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ON THE TWO-VARIABLES MAIN CONJECTURE FOR EXTENSIONS
OF IMAGINARY QUADRATIC FIELDS
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Abstract. Let p be a prime number at least 5, and let k be an imaginary quadratic
number field in which p decomposes into two conjugate primes. Let koo be the unique Z%—
extension of k, and let Ko be a finite extension of ko, abelian over k. We prove that in
Ko, the characteristic ideal of the projective limit of the p-class group coincides with the
characteristic ideal of the projective limit of units modulo elliptic units. Our approach is based
on Euler systems, which were first used in this context by Rubin.

1. Introduction. Let p ¢ {2,3} be a prime number, and let k£ be an imaginary
quadratic field in which p decomposes into two distinct primes p and p. Let koo be the
unique Z%—extension of k, and let K be a finite extension of ko, abelian over k. We set
G = Gal(K/k), G := Gal(Kx/ ko), and we fix a decomposition G, := G x I, such
that I" is a topological group isomorphic to Z%,.

For any global or local number field L, we denote by Oy, the ring of integers of L, and
for any ring R we write R* the group of units in R. If L is a finite abelian extension of %,
let Ay be the p-part of the class group C1(Op) of Op, and let Cp be the group of elliptic
units (see Definition 4.1). Then we set £, := Z, @z OZ andCp :=Z, ®z Cr. If Lisan
infinite abelian extension of k, we define Az, £ and Cy, by taking projective limits over finite
sub-extensions, under the norm maps. We set A := Ak, Eoo := Ek.» and Coo := Ck, .

For any profinite group G, and any commutative ring R, we define the Iwasawa algebra
RI[[G]] = L&n R[H], where the projective limit is taken over all finite quotient H of G. We
alsoset Ag := Z,[[G]]l and Ao 1= AG,,. Then Ay and o, /Coo are naturally Aso-modules.
As we shall see below, they are finitely generated and torsion over A . For any finite exten-
sion L/ @, it is well known that O [[I"]] is a Noetherian local Krull ring. We also recall that
OLIII']] is a unique factorization domain. Let R be a Noetherian Krull ring which is not a
field, and let M be a finitely generated R-module. We say that M is pseudo-null if and only
if its localization at every height 1 prime ideal is zero. A morphism between two finitely gen-
erated R-modules is called pseudo-isomorphism if its kernel and its cokernel are pseudo-null.
One may find height 1 prime ideals q1, . . ., g, in R, and nonnegative integers n1, . . ., n,, such
that there is a pseudo-isomorphism
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Moreover, the ideal q'l” ---qy" is uniquely determined by M, and is called the characteristic
ideal of M, which we denote by charg (M).

We denote by C, the completion of an algebraic closure of @p,. Let x : G — C be an
irreducible character of G. Let Q,(x) C C) be the extension of Q) generated by the values
of x. We denote by Z ,[ x ] the ring of integers of @ ,(x). The group G acts on @, () through
x. For any Z ,[G]-module Y, we define its x-quotient by Y, = Z ,[x] ®z,16] Y. Note that
if Y is a Aco-module, then Y, is a Z [ x ][[I"]]-module in a natural way. As a particular case,
Acey 2 Zp[xIITT).

The goal of the article is to prove Theorem 1.1 below, which is a formulation of the
(two-variables) main conjecture. In [16, Theorem 4.1] and [17, Theorem 2], Rubin used Euler
systems to prove the main conjectures for Z - or Z%-extensions of a finite abelian extension
F of k, where p 1 wi[F : k], wi being the number of roots of unity in k. More recently,
Hassan Oukhaba adapted Rubin’s method and obtained Theorem 1.1 for p = 2, still under
the condition 2 { #G (see [9]). Also, we draw the attention of the readers to a cohomological
two-variables main conjecture, which has been recently proved by Johnson-Leung and Kings
in [8, 5.2 and 5.5]. In [8, 5.4], they recover the classical two-variables main conjecture in the
case already treated by Rubin (i.e. p { #G). The contribution of the present paper is to extend
Rubin’s two-variables result to the general case, where we allow p to divide #G. One could
try to deduce Theorem 1.1 below from the cohomological result of [8], but it is not clear that
this strategy would succeed. Our approach is more elementary.

THEOREM 1.1. Forallirreducible C ,-character x of G, the following equality holds:
chara,, , (€x/Co)y = chara,, , Aoy -

Let us denote by keo,0 (resp. ko) the unique Z ,-extension of k unramified outside of
p (resp. p). We set T := Gal(Kxo/k0,00K) and T = Gal(Koo/koo,0K), where K is the
subfield of Ko fixed by I'. Foralln € N, weset Y, := Y7 and T, := TP Also we set
T~ = {1} and Y oo = {1}. For all (n,n) € (N U {oo})z, we denote by K, ; the subfield
of Ky fixed by I},;i := 1, 7. We choose topological generators y and y of ¥ and 7,
respectively, and for alln € N we set y,, 1= y?" and y, := pP".

We fix an irreducible C ,-character x of G, and weset ¥ : G — Qp, 0 — Tr(x(0)),
where Tr is the trace map for the extension Q,(x)/ Q). We denote by e, (resp. ey) the
idempotent of Q,(x)[G] (resp. Q,[G]) attached to x (resp. ¥), i.e.,

ey = (#G)™! Z x(9)g™' and ey := #G)™! Z Y(gg "

geG geG

For any closed subgroup H of G, and any As-module N, we denote by N H the
module of H-invariants of N, and we denote by Ny the As-module of coinvariants of N.
Let F be the set of all finite extensions F' C Ko, of k. Let (MF) pcr be a projective system
of Aso-modules. We assume that for all F € F, MF is invariant under Gal(K »,/ F'). For all
F C F'in F,let Ngryp : Mg — MF be the transition map (in all the case encountered in
the sequel, these transition maps are the usual norm maps). For any extension L C K, of k,
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we set My, := 1(131 F MF, where the projective limit is taken over all F' € F such that F C L.

We denote by ni"’ : (Mgy)r, — M and nzwx : (Mg, x)r, — ML,y the canonical maps,
where I'y := Gal(K«/L). Notice that Mg_, 5 may not be equal to 1<iLnF MF . For any two
extensions L C L' C K of k, we denote by N/ /L - M — M| the canonical map obtained
from the transition maps by taking the projective limit. For all (n,72) € (N U {o0})?, Mg

M My : _ M My —
Tk, - and 7t ”_ are respectively denoted by M, i, 7,,; and m, 7. We set Moo 1= M.

n.n

nn’

2. Semilocal units and ideal class group. Let F be an abelian extension of k. If
[F : k] < oo, for any maximal ideal v of OF, we denote by F; the completion of F at t. Then
we write UF for the pro- p-completion of [ | alp O ;q , where the product is over all primes of F
above p. If [F : k] is not finite, UF is defined in accordance with our conventions (Section 1).
For any field L and any n € N, we denote by p,, (L) the group of n-th roots of unity. We set
w(L) == U, =0 tn(L) and ppoo (L) 1= |J, ey pr (L). We denote by D and D the respective
decomposition groups of p and p in K/ k.

THEOREM 2.1. Let Uy := Uk,,. For any prime q of Koo above p, we set Koo q 1=
U(n i)eN? K ii,q, where Ky g is the completion of K, i at . Then there is an exact sequence

2.1 0 Uso Ao [Tgp T (p(Koo,q)) —0,

where the product is over all prime q of Ko above p, and where the letter T stands for the
Tate module.

