Oeljeklaus-Toma manifold of type
(s, t) can be regarded as a complex solvmanifold (G/Γ, J ).

Consider the 2-dimensional Lie algebra r2 = spanR〈A,B〉 such that [A,B] = B and the
complex structure Jr2 on r2 defined by the relation JA = B. Then the Lie algebra g of G
splits as g = (r2)

s � Ct and J = J(r2)
s ⊕ JCt . Hence the first part of Theorem 1.1 implies

that G/Γ does not admit Hermitian-symplectic structures.
On the other hand, (r2)

s is not nilpotent and we cannot apply the second part of Theorem
1.1 about the existence of SKT structures. Actually, in the case s = t = 1, the corresponding
Oeljeklaus-Toma manifoldM is a 4-dimensional solvmanifold and by the unimodularity any
invariant 3-form is closed forcingM to be SKT. For s �= 1 things work differently:

PROPOSITION 4.1. Let s ≥ 2. Then every Oeljeklaus-Toma manifold of type (s, 1)
does not admit a SKT structure.

PROOF. In case t = 1, we have G = Rs �φ (R
s × C) where

φ(t1, . . . , ts ) = diag(et1, . . . , ets , e−
1
2 (t1+···+ts )+

√−1ϕ1) .

Then
∧

g∗ is generated by a basis {α1, . . . , αs, β1, . . . , βs, γ1, γ2} satisfying

dαi = 0, dβ = −αi ∧ βi ,
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dγ1 = 1

2
θ ∧ γ1 + ϕ1 ∧ γ2, dγ2 = −ϕ1 ∧ γ1 + 1

2
θ ∧ γ2 ,

where θ = α1 + · · · + αs (see [20]). Let us consider the left-invariant (1, 0) coframe

wi = αi + √−1βi , for 1 ≤ i ≤ s

ws+1 = γ1 + √−1γ2 .

This coframe induces a global left-invariant coframe on the corresponding Oeljeklaus-Toma
manifoldM = G/Γ . We have

ddc(ws+1 ∧ws+1) = (dJ θ − J θ ∧ θ) ∧ ws+1 ∧ws+1

and

dJ θ − J θ ∧ θ = −(α1 ∧ β1 + · · · + αs ∧ βs)− (β1 + · · · + βs) ∧ (α1 + · · · + αs) �= 0 .

It follows that if Ω is a (1, 1)-form satisfying ddcΩ = 0, then Ω has no component along
ws+1 ∧ ws+1. This implies that every ddc-closed (1, 1)-form on M is degenerate, as require.
Hence the proposition follows. �

EXAMPLE 3. In [30] it was introduced the following Lie algebra admitting pseudo-
Kähler structures:
Let g = spanR〈Ai,Wi,Xj , Yj , Zj ,X

