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Abstract. LetX be a real reflexive locally uniformly convex Banach space with locally
uniformly convex dual spaceX∗, and letK be a nonempty, closed and convex subset ofX with
0 in its interior. Let T be maximal monotone and S a possibly unbounded pseudomonotone,
or finitely continuous generalized pseudomonotone, or regular generalized pseudomonotone
operator with domain K. Let φ be a proper, convex and lower semicontinuous function. New
results are given concerning the solvability of perturbed variational inequalities involving the
operator T +S and the function φ. The associated range results for nonlinear operators are also
given, as well as extensions and/or improvements of known results of Kenmochi, Le, Browder,
Browder and Hess, De Figueiredo, Zhou, and others.

1. Introduction–Preliminaries. In what follows, X is a real reflexive locally uni-
formly convex Banach space with locally uniformly convex dual space X∗. The norm of the
spaceX, and any other normed spaces herein, will be denoted by ‖·‖. For x ∈ X and x∗ ∈ X∗,
the pairing 〈x∗, x〉 denotes the value x∗(x).LetX and Y be real Banach spaces. For a multival-
ued mapping T : X → 2Y , we define the domain D(T ) of T by D(T ) = {x ∈ X; T x �= ∅},
and the range R(T ) of T by R(T ) = ⋃

x∈D(T ) T x. We also use the symbol G(T ) for the
graph of T , i.e., G(T ) = {(x, T x); x ∈ D(T )}. A mapping T : X ⊃ D(T ) → Y is “demi-
continuous” if it is continuous from the strong topology of D(T ) to the weak topology of Y .
A multi-valued mapping T : X ⊃ D(T ) → 2Y is “bounded” if it maps bounded subsets of
D(T ) to bounded subsets of Y . It is “compact” if it is strongly continuous and maps bounded
subsets of D(T ) to relatively compact subset of Y. It is “finitely continuous” if it is upper
semicontinuous from each finite dimensional subspace F of X to the weak topology of Y . It
is “quasibounded” if for every M > 0, there exists K(M) > 0 such that [x,w∗] ∈ G(T )

with ‖x‖ ≤ M and 〈w∗, x〉 ≤ M‖x‖ imply ‖w∗‖ ≤ K(M). It is “strongly quasibounded”
if for every M > 0 there exists K(M) > 0 such that [x,w∗] ∈ G(T ) with ‖x‖ ≤ M and
〈w∗, x〉 ≤ M imply ‖w∗‖ ≤ K(M). In what follows, a mapping will be called “continuous”
if it is strongly continuous.

Let ψ : [0,∞) → [0,∞) be continuous strictly increasing function such that ψ(0) = 0
and ψ(t) → ∞ as t → ∞. The duality mapping corresponding to ψ denoted by Jψ : X →
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2X
∗

is defined by

Jψ(x) = {x∗ ∈ X∗; 〈x∗, x〉 = ‖x∗‖‖x‖, ‖x∗‖ = ψ(‖x‖)} .
An application of the Hahn-Banach Theorem implies that Jψ(x) �= ∅ for each x ∈ X. Since
X andX∗ are locally uniformly convex, Jψ is single valued and bicontinuous. If ψ(t) = t for
t ≥ 0, then Jψ is denoted by J , it is called the “normalized duality mapping” and is given by

J (x) = {x∗ ∈ X∗; 〈x∗, x〉 = ‖x‖2, ‖x∗‖ = ‖x‖} .
An operator T : X ⊃ D(T ) → 2X

∗
is said to be “monotone” if for every x, y ∈ D(T )

and every u∗ ∈ T x, v∗ ∈ Ty, we have

〈u∗ − v∗, x − y〉 ≥ 0 .

If T is monotone, we see that for any sequence {xn} in D(T ) with xn ⇀ x0 ∈ D(T ), v∗
n ∈

T xn for all n and some v∗
0 ∈ T x0, we have

lim inf
n→∞ 〈v∗

n, xn − x0〉 = lim inf
n→∞ [〈v∗

n − v∗
0 , xn − x0〉 + 〈v∗

0 , xn − x0〉] ≥ 0 .

A monotone mapping T : X ⊃ D(T ) → 2X
∗

is “maximal monotone” if R(T + λJ ) = X∗
for every λ > 0. This is equivalent to saying that T is maximal monotone if and only if T
is monotone and 〈u∗ − u∗

0, x − x0〉 ≥ 0 for every (x, u∗) ∈ G(T ) implies x0 ∈ D(T ) and
u∗

0 ∈ T x0. Since X and X∗ are locally uniformly convex, it follows that J is single valued,
bounded, bicontinuous, maximal monotone and of type (S+). If T is maximal monotone, the
operator Tt : X → X∗, t ∈ (0,∞), defined by Ttx = (T −1 + tJ−1)−1x, is bounded,
continuous, maximal monotone and such that Ttx ⇀ T (0)x as t → 0+ for every x ∈ D(T ),
where ‖T (0)x‖ = inf{‖y∗‖; y∗ ∈ T x}. The “resolvent” Jt : X → D(T ), defined by Jtx =
x − tJ−1(Ttx), is continuous and Ttx ∈ T (Jtx) for every x ∈ X. Moreover, limt→0 Jtx = x

for all x ∈ coD(T ), where coA denotes the convex hull of the set A. An operator A : X ⊇
D(A) → 2X

∗
is called “coercive” if either D(A) is bounded or there exists a function ψ :

[0,∞) → (−∞,∞) such that ψ(t) → ∞ as t → ∞ and

〈y∗, x〉 ≥ ψ(‖x‖)‖x‖
for all x ∈ D(A) and y∗ ∈ Ax.

The following pseudomonotonicity definition may be found in Browder and Hess [1].

DEFINITION 1.1. An operator T : X ⊃ D(T ) → 2X
∗

is said to be “pseudomonotone”
if

(i) for every x ∈ D(T ), T x is nonempty, closed, convex and bounded subset of X∗;
(ii) T is finitely continuous, i.e., T is “weakly upper semicontinuous” on each finite-

dimensional subspace F of X, i.e., for every x0 ∈ D(T ) ∩ F and every weak
neighborhood V of T x0 in X∗, there exists a neighborhood U of x0 in F such that
T U ⊂ V ;
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(iii) for every sequence {xn} ⊂ D(T ) and every sequence {y∗
n} with y∗

n ∈ T xn such that
xn ⇀ x0 ∈ D(T ) and

lim sup
n→∞

〈y∗
n, xn − x0〉 ≤ 0 ,

we have that for every x ∈ D(T ) there exists y∗(x) ∈ T x0 such that

〈y∗(x), x0 − x〉 ≤ lim inf
n→∞ 〈y∗

n, xn − x〉 .
Let T : X ⊇ D(T ) → 2X

∗
be pseudomonotone and the sequences {xn}, {y∗

n} as in
Definition 1.1. Then letting x0 in place of x in (iii) of Definition 1.1 we get

lim inf
n→∞ 〈y∗

n, xn − x0〉 ≥ 0 .

DEFINITION 1.2. An operator T : X ⊃ D(T ) → 2X
∗

is said to be “generalized
pseudomonotone” if

(i) for each x ∈ D(T ), T x is nonempty, closed, convex and bounded subset of X∗;
(ii) for every sequence {xn} ⊂ D(T ) and every sequence {y∗

n} with y∗
n ∈ T xn such that

xn ⇀ x0 ∈ D(T ), y∗
n ⇀ y∗

0 ∈ X∗ and

lim sup
n→∞

〈y∗
n, xn − x0〉 ≤ 0 ,

we have y∗
0 ∈ T x0 and 〈y∗

n, xn〉 → 〈y∗
0 , x0〉 as n → ∞.

If T is generalized pseudomonotone and {xn} and {y∗
n} are as in Definition 1.2, we have

lim inf
n→∞ 〈y∗

n, xn − x0〉 ≥ 0 .

Otherwise, by passing to a subsequence if necessary, the generalized pseudomonotonicity
property of T gets violated.

An operator T0 with D(T0) = X is called smooth if T0 is bounded, maximal monotone
and coercive. A generalized pseudomonotone operator T is called “regular” if R(T + T0) =
X∗ for any smooth operator T0.

Browder and Hess [1, Proposition 3, p. 258] showed that a pseudomonotone operator
T with D(T ) = X is generalized pseudomonotone. However, this fact might not be true if
D(T ) �= X.

DEFINITION 1.3. An operator T : X ⊇ D(T ) → 2X
∗

is said to be of “type (S+)” if
(i) for every x ∈ D(T ), T x is a nonempty, closed, convex and bounded subset of X∗;

(ii) T is finitely continuous, i.e., T is weakly upper semicontinuous on each finite di-
mensional subspace of X(see Definition 1.1);

(iii) for every sequence {xn} ⊂ D(T ) and every y∗
n ∈ T xn with xn ⇀ x0 ∈ X and

lim sup
n→∞

〈y∗
n, xn − x0〉 ≤ 0 ,

we have xn → x0 ∈ D(T ) and {y∗
n} has a subsequence which converges weakly to

y∗
0 ∈ T x0. A mapping T : X ⊃ D(T ) → 2X

∗
is said to be of “type (S)” if (i) and

(ii) hold and the inequality in (iii) is replaced by an equality.
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For basic definitions and further properties of mappings of monotone type, the reader
is referred to Barbu [2], Brézis, Crandall and Pazy [3], Browder and Hess [1], Browder [4],
Cioranescu [5], Naniewicz and Panagiotopoulos [6], Pascali and Sburlan [7] and Zeidler [8].
A function φ : X → (−∞,∞] is called “proper” if φ is not identically +∞. It is “convex” if

φ((1 − λ)x + λy) ≤ (1 − λ)φ(x)+ λφ(y)

for all x ∈ X, y ∈ X and all λ ∈ [0, 1]. Furthermore, φ is called “lower semicontinuous” if

φ(x) ≤ lim inf
y→x

φ(y) , x ∈ X ,
or, equivalently, for each λ > 0 the level set {x ∈ X;φ(x) ≤ λ} is closed.

Let K denote a nonempty, closed and convex subset of a reflexive Banach space X and
let IK be the indicator function of K given by

IK(x) =
{

0 if x ∈ K ,
∞ if x ∈ X\K .

It is known that IK is proper, convex and lower semicontinuous onX. The subdifferential
of IK at x ∈ X is defined by

∂IK(x) = {x∗ ∈ X∗; 〈
x∗, x − y

〉 ≥ 0 for all y ∈ K} .
Here, D(∂IK) = D(IK) = K and ∂IK(x) = {0} for every x ∈ K̊. Let φ : X ⊇ D(φ) →
(−∞,∞] be a proper, lower semicontinuous and convex function on X with D(φ) = {x ∈
X;φ(x) < +∞}. For each x ∈ X, we denote by ∂φ(x) the set

∂φ(x) = {x∗ ∈ X∗; 〈
x∗, x − y

〉 ≥ φ(x)− φ(y) for all y ∈ X} .
It is known that ∂φ : X ⊇ D(∂φ) → 2X

∗
is maximal monotone and such that D(∂φ)

is a dense subset of D(φ). Furthermore, we have φ(x) = min{φ(y); y ∈ X} if and only if
0 ∈ ∂φ(x). Other relevant properties may be found in Barbu [9].

Fix f ∗ ∈ X∗ and A : X ⊇ D(A) → 2X
∗
. We denote by VIP(A,K, φ, f ∗) the varia-

tional inequality problem

〈w∗ − f ∗, y − x〉 ≥ φ(x)− φ(y) , y ∈ K ,
with the unknown vector x ∈ D(A) ∩ D(φ) ∩ K and w∗ ∈ Ax. Since D(∂φ) ⊂ D(φ), it is
not hard to see that the solvability of the inclusion

∂φ(x)+ Ax � f ∗

in D(A) ∩ D(∂φ) ∩ K implies the solvability of the problem VIP(A,K, φ, f ∗) in D(A) ∩
D(φ) ∩ K , and equivalence holds if D(φ) = D(∂φ) = K. In particular, if φ = IK , we
denote the problem VIP(A,K, IK, f ∗) just by VIP(A,K, f ∗), and we see that its solvability
is equivalent to the solvability of the inclusion

∂IK(x)+ Ax � f ∗

in D(A) ∩K.
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For basic results involving variational inequalities and monotone type mappings, the
reader is referred to Barbu [2], Brézis [10], Browder and Hess [1], Browder [11], [4], Browder
and Brézis [12], Hartman and Stampacchia [13], Kenmochi [14], Kinderlehrer and Stampac-
chia [15], Kobayashi and Otani [16], Lions and Stampacchia [17], Minty [19], [20], Moreau
[21], Naniewicz and Panagiotopoulos [6], Pascali and Sburlan [7], Rockafellar [22], Stam-
pacchia [18], Ton [23], Zeidler [8] and the references therein. A study of pseudomonotone
operators and nonlinear elliptic boundary value problems may be found in Kenmochi [24].
For a survey of maximal monotone and pseudomonotone operators and perturbation results,
we cite the handbook of Kenmochi [25]. Nonlinear perturbation results of monotone type
mappings, variational inequalities and their applications may be found in Guan, Kartsatos and
Skrypnik [26], Guan and Kartsatos [27], Le [28], Zhou [29] and the references therein. Vari-
ational inequalities for single single-valued pseudomonotone operators in the sense of Brézis
may be found in Kien, Wong, Wong and Yao [30]. Existence results for multivalued quasi-
linear inclusions and variational-hemivariational inequalities may be found in Carl, Le and
Motreanu [31], Carl [32] and Carl and Motreanu [33] and the references therein. Recently,
Asfaw and Kartsatos [34] developed a new degree theory for multivalued pseudomonotone
perturbations of maximal monotone operators. The authors also demonstrated there the appli-
cability of the theory in solving nonlinear problems involving monotone type operators.

