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A LOCAL SIGNATURE FOR FIBERED 4-MANIFOLDS
WITH A FINITE GROUP ACTION
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Abstract. Let p be a finite regular covering on a 2-sphere with at least three branch
points. In this paper, we construct a local signature for the class of fibered 4-manifolds whose
general fibers are isomorphic to the covering p.

1. Introduction. Let E and B be closed oriented smooth manifolds of dimension 4
and 2, respectively. Let Σg denote a closed oriented surface of genus g ≥ 1. Assume that
a smooth surjective map f : E → B has finitely many critical values {bl}nl=1, and the fiber
f−1(b) on b ∈ B−{bl}nl=1 is connected. Then, its restrictionE−{f−1(bl)}nl=1 → B−{bl}nl=1
is an oriented fiber bundle whose fiber is diffeomorphic to Σg . We call the triple (f,E,B)
satisfying these conditions a fibered 4-manifold of genus g . Inverse images of a regular value
and a singular value under f are called a regular fiber and a singular fiber, respectively.

For a fibered 4-manifold f : E → B, denote by Δl ⊂ B a closed neighborhood of the
critical value bl of f . We assumeΔ1, . . . ,Δn are mutually disjoint. Denote by El the inverse
image of Δl under f , and the restriction f |El by fl . On some classes of fibered 4-manifolds,
the signature of the fibered 4-manifold f : E → B is described as the sum

SignE =
n∑
l=1

σloc(fl, El,Δl)

of local invariants σloc(fl, El,Δl) ∈ R, each of which depends on the neighborhood El of
the singular fiber f−1(bl). To be precise, these local invariants are defined as a function σloc

on the set of singular fiber germs which arise in the class of fibered 4-manifolds. We call this
function the local signature.

One of the motivations for the study of local signatures is that it is closely related to a
cion of the Meyer cocycle, an important 2-cocycle of the mapping class group of the surface
Σg . This function is related to several invariants including the eta invariant of the signa-
ture operator (see Atiyah [4], Iida [14]) and the Casson invariant of homology 3-spheres (see
Morita [22]). In algebraic geometry, the local signature is related to the slope equality prob-
lem. This is studied in order to describe the geography of algebraic surfaces of general type
(see Ashikaga-Konno [3]).

2010 Mathematics Subject Classification. Primary 57N13; Secondary 14D05.
Key words and phrases. Local signatures, mapping class groups, fibered 4-manifolds.
Partly supported by the Grant-in-Aid for JSPS Fellows, The Ministry of Education, Culture, Sports, Science and

Technology, Japan.



546 M. SATO

For many classes of fibered 4-manifolds, local signatures are constructed and calculated
in various fields including topology, algebraic geometry, and complex analysis. For the fibered
4-manifolds of genus 1 and 2, Matsumoto [18, Theorem 6], [19, Theorem 3.3] constructed
local signatures using the cobounding function of the Meyer cocycle. He also calculated
the values for Lefschetz singular fiber germs. Ueno [27] also constructed and calculated the
local signature for the genus 2 fibered 4-manifolds using the even theta constant. For the
fibered 4-manifolds of genus more than 2 whose monodromies are in the whole mapping
class group, there does not exist a local signature. However, if we consider some restricted
class, there still exists local signatures. For example, Endo [9, Theorem 4.4] constructed
it for hyperelliptic fibered 4-manifolds (see also Morifuji [21]). Arakawa and Ashikaga [1,
Proposition 4.7] also constructed it in the setting of algebraic geometry, and Terasoma proved
that these two local signatures are equal. Local signatures for many kinds of restricted classes
of fibered 4-manifolds are listed in Ashikaga-Endo [2] and Ashikaga-Konno [3]. See also
Iida [14], Kuno [16], [17] and Yoshikawa [28].

The purpose of this paper is to construct the local signatures for the classes of fibered 4-
manifolds which have a fiber-preserving finite group action. We also assume that the quotient
space of their general fiber is a sphere with at least 3 branch points. We should mention that
Furuta [10] constructed a local signature for broader classes of fibered 4-manifolds than ours
in the manner of differential geometry. Furthermore, Nakata [23] calculated it on Lefschetz
fiber germs of the hyperelliptic fibered 4-manifold. But the local signature in this paper is
easier to compute than that of Furuta. In general, a local signature of this class is not unique.
The author does not know whether the local signature in this paper coincides with Furuta’s.

Let G be a finite group, and Σ a closed surface. We call a finite regular covering p :
Σg → Σ aG-covering if its deck transformation group is isomorphic toG. For aG-covering
p, Birman-Hilden [7] defined a group which we call the symmetric mapping class group. The
monodromy group of a fibered 4-manifold of the G-covering p is considered as a subgroup
of this group. The local signature induces a cobounding function of the pullback of the Meyer
cocycle in the symmetric mapping class group. Using this cobounding function, we will
construct the local signature which can be applied to a broader class of fibered 4-manifolds
than our class.

This paper is organized as follows. In Section 2, we define a class of fibered 4-manifolds
for which we will construct the local signature (Theorem 1.1). We also define a broader class
of fibered 4-manifolds, for which Furuta constructed a local signature in a different way. We
also construct a local signature for the broader class (Proposition 5.6).

For a fibered 4-manifold f : E → B of the G-covering p, let Eh ⊂ E denote the fixed
point set in E for h ∈ G. Since general fibers of the fibered 4-manifold are isomorphic to
the G-covering p, the subspace Eh ∩ (E − {f−1(bl)}nl=1) of Eh can be considered as a (not
necessarily connected) covering space of B−{bl}nl=1. We call a component S ofEh horizontal
if S ∩ (E − {f−1(bl)}nl=1) is a covering space of B − {bl}nl=1, and vertical if S is contained
in a singular fiber. As will be shown in Lemma 3.1, any component of the fixed point set Eh

is either horizontal or vertical. For ψ ∈ [0, π], denote by I (h,ψ) the union of the horizontal
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components whose normal bundles rotate ±ψ under the action of h ∈ G. Let J (fl, h) denote
the union of vertical components contained in a fiber germ f−1(bl). In Section 3, we prove
the main theorem (Theorem 1.1) as below assuming that the sum of normal euler numbers
χ(N(S)) of the connected component S ⊂ I (h,ψ) for h ∈ G localizes as

∑
S⊂I (h,ψ)

χ(N(S)) =
n∑
l=1

χ
h,ψ

loc ([fl, El,Δl]) .

Here χh,ψloc ([fl, El,Δl]) is a rational number which depends on the fiber germ [fl, El,Δl] in
the fibered 4-manifold f : E → B.

Let f : E → Δ be a fiber germ of the G-covering p on a closed 2-disk Δ. The fixed
point set Eh consists of 0-dimensional components and 2-dimensional components. Let {Pj }
and {Fj } be the discrete fixed points and 2-dimensional components in J (f, h), respectively.
Denote the rotating angle of the normal bundle of Fj by ±ψj for ψj ∈ [0, π]. Identifying
the neighborhood of Pj and C2, choose ϕj , ϕ′

j ∈ [0, 2π] so that the action of h is written

as (z,w) �→ (e
√−1ϕj z, e

√−1ϕ′
j w) in a suitable coordinate. With the local normal euler num-

ber χh,ψloc and these connected components of the fixed point set, the local signature σloc is
described as follows.

THEOREM 1.1. Let p : Σg → S2 be a G-covering with at least three branch points.
The signatures of fibered 4-manifolds of the G-covering p localizes. Our local signature is
written as

σloc([f,E,Δ]) := |G| Sign(E/G)

+
∑

h
=1∈G

(
−

∑
ψ∈[0,π]

χ
h,ψ

loc ([f,E,Δ]) cosec2
(
ψ

2

)

+
∑

Pj⊂J (f,h)
cot

(
ϕj

2

)
cot

(
ϕj

′

2

)

−
∑

Fj⊂J (f,h)
χ(N(Fj )) cosec2

(
ψj

2

) )
.

The key tools to prove this theorem are the localization of the normal euler number and
the G-signature theorem (Atiyah-Singer [5, Theorem (6.12)]). In Section 4, we construct a
local euler number using the multi-section on the normal bundle of I (h,ψ) made by Furuta,
and complete the proof of the main theorem (Theorem 1.1).