′
j , Y

′
j , Z

′
j 〉i=1,2,j=1,2,3,4 where

[A1, A2] = W1 ,

[X1, Y1] = Z1, [X3, Y3] = Z3 ,

[A1,X1] = t0X1, [A1,X2] = t0X2 , [A1,X3 = −t0X3, [A1,X4] = −t0X4 ,

[A1, Y1] = −2t0Y1, [A1, Y2] = −2t0Y2, [A1, Y3] = 2t0Y3, [A1, Y4] = 2t0Y4 ,

[A1, Z1] = −t0Z1, [A1, Z2] = −t0Z2, [A1, Z3] = t0Z3, [A1, Z4] = t0Z4 ,

[X2, Y1] = Z2, [X4, Y3] = Z4 ,

[X′
1, Y

′
1] = Z′

1, [X′
3, Y

′
3] = Z′

3 ,

[A2,X
′
1] = t0X

′
1, [A2,X

′
2] = t0X

′
2 , [A2,X

′
3] = −t0X′

3, [A2,X
′
4] = −t0X′

4 ,

[A2, Y
′
1] = −2t0Y ′

1, [A2, Y
′
2] = −2t0Y ′

2, [A2, Y
′
3] = 2t0Y ′

3, [A2, Y
′
4] = 2t0Y ′

4 ,

[A2, Z
′
1] = −t0Z′

1, [A2, Z
′
2] = −t0Z′

2, [A2, Z
′
3] = t0Z

′
3, [A2, Z

′
4] = t0Z

′
4 ,

[X′
2, Y

′
1] = Z′

2, [X′
4, Y

′
3] = Z′

4

and the other brackets vanish. Then the simply connected solvable Lie group G cor-
responding to g has a lattice (see [30]). We can write g = spanR〈Ai,Wi 〉i=1,2 �

spanR〈Xj , Yj , Zj ,X′
j , Y

′
j , Z

′
j 〉j=1,2,3,4 and G has the left-invariant complex structure J de-

fined as

JA1 =A2, JW1 = W2 ,

JX1 = X2, JY1 = Y2, JZ1 =Z2, JX3 = X4, JY3 = Y4, JZ3 = Z4 ,

JX′
1 = X′

2, JY
′
1 = Y ′

2, JZ
′
1 =Z′

2, JX
′
3 = X′

4, JY3 = Y4, JZ
′
3 = Z′

4 .
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In view of Theorem 1.1,G/Γ does not admit any SKT structure compatible with J .

5. Proof of Theorem 1.2. The proof of Theorem 1.2 is mainly based on the following
proposition which is interesting in its own.

PROPOSITION 5.1. Let G be a simply-connected solvable Lie group whose Lie alge-
bra g is not of type (I). Let J be a left-invariant complex structure on G satisfying

adC ◦ J = J ◦ adC
for every C belonging to a nilpotent complement c of the nilradical of g. Then G does not
admit any left-invariant symplectic form taming J .

PROOF. By Section 2.2, we have

gC = V0(gC)⊕ Vα1(gC)⊕ · · · ⊕ Vαn(gC)

where 0 is the trivial character and α1, . . . , αn are some non-trivial characters. Take a sub-
space a ⊂ c such that g = a ⊕ n. Then we have

gC = aC ⊕ V0(nC)⊕ Vα1(gC)⊕ · · · ⊕ Vαn(gC) .

So we obtain
[aC, V0(nC)] ⊂ V0(nC), [aC, Vαi (gC)] ⊂ Vαi (gC)

and
JVαi (gC) ⊂ Vαi (gC).

By Lemma 2.4, we may assume that α1 satisfies

Re(α1) �= 0 , Vα1(gC) �= 0 and [Vα1(gC), Vα1(gC)] = 0 .

Consider the natural splitting
∧

g∗
C

=
∧(

a∗
C

⊕ V ∗
0 (nC)⊕ V ∗

α1
(gC)⊕ · · · ⊕ V ∗

αn
(gC)

)
.

Then we have
d(a∗

C
) = 0

and, by taking into account [a, V0(nC)] ⊂ V0(nC), [a, Vαi (gC)] ⊂ Vαi (gC) and
[Vα1(gC), Vα1(gC)] = 0, we get

d(V ∗
0 (nC)) ⊂ a∗

C
∧ a∗

C
⊕ a∗

C
∧ V ∗

0 (nC)

⊕
⊕

(αk,αl) �=(α1,α1)

V ∗
αk
(gC) ∧ V ∗

αl
(gC)⊕

⊕
V ∗
αm
(gC) ∧ V ∗

0 (nC) ,

and

d(V ∗
αi
(gC)) ⊂ a∗

C
∧ a∗

C
⊕ a∗

C
∧ V ∗

αi
(gC)

⊕
⊕

(αk,αl ) �=(α1,α1)

V ∗
αk
(gC) ∧ V ∗

αl
(gC)⊕

⊕
V ∗
βm
(gC) ∧ V ∗

0 (nC) .