In this paper we study the solvability of variational inequalities, where the relevant op-
erator A could be, e.g., the sum T + S with T : X ⊇ D(T ) → 2X

∗
maximal monotone and

S : K → 2X
∗

at least pseudomonotone. The main reasons for studying the solvability of such
perturbed inequalities and equations are the following.

(1) As mentioned above, the solvability of the problem

∂φ(x)+ T (x)+ S(x) � f ∗

in D(T ) ∩D(∂φ) ∩K implies the solvability of the problem

VIP(T + S,K, φ, f∗)

inD(T )∩D(φ)∩K , and the two problems are equivalent if D(φ) = D(∂φ) = K.

Therefore, the solvability of the problem VIP(T+S,K, φ, f ∗) inD(T )∩D(φ)∩K
may be covered by range results for the sum of three monotone-type operators.
However, as far as the authors can tell, there are no range results involving such
operators.

(2) If φ �= IK , the solvability of the inclusion T x + Sx � f ∗ does not necessarily
imply the solvability of the problem

VIP(T + S,K, φ, f∗) .

In fact, if for some x0 ∈ D(T ) ∩ D(φ) ∩ K , v∗
0 ∈ T x0 and z∗0 ∈ Sx0 the equation

v∗
0 +z∗0 = f ∗ is satisfied, we do not necessarily have the solvability of the inequality

〈v∗
0 + z∗0 − f ∗, x − x0〉 ≥ φ(x0)− φ(x)

for all x ∈ K unless φ(x0) = minx∈K φ(x).



176 T. ASFAW AND A. KARTSATOS

(3) It is known from Browder and Hess [1, Proposition 3, p. 258] that every pseu-
domonotone operator with effective domain all of X is generalized pseudomono-
tone. However, this fact is unknown if the domain is different from X. Because
of this, we have treated the solvability of variational inequalities and equations
separately for pseudomonotone and generalized pseudomonotone operators with
domain a closed convex subset of X. Browder and Hess [1] mentioned the dif-
ficulty of treating generalized pseudomonotone operators which are not defined
everywhere onX or on a dense linear subspace. A surjectivity result for single qua-
sibounded coercive generalized pseudomonotone operator whose domain contains
a dense linear subspace of X may be found in Browder and Hess [1, Theorem 5,
p. 273]. Existence results for densely defined finitely continuous generalized pseu-
domonotone perturbations of maximal monotone operators may be found in Guan,
Kartsatos and Skrypnik [26, Theorem 2.1, p. 335]. We should mention that there
are no range results known to the authors for the sum T + S, where T is maxi-
mal monotone and S either pseudomonotone or generalized pseudomonotone with
domain just K , whereK is a nonempty, closed and convex subset of X.

In Section 2, we study the solvability of variational inequalities for bounded pseudomo-
notone perturbations of one or two maximal monotone operators. As a result, a new charac-
terization for the maximality of the sum of two maximal monotone operators is given.

Section 3 contains existence results for the solvability of variational inequalities for
finitely continuous generalized pseudomonotone perturbations of maximal monotone oper-
ators.

Section 4 contains results about possibly unbounded pseudomonotone or finitely contin-
uous generalized pseudomonotone perturbations of maximal monotone operators.

In Section 5, we give new results for regular generalized pseudomonotone perturbations.
In each of these sections the corresponding range results are discussed.

In Section 6, we give examples of single-valued as well as multivalued pseudomonotone
operators which are suitable for the applicability of our theory.

The following lemma is due to Brézis, Crandall and Pazy in [3, Lemmas 1.2 and 1.3].

LEMMA 1.4. Let B be a maximal monotone set in X × X∗. If (un, u∗
n) is an element

of B such that un ⇀ u and u∗
n ⇀ u∗ and either

lim sup
n,m→∞

〈
u∗
n − u∗

m, un − um
〉 ≤ 0

or

lim sup
n→∞

〈
u∗
n − u∗, un − u

〉 ≤ 0 ,

then (u, u∗) ∈ B and (u∗
n, u) → (u∗, u) as n → ∞.

The following lemma is a version of Lemma 1.4. Its proof in its present form may be
found in Adhikari and Kartsatos [35, Lemma 1, p. 1244].
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LEMMA 1.5. Assume that the operators T : X ⊇ D(T ) → 2X
∗

and S : X ⊇ D(S) →
2X

∗
are maximal monotone with 0 ∈ T (0) ∩ S(0). Assume, further, that T + S is maximal

monotone. Assume there are a positive sequence {tn} such that tn ↓ 0+ and a sequence {xn}
inD(S) such xn ⇀ x0 ∈ X and Ttnxn+w∗

n ⇀ y∗
0 ∈ X∗, wherew∗

n ∈ Sxn. Then the following
are true.

(i) The inequality

lim
n→∞ 〈Ttnxn +w∗

n, xn − x0〉 < 0

is impossible;
(ii) if

lim
n→∞ 〈Ttnxn +w∗

n, xn − x0〉 = 0 ,

then x0 ∈ D(T ) ∩D(S) and y∗
0 ∈ (T + S)x0.

Browder and Hess [1] proved that a monotone mapping T with 0 ∈ ˚D(T ) is strongly
quasibounded. The following lemma is due to Browder and Hess [1].

LEMMA 1.6. Let X ⊇ D(T ) → 2X
∗

be strongly quasibounded maximal monotone
such that 0 ∈ T (0) and {tn} be a sequence in (0,∞) and {xn} ⊆ X be such that

‖xn‖ ≤ S,
〈
Ttnxn, xn

〉 ≤ S

for all n, where S is a positive constant. Then there existsK = K(S) > 0 such that ‖Ttnxn‖ ≤
K for all n.

In what follows, we make frequent use of the following basic result of Browder and Hess
[1, Proposition 15, p. 289].

LEMMA 1.7. Let K be a compact convex subset of X and T : K → 2X
∗

an operator
such that for every x ∈ K , T x is a nonempty, closed, convex and bounded subset of X∗.
Assume that T is upper semicontinuous, with X∗ being given its weak topology. Let f ∗ ∈ X∗.
Then there exist elements x0 ∈ K and y∗

0 ∈ T x0 such that〈
y∗

0 − f ∗, x − x0
〉 ≤ 0

for all x ∈ K.
We observe that, for every f ∗ ∈ X∗, −T + f ∗ is upper semicontinuous whenever T

is upper semicontinuous. Under the hypothesis of the above lemma, we have the existence
of x∗

0 ∈ K and v∗
0 ∈ −T x0 + f ∗ (i.e., v∗

0 = −w∗
0 + f ∗ for some w∗

0 ∈ T x0) such that〈 − w∗
0 + f ∗, x − x0

〉 ≤ 0 for all x ∈ K . This implies
〈
w∗

0 − f ∗, x − x0
〉 ≥ 0 for all x ∈ K ,

i.e., the problem VIP(T ,K, f ∗) is solvable in K.
The following lemma, which is an easy application of the uniform boundedness princi-

ple, may be found in Browder [36, Lemma 1].

LEMMA 1.8. Let X be a Banach space, {xn} a sequence in X and {αn} a sequence of
positive numbers such that αn → 0+ as n → ∞. For a fixed r > 0, assume that for every
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h∗ ∈ X∗ with ‖h∗‖ ≤ r , there exists a constant Ch∗ such that

〈h∗, xn〉 ≤ αn‖xn‖ + Ch∗

for all n. Then the sequence {xn} is bounded.

The next lemma can be found in Browder [4, Proposition 7.2, p. 81].

LEMMA 1.9. Let X be a reflexive Banach space, A a bounded subset of X and x0 ∈
Aw, where Aw is the weak closure of A in X. Then there exists a sequence {xn} in A such that
xn ⇀ x0 in X as n → ∞.

The following existence result for the solvability of a variational inequality for a single
multivalued pseudomonotone operator is due to Browder and Hess [1, Theorem 15, p. 289].

LEMMA 1.10. Let K be a nonempty, closed and convex subset of X with 0 ∈ K. Let
S : K → 2X

∗
be pseudomonotone and coercive. Then for each g∗ ∈ X∗ there exist x0 ∈ K

and w0 ∈ Sx0 such that

〈w0 − g∗, x − x0〉 ≥ 0

for all x ∈ K .

2. Variational inequalities for pseudomonotone perturbations. In this section we
give some existence results for the problem VIP(T +S,K, φ, f ∗), where T is maximal mono-
tone and S is bounded pseudomonotone. We begin with the definition of the solvability of a
variational inequality over a given set.

DEFINITION 2.1. Let B be a subset of X. Let K be a nonempty subset of X and A :
X ⊇ D(A) → 2X

∗
. Let φ : X → (−∞,∞] be a proper, convex and lower semicontinuous,

and fix f ∗ ∈ X∗. We say that the variational inequality problem VIP(A,K, φ, f ∗) is solvable
in D(A) ∩D(φ) ∩ B if there exist x0 ∈ D(A) ∩D(φ) ∩ B and w∗

0 ∈ Ax0 such that

〈w∗
0 − f ∗, x − x0〉 ≥ φ(x0)− φ(x)

for all x ∈ K.
Using this definition, it follows that the problem VIP(A,K, φ, f ∗) has no solution in

D(A) ∩D(φ) ∩ ∂K if and only if there exists u0 ∈ K such that

〈w∗ − f ∗, u0 − x〉 < φ(x)− φ(u0)

for all x ∈ D(A) ∩D(φ) ∩ ∂K , w∗ ∈ Ax.
In what follows, we make frequent use of the following useful lemma. A version of this

lemma is due to Lions and Stampacchia [17] when X is a Hilbert space. Another version of it
is due to Hartman and Stampacchia [13] and involves monotone finitely continuous operators
defined on a closed convex subset ofX. For further reference, we cite the book of Kinderlehrer
and Stampacchia [15, Theorem 1.7, pp. 85–87, and Theorem 2.3, p. 91].

LEMMA 2.2. Let K be a nonempty, closed and convex subset of X and A : X ⊇
D(A) → 2X

∗
. Let G be an open convex subset of X. Then the problem VIP(A,K, φ, f ∗)
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is solvable in D(A) ∩ D(φ) ∩ K ∩ G provided that the problem VIP(A,K ∩ G,φ, f ∗) is
solvable in D(A) ∩D(φ) ∩K ∩G.

PROOF. Suppose that x0 ∈ D(A) ∩ D(φ) ∩ K ∩ G is a solution of the problem
VIP(A,K ∩G,φ, f ∗), i.e., there exists u∗

0 ∈ Ax0 such that

(1) 〈u∗
0 − f ∗, x − x0〉 ≥ φ(x0)− φ(x)

for all x ∈ K ∩ G. It suffices to show that x0 solves the inequality VIP(A,K, φ, f ∗). We
observe that, by the convexity of K , for any t ∈ (0, 1) and for any x ∈ K , we have tx +
(1 − t)x0 ∈ K. For each x ∈ K , we claim that there exists t0 = t0(x) ∈ (0, 1) such that
t0x + (1 − t0)x0 ∈ G. Suppose there exists y ∈ K such that ty + (1 − t)x0 �∈ G for all
t ∈ (0, 1), i.e., ty + (1 − t)x0 ∈ X\G for all t ∈ (0, 1). Since G is open, letting t ↓ 0+,
we obtain that x0 �∈ G. But this is a contradiction as x0 ∈ G. Thus our claim follows, i.e.,
for every x ∈ K , there exists t0 = t0(x) ∈ (0, 1) such that y = t0x + (1 − t0)x0 ∈ K ∩ G.
Replacing x by y in (1) and using the convexity of φ, we see that

t0〈u∗
0 − f ∗, x − x0〉 = 〈u∗

0 − f ∗, y − x0〉
≥ φ(x0)− φ(y)

≥ φ(x0)− [t0φ(x)+ (1 − t0)φ(x0)]
= t0(φ(x0)− φ(x)) .