PROOF. By class field theory and since ky >~ @, D is a quotient of (Z/(p — 1)Z) x
ZxZ p» Where Z is the profinite completion of Z. Moreover, the Z ,-rank of the pro-p-part
of D is 2. From these two facts we deduce that D >~ A x Zf, for some finite group A of order
prime to p. Then we can apply [21, Théoréme]. a

LEMMA 2.2. Let F C K be an extension of K, such that K/ F is unramified at all
the places above p. Then nILf : Uso) rp — Ur is anisomorphism, where I'r := Gal(Koo/ F).
PROOF. Let F be the subfield of Ko fixed by I'r N D. Since all the primes of F above
p are totally split in F/F, we have (U 7)rr = Ur. Thus we are reduced to prove Lemma 2.2

when F = F. In that case we have Ker(rr? ) = 0by [21, Lemme 5.2 (i)], and n,lff is surjective
by local class field theory, since K,/ F is unramified at all the places above p. a

Let Y’ be a subgroup of I" such that I' =7 x Y, and let y’ be a topological generator
of T'. Foralln € N, we set y, := (y)"".

LEMMA 2.3. Let 8 € N be such that Y' N D = Yy, Forall (n,n) € N2, vy — 1
annihilates the kernel and the cokernel of the natural map (Z/{oo’ﬁ)‘rr: — Uy , where K,/lyﬁ is
the subfield of Koo fixed by T3,

PROOF. Lemma 2.3 is obviousifn < §. Wefixn € N andn > §'. Let 3 be a maximal
ideal of Ok, such that P N O = p. For all m € N, we denote by U, the pro- p-completion
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and we set U/ = lim U, projective limit under the norm maps. Then we

are reduced to show that vy — 1 annihilates the kernel and the cokernel of the natural map
m,  Us)r, — U,. Forallm € N U {oo}, we denote by M,, the maximal abelian pro-
p-extension of K/, A and L, the maximal unramified abelian pro-p-extension of K, AP
Remark that L, is abelian over kp. For all m > ', local class field theory gives us an
isomorphism ¢,, : U,, — Gal(M,,/L,,). Taking projective limits under the norm and the
restriction maps, we obtain an isomorphism ¢oo : UL, — Gal(Mso/Loo) of Ap-modules,
which induces an isomorphism

(2.2) Cok(r)) ~ Gal(Loo/Ly).

The restriction map Gal(Moo /Ko i, 3) — Gal(M,,/Kr/lﬁ’;p) induces an isomorphism
(2.3) Gal(Moo/ Koo, )1 == Gal(My / Koo i) -

Since ptpoe (Koo, 7,3 is finite by class field theory, we deduce from [6, Theorem 25 (i)] that
(2.4) Gal(Moo/Koo i) = 0.

Since L« is abelian over kp,, we have

(2.5) Gal(Loo/Koo,;l,sp)Té = Gal(Loo /Koo, p) = Gal(Loo/Koo.it, )7 -

The exact sequence 0 — UL, — Gal(Moo /Koo i, 3) — Gal(Loo/Koo,i,93), together with
(2.3), (2.4) and (2.5), gives us the following commutative diagram with exact rows:

0 ——>Gal(Loo/ Koo i, p) —— (u;om —= Gal(My /Koo i, ) —— Gal(Loo/ Koo i, 3) ——0

l | l

0 Uy, Gal(Mp /K], ; 03) —— Gal(Ln /K, ; 03) ——0.

From this diagram we deduce an isomorphism of A p-modules Ker(r},) >~ Gal(Loo/K o, P
Since L« is abelian over kp, Lemma 2.3 follows from this last isomorphism and (2.2). O

For any abelian extension F of k, we denote by M, (F') the maximal pro- p-extension of
F which is unramified outside the primes above p. We set Br := Gal(My (F)/F). For any
closed subgroup H of G, we denote by Jg the ideal of Ay, generated by all the & — 1, with
h e H. We set T 1= JG,,-

THEOREM 2.4. Let F C K be an extension of K. Then we have the following.
(1) Brp is finitely generated over Aga(F/k)- Boo := Bk, is finitely generated and
torsion over Axo.
(i1) Ker(n?) is finitely generated over Z ,, and if Gal(Kx/F) C T then it is annihi-
lated by J5.
(iii) Cok(n?) is finitely generated over Z,, annihilated by Joo, and if Gal(Koo/F) C
T then it is finite.
(iv) IfGal(Keo/F) C T then we have the exact sequence
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0 — Ker(n2) —— Ar/JpAF —— Z ), — Cok(nB) — 0,

where Af := AGa(F/K)-
PROOF. We refer the readers to [16, Theorem 5.3]. O

PROPOSITION 2.5. The module Boo enjoys the following properties.
(i) Beo has no nonzero pseudo-null A -submodule.

(ii) Boo has no torsion over Z .

(iii) Foralln € N, (Boo)T" = 0.

PROOF. (i) is proved in [11, Théoreme 23]. We identify Bo, with 1<ir_nn Boon. Letm €
N and x := (x,)nen be an element of Bo, such that p”'x = 0. Foralln € N, Ay/x, isa
submodule of B, and a quotient of Ay /(p™). By the result of Gillard [3, 3.4. Théoréme],
the Iwasawa p-invariant L4, (Boo,s) is 0. Hence Ayx, must be pseudo-null over Ay-. By
the result of Greenberg [4, end of Section 4], Bo » has no nonzero finite Ay-submodule.
Then x,, = 0, for all n € N, and (ii) is verified. Let us fix n € N. From Theorem 2.4 and the
exact sequence

0 — Ker(r? ,) — Boo)y, Boo,n Cok(7® ,) —0,

we deduce that (Boo)?n is torsion over Ay-. Then by [11, Lemme 4 (2)], (Boo)?” is torsion

over Ays. By (ii) we deduce that (Boo)?” is finitely generated over Z,. Then (Boo)?" is
pseudo-null over A, and (i) implies (iii). O

For any abelian extension F of k, we denote by M(F) the maximal unramified pro-p-
extension of F. We set Ar := Gal(M(F)/F). Hence if [F : k] is finite, AF is identified to
the p-part of CI(OF) by class field theory.

THEOREM 2.6. Let F C K be an extension of K. Then we have the following.
(1) Ap is finitely generated over Aga(r/Kk)- Ao IS finitely generated and torsion over
Ao-
(i) Ker(rr?) is finitely generated over Z , and annihilated by Jp J5J .
(ii1) Cok(n?) is finitely generated over Z,, annihilated by J~, and if [F : K] < 00
then it is finite.

PROOF. We refer the readers to [16, Theorem 5.4]. O

REMARK 2.7. Proceeding as in the proof of Proposition 2.5, one can show that for any
closed subgroup H of I', (Ax)n and (AOO)H are finitely generated torsion A, p-modules.
As a consequence, forall g € I" \ {1}, chars(As) is prime to 1 — g.

PROPOSITION 2.8. We have pa, (Asc)y = 0. As a consequence, the image of
chary,  (Aco,y) in Zp[x][[T/]] is prime to Uy, where uy is a uniformizer of Z ;[ x 1.
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PROOF. We have 14, (Ker(ﬂ?o o)) = 0 because Ker(rr?o o) 1s finitely generated over
Z,. But up,(Axo) = 0 by Gillard’s result [3, 3.4. Théoréme], and then we deduce
M Ay (Aso)y = 0. The rest of Proposition 2.8 follows by [11, Lemme 4 (2)]. O

LEMMA 2.9. Let (n,7i) € N2 Then Jp FzJ%Ker(m, 5) = 0, Cok(w, %) is finite and
annihilated by Jx.

PROOF. The assertions about Cok(n:: %) follow from Theorem 2.6 (iii). We have the
obvious exact sequences

A

2.6) Ker(m3)y —— (Moo, )15 —— Im(r)y — 0,

2.7)
Torhoo (COk(”f:ﬁ)’ Aco,y) — Im(ﬂ,ﬁﬁ)x —— Ay —— Cok(nrﬁﬁ)x — 0.

By Theorem 2.6 we have JooToryy (Cok(m,;). Aco.x) = 0 and Jp T JecKer(m/), = 0,
from which we derive the lemma. O

Let us fix a pseudo-isomorphism Too, y : Axo,y — @‘;zl (Aco,x/(Pj)), where Py, ...,
Py are nonzero elements of A 5.