In the rest of paper, we will consider a cobounding function of the pullback of the Meyer
cocycle in the symmetric mapping class group Mg(p) of the G-covering p. In Section 5,
we construct a local signature for broader class of fibered 4-manifolds of the G-covering
p when p satisfies some condition. To do this, we describe the local signature using the
cobounding function φ : Mg(p) → Q of the pullback of the Meyer cocycle in the symmetric
mapping class group. In Section 6, we give a standard generating system of the symmetric
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mapping class group of a G-covering when G is abelian. Let d ≥ 2 and m ≥ 3 be integers
such that m is divided by d , and A a finite set {αi}mi=1 in S2. For each i = 1, 2, . . . ,m,
choose a loop γαi which rotates around a point αi counterclockwise once. Define a surjective
homomorphism k : H1(S

2 − A) → Zd by mapping each homology class [γαi ] to 1 mod d .
Let p1 : Σg → S2 be the Zd -covering on S2 which has the branch set A in S2 and the
monodromy homomorphism k. In Section 7, we calculate the local signature of a fiber germ
f : E → Δ of the Zd -covering p1. Its monodromy is the inverse of an element σ̂ij in the
standard generating system of the symmetric mapping class group for the Zd -covering p1.
We also calculate the value of the cobounding function φ(σ̂ij ).

PROPOSITION 1.2. Let f : E → Δ1 be the representative of a fiber germ in Sp1
g

constructed in the proof of Lemma 7.1. Then we have

σloc([f,E,Δ1]) = − (d − 1)(d + 1)m

3d(m− 1)

and

φ(σ̂ij ) = (d − 1)(d + 1)m

3d(m− 1)
,

where σ̂ij is the generator of Mg(p1) defined in Section 6.

If d = 2, i.e., m = 2g + 2, the value φ(σ̂ij ) for σ̂ij ∈ Mg (p1) coincides with that of the
Meyer function on the hyperelliptic mapping class group obtained by Endo [9, Lemma 3.2].

The author would like to thank Nariya Kawazumi for the careful reading of the manu-
script and helpful suggestions. He also would like to thank Mikio Furuta for fruitful advices.

2. Fibered 4-manifolds of the G-covering p. Denote by Σg a closed oriented sur-
face of genus g ≥ 1. Let G be a finite group, and p : Σg → S2 a G-covering, that is, a
finite regular covering whose deck transformation group Deck(p) is isomorphic to G. In the
sequel, we fix an isomorphism between the deck transformation group Deck(p) andG. In this
section, we define two kinds of fibered 4-manifolds of theG-coveringp in Definitions 2.1 and
2.2. Later in Subsection 3.2, we will construct a local signature for the fibered 4-manifolds in
Definition 2.2.

LetC(p) denote the centralizer of Deck(p) in the orientation-preserving diffeomorphism
group Diff+Σg of the surface Σg .

DEFINITION 2.1. Let E and B be compact oriented manifolds of dimension 4 and 2,
and f : E → B a smooth surjective map. A triple (f,E,B) is called a fibered 4-manifold of
the G-covering p in a broad sense if it satisfies

(i) ∂E = f−1(∂B),
(ii) f : E → B has finitely many critical values {bl}nl=1 in IntB, and the restriction

E − {f−1(bl)}nl=1 → B − {bl}nl=1 is a smooth orientedΣg -bundle,
(iii) the structure group of theΣg -bundle E− {f−1(bl)}nl=1 → B − {bl}nl=1 is contained

in C(p).
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The fibered 4-manifold of a G-covering is a generalization of hyperelliptic fibrations
in [9], that is, a fibered 4-manifold of a Z2-coveringΣg → S2 on a sphere. The natural action
ofG onΣg gives rise to a smooth fiberwiseG-action onE−{f−1(bl)}nl=1, since the structure
group of the fiber bundle E − {f−1(bl)}nl=1 is contained in C(p). Note that for each regular
value b ∈ B, the covering f−1(b) → f−1(b)/G is isomorphic to the G-covering p.

On a class of fibered 4-manifolds of a covering which is not necessarily regular, Furuta
has already constructed a local signature. For a more detailed setting, see Furuta [10]. He
constructed a canonical multi-section on the relative tangent bundle of the fiber bundle E −
{f−1(bl)}nl=1 → B − {bl}nl=1, using the fact that any fiber has at least 3 branch points. He
made a connection on the tangent bundle T E by using the multi-section, and showed that its
Pontrjagin form vanishes outside neighborhoods of the singular fibers {f−1(bl)}nl=1. Thus,
the signature localizes.

We also use this multi-section to construct our local signature. But, in this paper, we
consider a narrower class of fibered 4-manifolds in order to make a local signature without
using the connection which is easy to compute. A fibered 4-manifold of theG-covering p (in
a narrow sense) is defined as follows.

DEFINITION 2.2. A triple (f,E,B) is called a fibered 4-manifold of the G-covering
p (in a narrow sense), if it satisfies

(i) the map f : E → B is a fibered 4-manifold of the G-covering p in the broad sense,
(ii) the naturalG-action on E − {f−1(bl)}nl=1 extends to a smooth action on E.

In this paper, we simply call it a fibered 4-manifold of the G-covering p. Our local sig-
nature and local euler number are defined as functions on the set of fiber germs which arise in
these fibered 4-manifolds. The set of fiber germs is defined as follows. Denote by Δ a closed
2-disk. Consider fibered 4-manifolds (f ,E,Δ) of theG-covering p which have unique critical
value in Δ. Let (f1,E1,Δ1) and (f2,E2,Δ2) be such fibered 4-manifolds with critical values
b1 and b2, respectively. These fibered 4-manifolds are defined to be equivalent if there exist
closed 2-disksΔ′

1 ⊂ Δ1 andΔ′
2 ⊂ Δ2 including the critical values, an orientation-preserving

diffeomorphism ϕ : (Δ′
1, b1) → (Δ′

2, b2), and a G-equivariant orientation-preserving diffeo-
morphism ϕ̃ : f−1

1 (Δ1) → f−1
2 (Δ2) such that

ϕf1 = f2ϕ̃ .

We call the equivalent class a fiber germ of fibered 4-manifolds of the G-covering p, and
denote the set of equivalent classes by Spg .

3. A local signature on the class of fibered 4-manifolds of the G-covering p in the
narrow sense. Let G be a finite group, and p : Σg → S2 a G-covering as in Section 2.
Let (f,E,B) be a fibered 4-manifold of the G-covering p. We assume that E and B have
no boundaries. For h ∈ G and ψ ∈ [0, π], denote by I (h,ψ) the union of all horizontal
components of the fixed point set Eh whose normal bundles are rotated ±ψ by the action of
h ∈ G. Let {[fl, El,Δl]}nl=1 be the fiber germs in f : E → B, and denote by χ(N(S)) the
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normal euler number of a connected component S in I (h,ψ). If there exists a function

χ
h,ψ
loc : Spg → Q

on the set of fiber germs such that

∑
S⊂I (h,ψ)

χ(N(S)) =
n∑
l=1

χ
h,ψ

loc ([fl, El,Δl]) ,

we say that the normal euler number of the horizontal components I (h,ψ) localizes. In this
section, we prove the main theorem (Theorem 1.1) assuming that this number localizes. We
will construct a local euler number later in Definition 4.2.

3.1. The fixed point set of the G-action. In Subsection 3.2, we will apply the G-
signature theorem on the total space E of the fibered 4-manifold (f,E,B) to construct the
local signature. It will enable us to calculate the G-signature in terms of the fixed point sets
of the G-action on E. Hence, we investigate the fixed point set in this subsection.

For h ∈ G, the fixed point set Eh is a pairwise disjoint collection of closed submanifolds
(see, for example, Conner [8, p. 72]). Since the group G preserves the orientation of E, it
consists of closed 2-manifolds {Si} and 0-manifolds {Pj }. In Introduction, we defined two
kinds of components of Eh called vertical and horizontal.

LEMMA 3.1. Any component of Eh is either vertical or horizontal.

PROOF. Let S be a component of Eh which is not vertical. Then, there exists a regu-
lar value b ∈ B of f such that S ∩ f−1(b) is not empty. Let N(b) denote a neighborhood
of b. If we endow the natural G-action on the first factor of Σg × D2, a local trivialization
f−1(N(b)) ∼= Σg × D2 preserving the C(p) structure is G-equivariant. Since any compo-
nent of f−1(N(b)) ∩ Eh is a 2-dimensional manifold, S is a 2-dimensional submanifold of
Eh. Moreover, S ∩ f−1(B − {bl}nl=1) is a (not necessarily connected) covering space of
B − {bl}nl=1. �

The followings are examples of fibered 4-manifolds with boundary of Z2-coverings
which have horizontal components and a vertical component, respectively.