Since t0 ∈ (0, 1), we conclude that

〈u∗
0 − f ∗, x − x0〉 ≥ φ(x0)− φ(x)

for all x ∈ K , i.e., the problem VIP(A,K, φ, f ∗) is solvable by x0 ∈ D(A) ∩ D(φ) ∩
K ∩G. �

The following theorem will be used frequently in the sequel. For related results, the
reader is referred to Browder [4, Theorem 7.8, pp. 92–96] (D(T ) = D(S) = K), Kenmochi
[14, Theorem 5.2, p. 236] (D(S) = X) and Le [28] (D(S) = X).

THEOREM 2.3. Let K be a nonempty, closed and convex subset of X with 0 ∈ K̊.

Let T : X ⊇ D(T ) → 2X
∗

be maximal monotone with 0 ∈ T (0) and S : K → 2X
∗

pseudomonotone. Fix f ∗ ∈ X∗. Assume, further, that either S is bounded or T is strongly
quasibounded and there exists k > 0 such that 〈w∗, x〉 ≥ −k for all x ∈ K and w∗ ∈ Sx.

(i) If K is bounded, then the problem VIP(T + S,K, f ∗) is solvable in D(T ) ∩K.
(ii) If K is unbounded and there exists an open, convex and bounded subset G of X

with 0 ∈ G such that the problem VIP(T + S,K ∩ G,f ∗) has no solution in
D(T )∩K ∩∂G, then the problem VIP(T +S,K, f ∗) is solvable inD(T )∩K ∩G.

PROOF. We first prove (i) and (ii) assuming the boundedness of S.
(i) Suppose K is bounded. Let t > 0 and Tt be the Yosida approximant of T . We notice

that, for every t > 0, the operator Tt + S is bounded and pseudomonotone on K . Using the
boundedness ofK, instead of the coercivity of the pseudomonotone operator Tt+S in Lemma



180 T. ASFAW AND A. KARTSATOS

1.10, we see that VIP(Tt + S,K, f ∗) is solvable in K. Thus, for every tn ↓ 0+ there exists
xn ∈ K and w∗

n ∈ Sxn such that

〈Ttnxn + w∗
n − f ∗, x − xn〉 ≥ 0

for all n and all x ∈ K. Since the solvability of VIP(Ttn + S,K, f ∗), with solution xn ∈ K,
is equivalent to the solvability of the inclusion

∂IK(xn)+ Ttnxn +w∗
n � f ∗

for every n, there exists v∗
n ∈ ∂IK(xn) such that

v∗
n + Ttnxn +w∗

n = f ∗

for all n. Since {xn} and S are bounded, we have the boundedness of the sequence {w∗
n}. Since

0 ∈ T (0), we have Ttn(0) = 0 for all n and hence 〈v∗
n, xn〉 ≤ ‖w∗

n‖‖xn‖. The boundedness
of {v∗

n} follows from the fact that ∂IK is strongly quasibounded. As a result, the sequence
{Ttnxn} is also bounded. Assume, by passing to subsequences if necessary, that xn ⇀ x0,
v∗
n ⇀ v∗

0 , w∗
n ⇀ w∗

0 and Ttnxn ⇀ z∗0 as n → ∞. Since K is closed and convex, it is weakly
closed and hence x0 ∈ K. Since S is pseudomonotone and ∂IK is maximal monotone, we
have

lim inf
n→∞ 〈w∗

n, xn − x0〉 ≥ 0 and lim inf
n→∞ 〈v∗

n, xn − x0〉 ≥ 0 .

Let Jtn be the Yosida resolvent of T . It is well known that, for every n, Jtnxn ∈ D(T ),
Jtnxn = xn − tnJ

−1(Ttnxn), Ttnxn ∈ T (Jtnxn) for all n and Jtnxn ⇀ x0 and xn − Jtnxn → 0
as n → ∞. Therefore, we have

lim sup
n→∞

〈Ttnxn, Jtnxn − x0〉 ≤ 0 .

Using Lemma 1.4, we conclude that x0 ∈ D(T ), z∗0 ∈ T x0 and 〈Ttnxn, Jtnxn〉 → 〈z∗0, x0〉
as n → ∞. Similarly, using the maximality of ∂IK and Lemma 1.4, we can show that v∗

0 ∈
∂IK(x0) and 〈v∗

n, xn〉 → 〈v∗
0 , x0〉 as n → ∞. On the other hand, we have

lim sup
n→∞

〈w∗
n, xn − x0〉 ≤ 0 .

Since S is pseudomonotone, for every x ∈ K there exists y∗(x) ∈ Sx0 such that

〈y∗(x), x0 − x〉 ≤ lim inf
n→∞ 〈w∗

n, xn − x〉 = −〈v∗
0 + z∗0 − f ∗, x0 − x〉

for all n. Since v∗
0 ∈ ∂IK(x0), we have 〈v∗

0 , x0 − x〉 ≥ 0 for all x ∈ K. Therefore,

〈y∗(x), x0 − x〉 ≤ lim inf
n→∞ 〈w∗

n, xn − x〉 = −〈z∗0 − f ∗, x0 − x〉
for all n. Since S is pseudomonotone, for every x ∈ K there exists y∗(x) ∈ Sx0 such that

〈y∗(x)+ z∗0 − f ∗, x − x0〉 ≥ 0 .

By the Hahn-Banach separation theorem, using f ∗ − z∗0 in place of g∗, there exists y∗
0 ∈ Sx0

such that

〈y∗
0 − (f ∗ − z∗0), x − x0〉 ≥ 0
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for all x ∈ K , which implies

〈y∗
0 + z∗0 − f ∗, x − x0〉 ≥ 0

for all x ∈ K. This implies that VIP(T + S,K, f ∗) is solvable in D(T ) ∩K.
(ii) Suppose K is unbounded and the hypothesis in (ii) holds true. Since K ∩ G is a

nonempty closed, convex and bounded subset of X with 0 ∈
˚︷ ︸︸ ︷

K ∩G, we apply the con-
clusion of (i) using the closed, convex and bounded subset K ∩ G in place of K , to obtain
the solvability of the problem VIP(T + S,K ∩G,f ∗) in D(T ) ∩K ∩G. Since the problem
VIP(T +S,K ∩G,f ∗) has no solution inD(T )∩K ∩∂G, we use Lemma 2.2 (with φ = IK )
to conclude that the variational inequality VIP(T + S,K, f ∗) is solvable in D(T ) ∩K ∩G.

Next we assume that T is strongly quasibounded and there exists k > 0 such that
〈w∗, x〉 ≥ −k for all x ∈ K and w∗ ∈ Sx. We prove the result in (i). Since Tt + S is pseu-
domonotone onK , Lemma 1.10 says that for every t > 0, the problem VIP(Tt + S,K, f ∗) is
solvable in K . This is equivalent to the solvability of the inclusion ∂IK(x)+ Ttx + Sx � f ∗
in K. Thus, for every tn ↓ 0+, there exists xn ∈ K , v∗

n ∈ ∂IK(xn) and w∗
n ∈ Sxn such that

(2) v∗
n + Ttnxn +w∗

n = f ∗

for all n. Since 0 ∈ T (0), we see that Ttn(0) = 0 for all n. Since Ttn is monotone for all n,
we have 〈v∗

n, xn〉 ≤ k + ‖f ∗‖‖xn‖ ≤ Q, where Q is an obvious upper bound. Since ∂IK is
strongly quasibounded, it follows that {v∗

n} is bounded. Using a similar argument along with
the strong quasiboundedness of T and Lemma 1.6, we obtain the boundedness of {Ttnxn} and,
subsequently, the boundedness of {w∗

n} from (2). Following the argument of the proof of (i)
with S bounded, we obtain the solvability of the problem VIP(T + S,K, f ∗) in D(T ) ∩K .
The proof of (ii) under this case can be completed as in (ii) with S bounded. The detail is
omitted. �

Le [28] gave a range result for bounded pseudomonotone perturbation S (with D(S) =
X) of maximal monotone operators satisfying an inner product condition as in the following
corollary for the case G = BR(0). We give an analogous result below, whereG is a bounded,
open and convex subset of X with 0 ∈ G, and D(S) = K , with K a nonempty, closed and
convex subset of X.

COROLLARY 2.4. Let K be a nonempty, closed and convex subset of X with 0 ∈ K̊.

Let T : X ⊇ D(T ) → 2X
∗

be maximal monotone with 0 ∈ T (0) and S : K → 2X
∗

pseudomonotone. Assume, further, that either S is bounded or T is strongly quasibounded
and there exists k > 0 such that 〈w∗, x〉 ≥ −k for all x ∈ K and w∗ ∈ Sx. Fix f ∗ ∈ X∗. Let
G be an open, convex and bounded subset of X with 0 ∈ G such that, for some u0 ∈ K ∩G,
we have

(3) 〈v∗ +w∗ − f ∗, x − u0〉 > 0

for all x ∈ D(T ) ∩ ∂(K ∩ G), v∗ ∈ T x and w∗ ∈ Sx. Then the inclusion T x + Sx � f ∗ is
solvable in D(T ) ∩K ∩G.
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PROOF. We first observe that 0 ∈
˚︷ ︸︸ ︷

K ∩G. By Theorem 2.3, the problem VIP(T +
S,K ∩G,f ∗) is solvable inD(T )∩K ∩G. By (3), the problem VIP(T + S,K ∩G,f ∗) has
no solution in D(T ) ∩ ∂(K ∩G). Since the solvability of the inclusion

∂IK∩G(x)+ T x + Sx � f ∗

is equivalent to the solvability of the variational inequality VIP(T +S,K ∩G,f ∗), it follows

that the inclusion T x + Sx � f ∗ is solvable in D(T ) ∩
˚︷ ︸︸ ︷

K ∩G. �

Browder [4, Theorem 7.12, pp. 100–101] showed the existence of a solution to the prob-
lem VIP(S,K, φ, f ), where S is bounded pseudomonotone and coercive with D(S) = K ,
0 ∈ K and φ : K → (−∞,∞] is proper, convex and lower semicontinuous having 0 as its
minimum on K. Furthermore, Kenmochi [14] proved the existence of a solution to the prob-
lem VIP(S,K, φ, f ), where S is pseudomonotone on K satisfying the (pm4)-condition (see
Definition 4.1 below) along with a coercivity-type condition involving S and φ.

The following theorem gives a new existence result for solutions of the problem VIP(T +
S,K, φ, f ∗), where T is maximal monotone and S is bounded pseudomonotone. We re-
mark that, using the definition of ∂φ, it is not hard to see that the solvability of the problem
VIP(∂φ + T + S,K, f ∗) in D(∂φ) ∩ D(T ) ∩ K implies the solvability of the inequality
VIP(T + S,K, φ, f ∗) in D(T ) ∩D(φ) ∩K. Furthermore, using Lemma 2.2, the solvability
of VIP(∂φ + T + S,K, f ∗) in D(∂φ) ∩D(T ) ∩K is achieved by solving the local problem
VIP(∂φ + T + S,K ∩ BR(0), f ∗) in D(T ) ∩K ∩ BR(0).

THEOREM 2.5. Let K be a nonempty, closed and convex subset of X with 0 ∈ K̊. Let
T : X ⊇ D(T ) → 2X

∗
be strongly quasibounded maximal monotone with 0 ∈ T (0) and

S : K → 2X
∗

bounded pseudomonotone. Let φ : X → (−∞,∞] be proper, convex and
lower semicontinuous and such that 0 ∈ D(φ) and there exists k > 0 such that φ(x) ≥ −k
for all x ∈ X. Fix f ∗ ∈ X∗. Then

(i) ifK is bounded, then the problem VIP(T +S,K, φ, f ∗) is solvable inD(T )∩K ∩
D(φ),

(ii) ifK is unbounded and there exists a bounded open convex subsetG ofX with 0 ∈ G
such that the problem VIP(T +S,K ∩G,φ, f ∗) has no solution inD(T )∩D(φ)∩
K∩∂G, then the problem VIP(T+S,K, φ, f ∗) is solvable inD(T )∩K∩D(φ)∩G.