LEMMA 2.10. There is an ideal Iy of Ao,y of height greater than 1, and for all
(n, i) € N? there is a morphism

N
Twiig  Aniig — EDAco/(Pjoyn = 1,7 — 1)
j=1

such that Cok(ty,j,,) is annihilated by Io(ys’, — 1)2()73 — D2y — 1), where § € N is such
thatYs5=DNTY.

PROOF. Forall x € A, j;,, we choose X € (A, x)r, ; such that n:g xX) = (y — Dax.
Such a choice is possible by Lemma 2.9. Then we set T, ji, (x) := (5, —1)?(75—1)?%p.1, (),
where

N
Triig * Aoo ) s — ED(Aoox/(Pjsyvn =1, 7 — 1)
j=l1
is obtained from 7, , by taking the quotients. It follows from Lemma 2.9 that 7, 7 , is well
defined. Lemma 2.10 is satisfied if we let Zy be the annihilator of Cok (7w, ) OVer Ao . O

3. Global units. Let F be an abelian extension of k. If [F : k] < oo, we set Ep =
Z,®z O;. If [F : k] = oo, then we set EF := 1<ir_n5L, where the limit is taken over all finite
subextensions L C F of k under the norm maps. In all cases, by an appropriate version of the
Leopoldt conjecture which is known to be true for abelian extensions of imaginary quadratic
fields, one can identify £ with a submodule of Ur. We set £ 1= Ek, .
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LEMMA 3.1. Foranyn € N, we have the following commutative diagram with exact

rows:
(3.1) 00— (goo)?n —_— (uoo)?n — (uoo/goo)?n —0
L i
0 goo,n Z/{oo,n Z/{oo,n/goo,n —0.

PROOF. By class field theory, for any abelian extension F' of k we have an exact se-
quence

(3.2) 0 Er Ur Br Af 0.

By Proposition 2.5 (iii) and (3.2) applied to F = K+, we have (U /Eoo)?” = (0. Moreover
(UOO)E >~ Uso,n by Lemma 2.2. Then we deduce Lemma 3.1 from the tautological exact

sequence ( Eso Uso Uso/Eso — 0. O
LEMMA 3.2. Foranyn € N, there is cij € N such that for all integers n > n,
p(yy — 1) annihilates Ker((Exoi)1, = Eni) and  Cok((Exoi)1, = Enii) -
PROOF. Letusfixn € N. Foralln € N, we recall that K,’lﬁ is the subfield of K fixed
by 1, 7. We also set K/ ; := Kooi. From (3.2) applied to Ko 7 and K|,
commutative diagram with exact rows below:

(3.3)

Booi) " — (Anoi) T — Uoo,i/Eco,it) 1] — (Boo,i) 1] —= (Acc i) 1] ——0

| L

Uk, ./€k;, Bk, , Ak, 0.

n,i

#» we deduce the

0

Since (Booi)1; = Gal(Mp (K} )/Kooi), the map (Booi)y; — By s injective. More-
over, it is well known that (Booyﬁ)’r’; = 0 (see [16, Theorem 5.3 (v)]), hence from (3.3) we
deduce that Kel"((uooyﬁ/goo’ﬁ)}'n/ — Uyg [Ex ) ~ (Aoo,;l)Tn/. Since Ao i is Noetherian

and since (Aooﬁ)rn, is finite (see [15, Theorem 1.4]), we can find ¢; € N such that for all
meN,

(3.4) p annihilates Ker((l/{ooﬁ/é'ooﬁ)m — Z/{Kr/n ﬁ/é'Kr/n n) .

From (3.2) we have (Uso.i/Eso.i) " <> (Booi)Tm = 0, and the commutative diagram with
exact rows below:

(3.5) 0 — o)1, — Uso.i) 1), — Uoo,i/Ec0.i) T, —= 0

| | |

0 51(,’"_ﬁ UK;M Z’{K,’nﬁ/gl(:nj —0.




448 S. VIGUIE

Applying the snake lemma for (3.5), we see that Ker((£c0,i)r; — €k’ ) is a submodule of
Ker((uooﬁ)m — Uk _), which is annihilated by (Va/’ — 1) from Lemma 2.3. Moreover, the
snake lemma gives an exact sequence

0 — Q — Cok((€x.i) 1), — 5K;n_ﬁ) — S5 ——=0,

where Q is a quotient of Ker(Uso,i/Eco.ii)r; — UK;M/E,’KV/M) and S is a submodule of
Cok((Ueo,i);, — Ugs ). Then by (3.4) and Lemma 2.3, p(yj, — 1) annihilates
Cok((c‘fooﬁ)m — SK;nﬁ). For all n > n there is m € N such that the image of 7}, in
(T/Ti) x Y'is Ty, Then Ky i = K}, 4, (Ec0.i) 7, = (Eco.i) 7y, and Ueo,i) 1, = Uso,i) s

m,n’
from which we deduce Lemma 3.2. o
LEMMA 3.3. There is a natural number mo € N such that, for all nonnegative inte-
gersit < n, pi(yj, — (i, — 1)* annihilates Ker(x{ ;) and Cok(f ;).
PROOF. Let us momentaneously fix n. From Lemma 3.1, we deduce an isomorphism
Cok(nfoyﬁ) ~ Ker(ni’lo{ }f) and an exact sequence

U/

(3.6)  Kern/)Tn —— (Eso)rs —> (Eooi)r, —> Ker(nl/s

)y, —0.
By Proposition 2.5 (iii) we have the commutative diagram with exact rows:
(3.7) 00— (Aw)?ﬁ - (2/100/500)7ﬁ . (Boo)?ﬁ . (Aoo)?ﬁ 0

| R

0 uoo,fz/goo,fz Boo,ﬁ Aoo,fz 0,

from which we deduce the exact sequence

uj€

Wy — Ker(? ;).

(3.8) 0 — (Ax)T7 — Ker(n

Since A is Noetherian, there is mg € N such that (Aoo)?"” C (Aoo)?'ho forallm € N. We
can choose g such that 75, € D. Then by Theorem 2.4 (ii),

(3.9) Vinp — 1 annihilates Ker(nf’o’m) and (AOO)T"” forall m e N.
By (3.8), (Vg — 1)2 annihilates Ker(rri’é{ 5 ). From (3.6) and Lemma 3.2, we deduce Lemma
3.3. O

PROPOSITION 3.4. There is a finite set T, a family (n;);er € NT, and a pseudo-
isomorphism of Ao,y -modules

Oy 1 Eox — Aoox & @D (Aco /1),

teT

where Uy is a uniformizer of Z [ x 1.
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PROOF. By Theorem 2.1, ey, (@ ®z,Uso) is a torsion-free rank one ey (Q ) ®z, Acc)-
module. From Theorem 2.4 (i) and (3.2), we deduce that the Ao, ,-module Ex , is of rank 1
and that its torsion is annihilated by a power of p. O

Let pr: Aoo,y @ D, cr(Aoo /Uy ) = Ao,y be the canonical projection. For all non-
negative integers n < n,let @, j; 4 : (Soo,x)pnﬁ — Zp[x1[I"/I'y,7] be the map obtained from
pr-©, by taking the quotients. Let i, be a generator of chara , , (£00/Coo) - Asin[1, proof of
Lemma 3.5] or [19, Lemma 6.3], one can deduce from Lemma 3.3 that p2 (Vs/’ — 1)2()7,,3O -4

annihilates Ker(n:i ’,%) and Cok(ni ’,%). Then one easily verifies that the map
Oniiy  Eniiy — ZplXWT/ T 2 (yg — D> Ty — 1 Oy (
n,a,x - Cn,n,x X/ Thil, x> p (V(s/ DYy — D7 O, 5 (%)
is well defined, where X € (£x0,) 13, ; Verifies nngxﬁ (%) = p2ca (Vs/’ — 1)2()7,;,0 — D*x.