EXAMPLE 3.2 (a fibered 4-manifold with horizontal components). Let [x : y : z] be
a homogeneous coordinate of CP 2 and b a coordinate of a unit disk D2 in C. Consider the
singular surface

E1 = {([x : y : z], b) ∈ CP 2 ×D2 ; y2z = x(x − z)(x − 2bz)} .
Let f : E1 → D2 denote the map defined by ([x : y : z], b) �→ b. If we blow up E1 at

([x : y : z], b) = ([1 : 0 : 1], 1/2), ([1 : 0 : 0], 0) ,

the proper transform E′
1 of E1 is a smooth compact 4-manifold, and we can extend the map

f to a smooth map E′
1 → D2 naturally. Endow the action of Z2 on E1 by

([x : y : z], b) �→ ([x : −y : z], b) ,
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which preserves each fiber of f . This group action also extends naturally onto E′
1, and the

fixed point set in E′
1 consists of the proper transforms of {x = y = 0}, {x = z, y = 0}, and

{x = 2bz, y = 0}, which are horizontal components.

EXAMPLE 3.3 (a fibered 4-manifold with a vertical component). Consider S1 as the
quotient space R/Z. Let E2 = S1 × S1 × D2, and denote its coordinate by (s, t, b). De-
fine an involution on E2 by (s, t, b) �→ (s + 1/2, t,−b), and denote its quotient space by
E′

2. The map f : E′
2 → D2 defined by [s, t, b] �→ b2 is a fibered 4-manifold whose fiber is

S1 × S1. Endow the action of Z2 on E′
2 by

[s, t, b] �→ [s + 1/2, t, b] ,
which preserves each fiber of f . The fixed point set consists of one vertical component
{[s, t, 0] ∈ E′

2 ; s, t ∈ S1}.
3.2. Localizations of signature and the normal euler number. We deduce the fol-

lowing lemma from the G-Signature theorem.

LEMMA 3.4. Let f : E → B be a fibered 4-manifold of the G-covering p. If the
normal euler number of the horizontal components I (h,ψ) localizes for any h ∈ G and
ψ ∈ [0, π], the signature of E also localizes.

To prove this lemma, we prepare some facts about theG-signature. For a Q-vector space
V on which G acts, denote by tr(h, V ) the trace of the action of h ∈ G. Let X be a closed
oriented 4-manifold on which G acts preserving the orientation. The G-signature Sign(h,X)
for h ∈ G is a rational number defined by

Sign(h,X) := tr(h,H+
2 (X; Q))− tr(h,H−

2 (X; Q)) ,

where H+
2 (X; Q) and H−

2 (X; Q) denote the subspaces of H2(X; Q) spanned by the eigen-
vectors of positive and negative eigenvalues with respect to the intersection form, respectively.
For the details, see Atiyah-Singer [5, Section 6] (see also Hirzebruch [12] and Gordon [11]).
If we consider the action of the formal sum

∑
h∈G h on H2(X; Q), we obtain

(1) SignX = −
∑

h
=1∈G
Sign(h,X)+ |G| Sign(X/G) .

The fixed point set of h ∈ G is the disjoint sum of closed 2-manifolds {Si} and 0-
manifolds {Pj }. Denote the rotation angle of the normal bundle of Si by ±ψi , where ψi ∈
[0, π]. Identifying neighborhoods of Pj and the origin in C2, choose ϕj , ϕ′

j ∈ [0, 2π] so that

the action of h is written as (z,w) �→ (e
√−1ϕj z, e

√−1ϕ′
j w) in a suitable coordinate. Then,

the G-signature Sign(h,X) is written in terms of these rotation angles and the normal euler
number of Si as follows.

THEOREM 3.5 (Atiyah-Singer [5, Theorem (6.12)]).

(2) Sign(h,X) =
∑
i

χ(N(Si)) cosec2
(
ψi

2

)
−

∑
j

cot

(
ϕj

2

)
cot

(
ϕ′
j

2

)
.
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PROOF OF LEMMA 3.4. Choose representatives {fl, El,Δl}nl=1 of all fiber germs in the
fibered 4-manifold f : E → B. Note that the complement of the fiber germs

⋃n
l=1El/G in

the quotient space E/G is a S2-bundle. Since the signature of a S2-bundle on a compact
2-manifold vanishes, we have

(3)

Sign(E/G) = Sign

((
E −

n∐
l=1

IntEl

)
/G

)
+

n∑
l=1

Sign(El/G)

=
n∑
l=1

Sign(El/G)

by the Novikov additivity. Substituting (2) and (3) to (1), we see that the signature of E
localizes if and only if the right-hand side of (2) localizes. By the definition, any vertical
component F is contained in a singular fiber. Hence, the normal euler number χ(N(F)) de-
pends only on the singular fiber germ. Thus, if the normal euler numbers of I (h,ψ) localizes,
the signature of E also localizes. �

By the equations (1), (2), and (3), we can write the local signature as Theorem 1.1.

REMARK 3.6. In the proof, we do not consider the localization of the normal euler
number of each horizontal component but the sum of the normal euler numbers of the hori-
zontal components I (h,ψ).

4. The local normal euler number of the set of horizontal components. Recall
that G is a finite group, and p : Σg → S2 is a G-covering. Denote by m the order of the
branch set of the G-covering p. In this section, we assume that the order m is at least 3. Let
f0 : E0 → B0 be an oriented Σg -bundle on an oriented manifold B0 with structure group
in C(p). The group G acts on the total space E0 fiberwise as stated after Definition 2.1. Let
J̄0 ⊂ E0/G denote the branched locus of the branched covering space E0 → E0/G. Since
f−1

0 (b) → f−1
0 (b)/G is isomorphic to the covering p for any b ∈ B0, the induced smooth

map E0/G → B0 by f0 is an oriented S2-bundle, and J̄0 is a submanifold of E0/G.
For a fiber bundle Y → Z, we denote by T (Y/Z) the subbundle Ker(T Y → TZ) of the

tangent bundle T Y → Y , and call it the relative tangent bundle of Y → Z. In Subsection 4.1,
we will review a canonical multi-section of the relative tangent bundle T ((E0/G)/B)|J̄0

con-
structed by Furuta. As in Section 3, let f : E → B be a fibered 4-manifold of theG-covering
p, and {fl, El,Δl}nl=1 representatives of the fiber germs in the fibered 4-manifold. Applying
Subsection 4.1 to the Σg -bundle

E −
n∐
l=1

IntEl → B −
n∐
l=1

IntΔl ,

we obtain the canonical multi-section of the relative tangent bundle of the S2-bundle
(
E −

n∐
l=1

IntEl

)
/G → B −

n∐
l=1

IntΔl
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over the branched locus of the covering

E −
n∐
l=1

IntEl →
(
E −

n∐
l=1

IntEl

)
/G .

We show that the normal euler number of I (h,ψ) in the fibered 4-manifold f : E → B

localizes in Subsection 4.2 by means of this multi-section.

4.1. A multi-section of the relative tangent bundle of a CP 1-bundle. Denote by
Ē0 the quotient spaces of E0 under the G-action. We review a canonical multi-section of the
relative tangent bundle T (Ē0/B0) → Ē0 over the branched locus J̄0 ⊂ Ē0 constructed by
Furuta.

Fix a fiberwise complex structure on the S2-bundle f̄0 : Ē0 → B0.

LEMMA 4.1 (Furuta [10, Lemma 2]). When the order m of the branch set in S2 of
the G-covering p is at least 3, there exists a canonical section s̄ of the complex line bundle
T (Ē0/B0)|⊗(m−1)(m−2)

J̄0
→ J̄0. Moreover, the homotopy class of the section s̄ does not depend

on the choice of the complex structure.

Actually, he also constructed a canonical multi-section of T (Ē0/B0)|Ē0−J̄0
, which we

do not need in this paper.

PROOF. For b ∈ B0, the intersection of J̄0 and the fiber f̄−1
0 (b) is a finite point set.