PROOF. (i) Suppose that K is bounded. We first prove the solvability of the problem
VIP(∂φ+ T + S,K, f ∗) inD(T )∩D(∂φ)∩K. To this end, we notice that the solvability of
the problem VIP(∂φ + T + S,K, f ∗) in D(∂φ) ∩D(T ) ∩K is equivalent to the solvability
of the inclusion

∂IK(x)+ ∂φ(x)+ T x + Sx � f ∗ in D(∂φ) ∩D(T ) ∩K .
Since D(∂IK) = K and 0 ∈ K̊ ∩ D(T ), it follows that ∂IK + T is maximal monotone.
Let A := ∂φ and, for every t > 0, let At be the Yosida approximant of A. Since At + S is
bounded pseudomonotone, using the argument in the proof of Theorem 2.3 with K bounded,
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the maximal monotone operator T and the bounded pseudomonotone operator At + S, we
obtain that the problem VIP(T +At +S,K, f ∗) is solvable inD(T )∩K , which is equivalent
to the solvability of the inclusion

∂IK(x)+ T x + At + Sx � f ∗ in D(T ) ∩K .
Thus, for every tn ↓ 0+ there exist xn ∈ D(T ) ∩K , u∗

n ∈ ∂IK(xn), v∗
n ∈ T xn and w∗

n ∈ Sxn
such that

(4) u∗
n + v∗

n + Atnxn +w∗
n = f ∗

for all n. Next we see that

〈Atnxn, xn〉 = 〈Atnxn, xn − JAtn xn〉 + 〈Atnxn, JAtn xn〉
= tn〈Atnxn, J−1(Atnxn)〉 + 〈Atnxn, JAtn xn〉
= tn‖Atnxn‖2 + 〈Atnxn, JAtn xn〉

for all n. Using the properties of the Yosida resolvent of A, we see that JAtn xn ∈ D(A) and

Atnxn ∈ A(JAtn xn) = ∂φ(J
∂φ
tn
xn) for all n. On the other hand, by the definition of ∂φ and the

assumption φ(x) ≥ −k, we have

(5) 〈Atnxn, JAtn xn〉 ≥ φ(JAtn xn)− φ(0) ≥ −k − φ(0)

for all n. Since {xn} and S are bounded, we have the boundedness of {w∗
n}. From (4) we get

〈u∗
n, xn〉 ≤ (‖w∗

n‖ + ‖f ∗‖)‖xn‖ + k + φ(0) .

Since 0 ∈ D(φ), we have that φ(0) < +∞. The boundedness of the sequence {u∗
n} follows

from the fact that ∂IK is strongly quasibounded and maximal monotone with the domain K.
Since u∗

n ∈ ∂IK(xn), we have 〈u∗
n, xn〉 ≥ 0 for all n. Combining (4) and (5), we have

〈v∗
n, xn〉 ≤ ‖f ‖‖xn‖ + φ(0)+ k

for all n. As a result, the boundedness of the sequence {v∗
n} follows because the sequence

{xn} is bounded and T is strongly quasibounded maximal monotone. Consequently, using the
equality (4), we obtain the boundedness of {Atnxn}. Assume, by passing to subsequences if
necessary, that xn ⇀ x0, u∗

n ⇀ u∗
0, v∗

n ⇀ v∗
0 , w∗

n ⇀ w∗
0 and Atnxn ⇀ z∗0 as n → ∞.

Since K is closed and convex, it is weakly closed and hence x0 ∈ K. By using the property
of pseudomonotonicity of S, it is easy to see that

lim inf
n→∞ 〈w∗

n, xn − x0〉 ≥ 0 .

We claim that

d := lim inf
n→∞ 〈u∗

n + v∗
n, xn − x0〉 ≥ 0 .

In fact, if this is not true, there exists a subsequence, denoted again by {〈u∗
n + v∗

n, xn − x0〉},
such that

lim
n→∞ 〈u∗

n + v∗
n, xn − x0〉 < 0 .
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Since ∂IK + T is maximal monotone, we use Lemma 1.4 to obtain x0 ∈ D(∂IK + T ),
u∗

0 + v∗
0 ∈ (∂IK +T )(x0) and 〈u∗

n+ v∗
n, xn〉 → 〈u∗

0 + v∗
0 , x0〉 as n → ∞. This implies d = 0,

which is a contradiction. As a result, (4) implies

lim sup
n→∞

〈Atnxn, xn − x0〉 ≤ 0 .

Let JAtn be the Yosida resolvent ofA.We know that JAtn xn ∈ D(A), JAtn xn=xn−tnJ−1(Atnxn),
Atnxn ∈ A(Jtnxn) for all n and JAtn xn ⇀ x0 and xn − JAtn xn → 0 as n → ∞. Therefore, we
have

lim sup
n→∞

〈Atnxn, JAtn xn − x0〉 ≤ 0 .

Using Lemma 1.4 again, we conclude that x0 ∈ D(A), z∗0 ∈ Ax0 and 〈Atnxn, JAtn xn〉 →
〈z∗0, x0〉 as n → ∞. Thus, (4) implies

lim sup
n→∞

〈u∗
n + v∗

n, xn − x0〉 ≤ 0 .

From Lemma 1.4, we obtain x0 ∈ D(T )∩K , u∗
0 + v∗

0 ∈ (∂IK + T )(x0) and 〈u∗
n + v∗

n, xn〉 →
〈u∗

0 + v∗
0 , x0〉 as n → ∞. Consequently, x0 ∈ D(A) ∩D(T ) ∩K and

lim sup
n→∞

〈w∗
n, xn − x0〉 = 0 .

Since S is pseudomonotone, for every x ∈ K there exists y∗(x) ∈ Sx0 such that

〈y∗(x), x0 − x〉 ≤ lim inf
n→∞ 〈w∗

n, xn − x〉 = −〈u∗
0 + v∗

0 + z∗0 − f ∗, x0 − x〉 ,
where the equality follows from (4). Thus, for every x ∈ K there exists y∗(x) ∈ Sx0 such
that

〈y∗(x)+ u∗
0 + v∗

0 + z∗0 − f ∗, x − x0〉 ≥ 0 .

Following the proof of Theorem 2.3, we see that there exists a unique y∗
0 ∈ Sx0 such that

〈y∗
0 + u∗

0 + v∗
0 + z∗0 − f ∗, x − x0〉 ≥ 0

for all x ∈ K. Using the definition of ∂IK and ∂φ, since u∗
0 ∈ ∂IK(x0) and z∗0 ∈ ∂φ(x0), we

see that 〈u∗
0, x0 − x〉 ≥ 0 for all x ∈ K , and 〈z∗0, x0 − x〉 ≥ φ(x0)− φ(x) for all x ∈ X. As a

consequence, we get
〈v∗

0 + y∗
0 − f ∗, x − x0〉 ≥ 〈u∗

0 + z∗0, x0 − x〉
≥ φ(x0)− φ(x)

for all x ∈ K. Since D(∂φ) ⊂ D(φ), it follows that x0 ∈ D(T ) ∩D(φ) ∩K. Therefore, the
problem VIP(T + S,K, φ, f ∗) is solvable in D(T ) ∩D(φ) ∩K.

(ii) Suppose that (ii) holds. Since K ∩ G is a nonempty, closed, convex and bounded
subset of X, using K ∩G in place of K in the argument of (i), we conclude that the problem
VIP(T +S,K ∩G,φ, f ∗) is solvable inD(T )∩D(φ)∩K ∩G. Since the problem VIP(T +
S,K ∩G,φ, f ) has no solution in D(T ) ∩D(φ) ∩K ∩ ∂G, we use Lemma 2.2 to conclude
that VIP(T + S,K, φ, f ∗) is solvable in D(T ) ∩D(φ) ∩K ∩G. �



VARIATIONAL INEQUALITIES 185

We remark that Theorem 2.5 extends the result of Kenmochi [14, Theorem 4.1, p. 254] to
the effect that we consider the operator T + S instead of the single pseudomonotone operator
S.

In the following corollary we use a coercivity-type condition involving the operator T+S
and the function φ.

COROLLARY 2.6. Let K be a nonempty, closed and convex subset of X with 0 ∈ K̊.

Let T : X ⊇ D(T ) → 2X
∗

be strongly quasibounded maximal monotone with 0 ∈ D(T ) and
S : K → 2X

∗
bounded pseudomonotone. Let φ : X → (−∞,∞] be proper, convex lower

semicontinuous with 0 ∈ D(φ) and there exists a real number k > 0 such that φ(x) ≥ −k for
all x ∈ X. Assume, further, that there exists u0 ∈ K with φ(u0) < ∞ satisfying

inf
v∗∈T x,w∗∈Sx, x∈D(T )∩K

〈v∗ +w∗, x − u0〉 + φ(x)

‖x‖ → ∞ as ‖x‖ → ∞ .

Then for every f ∗ ∈ X∗, the problem VIP(T +S,K, φ, f ∗) is solvable inD(T )∩D(φ)∩K.
PROOF. Since φ(u0) < ∞, for every f ∗ ∈ X∗ there exists R = R(f ∗) > 0, which can

be chosen so that u0 ∈ BR(0), such that

〈v∗ +w∗ − f ∗, x − u0〉 + φ(x) > φ(u0)

for all x ∈ D(T ) ∩ K ∩ ∂BR(0). This is equivalent to saying that the problem VIP(T +
S,K ∩ BR(0), φ, f ∗) has no solution in D(T ) ∩ D(φ) ∩ K ∩ ∂BR(0). On the other hand,
using the closed, convex and bounded set K ∩ BR(0) and applying (i) of Theorem 2.5, we
see that VIP(T + S,K ∩BR(0), φ, f ∗) is solvable in D(T )∩K ∩BR(0), which implies that
VIP(T + S,K ∩ BR(0), φ, f ∗) is solvable in D(T ) ∩K ∩ BR(0). Applying Lemma 2.2, we
conclude that VIP(T + S,K, φ, f ∗) is solvable in D(T ) ∩K ∩ BR(0). �

The following theorem gives a new existence result for the solvability of the problem
VIP(T + S + P,K, f ∗) and the inclusion problem T x + Sx + Px � f ∗, where both T and
S are maximal monotone and P is bounded pseudomonotone.

THEOREM 2.7. Let K be nonempty, closed and convex subset of X with 0 ∈ K̊. Let
T : X ⊇ D(T ) → 2X

∗
be maximal monotone and such that there exists k1 > 0 with

〈u∗, x〉 ≥ −k1 for all x ∈ D(T ) and u∗ ∈ T x. Let S : X ⊇ D(S) → 2X
∗

be strongly
quasibounded maximal monotone with 0 ∈ S(0) . Suppose that P : K → 2X

∗
is bounded

pseudomonotone. Assume, further, that there exist R > 0, u0 ∈ D(T ) ∩D(S) ∩K ∩ BR(0)
and k2 > 2R|T u0| such that

〈w∗ + z∗ − f ∗, x − u0〉 ≥ k2

for all x ∈ D(T )∩D(S) ∩K ∩ ∂BR(0), w∗ ∈ Sx and z∗ ∈ Px. Then the following are true.
(i) The problem VIP(T + S + P,K, f ∗) is solvable in D(T ) ∩D(S) ∩K ∩ BR(0).