4. Elliptic units. For two Z-lattices L and L’ of C such that L € L’ and [L’ : L]
is prime to 6, we denote by z — 1 (z; L, L) the elliptic function defined in [14]. For a
nonzero proper ideal m of Oy, and a nonzero ideal a of O prime to 6m, Robert proved that
¥ (1; m, a~'m) € H(m), where H(m) is the ray class field modulo m of k. If ¢y (1) € H(m)™
is the Robert-Ramachandra invariant, as defined in [12, p. 15], we have by [13, Corollaire 1.3,
(iii)]
.1 Y (1 m,atm) 20 = g (DN@ @RI/,

where g(m) is the positive generator of m N Z, N(a) := #(Ok/a), and (a, H(m)/k) is the
Artin automorphism of H(m)/k defined by a. Let S(m) be the set of maximal ideals of O
which divide m. If we denote by wy, the number of roots of unity of k¥ which are congruent
to 1 modulo m, and if we write wy for the number of roots of unity of k, then by [13, p.21,
@iv")], we have

(1) if 2 <[S(m)],

(q)r2emwn/We e g(m) = (g},

4.2) Pm (1) Onm) = {
H(m)

where (q)H(m) is the product of the prime ideals of Oy(y) which lie above q. Moreover, if a
is prime to 6mgq, then by [13, p.21, (ii’-1)] we have

P (D@D A=@Hm/O™ i g pm
(pm(l)g(mq)g(m)*l if qfm.

DEFINITION 4.1. Let F C C be a finite abelian extension of k. We write ¥r for
the Z[Gal(F/k)]-submodule of F* generated by w(F) and by all the norms
NH(m)/H@m)nFW (1; m, a~'m)), where m is a nonzero proper ideal of Oy and a is any nonzero
ideal of O prime to 6m. Then we define the groups Cr := (9; NYrandCr :=Z, @z CF.

(4.3) NH(mq)/Hm) (@mq (1)) = {

For any abelian extension F of k, we set K(F) := 1<ir_nF,(Qp ®z (F")*), where the
limit is taken over all finite subextensions F’ C F of k with respect to the norm maps.
We fix a nonzero ideal f of O, prime to (p), such that Koo < H(fp™>), where
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H(fp*>) := U, ey H(fp"). For any ideal g of Oy dividing f, and for any (n,7n) € N?, we

set
1

in 0, ®z H(gp"t'p"t1)*. Then by (4.3) ¢y := (@g.n.i) (n.ien? is well defined in
K(H(gp™)) = lim (Q, ®z H(gp""'p"1)).

n,n

® (pgpn+lﬁh+l(l)

Since lim
Mk M

of K with respect to the norm maps, we deduce that the natural map Co, — Koo is injective,
where Co, and Ko are defined in accordance with our conventions (Section 1). Proceeding
as in [20, Lemma 2.7], one can show that as a A,.-submodule of 1600, Co is generated by all
the elements

(F) = 0, where the limit is taken over all finite subextensions F' C K

44 NH(gpo) /H(gpo)nkao ()@ (@ HEOP/0

where g is an ideal of Oy dividing f and a is an ideal of Oy prime to 6pg. We set
Q= Qp €,

where ¢ is a primitive [H(fp®) : koo]-th root of unity. Let us also denote by x; the character
of Gal(H(fp®°)/ ko) obtained from x by inflation.

LEMMA 4.2. Let fy be the smallest ideal of Oy dividing f such that xj is trivial on the
Galois group Gal(H(fp™)/ Koo N H(fy p™)). Then in Q @z, Koo, we have

4.5) ex(Q®z, Coo) = €4 (Q ®z, T)NH(f, p>)/H(f, p™)NKoo (#5,) 5
where J,, is the annihilator of |1 po(Kxo) over Axo.

PROOF. Let g be an ideal of Oy dividing f. Let us first assume that §, |g. We set a :=
[H(gp™) N Koo : H(fy p*°) N Kol, and for any prime / dividing f and not dividing f,, we set
o7 := ([, H(f, p>®)/k)~!. Since x5 is trivial on Gal(H(fp™°) /Ko N H(fx p°°)) we obtain

—1
exNH(gp>)/H(gp®)nko (Pg) =@ exNH(gp>)/H(f, p*)nKoo (¥g)
= <1_[(1 — Uz))a_lexNH(fxp“)/H(fxpw)ﬂKoo (%1,
l
where the product is over all primes / dividing g but not dividing f,. Now assume that f, { g.
Then x5 is not trivial on Gal(H(fp™°) /K« N H(gp™)), and

exNH(gp) /H(gp™)nKs (9g) = [H(Fp™) : H(@p™)] ™" ex Nusp) /s pe)nka (@g) = 0.

Then the lemma follows from (4.4), (4.1) and the description of 7}, given in [18, IV, Lemme
1.1]. O

For all ideal g of O dividing {p™ for some m € N, and forall n € N, we set

Gon = ® pgpr (1)

120(gp™*1)
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in @, ®z H(gp"™")*. Then (p; = (W/g’n)neN is well defined in K(H(gp®>®)) = L&nn
(Qp ®z H(gp"*t1)).

REMARK 4.3. TItis well known that Stark units can be constructed by means of elliptic
units (see [13] for a precise statement). Then it is an easy matter to verify that Coo.0 = Stco,
where St is the module of Stark units for K o, as defined in [7]. Then from [7, Theorem

3.2 and Proposition 2.1] we deduce that Co o is finitely generated over Ay~ of rank [K : k],
and the rank of Coo,0,, Over Z,[x1[[T"'1]1s 1.

We arbitrarily lift I into a subgroup I'; of Gal(H(jfp*°)/k). We denote by T]c the sub-
group corresponding to 7, and we denote by 7f the inertia group of p in H(fp°)/k. Let

— __ N
N € N be such that J5 N I} = T? . For any module M over any ring R, we denote by
Nulz (M) the annihilator of M over R. As a Ao-submodule of I@oo,o = I@(Koo,o), Coo0 18
generated by all the elements
(4.6) NH(gp=)/H(gp™)NK o0 (9g)" -
where g is an ideal of Oy dividing fpV*! and « € Nula,, (npe(Keo0)) if g # 1, a €
Nul g, (t poo (Koo,0)) N To if g = 1 (see [20, Lemma 2.7]). We denote by J the inertia group
of pin Ko/ k, and by x the character of G obtained from x by inflation.

PROPOSITION 4.4. As a Ayr-module, Cok(i'roco o) is finitely generated, torsion and
annihilated by Jg. Its characteristic ideal over Ay is prime to p. Moreover, we have

(Q®z, Ar)/Ip(Q®z, Ay)  if X # listrivial on 7,
ex(Q®gz, Cok(ngo’o)) ={0 if % isnot trivial on J,

Tso(Q®z, Ar) | T5(Q &z, Ar)if x =1.
PROOF. Since u(Kqo,0) is finite, calculations which are similar to those done in the
proof of Lemma 4.2 give us the following equalities:

ex(Q®z, Cx.0)

ex (Q ®z, Ar)NH(f,p) /H(F, p*)NKoo0 (9],) itx # lis
trivial on J ,

(47) = eX(Q ®Z,, AT/)NH(foJN“poo)/H(foJNHpoo)ﬂKoo,o ((p;xﬁNH) if Z is not

trivial on J ,

ex(Q ®z, Joo)NH(p>)/H(p>)NKn o (#(1)) if x =1.