Number them as {αi(b)}mi=1 = J̄0 ∩ f̄−1
0 (b). We will construct a tangent vector at αi(b) for

all distinct i, j , k in {1, 2, . . . ,m}. Define an isomorphism

t
ijk
b : CP 1 → f̄−1

0 (b)

by mapping 0, 1, and ∞, to αi(b), αj (b), and αk(b), respectively. Since f̄−1
0 (b) has the

complex structure, this isomorphism is unique. In this way, we obtain the tangent vector
tb
ijk∗ (d/dz) at αi(b), where z is the inhomogeneous coordinate in CP 1. Then we have

⊗
j,k

tb
ijk∗

(
d

dz

)
∈ Tαi(b)(Ē0/B0)

⊗(m−1)(m−2) ,

where j , k run over {1, 2, . . . ,m} with i, j , k distinct. Thus, we obtain a non-zero section s̄ of
the bundle T (Ē0/B0)

⊗(m−1)(m−2)|J̄0
. Since the space of fiberwise complex structures on the

S2-bundle Ē0 → B0 is contractible, the homotopy class of the nonzero section s̄ is unique up
to homotopy. �

4.2. The local euler number. We prove that the normal euler number of the hori-
zontal components I (h,ψ) localizes. Let S be a compact connected surface with nonempty
boundary, and V (S) → S a vector bundle. Assume that V (S) is oriented as a manifold, and
that we are given a nonzero section s : ∂S → V (S)|∂S . We introduce an integer n(s, V (S))
for the section s in order to show the localization of the normal euler number of I (h,ψ).

In the following, all homology groups are with integral coefficients if not specified. Let
s0 : S → V (S) be the zero section. If we extend the section s to a section s̃ of V (S) → S, we
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know from the exact sequence

0 = H2(V (S)) → H2(V (S), V (S)− s0(S)) → H1(V (S)− s0(S)) → H1(V (S))

that the homology class [s̃] ∈ H2(V (S), V (S) − s0(S)) is independent of the choice of s̃.
Denote by [s0] the homology class of the zero section in H2(V (S), V (S)|∂S). Let D(S) be
a unit disk bundle in V (S), and S(S) its sphere bundle. Then we have natural isomorphisms
H2(V (S), V (S)|∂S) ∼= H2(D(S),D(S)|∂S ) and H2(V (S), V (S)− s0(S)) ∼= H2(D(S), S(S))

induced by the inclusions. Define the number n(s, V (S)) := [s̃] · [s0] ∈ Z by using the
intersection form H2(D(S),D(S)|∂S )×H2(D(S), S(S)) → Z.

We go back to a fibered 4-manifold of the G-covering p. Let f : E → Δ be a represen-
tative of a fiber germ [f,E,Δ] ∈ Spg . Let S denote a horizontal component of the fixed point
set Eh for h 
= 1 ∈ G, and let H denote the subgroup of G consisting of elements which fix
S pointwise.

Let q : E → E/G, qH : E → E/H , and qG/H : E/H → E/G denote the quo-
tient maps of the group action. Endow a metric gr on T (E/H)|qH (S) whose restriction on
T (E/H)|qH (∂S) makes the relative tangent bundle T ((∂E/H)/∂Δ)|qH(∂S) and the tangent
bundle T (qH (S))|qH (∂S) orthogonal. Then we have an isomorphism

T ((∂E/H)/∂Δ)|qH(∂S) ∼= N(qH (S))|qH (∂S) .
We can construct a canonical section on the bundle T ((∂E/H)/∂Δ)|qH(∂S) as follows.

Since the intersection of the branched locus of qG/H : E/H → E/G and q(∂S) ⊂ E/G is
empty, we have a canonical isomorphism

T ((∂E/H)/∂Δ)|qH(∂S) ∼= q∗
G/HT ((∂E/G)/∂Δ)|q(∂S) .

By pulling back the multi-section (s̄)⊗(m−1)(m−2) constructed in Subsection 4.1 of the
relative tangent bundle T ((∂E/G)/∂Δ)|q(∂S), we have a canonical section of the bundle
T ((∂E/H)/∂Δ)⊗(m−1)(m−2)|qH (∂S). By the isomorphism

T ((∂E/H)/∂Δ)|qH(∂S) ∼= N(qH (S))|qH (∂S) ,
we obtain a section s∂S : qH (∂S) → N(qH (S))

⊗(m−1)(m−2)|qH (∂S). Our local euler number
is described in terms of this section s∂S as follows.

DEFINITION 4.2. Define a map χh,ψloc : Spg → Q by

S
p
g → Q

[f,E,Δ] �→
∑

S⊂I (h,ψ)

1

rS(m− 1)(m− 2)
n(s∂S,N(qH (S))

⊗(m−1)(m−2)) ,

where rS is the order of the subgroupH of G consisting of elements which fix S pointwise.

Since the homotopy class of the nonzero section s∂S of the normal bundle
N(qH (S))

⊗(m−1)(m−2)|qH (∂S) does not depend on the choices of the complex structure on
the S2-bundle ∂E/G → ∂Δ and the metric gr , this map is well-defined.
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THEOREM 4.3. For any fibered 4-manifold f : E → B of the G-covering p with
singular fiber germs {[fl, El,Δl]}nl=1, we have

∑
S⊂I (h,ψ)

χ(N(S)) =
n∑
l=1

χ
h,ψ
loc ([fl, El,Δl]) .

In other words, the map χh,ψloc : Spg → Q is a local normal euler number.

PROOF. Let {fl, El,Δl}nl=1 be representatives of the fiber germs in the fibered 4-
manifold f : E → B. We may assume that Δl are mutually disjoint in B. Let E0 and
B0 denote the spaces E − �n

l=1 IntEl and B − �n
l=1 IntΔl , respectively. Let S denote a hori-

zontal component of the fixed point set Eh for h 
= 1 ∈ G, and let S0 denote the intersection
S ∩E0. Denote byH the subgroup ofG consisting of elements which fix S pointwise, and rS
the order of the subgroupH . Since the branching index of qH (S) ⊂ E/H with respect to the
covering E → E/H is rS , we have an isomorphism

N(S)⊗rS ∼= N(qH (S)) .

Hence, we have

χ(N(S)) = 1

rS(m− 1)(m− 2)
χ(N(qH (S))

⊗(m−1)(m−2)) .

Since E0/H → B0 is an oriented sphere bundle, we can constructed the nonzero section sS0

of the bundleN(qH (S))⊗(m−1)(m−2) over qH(S0) as in Subsection 4.1. Extend the section sS0

to a section s̃ of N(qH (S))⊗(m−1)(m−2) over qH (S) transversely to the zero section s0 : S →
N(qH (S))

⊗(m−1)(m−2).
In terms of the numbers n(sS0 |qH (S0)∩(∂(El/H)), N(qH (S))⊗(m−1)(m−2)|qH (S)∩El/H ), the

euler number of N(qH (S))⊗(m−1)(m−2) is described as

χ(N(qH (S))
⊗(m−1)(m−2))= s̃ · s0

=
n∑
l=1

n(sS0 |qH (S0)∩(∂El/H),N(qH (S))⊗(m−1)(m−2)|qH (S)∩(El/H))

=
n∑
l=1

rS(m− 1)(m− 2)χh,ψloc ([fl, El,Δl]) .

Hence we have ∑
S⊂I (h,ψ)

χ(N(S)) =
n∑
l=1

χ
h,ψ
loc ([fl, El,Δl]) .

�

5. The Meyer cocycle and symmetric mapping class groups. Let Diff+Σg denote
the orientation-preserving diffeomorphism group of the closed surface Σg of genus g . The
mapping class group Mg of the surface Σg is defined by the path-connected component
π0 Diff+Σg of this topological group with C∞ topology. For a finite regular covering p :
Σg → Σ on a compact surface Σ , Birman and Hilden [7] defined a group Mg(p) called the
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symmetric mapping class group. We restrict ourselves to the case Σ = S2. Recall that we
denote by C(p) the centralizer of the deck transformation group of the G-covering p.

DEFINITION 5.1. The symmetric mapping class group of the G-covering p : Σg →
S2 is defined by

Mg(p) := π0C(p) .

Let T be a finite set in Σg . Denote by Diff+(Σg , T ) the group of orientation-preserving
diffeomorphisms on the surface Σg which fixes the set T pointwise. Denote by A =
{α1, α2, . . . , αm} ⊂ S2 the branch set of p. Pick a point ∗ in S2−A. In the same way, the sym-
metric mapping class group of the pointed surface (Σg , p

−1(∗)) is defined by M(∗)
g (p) :=

π0(Diff+(Σg , p
−1(∗)) ∩ C(p)).

Mapping a path-connected component of C(p) to the corresponding component of
Diff+Σg , we obtain the natural homomorphism

Φ : Mg (p) → Mg .