(ii) IfK = X, the inclusion T x + Sx+Px � f ∗ is solvable inD(T )∩D(S)∩BR(0).
PROOF. We first prove (i). Let ∂IK : K → 2X

∗
be the subdifferential of the indicator

function on K. It is well-known that D(∂IK) = K and ∂IK(x) = {0} for all x ∈ K̊. Since
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0 ∈ K̊ , we have 0 ∈ ∂IK(0) and ∂IK is strongly quasibounded and maximal monotone.
Let Tt be the Yosida approximant of T . Since u0 ∈ D(T ), we have ‖Ttu0‖ ≤ |T u0|, where
|T u0| = inf{‖x∗‖; x∗ ∈ T u0} for all t > 0. Thus, for every t > 0, Tt + P is bounded,
pseudomonotone and such that

〈w∗ + z∗ + Ttx − f ∗, x − u0〉 = 〈w∗ + z∗ + Ttx − Ttu0 + Ttu0 − f ∗, x − u0〉
≥ k2 − |T u0|‖x − u0‖
≥ k2 − 2R|T u0| > 0

for all x ∈ D(S) ∩ K ∩ ∂BR(0), w∗ ∈ Sx and z∗ ∈ Px. Since u0 ∈ K ∩ BR(0), it follows
that VIP(P + Tt + S,K ∩ BR(0), f ∗) has no solution in D(S) ∩K ∩ ∂BR(0). Since Tt + P

is bounded and pseudomonotone, we use Theorem 2.3 with the operators S and Tt + P to
conclude that VIP(S + Tt + P,K, f ∗) is solvable in D(S) ∩ K ∩ BR(0). Thus, for every
tn ↓ 0+, there exist xn ∈ D(S) ∩ K ∩ BR(0), v∗

n ∈ ∂IK(xn), w∗
n ∈ Sxn and z∗n ∈ Pxn such

that

(6) v∗
n +w∗

n + z∗n + Ttnxn = f ∗

for all n. Since {xn} and P are bounded, we see that the sequence {z∗n} is bounded. Next, since
0 ∈ K , we get from the definition of ∂IK that 〈v∗

n, xn〉 ≥ 0 for all n. Thus, using (6), we
obtain

〈w∗
n, xn〉 ≤ −〈z∗n − f ∗, xn〉 − 〈Ttnxn, xn − Jtnxn〉 − 〈Ttnxn, Jtnxn〉 − 〈v∗

n, xn〉
≤ (‖z∗n‖ + ‖f ∗‖)‖xn‖ − 〈Ttnxn, tnJ−1(Ttnxn)〉 + k1

= (‖z∗n‖ + ‖f ∗‖)‖xn‖ − tn‖Ttnxn‖2 + k1 ≤ M ,

whereM is an upper bound for the sequence {(‖z∗n‖+‖f ∗‖)‖xn‖+k1}. Therefore, the strong
quasiboundedness of S implies the boundedness of the sequence {w∗

n}. Similarly, we get

〈v∗
n, xn〉 ≤ −〈Ttnxn, xn − Jtnxn〉 − 〈Ttnxn, Jtnxn〉

+(‖w∗
n‖ + ‖z∗n‖ + ‖f ∗‖)‖xn‖

≤ k1 + (‖w∗
n‖ + ‖z∗n‖ + ‖f ∗‖)‖xn‖ ≤ N ,

where N is an upper bound for the sequence {k1 + (‖w∗
n‖ + ‖z∗n‖ + ‖f ∗‖)‖xn‖}. Using the

strong quasiboundedness of ∂IK , it follows that the sequence {v∗
n} is bounded, which implies

in turn the boundedness of the sequence {Ttnxn}. Assume that xn ⇀ x0, v∗
n ⇀ v∗

0 , w∗
n ⇀ w∗

0,
z∗n ⇀ z∗0 and Ttnxn ⇀ u∗

0 as n → ∞. Since K is closed and convex, it is weakly closed and
hence x0 ∈ K. Since P is pseudomonotone and S and ∂IK are monotone, we have

lim inf
n→∞ 〈w∗

n, xn − x0〉 ≥ 0, lim inf
n→∞ 〈v∗

n, xn − x0〉 ≥ 0 and lim inf
n→∞ 〈z∗n, xn − x0〉 ≥ 0 .

Thus, we obtain

lim sup
n→∞

〈Ttnxn, xn − x0〉 ≤ 0 .

Using the maximality of T and Lemma 1.4, we conclude that x0 ∈ D(T ), u∗
0 ∈ T x0 and

〈Ttnxn, xn〉 → 〈u∗
0, x0〉 as n → ∞. Similarly, we see that x0 ∈ D(S)∩K , v∗

0 +w∗
0 ∈ (∂IK +
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S)x0 and 〈v∗
n +w∗

n, xn〉 → 〈v∗
0 + w∗

0, x0〉 as n → ∞. Finally, by the pseudomonotonicity of
P , for every x ∈ K there exists y∗(x) ∈ Sx0 such that

〈y∗(x)+w∗
0 + u∗

0 − f ∗, x − x0〉 ≥ 0 .

As in the argument of the last part of the proof of Theorem 2.3, there exists y∗
0 ∈ Sx0 such

that

〈y∗
0 + w∗

0 + u∗
0 − f ∗, x − x0〉 ≥ 0

for all x ∈ K. This shows that the problem VIP(T + S + P,K, f ∗) is solvable in D(T ) ∩
D(S) ∩K. The proof of (i) is complete.

(ii) Using (i) withK = X, we see that the inequality VIP(T +S+P,X, f ∗) is solvable
in D(T ) ∩D(S) ∩ BR(0). Using the definition of the solvability of a variational inequality, it
is easy to see that the inclusion

T x + Sx + Px � f ∗

is solvable in D(T ) ∩D(S) ∩ BR(0). The proof is complete. �

As an application of Theorem 2.7, the following corollary gives a maximality criterion
for the sum of two maximal monotone operators. Basic maximality criteria can be found in
Browder and Hess [1] and Rockaffelar [37].

COROLLARY 2.8. Let T : X ⊇ D(T ) → 2X
∗

be maximal monotone and such that
there exists k1 > 0 satisfying 〈u∗, x〉 ≥ −k1 for all x ∈ D(T ) and u∗ ∈ T x. Let S :
X ⊇ D(S) → 2X

∗
be strongly quasibounded maximal monotone with 0 ∈ S(0) such that

D(T ) ∩D(S) �= ∅. Then T + S is maximal monotone.

PROOF. Choose u0 ∈ D(T )∩D(S). Choose r > 0 such that u0 ∈ D(T )∩D(S)∩Br (0).
Then, for w∗

0 ∈ Su0, using the monotonicity of J and S, we have

〈w∗ + Jx − f ∗, x − u0〉 ≥ 〈w∗
0 + Jx − f ∗, x − u0〉

≥ ‖x‖2 − ‖u0‖‖x‖
−(‖w∗

0‖ + ‖f ∗‖)‖x − u0‖ → ∞ as ‖x‖ → ∞ .

Therefore, for any k2 > 0, there exists R1 > 0 such that

〈w∗ + Jx − f ∗, x − u0〉 > k2

for all ‖x‖ ≥ R1, w∗ ∈ Sx. We choose R = max{r, R1} so that u0 ∈ D(T ) ∩D(S) ∩ BR(0)
and

〈w∗ + Jx − f ∗, x − u0〉 > k2

for all x ∈ D(S) ∩ ∂BR(0) and w∗ ∈ Sx. Using J in place of P in (ii) of Theorem 2.7, we
conclude that the inclusion T x + Sx + Jx � f ∗ is solvable in D(T ) ∩D(S) ∩ BR(0). Since
f ∗ ∈ X∗ is arbitrary, it follows that R(T + S + J ) = X∗. This complete the maximality of
T + S. �
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3. Variational inequalities for generalized pseudomonotone perturbations. In
this section we give some results about the solvability of variational inequalities involving
perturbations which are generalized pseudomonotone operators. Browder and Hess [1, Propo-
sition 4, p. 258] showed that a bounded generalized pseudomonotone operator S is pseu-
domonotone if D(S) = X. However, this fact is unknown if D(S) �= X. Because of this, we
study the solvability of variational inequality problems separately for bounded pseudomono-
tone and bounded generalized pseudomonotone perturbations. A range result for single multi-
valued, densely defined, quasibounded, finitely continuous generalized pseudomonotone op-
erator may be found in Browder and Hess [1, Theorem 5, p. 273]. Furthermore, range results
for quasibounded, finitely continuous, generalized pseudomonotone perturbations S of maxi-
mal monotone operators, with S either densely defined orD(S) = X, under weaker coercivity
assumptions on T + S, may be found in Guan, Kartsatos and Skrypnik [26] and Guan and
Kartsatos [27], respectively. Variational inequality results of the type VIP(T + S,K, f ∗),
where T is maximal monotone with D(T ) = X, S is bounded, finitely continuous and gen-
eralized pseudomonotone with D(S) = K (with K closed and convex with 0 ∈ K) may be
found in Zhou [29].

We now give the following existence result concerning the solvability of a variational
inequality involving finitely continuous generalized pseudomonotone perturbations of a max-
imal monotone operator with D(T ) not necessarily all of X.

THEOREM 3.1. Let K be a nonempty, closed and convex subset of X with 0 ∈ K̊. Let
T : X ⊇ D(T ) → 2X

∗
be strongly quasibounded maximal monotone with 0 ∈ T (0) and

S : K → 2X
∗

finitely continuous generalized pseudomonotone such that there exists k > 0
satisfying 〈w∗, x〉 ≥ −k for all x ∈ K and w∗ ∈ Sx. Fix f ∗ ∈ X∗.

(i) If K is bounded, then the problem VIP(T + S,K, f ∗) is solvable in D(T ) ∩K.
(ii) If K is unbounded and there exists an open, bounded and convex subset G of X

with 0 ∈ G such that the problem VIP(T + S,K ∩ G,f ∗) has no solution in
D(T )∩K∩∂G, then the problem VIP(T +S,K, f ∗) is solvable inD(T )∩K∩G.

Furthermore, if either the hypothesis of (i) or (ii) holds and the inclusion T x +
Sx � f ∗ has no solution in D(T ) ∩ ∂K , then the inclusion T x + Sx � f ∗ is
solvable in D(T ) ∩ K̊.

PROOF. (i) Assume thatK is bounded. For each t > 0, let Tt be the Yosida approximant
of T . It is known that Tt is bounded, continuous and maximal monotone with domain all of
X. We follow in part Browder and Hess [1, Theorem 15, p. 289] who considered a single
multivalued pseudomonotone operator.

Let Λ be the collection of all finite dimensional subspaces of X. For each F ∈ Λ, let
jF : F → X be the inclusion mapping and j∗

F : X∗ → F ∗ the dual projection mapping of
X∗ onto F ∗. Let KF := K ∩ F. Since K is bounded,KF is a compact subset of F for every
F ∈ Λ. Since S is pseudomonotone, −(j∗

F (Tt + S)) is upper semicontinuous with nonempty,
closed, convex and bounded values in X∗. Thus, the operator j∗

F (Tt + S)jF : KF → F ∗ is
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upper semicontinuous. Using Lemma 1.7, there exist xF ∈ KF and w∗
F ∈ SxF such that

〈j∗
F (TtxF +w∗

F − f ∗), x − xF 〉 ≥ 0

for all x ∈ KF , which is equivalent to saying that

〈TtxF +w∗
F , x − xF 〉 ≥ 〈f ∗, x − xF 〉

for all x ∈ KF . Since K is closed convex and bounded, the family {xF }F∈Λ is uniformly
bounded and K is a weakly compact subset of X. For each F ∈ Λ, we define

VF :=
⋃
F⊂F ′

{xF ′ } .

We observe that, for every F , VF
w

is a weakly closed subset of the weakly compact subsetK.
Furthermore, the family {VFw} satisfies the finite intersection property. Therefore, we have

V :=
⋂
F∈Λ

VF
w �= ∅ .

Fix x ∈ K and choose x0 ∈ V and a subspace F0 of X such that x0, x ∈ F0. Using Lemma
1.9, we choose a sequence {xn} in VF0 such that xn ⇀ x0 as n → ∞. By the definition of VF0 ,
for every n we choose Fn such that F0 ⊆ Fn and xn ∈ KFn. Since K is closed and convex, it
is weakly closed and hence x0 ∈ K. From the definition of xn, it follows that

〈Ttxn +w∗
n, u− xn〉 ≥ 〈f ∗, u− xn〉

for all u ∈ KFn for some w∗
n ∈ Sxn, where KFn = K ∩ Fn. From the definition of VF0 , we

have x ∈ KFn for all n, which implies

〈Ttxn +w∗
n, x − xn〉 ≥ 〈f ∗, x − xn〉

for all n and all x ∈ K. Using the definition of ∂IK , there exists u∗
n ∈ ∂IK(xn) such that

u∗
n + Ttxn +w∗

n = f ∗

for all n.
Next, we show that x0 ∈ K is a solution of the problem VIP(Tt + S,K, f ∗). Since {xn}

is bounded and Tt is bounded, it follows that {Ttxn} is bounded. Since 〈w∗
n, xn〉 ≥ −k for all

n, we use the monotonicity of Tt and Tt (0) = 0 to obtain 〈u∗
n, xn〉 ≤ k + ‖f ∗‖‖xn‖ ≤ C

for all n, where C is an appropriate upper bound. Since 0 ∈ K̊ and D(∂IK) = K , ∂IK is
strongly quasibounded maximal monotone. As a result, {u∗

n} is bounded, which implies the
boundedness of {w∗

n}. Assume, by passing to a subsequence if necessary, that w∗
n ⇀ w∗

0 and
Ttxn ⇀ u∗

0 as n → ∞. Since S is generalized pseudomonotone, we see from Definition 1.2
that

lim inf
n→∞ 〈w∗

n, xn − x0〉 ≥ 0 .