On the other hand, for all ideals g dividing f, one has

(4.8)  Nkoo/Ko o (NH(gp=)/H(gp™)NKoo (Pg)) = NH(gpN+1p00) /H(gpN+1p=)NK oo o (<P;;,N+1),
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where the norm maps are defined in accordance with our conventions (Section 1). From (4.8)
and Lemma 4.2, one can calculate the image of e, (Q ®z, Coo) in Q ®z, Co0.0, and then
derive from (4.7) the expressions of e, (Q ®z » Cok(rrgo’o)) given in Proposition 4.4. From
(4.8) we deduce that, for all ideal g dividing f and for all & € Nul_, (1t p (K0,0)),

(4.9) NH(gp>)/H(gp™)NKooo (©p) | 7P € Im(Coo) .

where Im(Coo) is the image of C in Cxo,0, and op = (p, H(gp™)/k)~!. We deduce that
Jp annihilates Cok(ngo’o). Then Cok(rrgoﬁo) is torsion over Ay, and finitely generated by
Remark 4.3. In order to verify that chary_, (Cok(rrocoyo)) is prime to p, we just have to notice
that Ay /T Ay =~ Zp[I'/D T s finitely generated over Z,. m

LEMMA 4.5. Let M be a finitely generated torsion Ar-module, such that M= is tor-
sion over Ay and char .., M3 is prime to p. Then chara. M is prime to p.

PROOF. Let (t;);er be a finite family of height 1 prime ideals of A, and (m;);er € NT
be such that M" := @,y Ar/t/" is pseudo-isomorphic to M. Then there exists an exact
sequence

0 M’ M P 0,

where P is a pseudo-null A -module. Then we have an exact sequence

(4.10) PT Mz My Py 0.

Moreover, by [11, Lemme 4 (2)] and since M= is torsion over Ay, P and P+ are both
finitely generated and torsion over Ay, and

@11 chary, (PT) = chara,, (Py) .

From (4.10) and (4.11), and since char ., M5 is prime to p, we deduce that char,., (M’?) is
prime to p. From the equality M' = @,y Ar/x/", we deduce that char,.(M’) is prime to
p. Since M and M’ are pseudo-isomorphic, the lemma follows. a

THEOREM 4.6. The following properties hold.
(i) Cco is a torsion-free finitely generated Ap-module of rank [K : k].
(1) Uso/Coor Uxo/Ex0 and Exo /Coxo are finitely generated and torsion over Ar.
(iii) chars, Uso/Coo), charp, Uso/Exc) and charp(Exc/Co) are prime to p and
y—1
(1v) Uoo0,0/Co0,00 Uso,0/E0.0, and Eso.0/Coo.0 are finitely generated and torsion over
Ay,

PROOF. The module Cy is a submodule of U, hence it is torsion-free and finitely
generated over A, of rank at most [K : k] by Theorem 2.1. By Lemma 4.2, we see that
ey (Q ®z, Cso) has rank 1 over Q ®z, Ar, or is zero. But we know from Remark 4.3
that e, (Q Q®z, Coo.0) has rank 1 over Q ®z, Ar’. Hence from Proposition 4.4 we see that
e, (QQ®z » Cso) has rank 1 over Q ®z , Ar. Considering all irreducible C -characters of G,
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we deduce (i). Then (ii) follows from (i) and Theorem 2.1. We have the exact sequence

0 — Cok (S, ) — Uoo,0/IM(Coo) —= Uno,0/Co00 — 0,

where Im(Coo) is the image of Coo in Coo 0. But chary, (Cok(ngo’o)) is prime to p by Propo-
sition 4.4, and chary ., (U0.0/Cx0,0) is prime to p by [20, Theorem 1.1] and Gillard’s result
[3, 3.4. Théoreme]. Hence chary,, (Uso,0/IM(Coo0)) is prime to p. By Lemma 2.2, we have
the following commutative diagram with exact rows:

(COO)T —— Uso) — (uoo/coo)T —0

C |

0 ——Im(Cx) Uoo,0 Uoo,0/Im(Coc) ——10.

A diagram chase shows that the last vertical arrow is an isomorphism. Then char 4 » Uoo /Coo)
is prime to p by Lemma 4.5, and by [11, Lemme 4 (1)] charj  (Uso/Coo) is prime to y — 1.
Since £x/Cxo and Uy /Ex are respectively a submodule and a quotient of U, /Coo, (iii) is
entirely proved. (iv) is a corollary of Remark 4.3 (see [20, Proposition 4.2] or [ 19, Proposition
3.1] for more details). O

PROPOSITION 4.7. We have Q ®z, Ker(r< ) = 0.

PROOF. Since p(Koo,0) is finite, Ay /7, Ay is finite. Then from Lemma 4.2 and the
proof of Theorem 4.6 (i), we deduce that e, (Q ®z, Cxo)y is a free rank one Q ®z, Ay/-
module. Considering all irreducible C ,-characters of G, we see that (Q ®z, Coo)7 is a free
Q ®z, Ay/-module of rank [K : k]. But Q ®z, Coo,0 has rank [K : k] over Q ®z, Ay by
Remark 4.3, hence by Proposition 4.4 we must have Q ®z, Ker (7€ 0 =0 O

e¢]

Let 71y be a generator of chary,, , (€o0/Coc) - Let i, be adivisor of hy such thathy /1,
is prime to char, , (Ao, ), and such that any height one prime ideal of Ao , which divides
h;( also divides char, , (Ao x)-

LEMMA 4.8. There is anideal I\ of Ao,y of height greater than 1, and there is fzx €
Ao,y prime to chaero’X (Aco,y) such that Ilp4cﬁﬁxh;( C O i, Am(Cpiiiy)) in Z,[x 1T/
I for all nonnegative integers in < n, where Im(C,, 5, ) is the canonical image of C, i,y in
Eniiox-

PROOF. The ideal N7 := Nula,, , (hy - (Eoo/C0)y) is of height greater than 1 since
hy - (Ex/Coo)y is pseudo-null. The ideal N := pr-@, (o, 5) is of height greater than 1
since Cok(pr-@, ) is pseudo-null. We set Z; := N'N”. Then Z hy C pr-®, (Im(Cwo,4)). For
all i € 7y, there is z; € Im(Cwo, ) such that i, = pr-@, (z;). An easy calculation gives

(4.12) PY (g — DTy — D¥ihy = 90 (@) in Z,[xIT/ Tl

where z; is the image of z; in &, 5 . Then we set fzx = ()/3’, - 1)4()7,,-10 — l)ghx(h;()_l.
Remark that & x 1s prime to chars, , (Ac,y) by Remark 2.7 and by definition of h;( a
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5. Euler systems. Letus write Ay as a direct product of cyclic p-groups,

A = (cl(pp) x -+ x {cl(py)) ,

where pi, ..., p, are prime ideals of Oy, prime to p, and cl(p;) is the class of p; in C1(Ok).
Foranyi € {1,...,r}, we let pRl' be the order of (cl(p;)), and we choose «; € Oy such that
o; O = prl. LetR := Zle R; and let M # 1 be a power of p, such that pR =#(Ap) < M.

Let k% be the abelian closure of k in C, and let F C k® be a finite abelian extension of
k. We set jp := pp (k™). We denote by L the set of maximal ideals £ of Oy such that ¢
splits completely in F'(up, ¥/at, ..., %/a,)/k, and such that £ ¢ {p1, ..., p,}. We denote by
SF the set of squarefree ideals of Oy whose prime divisors belongs to Lr. As in [10, Lemma
3.1], we define for each £ € L a cyclic subextension F(£) of H(£) F, of degree M over F,
which is totally ramified above ¢ and unramified anywhere else. We denote its Galois group
by G, and we fix a generator oy of G¢. Form := £ - - - £, anideal in Sf, we define F(m) :=
F(£y1)--- F({,), the composite of the fields F (£;). We set G, := Gal(F(m)/F) =~ Hélm Gy.

For any ideal m # 0 of Ok, we denote by Sp(m) the set of ideals in Sg which are prime
to m. We denote by % (m) the set of maps ¢ : Sp(m) — (k%) satisfying the conditions (a)
to (d) below.

(@) e(a) € F(a)* forall a € Sp(m).

(b) e(a) € O;(a) if a # (1).

(©) N, Fa(e(@l) = (@) &F@/O=1 for all a € Sp(m) and all £ € L which is
prime to ma.

(d) e(al) = e(@)NO=D/M modulo all prime ideals of OFq¢) above £.