Assume that the G-covering p : Σg → S2 has at least 3 branch points as in Section 4.
Meyer [20] introduced a 2-cocycle of the mapping class group Mg , called the Meyer cocycle.
We construct a cobounding function of the pullback of the Meyer cocycle by Φ in a subgroup
Mmon(p) ⊂ Mg(p) in Theorem 5.5, when p : Σg → S2 has at least 3 branch points. When
this subgroup coincides with the symmetric mapping class group Mg (p), we can construct
a local signature for fibered 4-manifolds of the G-covering p in the broad sense, using this
cobounding function (Proposition 5.6).

The symmetric mapping class group Mg(p) arises as the monodromy group of the Σg -
bundles whose structure groups are contained in C(p). Let us recall the monodromy homo-
morphisms of Σg -bundles. Let f : E → B be a Σg -bundle on a manifold B. Fix a base
point b in B, and an identification Ψ0 : Σg → f−1(b), which is called the reference fiber.
For a homotopy class γ ∈ π1(B, b), choose a based loop l : [0, 1] → B which represents
γ . Since the pullback q : l∗E → [0, 1] is the trivial Σg -bundle, we can choose a trivial-
ization Ψ̃ : Σg × [0, 1] → l∗E such that Ψ̃ (x, 0) = Ψ0(x). Define the diffeomorphism
Ψ1 : Σg → f−1(b) by Ψ1(x) = Ψ̃ (x, 1). The isotopy class of the diffeomorphism Ψ−1

1 Ψ0

is called the monodromy of the Σg -bundle f : E → B along the loop l. It does not depend
on the choice of Ψ̃ and l. Thus, we can define a homomorphism π1(B, b) → Mg , called the
monodromy homomorphism. If the structure group of the Σg -bundle f : E → B is in C(p),
the diffeomorphismΨ−1

1 Ψ0 is also contained in C(p). Similarly, we have the homomorphism
π1(B, b) → Mg(p). We also call it the monodromy homomorphism.

Define the subgroupMmon(p) of the symmetric mapping class groupMg(p) as follows.

DEFINITION 5.2. Denote by Mmon(p) the subgroup of the symmetric mapping class
group Mg(p) normally generated by the monodromies which arise in the set of fiber germs
S
p
g along the boundary circles.
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Let us review the definition of the Meyer cocycle. For i = 1, 2, 3, let Di be disjoint
closed disks in a 2-sphere. Denote by P a pair of pants S2 − �3

i=1 IntDi . Let Eϕ,ψg be the
total space of a Σg -bundle on P whose monodromies around the boundary circles ∂Di are
given by ϕ,ψ, (ϕψ)−1 ∈ Mg . ThisΣg -bundle is unique up to isomorphism.

DEFINITION 5.3 (Meyer [20]). The map

τg : Mg × Mg → Z ,

(ϕ , ψ) �→ SignEϕ,ψg

is called the Meyer cocycle.

Meyer proved that the map τ is a 2-cocycle on the mapping class group. Moreover, he
showed that this cocycle represents a nontrivial 2-cohomology class of Mg when g ≥ 3.
Later, it is rediscovered by Turaev [26].

Birman and Hilden proved that if the deck transformation group fixes the branch set
pointwise, then Φ is injective [7, Theorem 1]. Let p′ : Σg → S2 be a Z2-covering on S2 for
g ≥ 2. Especially, the symmetric mapping class group for p′ is isomorphic to a subgroup of
the mapping class group called the hyperelliptic mapping class group.

To construct a cobounding function of Φ∗τg , we need a following lemma.

LEMMA 5.4. For a mapping class ϕ̂ ∈ Mmon(p), there exists a fibered 4-manifold
f : E → D2 of the G-covering p whose monodromy along the boundary circle ∂D2 is ϕ̂.

PROOF. Let f : E → Δ be a representative of a fiber germ. Let t be a point in ∂Δ, and
Ψ0 : Σg → f−1(t) a reference fiber. Assume that the monodromy of f along the boundary
circle is given by ϕ̂0 ∈ Mmon(p). First, we construct fiber germs whose monodromies are
ψ̂ϕ̂0ψ̂

−1 and ϕ̂−1
0 for ψ̂ ∈ Mg (p).

Let ĥ be a diffeomorphism of Σg which represents ψ̂ ∈ Mg(p). If we change the
reference fiber by Ψ0ĥ

−1 : Σg → f−1(t), the monodromy is given by ψ̂ϕ̂0ψ̂
−1. Choose an

orientation-reversing diffeomorphism ι : Δ → Δ. If we endow the other orientation on E,
the smooth map ιf : E → Δ is also a fibered 4-manifold of the G-covering p. This fibered
4-manifold has ϕ̂−1

0 as its monodromy along the boundary circle.
Let fi : Ei → Δi be representatives of fiber germs for i = 1, 2, . . . , n. Choose a point

ti in each boundary, and a reference fiber Ψi : Σg → f−1
i (ti ). Assume that the monodromies

of fi along the boundary circles are ϕ̂i for i = 1, 2, . . . , n. It suffices to construct a fibered
4-manifold whose monodromy along the boundary circle is given by

∏n
i=1 ϕ̂i . If we glue

together all reference fibers f−1
i (ti) ⊂ Ei by Ψi′Ψ

−1
i : f−1

i (ti) → f−1
i′ (ti′) for 1 ≤ i, i ′ ≤ n,

we obtain the space
⋃n
i=1 Ei . Denote by

∨n
i=1Δi the wedge sum obtained by identifying

each ti ∈ Δi . The maps fi induce the map F : ⋃n
i=1 Ei → ∨n

i=1Δi . Embed the wedge
sum

∨n
i=1Δi in D2 as in Figure 1. Then, there exists a deformation retraction r : D2 →∨n

i=1Δi . Denote by bi ∈ Δi the critical value of fi . By taking the pullback of theΣg -bundle⋃n
i=1(Ei−f−1

i (bi)) → ∨n
i=1(Δi−{bi}) by r , we obtain the fibered 4-manifold onD2 whose
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FIGURE 1. The wedge sum
∨n
i=1 Δi in D2.

monodromy along the boundary circle is
∏n
i=1 ϕ̂i . There exists a (smooth) fibered 4-manifold

topologically isomorphic to this fibered 4-manifold. �

THEOREM 5.5. Let G be a finite group, and p : Σg → S2 a G-covering with at
least 3 branch points. For a mapping class ϕ̂ ∈ Mmon(p), there exists a fibered 4-manifold
f : X → D2 of the G-covering p on a closed 2-disk whose monodromy along the boundary
circle ∂D2 is ϕ̂. Denote by {[fl, El,Δl]}nl=1 the fiber germs arise in the fibered 4-manifold.
Define a map φ : Mmon(p) → Q by

φ(ϕ̂) :=
n∑
l=1

σloc([fl, El,Δl])− SignX ,

where σloc is the local signature described in Theorem 1.1. This is well-defined, and cobounds
the 2-cocycleΦ∗τg in Mmon(p). That is to say, it satisfies

φ(ϕ̂)+ φ(ψ̂)+ φ((ϕ̂ψ̂)−1) = Φ∗τg(ϕ̂, ψ̂)

for ϕ̂, ψ̂ ∈ Mmon(p).

PROOF. Choose a Σg -bundle E → P on the pair of pants whose monodromies along
the boundary circles are ϕ̂, ψ̂ , and (ϕ̂ψ̂)−1, respectively. Since these mapping classes lie
in Mmon(p), there exist fibered 4-manifolds Xi → D2 (i = 1, 2, 3) of the G-covering p
whose monodromies along the boundary circles are ϕ̂, ψ̂ , and (ϕ̂ψ̂)−1, respectively. Let
{f il , Eil ,Δil }nil=1 denote representatives of the fiber germs arise in the fibered 4-manifold Xi .
By the definition of the Meyer cocycle, we have

Φ∗τg(ϕ̂, ψ̂) = SignE .
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By the definition of the local signature, we have

SignE =
3∑
i=1

( ni∑
l=1

σloc([f il , Eil ,Δil ])− SignXi

)
= φ(ϕ̂)+ φ(ψ̂)+ φ((ϕ̂ψ̂)−1) .