Thus,

lim sup
n→∞

〈Ttxn, xn − x0〉 ≤ 0 .
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The maximal monotonicity of Tt along with Lemma 1.4 implies u∗
0 = Ttx0 and 〈Ttxn, xn〉 →

〈Ttx0, x0〉 as n → ∞. Consequently, we have

lim sup
n→∞

〈w∗
n, xn − x0〉 ≤ 0 .

Since S is generalized pseudomonotone, it follows that w∗
0 ∈ Sx0 and 〈w∗

n, xn〉 → 〈w∗
0 , x0〉

as n → ∞. Letting n → ∞ in the last inequality above involving Ttxn, we obtain

〈Ttx0 + w∗
0, x − x0〉 ≥ 〈f ∗, x − x0〉

for all x ∈ K. Thus, the problem VIP(Tt + S,K, f ∗) is solvable in K.
Thus, for every tn ↓ 0+, the problem VIP(Ttn + S,K, f ∗) is solvable in K , i.e., there

exists yn ∈ K , w∗
n ∈ Syn and v∗

n ∈ ∂IK(yn) such that

(7) v∗
n + Ttnyn +w∗

n = f ∗

for all n. It is well known that D(∂IK) = K . Since 0 ∈ K̊ , the mapping ∂IK is strongly
quasibounded maximal monotone from K into X∗. Since 0 ∈ T (0), we have Ttn(0) = 0 and
the assumption 0 ∈ K implies 〈v∗

n, yn〉 ≥ 0 for all n. Therefore, using (7), we see that

〈v∗
n, yn〉 ≤ k + ‖f ∗‖‖yn‖ ≤ Q

for all n, where Q is an upper bound for the sequence {k + ‖f ‖‖xn‖}. The boundedness of
the sequence {v∗

n} follows from the strong quasiboundedness of ∂IK. In addition, using (7),
we get

〈Ttnyn, yn〉 ≤ Q

for all n, where Q is as above. Thus, the boundedness of the sequence {Ttnyn} follows from
Lemma 1.6. As a result, the sequence {w∗

n} is bounded. Assume without loss of generality
that yn ⇀ y0 ∈ K , v∗

n ⇀ v∗
0 and Ttnyn ⇀ z∗0 as n → ∞. Using the monotonicities of Ttn and

∂IK , we see that

lim sup
n→∞

〈
w∗
n, yn − y0

〉 ≤ 0 .

Since S is generalized pseudomonotone, we have w∗
0 ∈ Sy0 and 〈w∗

n, yn〉 → 〈w∗
0 , y0〉 as

n → ∞. Using this and the monotonicity of ∂IK , we get

lim inf
n→∞ 〈v∗

n +w∗
n, yn − y0〉 ≥ 0 ,

which implies

lim sup
n→∞

〈Ttnyn, yn − y0〉 ≤ 0 .

Let Jtn be the Yosida resolvent of T . We know that Jtnyn = yn − tnJ
−1(Ttnyn), Jtnyn ∈

D(T ) and Ttnyn ∈ T (Jtnyn) for all n. Since {Ttnyn} is bounded, tn ↓ 0+ as n → ∞ and
yn ⇀ y0, it follows that Jtnyn ⇀ y0 as n → ∞. Consequently, (7) implies

lim sup
n→∞

〈Ttnyn, Jtnyn − y0〉 ≤ 0 .
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The maximality of T and Lemma 1.4 imply y0 ∈ D(T ), z∗0 ∈ Ty0 and 〈Ttnyn, Jtnyn〉 →
〈z∗0, y0〉 as n → ∞. Applying a similar argument for the mapping ∂IK , we see that v0 ∈ ∂IK .
Finally, taking the limit as n → ∞ in (7), we conclude that

v∗
0 + z∗0 +w∗

0 = f ∗ .

Therefore, the problem VIP(T + S,K, f ∗) is solvable in D(T ) ∩K.
(ii) Suppose that the hypothesis in (ii) holds. Using the closed, convex and bounded set

K ∩G instead ofK in (i), we obtain the solvability of the problem VIP(T +S,K ∩G,f ∗) in
D(T )∩K∩G. Since the problem VIP(T+S,K∩G,f ∗) has no solution inD(T )∩K∩∂G, we
may use Lemma 2.2 to conclude that the problem VIP(T +S,K, f ∗) is solvable inD(T )∩K.

It is known that the solvability of the problem VIP(T + S,K, f ∗) is equivalent to the
solvability of the inclusion ∂IK(x) + T x + Sx � f ∗ in D(T ) ∩ K. Therefore, if either the
hypothesis of (i) or (ii) holds and the inclusion ∂IK(x) + T x + Sx � f ∗ has no solution in
D(T )∩ ∂K , then the solution lies inD(T )∩ K̊. Since ∂IK(x) = {0} for all x ∈ K̊ , we obtain
the solvability of the inclusion T x + Sx � f ∗ in D(T ) ∩ K̊. �

We note that if K = BR(0) and T and S are as in Theorem 3.1, part (i) of Theorem 3.1
implies that VIP(T + S,K, f ∗) is solvable in D(T )∩K. This is equivalent to saying that the
inclusion

∂IK(x)+ T x + Sx � f ∗

is solvable in D(T ) ∩ K. Thus, the inclusion T x + Sx � f ∗ is solvable in D(T ) ∩ BR(0)
provided that the inclusion in the above display has no solution in D(T ) ∩ ∂K , which is
equivalent to saying that T x + Sx + λJx � f ∗ has no solution in D(T ) ∩ ∂BR(0) for any
λ ≥ 0. This is because the subdifferential ∂IK(x) is now given by

∂IK(x) =
⎧⎨
⎩

{0} if x ∈ BR(0),
{λJx : λ ≥ 0} if x ∈ ∂BR(0),
∅ if x ∈ X\BR(0).

Let Γβ denote the set of all functions β : R+ → R+ such that β(t) → 0 as t → ∞. A
range result for densely defined quasibounded, finitely continuous generalized pseudomono-
tone perturbation of maximal monotone operator may be found in Guan, Kartsatos and Skryp-
nik [26]. A new variational inequality result in the spirit of [26], is given below.

THEOREM 3.2. Let K be a nonempty, closed and convex subset of X with 0 ∈ K̊.

Let T : X ⊇ D(T ) → 2X
∗

be strongly quasibounded maximal monotone with 0 ∈ T (0)
and S : K → 2X

∗
finitely continuous generalized pseudomonotone. Fix f ∗ ∈ X∗. Assume,

further, the following conditions hold.
(i) There exists a strictly increasing continuous function ψ : [0,∞) → [0,∞) with

ψ(0) = 0 and ψ(t) → ∞ as t → ∞ satisfying 〈w∗, x〉 ≥ −ψ(‖x‖), x ∈ K and
w∗ ∈ Sx;

(ii) There exist R > 0, u0 ∈ K and β ∈ Γβ such that

〈v∗ +w∗ − (f ∗ + g∗), x − u0〉 ≥ −β(‖x‖)‖x‖



192 T. ASFAW AND A. KARTSATOS

for all g∗ ∈ X∗ with ‖g∗‖ ≤ R, x ∈ D(T ) ∩K , v∗ ∈ T x and w∗ ∈ Sx.
Then the problem VIP(T + S,K, f ∗) is solvable in D(T ) ∩K.

PROOF. Fix f ∗ ∈ X∗ and suppose thatK is bounded, i.e., for some r > 0, K ⊆ Br(0).
Since ψ is strictly increasing, it follows that ψ(‖x‖) ≤ ψ(r) for all x ∈ K. As a result, we
see that 〈w∗, x〉 ≥ −ψ(r) = −kr for all x ∈ K and w∗ ∈ Sx. Applying (i) of Theorem
3.1, we obtain the solvability of the problem VIP(T + S,K, f ∗) in D(T ) ∩K. Assume K is
unbounded. Let Jψ be the duality mapping corresponding to the function ψ. For every ε > 0
and x �= 0 we have

〈v∗ +w∗ + εJψx − f ∗, x〉 ≥ ψ(‖x‖)‖x‖
(
ε − 1

‖x‖ − ‖f ∗‖
ψ(‖x‖)

)
→ ∞ as ‖x‖ → ∞

for all v∗ ∈ T x, w∗ ∈ Sx. Consequently, there exists Rε = R(ε) > 0 such that

(8) 〈z∗ +w∗ + εJψx − f ∗, x〉 > 0

for all x ∈ D(T )∩K∩∂BRε (0), z∗ ∈ T x. SinceK∩BRε (0) is bounded and S+Jψ is finitely
continuous generalized pseudomonotone, we may apply (i) of Theorem 3.1 to conclude that
the problem VIP(T + S + εJψ ,K ∩ BRε (0), f ∗) is solvable in D(T ) ∩ K ∩ BRε (0). Since
0 ∈ K ∩ BRε (0), (8) implies that the problem VIP(T + S + εJψ ,K ∩ BRε (0), f ∗) has no
solution in D(T ) ∩ K ∩ ∂BRε (0), i.e., the problem VIP(T + S + εJψ,K ∩ BRε (0), f

∗)
is solvable in D(T ) ∩ K ∩ BRε (0). Thus, using Lemma 2.2, we get the solvability of the
problem VIP(T + S + εJψ,K, f

∗) in D(T ) ∩ K ∩ BRε (0), i.e., for εn ↓ 0+ there exist
xn ∈ D(T ) ∩K ∩ BRεn (0), w∗

n ∈ Sxn, and z∗n ∈ T xn such that

(9) 〈z∗n +w∗
n + εnJψxn − f ∗, x − xn〉 ≥ 0

for all x ∈ K and all n. Equivalently, there exists v∗
n ∈ ∂IK(xn) such that

(10) v∗
n + z∗n +w∗

n + εnJψxn = f ∗

for all n. Since u0 ∈ K , we obtain from (9)

−β(‖xn‖)‖xn‖ ≤ 〈z∗n +w∗
n − f ∗ − g∗, xn − u0〉

≤ −εnψ(‖xn‖)(‖xn‖ − ‖u0‖)− 〈g∗, xn − u0〉 .
If the sequence {xn} is unbounded, then ‖xn‖ ≥ ‖u0‖ for all large n and

〈g∗, xn〉 ≤ 〈g∗, u0〉 + β(‖xn‖)‖xn‖
for all large n. Therefore, by Lemma 1.8, the sequence {xn} is bounded. Since 0 ∈ T (0), we
have 〈w∗

n, xn〉 ≥ −ψ(‖xn‖) and the boundedness of {v∗
n} follows from (10). Using a similar

argument, the boundedness of the sequence {z∗n} follows from the fact that T is strongly qua-
sibounded. Consequently, we have the boundedness of the sequence {w∗

n}. Assume without
loss of generality that xn ⇀ x0 ∈ K , v∗

n ⇀ v∗
0 , w∗

n ⇀ w∗
0 and z∗n ⇀ z∗0 as n → ∞. Since S

is generalized pseudomonotone, it is easy to see that

lim inf
n→∞ 〈w∗

n, xn − x0〉 ≥ 0 ,
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which implies

lim sup
n→∞

〈v∗
n + z∗n, xn − x0〉 ≤ 0 .

Since 0 ∈ K̊ ∩ D(T ), we see that ∂IK + T is maximal monotone. Thus, by Lemma 1.4, we
have x0 ∈ D(T )∩K , v∗

0 +z∗0 ∈ (∂IK +T )(x0) and 〈v∗
n+z∗n, xn〉 → 〈v∗

0 +z∗0, x0〉 as n → ∞.

Consequently, (10) implies

lim
n→∞ 〈w∗

n, xn − x0〉 = 0 .

The generalized pseudomonotonicity of S implies that w∗
0 ∈ Sx0 and 〈w∗

n, xn〉 → 〈w∗
0 , x0〉

as n → ∞. Finally, taking the limit as n → ∞ in (10), we conclude that the problem
VIP(T + S,K, f ∗) is solvable in D(T ) ∩K. �

Zhou [29] proved a version of Theorem 3.2 withD(T ) = X using the fact that T+S+εJ
is of type (S+) with S bounded. We remark that Theorem 3.2 improves the result of Zhou
[29] in that the maximal monotone operator T may now be just strongly quasibounded with
D(T ) �= X.

4. Variational inequalities for unbounded generalized pseudomonotone perturba-
tions. Kenmochi [14] introduced the definition of multivalued operators of type (pm4) as
follows.

DEFINITION 4.1. An operator S : X → 2X
∗

is said to satisfy “Condition (pm4)” if
for every x ∈ X and every bounded subset B of X there exists a numberN(B, x) such that

〈y∗, y − x〉 ≥ N(B, x)

for all (y, y∗) ∈ G(S) with y ∈ B.
Kenmochi [14] showed that an operator S with D(S) = X which satisfies (i) and (iii)

of Definition 1.1 and Condition (pm4) satisfies also (ii) of Definition 1.1, which implies that
S is pseudomonotone. Furthermore, he gave various surjectivity results for perturbations of
nonlinear maximal monotone operators.