For any ideal a # (0) of O, any ¢ € %r(a) and any m € Sg(a), one can con-
struct (in a canonical way) an inhomogeneous 1-cocycle ¢ : Gy, — F(m)* such that
c(@)M = g(m)Pm@=D forall ¢ € G, where Dy, = Tejm Zlﬂgl io} belongs to Z[G.
Since H' (G, F(m)*) = 0, one can find f(m) € F(m)* such that c(c) = B(m)°~!
forall 0 € Gy (if m = 1 one takes (1) = 1). We set k, : Sp(a) — F*/(F*)M,
m — &(m)PmB(m)~M. This construction is due to Rubin. We refer the readers to [16, Propo-
sition 2.2] for details. Notice that (1) = £(1).

PROPOSITION 5.1 (See [16, Proposition 1.2]). Let % := | %r (m), where the union
is over all nonzero ideals m of Ok. Then for any u € Wr (in particular for u € Cr), there
exists € € U such that ks(1) = u.

PROOF. For any nonzero ideal m # (1) of Ok, any maximal ideal q of Ok, and any
nonzero ideal a of Oy prime to 6mgq, by [13, Corollaire 1.3, (ii-1)] we have

(5.1) Nk(mq)/k(m)(lﬂ(l; mq, Cl_lmq))wm/wmq
Yl m, o m) "@HOT G g

Y(l;m, a"lm) if q|m.
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Moreover, when ¢ { m, by [13, Corollaire 1.3, (v-1)] we have

(5.2) Y(1; mg, a”'mq) = ¥ (1; m, a”'m) @E/O modulo (q)H(mg) -
From (5.1) we deduce that ¥F is generated by w(F) and by all the norms

(5.3) Nitm) Hemynr (¥ (1 m, a”m)) |

where m # (1) is a nonzero ideal of Oy such that wy, = 1 and a is any nonzero ideal
of O prime to 6m. Hence we have to prove the proposition in two particular cases: when
u € u(F) and when u is a norm as in (5.3). The case u € w(F) is treated in [16]. If
u = NH(m)/HmnrF@ (1; m, a”'m)), we set

& SF(mCle) — (kab)x’ nme— NH(mn)/F(n)ﬂH(mn)(lﬂ(l; mn, a_lmn))nl\n fen ,

where wr := #u(F) and where for any £|n, f; » is the automorphism of F(n) which is the
identity on F(£) and the Frobenius of £ in F(né~')/k. This is well defined since £ splits
completely in F/k. The condition (a) is obviously verified, and (b) is implied by (4.1) and
(4.2). Conditions (c) and (d) respectively follow from (5.1) and (5.2). ]

Forl € Lp,weletZry =P Al Z ) be the free Z-module generated by the prime ideals
of OFf lying above £. For any x € F*, we denote by (x); € Zr ¢ and [x]¢ € ZF ¢/MZF ¢ the
projections of the fractional ideal (x) := xOF. Remark that we have an isomorphism

(5.4) (OF(K)/Z/)X/((OF(K)/Z/)X)M ~ (OF/KOF)X/((OF/ZOF)X)M,

where ¢’ is a product of the prime ideals of Op () above £. For any z € F(£)*, one verifies
that the image of z'~¢ in (O Fo/£")* is annihilated by M. Thus using (5.4) we can consider
the map
0r: F(0)* —> (Op[tOR)*/((OF [eOF)*)" .
which associates to z the sum €P), |, z such that the image of Z!7% in (OF/2)* is equal to
(z;,)NWO=D/M By 16, Proposition 2.3], there exists a unique Gal(F/ k)-equivariant isomor-
phism
vt (OF [LOR)* [((OF [€OR) )" — Ty /MTr

satisfying the relation (¢; o ¢)(x) = [Np(),r(x)]¢ for x € F(£)*. For x € F*, we can
choose y € F(£)* such that xyM is a unit at the prime ideals of O F(¢) above £. We denote by
{xyM} the class of xy™ in (OF/EOF)X/((OF/EOF)X)M under (5.4). Then we set @¢(x) :=
@¢({xyM}), which does not depend on the choice of y.

By [16, Proposition 2.4], for any ideal a # (0) of O, any ¢ € Zr(a), any m € Sr(a),
and any £ € L, we have

o if £4m,
(5.5) [ke(M)]e = {(pz(/cs(mﬁ_l)) if ¢m.

For any extension L C F of k and any maximal ideal q of O, we denote by v the normalized
valuation at q, and by vq : L*/(L*)M — Z/MZ the map defined from vq by taking the
quotient.
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The following theorem is a classical step in the Euler system machinery. The first ver-
sions are due to Rubin (see [16, Theorem 3.1]), and to Greither for abelian extensions over Q
(see [5, Theorem 3.7]). We took our inspiration in [1, Theorem 3.4].

THEOREM 5.2. Let | be the conductor of F/k, and set ¢ := v5(f) and Gr =
Gal(F/k). Assume that we are given an ideal class ¢ € Afr, a finite G p-submodule W of
F*/(F*YM and a G p-morphism W : W — Z/MZ|G r). Suppose that, for any prime ideal
q of F which is above p; for some i, q is unramified in F/k and that vq(w) = 0 for any
w € W. If m is a positive integer which is divisible by p>**T, then there are infinitely many
maximal ideals A of OF such that:

(1) clp(A) = ", where cl, (L) is the ideal class of A in AF,
(i) € := 1N Ok belongsto LF,
(i) forallw e W, [w], =0,
(iv) there exists u € (Z/MZ)*, such that for all w € W, gg(w) = up**TR+1g (w)r.

PROOF. Let Hp be the Hilbert p-class field of F'. Let

b [Foun  ifi=o0,
T FayE) if1<is<r.

Exactly as in [1, proof of Theorem 3.4], one can prove the following claims.

Claim (A) [HrF N F(up>) : F]1 < p©.

Claim (B) Gal(Hr N F,(¥/W)/F) is annihilated by p>*!.

As in [16, Lemma 2.5], one verifies that the canonical map F* /(F*)M — F/(F;HO™
is injective. It implies the following claim.

Claim (C) The canonical map R : Gal(Fo(YW)/Fy) — Hom(W, uys) from Kummer
theory is an isomorphism.

Let us remark that F;_; (W )/ F;_1 is unramified at all the places above p; by the hy-
pothesis vq(w) = 0 for all w € W and all q|p;. On the other hand, [F; : F;_1] divides M and
the ramification index of any q|p; in F;/F;_ is at least M| p‘Rl‘ . Therefore

(5.6) pRi annihilates Gal(F;_; (VW) N F;/Fi_1).
Let L; := Fo(YW)N F;. As L; N Fi_; = Lij_; we have
(5.7) Gal(L;/L;i—1) =~ Gal(L; F;—1/Fi—1) .

Since Gal(L; F;_1/F;_1) is a quotient of Gal(Fi_l(W) N F;/F;_1), this implies that pRl'
annihilates Gal(L;/L;_1) thanks to (5.6). In particular, we deduce Claim (D) below.

Claim (D) Gal(Fo(Y/W) N F,/Fp) is annihilated by p~.

Let ¢ be a primitive M-th root of unity, and ¢t : Z/MZ[Gf] — ppu be the morphism
such that t(o) =0foro € G \ {1} and ¢((1) = ¢. Combining Claim (C) and Claim (D), one
may find o € Gal(F,(¥/W)/Fp) such that

(5.8) op, =1 and ﬁ(alFO(W))z(LOW)PR.
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From Claim (B), we may choose 8 € Gal(HF F; (¥/W)/F) such that

2c+1

5.9 'BIFr(Ail/W) =af and B, = (¢, Hr/F)" (Artin symbol).
Now, from (5.8) we see that 8 € Gal(HFp F; (W)/Fr).