Hence we have
d(a∗

C
∧ a∗

C
) = 0,
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and

d(a∗
C

∧ V ∗
αi
(gC)) ⊂ a∗

C
∧ a∗

C
∧ a∗

C
⊕ a∗

C
∧ a∗

C
∧ V ∗

αi
(gC)

⊕
⊕

(αk,αl) �=(α1,α1)

a∗
C

∧ V ∗
αk
(gC) ∧ V ∗

αl
(gC)⊕

⊕
a∗
C

∧ V ∗
αm
(gC) ∧ V ∗

0 (nC)

and

d(V ∗
αi
(gC) ∧ V ∗

αj
(gC)) ⊂ a∗

C
∧ a∗

C
∧ V ∗

αi
(gC)⊕ a∗

C
∧ a∗

C
∧ V ∗

αj
(gC)

⊕ a∗
C

∧ V ∗
αi
(gC) ∧ V ∗

αj
(gC)⊕ n∗

C
∧ n∗

C
∧ n∗

C
.

Combining these relations we have:

(�) 3-forms in a∗
C

∧ V ∗
α1
(gC) ∧ V ∗

α1
(gC) do not appear in d(a∗

C
∧ a∗

C
), d(a∗

C
∧ V ∗

αi
(gC))

and d(V ∗
αi
(gC) ∧ V ∗

αj
(gC)), excepting d(V ∗

α1
(gC) ∧ V ∗

α1
(gC)).

The non-existence of taming symplectic structures will be obtained by showing that for
any d-closed 2-form Ω there exists a non-trivial X ∈ g such that Ω(X, JX) = 0. From now
on, we distinguishe the case where Im(α1) �= 0 from the case Im(α1) = 0.

Case 1 : Im(α1) �= 0. In this case we have V ∗
α1
(gC) �= V ∗

α1
(gC). Since J (V ∗

α1
(gC)) ⊂

V ∗
α1
(gC), there exists a basis {e1, . . . , ep} such that the action of c onto V ∗

α1
(g ⊗ C) is trigo-

nalized and J is diagonalized. The dual basis {e1, . . . , ep} satisfies

dei = δ ∧ ei mod a∗
C

∧ 〈e1, . . . , ei−1〉 ⊕ n∗
C

∧ n∗
C

for a complex closed form δ ∈ a∗
C

. Each ei is either a (1, 0) or a (0, 1)-form and so
√−1ei∧ei

is a real (1, 1)-form. Therefore

d(ei ∧ ej ) = (δ + δ) ∧ ei ∧ ej
mod a∗

C
∧ 〈e1, . . . , ei−1〉 ∧ 〈ej 〉 + a∗

C
∧ 〈ei〉 ∧ 〈e1, . . . , ej−1〉 + n∗

C
∧ n∗

C
∧ n∗

C
.

By Re(α1) �= 0, we have δ + δ �= 0. Hence (�) implies that every closed 2-form Ω has no
component along ep ∧ ep. Hence

Ω1,1(ep + ep, J (ep + ep)) = Ω1,1(ep + ep,
√−1(ep − ep)) = 0

and J cannot be tamed by any symplectic form.
Case 2 : Im(α1) = 0. In this case we have V ∗

α1
(gC) = V ∗

α1
(gC). Since α1 is real-valued,

we have V ∗
α1
(gC) = V ∗

α1
(g) ⊗ C. Since JV ∗

α1
(g) ⊂ V ∗

α1
(g) and adC ◦ J = J ◦ adC for any

C ∈ c there exists a basis {e1, . . . , e2p} such that the action of c on V ∗
α1
(g) is trigonalized and

J e2k−1 = e2k for each k. Let {e1, . . . , e2p} be the dual basis. Then

dei = δ ∧ ei mod a∗
C

∧ 〈e1, . . . , ei−1〉 ⊕ n∗
C

∧ n∗
C

for a real closed form δ ∈ ∧
a∗. Hence we have

d(ei∧ej )=2δ∧ei∧ej mod a∗
C
∧〈e1, . . . , ei−1〉∧〈ej 〉+a∗

C
∧〈ei〉∧〈e1, . . . ,ej−1〉+n∗

C
∧n∗

C
∧n∗

C
.
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By Re(α1) �= 0, we have δ �= 0. Hence by (�), every closed 2-form Ω has no component
along e2p−1 ∧ e2p. Hence we have