Even if we substitute another fibered 4-manifold X′
1 → D2 whose monodromy along the

boundary circle is ϕ̂ for X1 → D2, the left-hand side of the equation does not change. Hence
the value φ(ϕ̂) does not depend on the choice ofX1 either. Moreover, the equation shows that
the map φ cobounds the Meyer cocycle. �

In terms of the cobounding function, we obtain a local signature for fibered 4-manifolds
of the G-covering p in the broad sense, if the subgroup Mmon(p) coincides with the whole
group Mg(p). This local signature is defined as a function on another kind of fiber germs.
Denote by Δ a closed 2-disk. Consider fibered 4-manifolds (f,E,Δ) of the G-covering p in
the broad sense with unique critical values b ∈ Δ. Let (f1, E1,Δ1) and (f2, E2,Δ2) be such
fibered 4-manifolds which have unique critical values b1 and b2, respectively. These fibered
4-manifolds are equivalent if and only if there exist

(i) closed 2-disksΔ′
1 ⊂ Δ1 andΔ′

2 ⊂ Δ2 including the critical values,
(ii) an orientation-preserving diffeomorphism ϕ : (Δ′

1, b1) → (Δ′
2, b2),

(iii) an orientation-preserving diffeomorphism ϕ̃ : f−1
1 (Δ1) → f−1

2 (Δ2) such that
ϕf1 = f2ϕ̃ and it restricts to a G-equivariant diffeomorphism f−1

1 (Δ1 − b1) →
f−1

2 (Δ2 − b2).

We denote this set of equivalent classes by S̃pg .

PROPOSITION 5.6. Let G be a finite group, and p : Σg → S2 a G-covering with
at least 3 branch points. Assume that the group Mmon(p) coincides with the whole group
Mg (p). Let φ : Mg (p) → Q be the cobounding function of the pullbackΦ∗τg of the Meyer
cocycle in Theorem 5.5. For a fiber germ [f,E,Δ] ∈ S̃pg , denote by ϕ̂ the monodromy along
the boundary curve ∂Δ. The map σ ′

loc : S̃pg → Q defined by

σ ′
loc([f,E,Δ]) := φ(ϕ̂)+ SignE

is a local signature for fibered 4-manifolds of the G-covering p in the broad sense.

The proof is the same as that of Endo [9, Theorem 4.4].

REMARK 5.7. In general, a cobounding function of the pullback Φ∗τg of the Meyer
cocycle in Mmon(p) is not unique.

6. Generators of symmetric mapping class groups. In this section, we describe a
generating set of the symmetric mapping class group Mg(p) of the G-covering p, assuming
that the finite groupG is abelian. Let d ≥ 2 be an integer. In Subsection 7.1, we will construct
fiber germs whose monodromies are inverses of the standard generator system {σij }, and prove
that Mg(p1) = Mmon(p1).



560 M. SATO

Let f̂ be in the centralizer C(p). The diffeomorphism f̂ induces a diffeomorphism f of
S2 satisfying a commutative diagram

Σg
f̂−−−−→ Σg

p

⏐⏐� p

⏐⏐�
S2 f−−−−→ S2 .

We call the diffeomorphism f the projection of f̂ . Recall that A is the branch set in S2 of
the G-covering p. Let k : π1(S

2 − A) → G be the monodromy homomorphism of the
G-covering p. Since G is abelian, this induces the homomorphism k̄ : H1(S

2 − A) → G.
Choose a base point ∗ in S2 − A. Denote by γαi : [0, 1] → S2 a based loop which rotates
around a point αi counterclockwise once. For h ∈ G− {1}, define a subset Ah of the branch
set A in S2 by Ah = {α ∈ A ; k̄∗[γα] = h}, where [γα] is the homology class of γα. Let MA

0
denote the mapping class group of S2 which preserves the setAh setwise for any h ∈ G−{1}.
We also denote by MA,∗

0 the mapping class group which preserves the base point ∗ and each

Ah setwise. The projection f of f̂ ∈ C(p) preserves each branch set Ah. For the details,
see [25, Proposition 1.2]. Thus, we have homomorphisms Φ ′ : M(∗)

g (p) → MA,∗
0 and

Φ : Mg(p) → MA
0 defined by [f̂ ] �→ [f ].

LEMMA 6.1. Assume that the finite group G is abelian.

(i) The homomorphismΦ ′ : M(∗)
g (p) → MA,∗

0 is isomorphic.
(ii) The homomorphism Φ : Mg(p) → MA

0 is surjective, and the kernel is generated
by Deck(p).

PROOF. The surjectivity of Φ is a special case of [25, Proposition 1.2]. We can show
that the homomorphismΦ ′ is surjective in the same way.

We compute the kernels of Φ and Φ ′. Let f be the projection of f̂ ∈ C(p). If the
mapping class [f̂ ] ∈ Mg (p) is in the kernel ofΦ, there exists an isotopy {fs}0≤s≤1 satisfying
f0 = f and f1 = id. Choose the lift of this isotopy {f̂s}0≤s≤1 such that f̂0 = f̂ . Since f̂1

is a lift of the identity map, it is a deck transformation. Hence, the kernel is generated by
Deck(p). By the same argument, we can show that the kernel of Φ ′ is also generated by
Deck(p) ∩ Diff+(Σg , p

−1(∗)), which is the trivial group. �

For mutually distinct integers i, j , choose a simple closed curveCij as in Figure 2. When
there exist mutually distinct h, h′ ∈ G − {1} which satisfy αi ∈ Ah and αj ∈ Ah′ , denote by
τij ∈ MA,∗

0 the full Dehn twist along Cij . When there exists h ∈ G − {1} which satisfies

αi, αj ∈ Ah, denote by σij ∈ MA,∗
0 the half Dehn twist along Cij . This is the mapping

class which exchanges the points αi and αj and whose square is the full Dehn twist along

Cij . We denote by σ̂ij and τ̂ij the lifts of σij and τij in M(∗)
g (p) which preserve the fiber

p−1(∗) pointwise, respectively. The inclusion Diff+(Σg , p
−1(∗))∩C(p) → C(p) induces a

homomorphism M(∗)
g (p) → Mg(p). We also denote by the same symbol the images of σ̂ij

and τ̂ij under this homomorphism.
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FIGURE 2. The simple closed curve Cij .

LEMMA 6.2. If the finite group G is abelian, then both of the groups M(∗)
g (p) and

Mg (p) are generated by {σ̂ij }1≤i<j≤m ∪ {τ̂ij }1≤i<j≤m.

PROOF. Since we have the isomorphism Φ ′ : M(∗)
g (p) ∼= MA,∗

0 , it suffices to show
that

(i) the mapping classes σij , τij generates MA,∗
0 ,

(ii) the homomorphism M(∗)
g (p) → Mg (p) is surjective.

First, we show (i). Let Diff+(S2, A, ∗) be the diffeomorphism group which preserves the
base point ∗ and the set A pointwise. Denote by n(h) the order of Ah, and by Sn(h) the
symmetric group of degree n(h). Since MA,∗

0 permutes the elements of each set Ah, we

have the homomorphism η : MA,∗
0 → ∏

h∈G−{1} Sn(h). Since the group
∏
h∈G−{1} Sn(h) is

generated by the images of σ̂ij under η, we have the exact sequence

1 −−−−→ π0 Diff+(S2, A, ∗) −−−−→ MA,∗
0

η−−−−→ ∏
h∈G−{1} Sn(h) −−−−→ 1 .

It is known that π0 Diff+(S2, A, ∗) is generated by σ 2
ij and τij . For example, see Birman [6,

1.5]. Thus, we have proved (i).
Next, we show (ii). Let ∗̂ be a point in p−1(∗). Let f̂ ∈ C(p) be a diffeomorphism,

and let f ∈ Diff+ S2 denote the projection of f̂ . The map ρ : Diff+(S2, A) → S2 − A

defined by h �→ h(∗) is a fiber bundle with fiber Diff+(S2, A, ∗) as Birman [6, Theorem 4.1].
Pick a path γ̂ : [0, 1] → Σg − p−1(A) such that γ̂ (0) = ∗̂ and γ̂ (1) = f̂ (∗̂). Denote by
Ψ : [0, 1] → Diff+(S2, A) a lift of pγ̂ : [0, 1] → S2 − A with respect to the fiber bundle
ρ : Diff+(S2, A) → S2 −A such that Ψ (0) is the identity map. By the lifting property of the
G-covering p : Σg → S2, this can be lifted to the map Ψ̂ : [0, 1] → C(p) such that Ψ̂ (0)
is the identity map. Then, the composite Ψ̂ (1)−1f̂ preserves the point ∗̂. Moreover, since
Ψ̂ (1)−1f̂ commutes with the deck transformations, it preserves each point of p−1(∗). Hence
Ψ̂ (1)−1f̂ represents a mapping class in M(∗)

g (p). By the isotopy Ψ̂ , we have [Ψ̂ (1)−1f̂ ] =
[f̂ ] ∈ Mg(p). This shows that M(∗)

g (p) → Mg(p) is surjective. �

7. Proof of Proposition 1.2. Let d ≥ 2 and m ≥ 3 be integers such that m is divided
by d . Let A be a set of m distinguished points {αi}mi=1 in S2. For each i = 1, 2, . . . ,m,
choose a loop γαi which rotates around a point αi counterclockwise once. Define a surjective
homomorphism k : H1(S

2 − A) → Zd by mapping each homology class [γαi ] to 1 ∈ Zd .