By the Cebotarev density theorem, we can find infinitely many primes A in O, of abso-
lute degree 1, prime to ]_[Irz 1 Pi, such that A N O is unramified in Hr F; (W) /k, and such
that the conjugacy class of 8 in Gal(Hg F,(N¥W)/F) is the Frobenius of A. Then the condi-
tion (i) of Theorem 5.2 holds as a consequence of the general properties of the Frobenius. The
condition (ii) is also satisfied since B is the identity on F,.. Let w € W. Then for any prime
A of OFO(W) above A, we have U, (w) = vy (w) = My (¥/w) = 0, and the condition (iii)
follows. Assertion (iv) is proved as in the proof of [16, Theorem 8.1,(iii)]. O

For any Z ,[G]-module N and any z € N, we denote by z, the canonical image of z in
Ny.

LEMMA 5.3. Let F be a finite abelian extension of k. Let G be a subgroup of G =
Gal(F/k), and let x be an irreducible C ,-character of G. Let £y, ..., {; € Lr, and for each
Jj=1,...,i,let xj be aprime of O above {;, and let cl,(A;) be the image of A; in Ar. Let
x € F>* be such that vq(x) € M Z for any prime q of O which is prime to £ - - - £; OF.

Let W be the Z,|GFl-span of the image xy of x in F*/(F)M and let L be the
Z,|GFl-submodule of Af generated by cly(A1),...,clp(Ai—1). Assume that there are
Z,g9.n,n € Z,[GF] such that

() ZNulgz, Gy, ([cl,(AM)]L.x) S gn'Zpl[GFly, where Nulg (G, ([cl ()L ) is
the annihilator of the image [cl, (X)L, of clp (X)) in (Ap/L)y,
() n'Z,IGFly/gn'Z,[GFly is finite,

(iii) #(TI((IF,e,-/MIF,e,-)/W’)x)#(AF,X) < M, where W' is the image of W in Zry,/
MZIF g, through w — [w]y,.

Then, there exists a morphism of Z |G pl-modules W : Wy, — (Z/M Z)[G rly such that

gqj(xM,x))‘i,x = Z’?[X]ei,x .
PROOF. The proof is similar to that of [5, Lemma 3.12], up to the point that we have to
take into account the extra variable n’. O
6. The divisibility obtained by Euler systems. This section is devoted to the proof
of Proposition 6.1 below.
PROPOSITION 6.1.  We have chary,, , (Ao, y)|chara,, , (€o0/Coo)x-

Let X be the set of irreducible C ,-characters & of I" such that Im(§) is finite. For all
f € Aoy, we set

X(x, )={eX/E(f)=0} and T, f):=Necxy, 5 Ker®),

where all § € & are extended to A , by linearity.
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REMARK 6.2. Asin [16, Proposition 7.11 (ii)], one can deduce from Remark 2.7 that
J (X, [) is of height greater than 1 whenever f divides chara,, , (Acc y)-

Since J := J(x, chara p (Ao, y)) and ZoZ; are of height greater than 1, we can choose
n € J and I € ZyZ, both prime to char Aoy (Aoox)- Letn <n be two nonnegative integers.
Let c,% be the valuation at p of the conductor of K, 7 (which does not depend on n).

Foralli € Z, we set

Ai = [K :k]i_lp(2cﬁ+R+1)(2i_3)+4Cﬁ .

Since J € J(x, h;(), the group n’Zp[Gn,;l]X/AH_lh;( N'Zp[Gn iy is finite. Let M # 1 be
a power of p such that

6.1 #AHA 7, ' Zp Gy [ As Wy Zp[Grily) < M.
For all maximal ideal A of Ok, ; such that £ := A N O € Lk, ;, we denote by w; and w;, the
maps
Wy Knxﬁ — Zp[Gnil suchthat wy(x)A = (x)¢,
and
), anﬁ/(KnXﬁ)M —— (Z/MZ)[G,.3] suchthat @y(xpy)Ar = [x]e.
We know by Lemma 2.10 that for every j € {1, ..., s}, thereis a class ¢; € A, ; such that

Ty (¢jy) = 0,...,0,1,0,...,0),

where [ := I(ys’, — 1)2()73 — D2(7 — 1) is at the j-th place. We also choose arbitrarily one
more class ¢;+1 € Ay 7. By Lemma 4.8, there is £ € Cy, ;; such that

(6.2) Onig () = Thy p*h, in (Z/MZ)[Gpily .

where &’ is the image of & in Im(C, ;i ;). By Remark 5.1, we can fix an ideal m of Oy and
& € U, ;(m) such that k. (1) = &£. We assume that all the p; are unramified in Koo/k and
prime to (p) in order to apply Theorem 5.2.
The main step is to define recursively maximal ideals A1, ..., As41 of O K, and ideals
a, ..., ag+1 of O such that
(@) ¢ :=x; NObelongsto Lk, ; foralli =1,...,s +1,

2ck+R+1

() clp(r) = foralli=1,...,s +1,

© ai:=4Lr- L, / y

@) @, (€)= wyp*TH2GHREK - KThyl, in (Z/MZ)[Gp iy for some

ui € (Z/MZ)*,
(e) foreveryi € {2,...,5+ 1} thereisu; € (Z/MZ)* such that
_ / i—1 ~9i—2 ~ i—2 _

Py 1@y, (ke (07))y = u; p*TH2RPK K1) 1P (Thy)? i, (ke (@i—1))y -
We define a morphism of Z ,[ Gy, ;;]-modules

@ ZpXW/Tail = Zp[Guil, x(9)v = [K : kley guv
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forall (¢, v) € G x (I'/T},7). Let us consider the map @ o 9, 7,4 o1 : OIX(M — Zp[Gp il,
where 7 : le(n S En.ii,x 1s the natural map. Further, by taking the quotients we obtain a
map

lpl : O;énn
We apply Theorem 5.2 to the data

/O, M —— (Z/MZ)[Gnil.

/
F:=Kni, m:== p2cﬁ+R‘H , W=W, ¥v:=¥, and c¢:=¢,

where W is the Z,[G ;]-span of the image &y of £ in FX/(FX)M. We obtain a maximal
2¢L+R+1

ideal A1 of Ok, ; such thatcl, (A1) = cf ! and such that the ideal £; := A; N Ok belongs
to Lk, ;. Moreover, for all w € Wy, we have [w];, = 0 and there is u; € (Z/MZ)* such

that for all w € Wy, we have
(6.3) ou, (W) = ur PRI g w)ns
We denote by ﬁn’ﬁ’x iy — (Z/MZ)[Guily and @ (Z/MZ)[Gnily —

(Z/MZ)[G,,;] the morphisms obtained from ¥, 7 , and @ respectively, by taking the quo-
tients. By (5.5), we deduce

6.4)  [k(tD]e, = 90, (&) = w1 p*itFE Y )y = ur PP G 0 By ()1
inZg, ;.0,/MZIk,;.¢,- From (6.4) and (6.2), we deduce that in (Z/M Z)[G, 7]y we have

@3, (e (01)) y = g P2 R K K1, 5 5 (8)
(6.5) =y p* 2R K kTR K

that is to say (d).
Leti € {2,...,s+ 1}, and assume that A1, ..., A;—1 has been constructed. From (d) and
(e) we deduce
i-2 i—1 _ _ _
(6.6) ( I1 Pj)au,«l (ke (ai-1))y = ( [T« j>Ai(Ifzx)z"z(n/)z"‘—zfz"z—lh;
j=1 j=1
in (Z/MZ)[G iy, with the convention that an empty productis 1 and an empty sum is 0.