Ω1,1(e2p−1, J e2p−1) = Ω1,1(e2p−1, e2p) = 0

and J cannot be tamed by any symplectic form, as required. �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. In view of [15] the existence of a symplectic form taming J
implies the existence of an invariant symplectic form taming J . Hence it is enough to prove
that there are no invariant symplectic forms taming J . By Proposition 5.1, the Lie algebra g

is not of type (I). Given a nilpotent complement c ⊂ g, we define the diagonal representation

ads : g = c + n � C +X �→ (adC)s ∈ D(g) .
Consider the extension Ads : G → Aut(g). Then the Zariski-closure T = A(Ads(G)) in
Aut(g) is a maximal torus of the Zariski-closure A(Ad(G)) (see [19] and [9]). It is known
that there exists a simply-connected nilpotent Lie groupUG, called the nilshadow ofG, which
is independent on the choice of T and satisfies T �G = T � UG. From [9] it follows that if
J is a left-invariant complex structure on G satisfying J ◦ Ads = Ads ◦ J , then UG inherits
a left-invariant complex structure J̃ such that (UG, J̃ ) is bi-holomorphic to (G, J ). Now
every lattice of G induces a discrete subgroup Γ in T � UG such that Γ̃ = UG ∩ Γ is a
lattice of UG and has finite index in Γ (see [3, Chapter V-5]). There follows that (G/Γ̃ , J )
is bi-holomorphic to (UG/Γ̃ , J̃ ). Hence UG/Γ̃ is a finite covering of a Hermitian-symplectic
manifold and, consequently, it inherits an invariant symplectic form Ω̃ taming J̃ . By the main
result of [15] it follows thatUG/Γ̃ is a torus. Hence (G/Γ, J ) is a finite quotient of a complex
torus UG/Γ̃ by a finite group of holomorphic automorphisms and by [5], (G/Γ, J ) admits a
Kähler metric. �

6. Abelian complex structures. In this section we consider abelian complex struc-
tures providing a proof of Theorem 1.3.

Theorem 1.3 is mainly motivated by the research in [2] where it is showed that a Lie
group with a left-invariant abelian complex structure admits a compatible left-invariant Kähler
structure if and only if it is a direct product of several copies of the real hyperbolic plane by
an Euclidean factor. Moreover, from [2, Lemma 2.1] it follows that a Lie algebra g with an
abelian complex structure J has the following properties:

1. the center ξ(g) of g is J -invariant;

2. for any X ∈ g, adJX = −adXJ ;

3. the commutator g1 = [g, g] is abelian or, equivalently, g is 2-step solvable;

4. Jg1 is an abelian subalgebra of g;

5. g1 ∩ Jg1 is contained in the center of the subalgebra g1 + Jg1.

Our Theorem 1.3 can be easily deduced in dimensions 4 and 6 by using the classifica-
tion of Lie algebras admitting an abelian complex structure. Indeed, by the classifications in
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dimensions 4 ([27]) and 6 ([1]) we know that if (g, J ) is a unimodular Lie algebra with an
abelian complex structure, then the existence of a symplectic form taming J implies that g
is abelian. In dimension 4 this fact follows from [14]. In dimension 6 we use that the only
unimodular (non-nilpotent) Lie algebra admitting an abelian complex structure is holomor-
phically isomorphic to (s(−1,0), J ), where s(−1,0) is the solvable Lie algebra with Lie brackets

[f1, e1] = [f2, e2] = e1 , [f1, e2] = −[f2, e1] = e2 ,

[f1, e3] = [f2, e4] = −e3 , [f1, e4] = −[f2, e3] = −e4

and the abelian complex structure J is given by

Jf1 = f2, J e1 = e2, J e3 = e4 .