In this section we give an existence result for the problem VIP(T + S,K, f ∗), where
T is maximal monotone and S is finitely continuous generalized pseudomonotone, possibly
unbounded, withD(S) = X satisfying condition (pm4). The following uniform boundedness
result is important for our consideration.

LEMMA 4.2. Assume that S : X → 2X
∗

satisfies Condition (pm4). Let {xn} ⊂ X be
bounded and w∗

n ∈ Sxn be such that, for some y0 ∈ X, the condition

lim sup
n→∞

〈w∗
n, xn − y0〉 < +∞

is satisfied. Then the sequence {w∗
n} is bounded in X∗.

PROOF. Assume that there exists a real numberM such that

lim sup
n→∞

〈w∗
n, xn − y0〉 ≤ M .



194 T. ASFAW AND A. KARTSATOS

Since {xn} is bounded, there exists R > 0 such that xn ∈ BR(0) := B for all n. Using
condition (pm4), we see that for every x ∈ X there exists N(B, x) such that

〈w∗
n, xn − x〉 ≥ N(B, x)

for all n. Next, for every x ∈ X we have

〈w∗
n, y0 − x〉 = 〈w∗

n, xn − x〉 − 〈w∗
n, xn − y0〉

for all n, and hence

lim inf
n→∞ 〈w∗

n, y0 − x〉 ≥ N(B, x)−M .

Given x ∈ X and letting y0 − x in place of x above, we know that there exists a number
N(B, y0 − x) such that

lim inf
n→∞ 〈w∗

n, x〉 ≥ N(B, y0 − x)−M .

Letting −x in place of x, there exists a number N(B, y0 + x) such that

lim sup
n→∞

〈w∗
n, x〉 ≤ −N(B, y0 + x)+M .

Therefore, for every x ∈ X the sequence {〈w∗
n, x〉} is bounded. By the uniform boundedness

principle, it follows that {w∗
n} is bounded. �

We give the following result for possibly unbounded generalized pseudomonotone per-
turbations.

THEOREM 4.3. Let K be a nonempty, closed and convex subset of X with 0 ∈ K̊. Let
T : X ⊇ D(T ) → 2X

∗
be maximal monotone with 0 ∈ T (0). Assume that S : X → 2X

∗
is

finitely continuous generalized pseudomonotone which satisfies Condition (pm4). Fix f ∗ ∈
X∗.

(i) If K is bounded, then the problem VIP(T + S,K, f ∗) is solvable in D(T ) ∩K.
(ii) If K is unbounded and there exists a bounded open and convex subset G of X

with 0 ∈ G such that the problem VIP(T + S,K ∩ G,f ∗) has no solution in
D(T )∩K∩∂G, then the problem VIP(T +S,K, f ∗) is solvable inD(T )∩K∩G.

(iii) Suppose that G is a bounded, open and convex subset of X with 0 ∈ G and there
exists u0 ∈ G such that

〈v∗ +w∗ − f ∗, x − u0〉 > 0

for all x ∈ D(T ) ∩ ∂G, v∗ ∈ T x and w∗ ∈ Sx. Then the inclusion T x + Sx � f ∗
is solvable in D(T ) ∩G.

(iv) Suppose that either K is bounded or the hypothesis in (ii) holds. If the inclusion

∂IK(x)+ T x + Sx � f ∗

has no solution in D(T ) ∩ ∂K , then the inclusion T x + Sx � f ∗ is solvable in
D(T ) ∩ K̊.
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PROOF. (i) LetK be bounded. Since Tt + S is finitely continuous, we follow the finite
dimensional argument used in the proof of (i) of Theorem 3.1 to conclude that there exist
xn ∈ K , w∗

n ∈ Sxn and v∗
n ∈ ∂IK(xn) such that

(11) v∗
n + Ttnxn +w∗

n = f ∗

for all n. Note that the above conclusion requires only the finite continuity of Tt + S for each
t > 0 and the generalized pseudomonotonicity of S. Since 0 ∈ T (0), it follows that Ttn(0) = 0
for all n. Since 0 ∈ K, we have 〈v∗

n, xn〉 ≥ 0 for all n and

lim sup
n→∞

〈w∗
n, xn〉 ≤ N ,

where N is an upper bound for the sequence {‖f ∗‖‖xn‖}. Applying Lemma 4.2 with y0 =
0, we conclude that the sequence {w∗

n} is bounded. Furthermore, we see that 〈v∗
n, xn〉 ≤

M where M is upper bound for the sequence {(‖w∗
n‖ + ‖f ∗‖)‖xn‖}. Since ∂IK is strongly

quasibounded, the sequence {v∗
n} is bounded, and hence the sequence {Ttnxn} is bounded.

Assume there exist subsequences, denoted again by {xn}, {w∗
n} and {Ttnxn}, respectively, such

that xn ⇀ x0 ∈ K , w∗
n ⇀ w∗

0 , v∗
n ⇀ v∗

0 and Ttnxn ⇀ z∗0 as n → ∞. Since S is generalized
pseudomonotone and ∂IK is monotone, we have

lim inf
n→∞ 〈w∗

n, xn − x0〉 ≥ 0 and lim inf
n→∞ 〈v∗

n, xn − x0〉 ≥ 0 .

Let Jtn be the Yosida resolvent of T .We know that Jtnxn ∈ D(T ), Jtnxn = xn− tnJ−1(Ttnxn)

and xn − Jtnxn → 0 and Jtnxn ⇀ x0 as n → ∞. From this we obtain

lim sup
n→∞

〈Ttnxn, Jtnxn − x0〉 ≤ 0 .

Using Lemma 1.4, we get x0 ∈ D(T ), v0 ∈ T x0 and 〈Ttnxn, xn〉 → 〈z∗0, x0〉 as n → ∞. On
the other hand, we have

lim sup
n→∞

〈w∗
n, xn − x0〉 ≤ 0 .

Since S is generalized pseudomonotone, w∗
0 ∈ Sx0 and 〈w∗

n, xn〉 → 〈w∗
0 , x0〉 as n → ∞.

Following a similar argument and Lemma 1.4, we see that the maximality of ∂IK implies
v∗

0 ∈ ∂IK(x0). Finally, taking the limit as n → ∞ in (11), we obtain

v∗
0 + z∗0 +w∗

0 = f ∗ .

This shows that the problem VIP(T + S,K, f ∗) is solvable in D(T ) ∩K.
(ii) Suppose (ii) holds. The conclusion follows via Lemma 2.2.
(iii) Using the hypothesis in (iii), we see that the problem VIP(T + S,G, f ∗) has no

solution inD(T )∩∂G. Then, by using (ii),X instead ofK , we obtain that VIP(T +S,X, f ∗)
is solvable in D(T ) ∩ G, i.e., there exists x0 ∈ D(T ) ∩ G, v∗

0 ∈ T x0 and w∗
0 ∈ Sx0 such

that 〈u∗
0 + w∗

0 − f ∗, x − x0〉 ≥ 0 for all x ∈ X. Setting x + x0 in place of x, we get
〈u∗

0 +w∗
0 −f ∗, x〉 ≥ 0. Similarly, letting −x+x0 in place of x, we obtain 〈u∗

0 +w∗
0 −f ∗, x〉 ≤

0. Combining these, we conclude that u∗
0 +w∗

0 = f ∗.



196 T. ASFAW AND A. KARTSATOS

(iv) Suppose the hypothesis in (iv) holds. Using either (i) or (ii), we see that VIP(T +
S,K, f ∗) is solvable in D(T ) ∩K , which is equivalent to the solvability of the inclusion

∂IK(x)+ T x + Sx � f ∗

inD(T )∩K. Since ∂IK(x)+T x+Sx � f ∗ has no solution inD(T )∩∂K and ∂IK(x) = {0}
for all x ∈ K̊, we conclude that the inclusion T x + Sx � f ∗ is solvable in D(T ) ∩ K̊. �

We also note that Le [28] proved (iii) of Theorem 4.3 for a bounded pseudomonotone
operator S and BR(0) instead of a bounded, open and convex subset G. Since every bounded
pseudomonotone operator trivially satisfies the Condition (pm4), (iii) of Theorem 4.3 im-
proves the result of Le [28]. Furthermore, Figueiredo [38] proved (iv) of Theorem 4.3 with
T = 0, K = BR(0), for some R > 0, S is pseudomonotone with D(S) = X and λJ, for
all λ > 0, instead of ∂IK. Kenmochi [14] improved the result of Figueiredo [38], for a pseu-
domonotone mapping S with D(S) = X, by assuming a Leray-Schauder-type condition with
∂IK in place of λJ for all λ > 0. Asfaw and Kartsatos [34] proved (iv) of Theorem 4.3 with
S bounded and using K = BR(0), λJ , λ > 0, instead of ∂IK. For related results, the reader
is also referred to Kartsatos and Quarcoo [39, Theorem 4] and Kartsatos and Skrypnik [40,
Theorem 5.8].

We now give the following surjectivity result.

COROLLARY 4.4. Let T : X ⊇ D(T ) → 2X
∗

be maximal monotone with 0 ∈ D(T ).
Let S : X → 2X

∗
be finitely continuous generalized pseudomonotone. Assume that S satisfies

Condition (pm4) and

inf
w∗∈Sx, z∗∈T x

〈
z∗ +w∗, x

〉
‖x‖ → ∞ as ‖x‖ → ∞ .

Then R(T + S) = X∗.

PROOF. By the coercivity condition on T + S, there exists R = R(f ∗) > 0 such that
〈v∗ + z∗ + w∗ − f ∗, x〉 > 0 for all x ∈ D(T ) ∩ ∂BR(0), v∗ ∈ ∂IBR(0)

(x), w∗ ∈ Sx and
z∗ ∈ T x. This says that the inclusion

∂IBR(0)(x)+ T x + Sx � f ∗

has no solution in D(T ) ∩ ∂BR(0). Using Theorem 4.3, we conclude that T x + Sx � f ∗ is
solvable in D(T ) ∩ BR(0). Since f ∗ is arbitrary, T + S is surjective. �

We remark that Corollary 4.4 extends some results of Kenmochi [14] to unbounded gen-
eralized pseudomonotone perturbations of maximal monotone operators.

5. Variational inequalities for regular generalized pseudomonotone perturbations.
In this section we give a result concerning the existence of a solution for a variational problem
involving possibly unbounded regular generalized pseudomonotone perturbations of maximal
monotone operators. We cite Browder and Hess [1] for properties and range results for sin-
gle regular generalized pseudomonotone operators as well as their perturbations by maximal
monotone operators. It is proved in [1, Theorem 4, p. 272] that a pseudomonotone operator
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S with D(S) = X is regular if there exists k > 0 satisfying the condition 〈w∗, x〉 ≥ −k‖x‖
for all x ∈ X and w∗ ∈ Sx. Browder and Hess [1, Theorem 8, p. 283] proved that the sum
T +S is regular generalized pseudomonotone provided that T is strongly quasibounded max-
imal monotone with 0 ∈ D(T ) and S is regular generalized pseudomonotone withD(S) = X

satisfying 〈w∗, x〉 ≥ −k‖x‖ for all x ∈ X, w∗ ∈ Sx and some k > 0. A variational inequal-
ity result for single coercive regular generalized pseudomonotone operator may be found in
Browder and Hess [1, Theorem 14, p. 288]. Kenmochi [14, Theorem 4.1, p. 254] studied the
solvability of variational inequality problems of the type VIP(S,K, φ, f ∗), where S is a mul-
tivalued pseudomonotone operator satisfying Condition (pm4) and φ is proper, convex and
lower semicontinuous, using coercivity-type assumptions involving S and φ.

THEOREM 5.1. Let K be a nonempty, closed and convex subset of X with 0 ∈ K̊.

Let T : X ⊇ D(T ) → 2X
∗

be maximal monotone with 0 ∈ D(T ) and S : X → 2X
∗

regular generalized pseudomonotone satisfying Condition (pm4). Let φ : X → (∞,∞]
be proper convex lower semicontinuous with D(φ) = K. Assume, further, that there exists
u0 ∈ D(T ) ∩ K̊ such that

inf
w∗∈Sx

〈w∗, x − u0〉
‖x‖ → ∞ as ‖x‖ → ∞ .