562 M. SATO

Since m ≡ 0 mod d , this is well-defined. Let p1 : Σg → S2 be the Zd -covering on S2 which
has the branch set A in S2 and the monodromy homomorphism k.

In Subsection 7.1, we will construct a fiber germ of Zd -coveringp1 whose monodromy is
the inverse σ̂−1

12 of the generator of Mg (p1) introduced in Section 6. This proves Mg(p1) =
Mmon(p1) (Lemma 7.1). Especially, we obtain a homogeneous quasi-morphism on the map-
ping class group Mm

0 of the m-pointed sphere (Corollary 7.3). In Subsection 7.2, we will
also calculate the local signature of this fiber germ and the value φ(σ̂12) of the cobounding
function of the pullback of the Meyer cocycle τg by the homomorphismΦ : Mg (p) → Mg .

7.1. The construction of a fiber germ.

LEMMA 7.1. The subgroup Mmon(p1) coincides with the whole symmetric mapping
class group Mg(p1).

PROOF. We need to show that the generating set {σ̂ij }i,j∈A of the symmetric mapping
class groupMg(p1) is contained in the subgroupMmon(p1). Since {σ̂ij }i,j∈A are in the same
conjugacy class in Mg(p1), it suffices to construct a fiber germ in Sp1

g whose monodromy is
σ̂12.

Let Ē be the product space Δ1 × CP 1, where Δ1 = {b ∈ C ; |b| ≤ 1/2} is a closed
2-disk. Let [x1 : x2] be the homogeneous coordinate of CP 1, andm′ = m− 2. Denote by J̄ a
submanifold of Ē defined by the equation (xm

′
1 − xm′

2 )(x
2
1 − bx2

2) = 0. For b = re
√−1φ ∈ Δ1

where r ≥ 0 and 0 ≤ φ < 2π , define the root by
√
b = √

re
√−1φ/2. Pick a diffeomorphism

T : S2 → {1/2} × CP 1 which maps α1, α2, and αi to (1/2, [√1/2 : 1]), (1/2, [−√
1/2 : 1]),

and (1/2, [1 : e2π
√−1(i−2)/m′ ]), for i = 3, 4, . . . ,m, respectively. Then, we have

H1(Ē − J̄ ) =
m⊕
j=1

Zej /(Z(e1 − e2)⊕ Z(e1 + e2 + · · · + em)) ,

where ej is the homology class represented by the loop T ◦ γαj . Define a homomorphism
l : H1(Ē − J̄ ) → Zd by mapping each ej to 1. This is well-defined since m ≡ 0 mod
d . Hence there exists a Zd -covering q : E → Ē branched along J̄ whose monodromy
homomorphism is l.

Denote by f̄ : Ē → Δ1 the projection to the first factor, and by f : E → Δ1 the
composite of q : E → Ē and f̄ . The map f is a fibered 4-manifold of the Zd -covering p1 in
the narrow sense with the unique singular value b = 0. We only have to check that it has the
monodromy σ̂12. The restriction of f̄

(Ē − ({0} × CP 1) , J̄ − {(0, [0 : 1])}) → Δ1 − 0

can be considered as a m-pointed sphere bundle. Consider T : S2 → {1/2} × CP 1 as a
reference fiber of this bundle. Then, the monodromy of this bundle along ∂Δ1 is σ−1

12 ∈ MA
0 .

Moreover, since there is a section s : Δ1 → Ē defined by s(b) = (b, [1 : 0]), the monodromy
can be considered as σ12 ∈ MA,∗

0 . Since the isomorphism Φ ′ : M(∗)
g (p) ∼= MA,∗

0 maps σ̂12

to σ12, the fibered 4-manifold f : E → Δ1 has the monodromy σ̂−1
12 ∈ Mg(p). �
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LEMMA 7.2. In the symmetric mapping class group Mg (p1), the cobounding func-
tion of the pullback Φ∗τg of the Meyer cocycle under Φ : Mg(p1) → Mg is unique.

PROOF. If there exist two cobounding functions φ and φ′, the map φ−φ′ : Mg (p1) →
Q is a 1-cocycle. Hence it suffices to show that H 1(Mg(p1); Q) = 0. By Lemma 6.1, we
have the exact sequence

(4) Deck(p1) −−−−→ Mg (p1) −−−−→ Mm
0 −−−−→ 1 .

Since the deck transformation group Deck(p1) is finite, we have the isomorphism

H 1(Mm
0 ; Q) ∼= H 1(Mg(p1); Q) .

It is known that H 1(Mm
0 ; Q) = 0, for example, this follows from the presentation of Mm

0
obtained by Birman [6, Theorem 4.5]. Hence we have H 1(Mg(p1); Q) = 0. �

Recall that the Meyer cocycle is a bounded 2-cocycle. By Theorem 5.5 and the exact
sequence (4), we obtain the following corollary.

COROLLARY 7.3. The function φ : Mg(p1) → Q is a quasimorphism. Especially,
the homogenization φ̃ : Mg (p1) → Q defined by

φ̃(ϕ̂) = lim
n→∞

φ(ϕ̂m)

n

induces a homogeneous quasimorphism on the mapping class group Mm
0 of the m-pointed

sphere.

7.2. The calculation of the local signature for the fiber germ. To calculate the
local euler number of the horizontal components, we need Lemma 7.4. Let D(Δ) → Δ be
a D2-bundle on a closed 2-disk Δ, and S(Δ) its sphere bundle. The manifold S(Δ) induces
the orientation on the boundary S(Δ)|∂Δ. Let s : Δ → S(Δ) be a section. For a section
s′ : ∂Δ → S(Δ)|∂Δ, take an extension s̃′ : Δ → D(Δ). Then we can consider the following
two intersection forms H2(D(Δ), S(Δ)) × H2(D(Δ),D(Δ)|∂Δ) → Z and H1(S(Δ)|∂Δ) ×
H1(S(Δ)|∂Δ) → Z. We denote by s̃′ · s the former one, by s′ · s|∂Δ the latter one. Then we
have:

LEMMA 7.4. For the sections s : Δ → S(Δ) and s′ : ∂Δ → S(Δ)|∂Δ as above, we
have

s̃′ · s = −s′ · s|∂Δ .
PROOF. We may identify the diskΔ with the embedded 2-diskD2 = {b ∈ C ; |b| ≤ 1}

in C. The section s gives a trivializationD(Δ) ∼= D2 ×D2.
For some integer k, the section s′ represents the same class in H1(S(D

2)|∂D2) as the
curve {(z, zk) ; z ∈ S1} in D2 × D2. Then, we have s′ · s|∂D2 = −k. Since the ho-
momorphism H2(D(D

2), S(D2)) → H1(S(D
2)|∂D2) is injective, the homology class in

H2(D(D
2), S(D2)) of s̃′ is represented by the surface {(z, zk) ; z ∈ D2}. Hence we have

s̃′ · s = k = −s′ · s|∂D2 . �
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In the following, we prove Proposition 1.2. Let E → Δ1 denote the fibered 4-manifold
of the Zd -covering p1 in Lemma 7.1. Let S̄12 and S̄i be the submanifolds of Ē defined by
x2

1 = bx2
2 and by e2π

√−1(i−2)/m′
x1 = x2 for i = 3, . . . ,m, respectively. Denote by S12 and

{Si}mi=3 their inverse images q−1(S̄12) and {q−1(S̄i )}mi=3 under the quotient map q : E → Ē.
Choose a Riemannian metric gr of T (Ē)whose restriction to T (Ē)|S̄i makes T (Ē/Δ1)|S̄i

and T S̄i orthogonal, and restriction to T (Ē)|∂S̄12
makes T (Ē/Δ1)|∂S̄12

and T S̄12|∂S̄12
orthog-

onal. Then we have

N(S̄i)|S̄i = T (Ē/Δ1)|S̄i and N(S̄12)|∂S̄12
= T (Ē/Δ1)|∂S̄12

.