This Lie algebra has nilradical n = spanR〈e1, e2, e3, e4〉 and adc ◦ J = J ◦ adc, for every
c ∈ c = 〈f1, f2〉. Since c is an abelian complement of n, Theorem 5.1 implies that (s(−1,0), J )

does not admit any symplectic form taming J .
Theorem 1.3 follows from the following

PROPOSITION 6.1. Let (g, J ) be a unimodular Lie algebra with an abelian complex
structure. Assume that there exists a symplectic form Ω on g taming J . Then g is abelian.

PROOF. Since the pair (J,Ω) induces a Hermitian symplectic structure on every J -
invariant subalgebra of g and g1 and Jg1 are both abelian Lie subalgebras of g, it is quite
natural to work with g1+Jg1. We have the following two cases which we will treat separately:

Case A : g1 + Jg1 = g

Case B : g1 + Jg1 �= g.

In the Case A we necessary have g1∩Jg1 = {0}, since otherwise by using that g1∩Jg1 ⊆
ξ(g), it should exist a non-zero X ∈ J ξ(g) ∩ g1, but this contradicts Lemma 3.1 in [15].
Therefore

g = g1 ⊕ Jg1 ,

or equivalently g is an abelian double product. As a consequence of Corollary 3.3 in [2] the
Lie bracket in g induces a structure of commutative and associative algebra on g1 given by

X · Y = [JX, Y ] .
Let A := (g1, ·). Then A2 = A and (g, J ) is holomorphically isomorphic to aff(A) = A⊕A
with the standard complex structure

J (X, Y ) = (Y,−X) .
Note that in general the Lie bracket on the affine Lie algebra aff(A) associated to a commuta-
tive associative algebra (A, ·) is given by

[(x, y), (x ′, y ′)] = (0, x · y ′ − x ′ · y) ,
for every (x, y), (x ′, y ′) ∈ aff(A). Moreover, aff(A) is nilpotent if and only if A is nilpotent
as associative algebra. We are going to show now that when aff(A) is unimodular and it is
endowed with a symplectic form taming J , then the Lie algebra aff(A) is forced to be abelian.
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Since we know that this is true in dimension 4 and 6 we can prove the assertion by induction
on the dimension of A. We may assume that A is not a direct sum of proper non-trivial ideals,
since otherwise if A = A1⊕· · · ⊕Ak , then aff(A) = aff(A1)⊕· · ·⊕aff(Ak) and by induction
we obtain that any aff(Ak) is abelian. Since A is a commutative associative algebra over R,
by applying Lemma 3.1 in [6], we get that A is either

(i) nilpotent, or
(ii) equal to B̃ = B ⊕ R〈1〉 for a nilpotent commutative associative algebra B, where by

1 we denote the unit of A or
(iii) equal to C ⊕ R, where R is the radical of A.

Since aff(C) is not unimodular then we can exclude the case (iii). Moreover, in the case (ii)
aff(A) cannot be unimodular, since

[(1, 0), (x ′, y ′)] = (0, y ′) ,

for every (x ′, y ′) ∈ aff(A). In particular, [(1, 0), (0, 1)] = (0, 1) and then trace (ad(1,0)) �= 0.
We conclude then that the Lie algebra aff(A) has to be nilpotent and by [15] aff(A) has to be
abelian, since it is Hermitian-symplectic.

Let us consider now the Case B in which g1 +Jg1 is a proper ideal of g. By induction on
the dimension we may assume that g1 + Jg1 is abelian. Fix an arbitrary J -invariant comple-
ment h of g1 + Jg1. We show that [h, g1 + Jg1] = 0 proving in this way that g is nilpotent.
Fix X ∈ h and consider the following two bilinear forms on g1 + Jg1

BX(Y,Z) := Ω([X,Y ], Z) , B ′
X(Y,Z) := Ω([JX, Y ], Z) .