Then for every f ∗ ∈ X∗, the problem VIP(T + S,K, φ, f ∗) is solvable in D(T ) ∩ K. Fur-
thermore, T x + Sx � f ∗ is solvable in D(T ) provided that K = X and φ = 0 on X.

PROOF. Let A = ∂φ. Using Barbu [9, Proposition 1.6, p. 9], we know that D(A) = K

and K̊ ⊆ D(A). We first show that VIP(A + T + S,K, f ∗) is solvable in D(A) ∩ D(T ),
i.e., the inclusion Ax + T x + Sx � f ∗ is solvable in D(A) ∩ D(T ). Since 0 ∈ K̊ ⊆ D(A)

and 0 ∈ D(T ), we see that 0 ∈ ˚D(A) ∩ D(T ). Hence, B = A + T is a maximal monotone
operator. Let Bt be the Yosida approximant of B for t > 0, and J̃ x = J (x − u0), x ∈ X.
Since the operator Bt + εJ̃ is smooth for all t > 0 and ε > 0 and S is regular, it follows that
the operator Bt + S + εJ̃ is surjective for all t > 0 and ε > 0. Thus, for any f ∗ ∈ X∗ and
every sequence tn ↓ 0+ and εn ↓ 0+, there exist xn ∈ X and w∗

n ∈ Sxn such that

(12) Btnxn +w∗
n + εnJ̃ xn = f ∗.

Since u0 ∈ K̊ ∩ D(T ) ⊆ D(B), we use the monotonicity of B and the fact that ‖Btnu0‖ ≤
|Bu0| for all n to arrive at

〈w∗
n, xn − u0〉 ≤ ‖f ‖‖xn‖ + |Bu0|‖xn‖ + (‖f ‖ + |Bu0|)‖u0‖

for all n, where |Bu0| = inf{‖x∗‖; x∗ ∈ Bu0}. The sequence {xn} is bounded. Otherwise, we
get the contradiction

lim‖xn‖→∞
〈w∗

n, xn − u0〉
‖xn‖ = ∞ ≤ ‖f ∗‖ + |Bu0| .

As a result, we have

lim sup
n→∞

〈w∗
n, xn − u0〉 < +∞ .
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Since J̃ is bounded, the sequence {J̃ xn} is bounded. Since S satisfies Condition (pm4), from
Lemma 4.2, we conclude the boundedness of the sequence {w∗

n}. The boundedness of {Btnxn}
follows from (12). Let v∗

n = Btnxn and assume that xn ⇀ x0, w∗
n ⇀ w∗

0 and v∗
n ⇀ v∗

0 as
n → ∞. Using the operators S = 0 on X and B in place of T in Lemma 1.5, we conclude
that lim infn→∞ 〈Btnxn, xn − x0〉 ≥ 0. Using this, the monotonicity of J̃ and (12), we get

lim sup
n→∞

〈w∗
n, xn − x0〉 ≤ 0 .

Since S is generalized pseudomonotone, w∗
0 ∈ Sx0 and 〈w∗

n, xn〉 → 〈w∗
0 , x0〉 as n → ∞.

Thus, we get

lim sup
n→∞

〈Btnxn, xn − x0〉 = 0 .

Applying Lemma 1.5, it follows that x0 ∈ D(B) = D(T )∩D(A) ⊆ D(T )∩K and v∗
0 ∈ Bx0.

Finally, taking the limit as n → ∞ in (12), we get v∗
0 + w∗

0 = f ∗. Thus, the problem
VIP(T + S,K, φ, f ∗) is solvable in D(T ) ∩K. Furthermore, if K = X and φ = 0 on X, it
is not hard to see that the inclusion T x + Sx � f ∗ is solvable in D(T ). �

We mention here that Theorem 5.1 is a new variational inequality as well as range result
for regular generalized pseudomonotone perturbations of maximal monotone operators.

For the sake of completeness, we give the proof of the following range result for the
sum T + S instead of a single regular generalized psuedomonotone operator S considered in
Browder and Hess [1, Theorem 11, p. 285].

THEOREM 5.2. Let K be a nonempty, closed, convex and bounded subset of X with
0 ∈ K̊. Let T : X ⊇ D(T ) → 2X

∗
be strongly quasibounded maximal monotone with

0 ∈ T (0) and S : X → 2X
∗

be regular generalized pseudomonotone such that there exists a
real number k > 0 satisfying 〈w∗, x〉 ≥ −k‖x‖ for all x ∈ X and w∗ ∈ Sx. Let f ∗ ∈ X∗ be
fixed. Assume, further, that

∂IK(x)+ T x + Sx �� f ∗

for all x ∈ D(T ) ∩ ∂K. Then the inclusion T x + Sx � f ∗ is solvable in D(T ) ∩K.
PROOF. To complete the proof, it is sufficient to prove that the inclusion

∂IK(x)+ T x + Sx � f ∗

is solvable in D(T ) ∩ K. To this end, we note that D(∂IK) = K and 0 ∈ K̊ , and hence
∂IK is strongly quasibounded maximal monotone operator. Furthermore, for each t > 0, it is
not hard to show that ∂IK + Tt is strongly quasibounded maximal monotone. Using Browder
and Hess [1, Theorem 8, p. 283], we conclude that ∂IK + Tt + S is regular generalized
pseudomonotone with domainK , i.e., for each t > 0 and ε > 0, the operator ∂IK+Tt+S+εJ
is surjective. As a result, for each tn ↓ 0+ and εn ↓ 0+, there are xn ∈ K , v∗

n ∈ ∂IK(xn) and
w∗
n ∈ Sxn such that

(13) v∗
n + Ttnxn +w∗

n + εnJxn = f ∗
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for all n. Since K is bounded, the sequences {xn} and {εnJxn} are bounded. Using (13), we
see that

〈Ttnxn, xn〉 ≤ (k + ‖f ∗‖)‖xn‖ ≤ Q

for all n, whereQ is an upper bound for the sequence {(k + ‖f ∗‖)‖xn‖}. Since T is strongly
quasibounded, by Lemma 1.6, we get the boundedness of the sequence {Ttnxn}. Using similar
argument, it follows that the sequence {v∗

n} is bounded because ∂IK is strongly quasibounded
maximal monotone with 0 ∈ ∂IK(0). Finally, from (13), we get the boundedness of the
sequence {w∗

n}. Assume that xn ⇀ x0 ∈ K , w∗
n ⇀ w∗

0 and v∗
n + Ttnxn ⇀ v∗

0 as n → ∞.

Applying Lemma 1.5, we obtain that

(14) lim inf
n→∞ 〈v∗

n + Ttnxn, xn − x0〉 ≥ 0 .

As a consequence, using (13), we conclude that

(15) lim sup
n→∞

〈w∗
n, xn − x0〉 ≤ 0 .

The generalized pseudomonotonicity of S gives that w∗
0 ∈ Sx0 and 〈w∗

n, xn〉 → 〈w∗
0 , x0〉 as

n → ∞. Finally, combining (13) and (14), we conclude that

lim
n→∞ 〈v∗

n + Ttnxn, xn − x0〉 = 0 .

Consequently, using Lemma 1.5, we obtain x0 ∈ D(T ) ∩ K and v∗
0 ∈ (∂IK + T )(x0). In

conclusion, letting n → ∞ in (13), we have v∗
0 + w∗

0 = f ∗, which implies the solvability of
the inclusion

T x + Sx + ∂IK(x) � f ∗

in D(T ) ∩ K. Since this inclusion has no solution in D(T ) ∩ ∂K and ∂IK(x) = {0} for all
x ∈ K̊ , we conclude that x0 ∈ D(T ) ∩ K̊ solves the inclusion T x + Sx � f ∗. �

We note that Theorem 5.2 is an extension of Browder and Hess [1, Theorem 11, p. 285]
for the sum T + S in place of S, and the fact that we have used a Leray-Schauder condition
involving ∂IK for any nonempty, closed, convex and bounded subset K of X instead of λJ
for all λ > 0.

6. Possible applications. In order to demonstrate the applicability of our theory, we
give below examples of maximal monotone and multivalued pseudomonotone operators.

Let Ω be a bounded domain in RN with smooth boundary, p, p′ such that 1 < p < ∞
and 1/p + 1/p′ = 1, and X = W

1,p
0 (Ω). For every i = 1, 2, . . . , N , the function ai :

Ω × R × RN → R satisfies the following conditions.
(A1) ai(x, s, ξ) satisfies the Carathéodory conditions, i.e., it is measurable in x ∈ Ω

for all (s, ξ) ∈ R × RN, and continuous in (s, ξ) a.a. with respect to x ∈ Ω .
Furthermore, there exist constants c0 > 0 and k0 ∈ Lq(Ω) such that

|ai(x, s, ξ)| ≤ k0(x)+ c0(|s|p−1 + |ξ |p−1) ,

a.a. for x ∈ Ω , and for all (s, ξ) ∈ R × RN , where |ξ | denotes the Euclidean
norm of ξ in RN .
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(A2) The functions ai satisfy a monotonicity condition with respect to ξ in the form

N∑
i=1

(ai(x, s, ξ)− ai(x, s, ξ
′))(ξ − ξ ′) > 0

for a.a. x ∈ Ω , and all (s, ξ), (s, ξ ′) ∈ R × RN .

(A3) There exists c1 > 0 and a function k1 ∈ L1(Ω) such that

N∑
i=1

ai(x, s, ξ)ξi ≥ c1|ξ |p − k1(x)

for a.a. x ∈ Ω and all (s, ξ) ∈ R × RN .

We consider a second-order quasilinear elliptic differential operator of the form

Au(x) = −
N∑
i=1

∂

∂xi
ai(x, u,∇u(x)) , x ∈ Ω , u ∈ X , ∇u =

(
∂u

∂x1
, . . . ,

∂u

∂xN

)
.

The operator A generates an operator Ã : X → X∗ given by

〈Ãu, ϕ〉 =
∫
Ω

N∑
i=1

ai(x, u,∇u) ∂ϕ
∂xi

dx , u ∈ X , ϕ ∈ X ,

where 〈·, ·〉 denotes the duality pairing between X and X∗. It is well known that under the
conditions (A1) through (A3) the operator Ã is bounded, continuous and pseudomonotone.

For the function j : Ω × R → R we assume the following conditions.
(J1) the function x → j (x, s) is measurable in Ω for all s ∈ R, and s → j (x, s) is

locally Lipschitz continuous a.a. x ∈ Ω.
(J2) Let ∂j (x, s) denote Clarke’s generalized gradient of the function s → j (x, s) given

by

∂j (x, s) = {ξ ∈ R; j0(x, s; r) ≥ ξr, for all r ∈ R}
for a.a. x ∈ Ω , where j0(x, s; r) is the generalized directional derivative of the
function s → j (x, s) at s in the direction r given by

j0(x, s; r) = lim sup
y→s, t↓0

j (x, y + tr)− j (x, y)

t
.

Furthermore, there exist c > 0, q ∈ [p,p∗] and k ∈ Lq ′
(Ω) such that

η ∈ ∂j (x, s) : |η| ≤ k(x)+ c|s|q−1

for a.a. x ∈ Ω and all s ∈ R, where p∗ denotes the critical Sobolev exponent with
p∗ = Np/(N − p) if p < N and p∗ = ∞ if p ≥ N.

Let J̃ : Lq(Ω) → R be defined by

J̃ (u) =
∫
Ω

j (x, u(x))dx .
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By (J1) and (J2), J̃ is well defined and Lipschitz continuous on bounded subsets of Lq(Ω).

Moreover, Clarke’s generalized gradient of J̃ , ∂J̃ : Lq(Ω) → 2L
q′ (Ω), is well defined and

characterized by, for each u ∈ Lq(Ω),
η ∈ ∂J̃ (u) ⇒ η ∈ Lq ′

(Ω), η(x) ∈ ∂j (x, u(x)) , for a.a. x ∈ Ω .

Let i : X ↪→ Lq(Ω) be the natural embedding and i∗ : Lq ′
(Ω) ↪→ X∗ the adjoint of i. Let

S : X → 2X
∗

be defined by

Su = (i∗ ◦ ∂J̃ ◦ i)(u), u ∈ X .
Carl and Motreanu [33, Lemma 3.1, p. 1109] showed that the operator S is bounded and
pseudomonotone. By a result of Browder and Hess [1, Proposition 9, p. 267], the operator
Ã+ S : X → 2X

∗
is also bounded and pseudomonotone. The theory developed in this paper

may be applied in the solvability of variational inequalities as well as inclusion problems for
operators of the type T + Ã + S, where T : X ⊇ D(T ) → 2X

∗
is an arbitrary maximal

monotone operator, by using either inner product or Leray-Schauder conditions.
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