In Section 4.1, we constructed the sections of N(S̄i )|⊗(m−1)(m−2)
∂S̄i

and

N(S̄12)|⊗(m−1)(m−2)
∂S̄12

, named s∂S̄i and s∂S̄12
, respectively. We first review the definitions of

these sections. Define maps αi : Δ1 → Ē by α1(b) = (b, [1 : √
b]), α2(b) = (b, [1 : −√

b]),
and αi(b) = (b, [1, e2π

√−1(i−2)/m′ ]) for i = 3, . . . ,m. Let j and k be integers such that
1 ≤ j ≤ m, 1 ≤ k ≤ m, and i, j, k are mutually distinct. For such j and k, define a not
necessarily continuous section si (j, k) : ∂S̄i → T (Ē/Δ1)|∂S̄i by

si (j, k)(αi(b)) = (t
ijk
b )∗

(
d

dz

)

as in Subsection 4.1. Note that, if {j, k} ∩ {1, 2} 
= ∅, the section si (j, k) is not continuous
since the root of b is not continuous. The (continuous) section s∂S̄i is defined by

s∂S̄i =
⊗
j,k

si(j, k),

where j and k run through integers such that 1 ≤ j ≤ m, 1 ≤ k ≤ m, and i, j , k are distinct.
In the same way, for integers j and k such that 3 ≤ j ≤ m, 3 ≤ k ≤ m, and i, j, k are distinct,
define sections of the bundle T (Ē/Δ1)|∂S̄12

→ S̄12 by

s12(j, k)(αi(b))= (t
ijk
b )∗

(
d

dz

)
, for i = 1, 2 ,

s+12(j)(αi(b))=

⎧⎪⎪⎨
⎪⎪⎩
(t

12j
b )∗

(
d

dz

)
, if i = 1 ,

(t
21j
b )∗

(
d

dz

)
, if i = 2 ,

s−12(j)(αi(b))=

⎧⎪⎪⎨
⎪⎪⎩
(t

1j2
b )∗

(
d

dz

)
, if i = 1 ,

(t
2j1
b )∗

(
d

dz

)
, if i = 2 .

The section s∂S̄12
is defined by

s∂S̄12
=

⊗
j,k

s12(j, k)⊗
m⊗
j=3

(s+12(j)⊗ s−12(j)) .
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For any h 
= 0 ∈ Zd , the connected components of the fixed point set Eh are S12

and {Si}mi=3. Since h ∈ Zd rotates the normal bundle of these components 2hπ/d , we have
isomorphisms

N(S12)
⊗d ∼= N(S̄12) , and N(Si)

⊗d ∼= N(S̄i) .

The local normal euler number is described as

χ
h,2hπ/d
loc ([f,E,Δ1])

= 1

d(m− 1)(m− 2)

{ m∑
i=3

n(s∂S̄i , N(S̄i )
⊗(m−1)(m−2))+ n(s∂S̄12

, N(S̄12)
⊗(m−1)(m−2))

}
.

We will calculate n(s∂S̄i , N(S̄i )
⊗(m−1)(m−2)) and n(s∂S̄12

, N(S̄12)
⊗(m−1)(m−2)) in Lem-

mas 7.5 and 7.6, respectively.

LEMMA 7.5. For the sections s∂S̄i : ∂S̄i → N(S̄i )|⊗(m−1)(m−2)
∂S̄i

, we have

n(s∂S̄i , N(S̄i )
⊗(m−1)(m−2)) = −1 ,

for 3 ≤ i ≤ m.

PROOF. Let w = x2/x1 be the inhomogeneous coordinate of the second factor of Ē =
Δ1 × CP 1. Since the map t ijkb : CP 1 → f̄−1

0 (b) is written as

t
ijk
b (z) = αk(b)(αi(b)− αj (b))z+ αi(b)(αj (b)− αk(b))

(αi(b)− αj (b))z+ (αj (b)− αk(b))
,

the vector (tijkb )∗(d/dz) is described as

(5) (t
ijk
b )∗

(
d

dz

)
= (αi(b)− αj (b))(αk(b)− αi(b))

αj (b)− αk(b)

(
d

dw

)
.

Suppose j ≥ 3 and k ≥ 3. Let j ′, k′ also be integers such that 3 ≤ j ′ ≤ m, 3 ≤ k′ ≤ m,
and i, j ′, k′ are mutually distinct. Let s0 : ∂S̄i → T (Ē/Δi)|∂S̄i be the zero section. The

intersection form on the first homology group of the sphere bundle of T (Ē/Δ1)|∂S̄i induces

that of the (C − 0)-bundle T (Ē/Δ1)|∂S̄i − s0(∂S̄i). By the explicit description (5), we can
calculate the intersection numbers

(6) si (j, k) · si (j ′, k′) = 0 ,

(7) (si (1, k)⊗ si (2, k)) · si (j ′, k′)⊗2 = (si (k, 1)⊗ si(k, 2)) · si (j ′, k′)⊗2 = 0 ,

(8) (si (1, 2)⊗ si(2, 1)) · si(j ′, k′)⊗2 = 1 .

Since we have the isomorphism T (Ē/Δ1)|S̄i ∼= NS̄i , it follows that

n(s∂S̄i , N(S̄i )
⊗(m−1)(m−2)) = n(s∂S̄i , T (Ē/Δ1)|⊗(m−1)(m−2)

S̄i
) .
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The section si (j ′, k′) of T (Ē/Δ1)|∂S̄i can be extended to the nonzero section s̃i (j ′, k′) of

T (Ē/Δ1)|S̄i defined by s̃i (j ′, k′)(αi(b)) = (t
ij ′k′
b )∗(d/dz) for 3 ≤ i ≤ m. Hence a trivializa-

tion of the bundle T (Ē/Δ1)|S̄i is given by si (j ′, k′). By Lemma 7.4, we have

n(s∂S̄i , T (Ē/Δ1)|⊗(m−1)(m−2)
S̄i

) = −
( ⊗

j,k

si (j, k)

)
· si (j ′, k′)⊗(m−1)(m−2) .

The calculations (6), (7), and (8) show that this is equal to −1. �

LEMMA 7.6. For the section s∂S̄12
: ∂S̄12 → N(S̄12)|⊗(m−1)(m−2)

∂S̄12
, we have

n(s∂S̄12
, N(S̄12)

⊗(m−1)(m−2)) = (m+ 1)(m− 2) .

PROOF. Suppose j ≥ 3 and k ≥ 3. The section s12(j, k) of T (Ē/Δ1)|∂S̄12
can be

extended to a nonzero section s̃12(j, k) of T (Ē/Δ1)|S̄12
defined by s̃12(j, k)(αi(b)) =

(t
ijk

b )∗(d/dz) for i = 1, 2. Let rS̄12
: T Ē|S̄12

→ NS̄12 be the projection. The section

rS̄12
s̃12(j, k) of N(S̄12) intersects the zero section s′0 : S̄12 → N(S̄12) transversely in one

point s′0(0, [0 : 1]). Hence we have n(s12(j, k),N(S̄12)) = 1. By the explicit description (5),
we can also calculate the intersection number

sε12(j) · s12(j, k) = −1

of the (C − 0)-bundleN(S̄12)|∂S̄12
− s′0(∂S̄12) for ε = +,−. Lemma 7.4 shows

(9) n(sε12(j),N(S̄12)) = −sε12(j) · s12(j, k)+ n(s12(j, k),N(S̄12)) = 2 .

Thus, we have

n(s∂S̄12
, N(S̄12)

⊗(m−1)(m−2))

=
∑

3≤j≤m
3≤k≤m
j 
=k

n(s12(j, k),N(S̄12))+
m∑
j=3

n(s+12(j),N(S̄12))

+
m∑
j=3

n(s−12(j),N(S̄12))

= (m+ 1)(m− 2) .

�

By Lemmas 7.5 and 7.6, the local euler number is calculated as

χ
2hπ/d,h
loc ([f,E,Δ1]) = m

d(m− 1)
.

Since there is no vertical component, by Theorem 1.1, we have

σloc([f,E,Δ1]) = −
d−1∑
h=1

χ
2hπ/d,h
loc ([f,E,Δ1]) cosec2

(
hπ

d

)
+ Sign Ē .
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It is known that (for example, see Hirzebruch-Zagier [13, p. 178])

d−1∑
h=1

cosec2
(
hπ

d

)
= d2 − 1

3
.

There is a deformation retraction of Ē onto {0} × CP 1 and its self-intersection number is 0.
Hence we have Sign Ē = 0. Thus the local signature and the cobounding function of the
pullback of the Meyer cocycle is

σloc([f,E,Δ1]) = −φ(σ̂ij ) = − (d − 1)(d + 1)m

3d(m− 1)
.
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