Since Ω is closed and g1 + Jg1 is abelian, the two bilinear forms BX and B ′
X are both

symmetric. On the other hand the abelian condition on J ensures that

B ′
X(Y,Z) = −BX(JY,Z) ,

for every Y,Z ∈ g1 + Jg1. Thus

BX(JY, JZ) = Ω([X, JY ], JZ) = −Ω([JX, Y ], JZ)
= −B ′

X(Y, JZ) = −B ′
X(JZ, Y ) = −Ω([JX, JZ], Y )

= −Ω([X,Z], Y ) = −BX(Y,Z) ,
for every Y,Z ∈ g1 + Jg1 or, equivalently,

Ω([X, JY ], JZ) = −Ω([X,Y ], Z) , ∀ Y,Z ∈ g1 + Jg1 .

In particular

Ω([X, JY ], J [X, JY ]) = Ω([X,Y ], [JX, Y ]) , ∀ Y,Z ∈ g1 + Jg1 .

We finally show that Ω([X,Y ], [JX, Y ]) = 0 obtaining in this way [X, JY ] = 0.
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Indeed,

Ω([X,Y ], [JX, Y ]) = Ω([X, [JX, Y ]], Y )
= −Ω([Y, [X, JX]], Y )−Ω([JX, [Y,X]], Y )
= −Ω([X,Y ], [JX, Y ]) ,

which implies Ω([X,Y ], [JX, Y ]) = 0, as required. Therefore [h, g1 + Jg1] = 0 and g is
nilpotent. Finally Theorem 1.3 in [15] implies that g is abelian, as required. �

7. Almost-abelian solvmanifolds. By [24] a 4-dimensional unimodular Hermitian
symplectic Lie algebra g is Kähler and it is isomorphic to the almost abelian Lie algebra ττ ′

3,0
with structure equations

[e1, e2] = −e3, [e1, e3] = e2 .

Note that indeed a 4-dimensional unimodular (non abelian) Lie algebra g is symplectic if and
only if it is isomorphic either to the 3-step 4-dimensional nilpotent Lie algebra or to a direct
product of R with a 3-dimensional unimodular solvable Lie algebra.

The proof of Theorem 1.4 is implied by the two subsequent propositions. The first one
implies the statement of Theorem 1.4 when g is not of type (I).

PROPOSITION 7.1. Let J be a complex structure on a unimodular almost abelian
(non-abelian) Lie algebra g. If g is not of type (I), then g does not admit a symplectic structure
taming J .

PROOF. Let n be the nilradical of g. Since g is almost abelian we have that n has
codimension 1 and n is abelian. Let Ω be a symplectic form taming J and g the associated
J -Hermitian metric. We recall that this metric is defined as the Hermitian metric induced by
(1, 1)-componentΩ1,1 of Ω . With respect to the Hermitian metric g we have the orthogonal
decomposition

g = n ⊕ spanR〈X〉 .
Since JX is orthogonal to X, JX belongs to g1 and thus JX ∈ n. By the unimodularity of g,
we get that [X, JX] belongs to the orthogonal complement of spanR〈X, JX〉 with respect to
g , i.e., to the J -invariant abelian Lie subalgebra

h = spanR〈X, JX〉⊥ .
Since n is abelian, by using the integrability of J we obtain

adX(JY ) = JadX(Y ) ,

for every Y ∈ h. We can show that h is adX-invariant. Indeed, we know that

g([X,Y ],X) = 0, for every Y ∈ h ,

or equivalently

(7.1) Ω(J [X,Y ],X) = Ω([X,Y ], JX), for every Y ∈ h .
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Using J (adX(Y )) = adX(JY ) we have

Ω(J [X,Y ], JX) = Ω([X, JY ], JX) .
By (7.1) it follows that

Ω([X, JY ], JX) = Ω(J [X, JY ],X) = −Ω([X,Y ],X) ,
i.e., g([X,Y ], JX) = 0, for every Y ∈ h. By Section 2.2, we have the decomposition

hC = V0(hC)⊕ Vα1(hC)⊕ · · · ⊕ Vαn(hC)

where 0 is the trivial character and α1, . . . , αn are some non-trivial characters. Therefore

gC = 〈X, JX〉 ⊕ Vα1(hC)⊕ · · · ⊕ Vαn(hC)

with

[X,Vαi (hC)] ⊂ Vαi (hC), [JX,Vαi (hC)] = 0

and

JVαi (hC) ⊂ Vαi (hC) .

Thus
∧

g∗
C

= Λ〈x, Jx〉 ⊗Λ(V ∗
0 (nC)⊕ V ∗

α1
(gC)⊕ · · · ⊕ V ∗

αn
(gC)) ,

where x denotes the dual of X. Since g is not of type (I), then there exists ξ ∈ Vαi such that

J ξ = iξ, dξ = aiξ ∧ x + βi ∧ x ,
with Re(ai) �= 0 and βi ∈ Vαi (hC) such that βi ∧ ξ = 0. Therefore x ∧ ξ ∧ ξ can appear only
in d(ξ ∧ ξ), but this implies then that Ω(Z, JZ) = 0, where Z − iJZ is the dual of ξ . �

REMARK 7.2. Theorem 1.4 can be generalized to (I)-type Lie algebras by introduc-
ing some extra assumptions on J . Indeed, if (Ω, J ) is a Hermitian-symplectic structure on a
unimodular almost-abelian Lie algebra g of type I , then we still have the orthogonal decom-
position with respect to the metric g induced by Ω1,1

(7.2) g = spanR〈X, JX〉 ⊕ h ,

with [X, JX] ∈ h, h abelian and adX(h) ⊆ h. So in particular, g1 ⊆ h and dx = 0 = d(Jx).
Therefore if for instance we require that [X, JX] = 0, then c = 〈X〉 is an abelian complement
of n and J is c-invariant. So if the associated simply-connected Lie groupG has a lattice, we
can apply Theorem 1.2 obtaining that (G/Γ, J ) is Kähler.

Using Proposition 7.1 and the previous remark we can prove the following

THEOREM 7.3. Let G/Γ be a 6-dimensional solvmanifold endowed with a left-
invariant complex structure J . If G is almost abelian andG/Γ admits a symplectic structure
taming J , then G/Γ admits a Kähler structure.
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PROOF. If G is not of type (I), then the result follows by Proposition 7.1. Suppose
that G is of type (I). By previous remark we have the orthogonal decomposition (7.2) with
[X, JX] ∈ h, h abelian and adX(h) ⊆ h.

If [X, JX] = 0, the result follows applying Theorem 1.2. Suppose that Y = [X, JX] �=
0. Since Y ∈ h, we have that X, JX, Y, JY are linearly independent and they generate a
4-dimensional subspace of g.

If [X,Y ] ∈ spanR〈Y, JY 〉, then k = spanR〈X, JX, Y, JY 〉 is a 4-dimensional Lie subal-
gebra of g. Since k is J -invariant, then k admits a Hermitian-symplectic structure. The result
follows from the fact the k is unimodular and then it has to be isomorphic to ττ ′

3,0, but if
[X, JX] �= 0 this is not possible.

If [X,Y ] does not belong to spanR〈Y, JY 〉, then

{X, JX, Y = [X, JX], JY,Z = [X,Y ], JZ}
is a basis of g. Note that JZ = [X, JY ]. Let {x, Jx, y, Jy, z, J z} be the dual basis of
{X, JX, YJY,Z, JZ}. We have that g has structure equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx = 0 ,
d(J x) = 0,
dy = −x ∧ Jx ,
d(Jy) = x ∧ (az+ bJ z) ,

dz = −x ∧ y ,
d(J z) = −x ∧ Jy ,

with a, b ∈ R. Then, by a direct computation one has that

d(z ∧ Jz) = −x ∧ y ∧ Jz+ z ∧ x ∧ Jy
and that the term z ∧ x ∧ Jy can appear only in d(z ∧ Jz). Therefore, we must have
Ω(Z, JZ) = 0. �
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