LEMMA 6.3. Let L; be the Z,|Gy jil-submodule of A, i generated by cly(A1), ...,
clp(Xi—2), and let W; be the Z ,[G, i1-span of the image of k¢(a;_1) in anﬁ/(anﬁ)M. We
set n; = (Ifzx)zifz(n’)zifl_]I~2i72_1, Zi = r)’fpchRH, and we choose g; € Z,[Gn i)
such that the image of g; in Z ,[Gn,ily is equal to that of P;_1. Then

(i) vqke(ai—1)) € MZ for any maximal ideal q of Ok, ; which is prime to a; 1,
(i) ZiNulg,G,q1, [clyAi—D]L; ) S 9in'Zp[Gn.ily, where [cly(Ai—1)]L; x is the
image of clp(Ai—1) in (Ani/Li)y,

(iii) n/Zp[Gn,ﬁ])(/giU/Zp[Gn,ﬁ]x is finite,

(iv) #i( Tk, 5.0, /MZKn,ﬁ,L’H)/W,'/)x)#(Anﬁ,x) < M, where Wi’ is the image of W;
inTg, ;i1 / MLk, ;. 0, throughw — [wlg,_,.
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PROOF. (i) is a direct consequence of (5.5). (iii) is due to the fact that n’ € J and
J € J(x, Pi—1). We can define from 7, ;; , a morphism of Z ,[G, 7],-modules

T,/,ﬁ,x (Ana/Li)y = ZplGnily /g ZplGn.ily
such that the diagram

_ S
Anig @1 Ao/ (Pjs 1=y, 1 = 7)
J:

, ¥

Tn,ii,x

(An,ﬁ/Li)x —>Zp[Gn,ﬁ]x/gin[Gn,ﬁ]x ’

commutes, where ¢ is the canonical projection

N
B Acox /P 1=yu 1=7i) —> Aoy /(Picts 1=yu, 1=¥i) = Zp[G i)y /6 Zpl Gty
j=1

Let o € ~NulzP[Gnﬁ]X([clp(x,-_l)]Ll,X). Then ap®i TR+ (ot )(ci1.,) = O, ie.,
pzcﬁ+R+11a € GiZplGpily, and (ii) is verified. From (6.6), we see that n; ((Zk, ;,¢;_,/
MIkg,;.e..,)/ W)y is a quotient of n/(Zp[Gnyﬁ]X/Aih;( Z,[Gp ily). The inequality (6.1)
then implies (iv). O

Let us apply Lemma 5.3 to the material furnished in Lemma 6.3. There is a morphism
of Z,[Gp l-modules ¥/ : W; , — (Z/MZ)[Gp ]y such that

(6.7) G W (ke (@i— )M, ) hi—1,y = Zinilke(@i—1)]e; .y -

We define ¥; by composing @ o ¥/ with W; — W; . The condition (i) of Lemma 6.3 allows
us to apply Theorem 5.2 to the data

/
F:=K,i, m:=patRtl —c.—¢  W:=Ww,, and ¥ :=y,.
/

2cﬁ+R+l .
We obtain a maximal ideal A; of Ok, ; such that cl,(};) = cfj (condition (b)) and
such that ¢; := A; N O belongs to Lk

. (condition (a)). Moreover, for all w € W;, we
have [w],, = 0 and there is u; € (Z/MZ)* such that for all w € W;, we have ¢, (w) =
u,'pZC%"’RHlI/,'(w))»i. By (5.5) we have

(6.8) ice @)]es.x = 90, (e (@i1))y = i P2 EFNG; (e (0 —1) M) i
in (ZTg, ;.¢;/MIk, ;.¢;)x- Thenin (Z/ M Z)[Gp 7]y, by (6.8) and (6.7) we have

Pi13, (ke (a1) g = i [K < kPP R i (e (01w, y)
=ui[K : k1p*it B Zimiio, (ke (ai—1)) 5,

which demonstrates (e).
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So we can construct recursively the primes A1, . .., Ay+1, and from (d) and (e) we deduce
s s+1 |
_ ~ N s+l _n ~ys__
(6.9) <H P,-)wm. (ke (A541)) 5 = (]‘[ u j>As+z(1hx>2 a2 2P
j=1 j=1

in (Z/MZ)|Gy,ily- By letting M and n vary, this implies that

N

[1P divides AcoaTh)® aH* ™ 22 "h)
j=1
: ~ =l
in Z,[x1[[Y'NIY /7). Let (a)ien € (Z,[x1IT' DN be such that [Tz P = YiooaT,
where T := y — 1. By Proposition 2.8, a( is prime to u, in Zp[x][[T’]]. From Lemma 6.4
below, we deduce that [Tj_, P; divides (1/,)* (n’)”“—?iz“—lh; in Z,[xIY' 1T /Tl
By letting 71 vary, [[j_; P; divides (I7,)* ()2 21" '/, in Ao,y Since [T5_; P; is
prime to (Iﬁ)()2A (n/)zs+1_2izs_1’ we deduce Proposition 6.1.

LEMMA 6.4. We identify Aooy with Zp[x ([T N[ T 1. Leta := Y32, aT' and b be

two elements of Ao,y such that ag is prime to uy. Letin € N. We assume that there ism € N
such that a divides p™b in Zp[x][[T/]][T/T;l]. Then a divides b in Zp[x][[T/]][T/T;l].

PROOF. We can assume that m € N is minimal such that a divides p"b in Zp[x][[T’]]
[T/ ;). We assume that m # 0, and then we will find a contradiction to the minimality
of m. There is an element o of Ay , such that (aax — p™b) € (1 —¥;). Let (,BI)jD:nO_1 €
(Z,[X]T'IN?" be such that @ = B modulo (I — ), where g := Y/~ BT . For all
5= Z?io SZTZ in (1 —y;), thereis z := Z?io ZZTI in Aso,y such that

oo, min{j,p"} pﬁ .
s:(?n—l)z=z< <l>z,-_,)TJ.
j=I 1=1

Then for any j € {1,...,p" — 1} and any [ € {1,..., j}, we have pl(p[ﬁ), hence pls;.
Moreover so = 0. Considering s := aff — p"b, we obtain

aoBo = p"bo

(6.10) J ]
aoBj = —Zazﬂj_l modulo p forall je{l,...,p" —1},

=1

where b := Y 7°, blTl. Since ag is prime to u,, we deduce p|g; for all i € {0, p" —1}.
Then p|B, and setting & := p~' B we have (a& — p™~'b) € (1 — 7;), which contradicts the
minimality of m. O

7. Proof of Theorem 1.1. We let G act on Q®zp Axr through x, and F/T ~ 7’ act
naturally on Q ® z, Ay These two actions commute, so that Q Q7 B Ay is a Ax-module.
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LEMMA 7.1. We have
Jeochargg, A, (exQ ®z, Cok(ngoyo)) =Jp (@®z, Ar).

PROOF. We denote by j the character on G, defined by yx. If j is not trivial on J,

then
T (Q®z, Ay) = T5-(Q®z, Ay) = Q®z, Ay

If ¥ is trivial on J and x # 1, then Jao - (Q®z, Ay) = Q®z_pAIrind ‘Zﬁ' (Q®z, Ay is
generated by 1 — x(g)v, where (g, v) € G x T is such that D/(J(D N T)) is topologically
generated by gu. If x = 1, then Jx-(Q®z, Ayv) is generated by 1—y’, and J5-(Q®z, Ar')
is generated by 1 — (y")?", where n € N is such that the image of D through the projection

Goo — T'is 7. Inall cases, Joo - (Q ®z, Ay’) and J5 - (Q ®z, Ayv) are principal ideals
and then Lemma 7.1 follows from Proposition 4.4. O
LEMMA 7.2. We have
joocharQ®ZpAr (eX Q ®Zp AOO)ChaIQ@Zp AT’ (e)( Q ®Zp COk(jTogo’()))
= Jpchargg, 1., (exQ ®z, Aco,0)
in Q ®z, Ar.

PROOF. We set ¢(N) := Ch&l‘Q@Zp Ar(exQ ®z » N ) for any finitely generated torsion
Aso-module N. Also, we set ¢/(P) := charQ@,Zp Ay (e, Q ®z » P) for any finitely generated
torsion Ay-module P. Applying the snake lemma to (3.7) and using (3.1) and Theorem 2.4
(iii), we obtain
7.1 ¢ (Ax) D)€' (Ker(n2, )’ (Cok(l ) = c’(Ker(nl(;{o{g))c’(Ker(nﬁo’o)) .

By Theorem 2.4 (iii) and (iv), we have the exact sequence
(7.2)
0 — Q®z, Ker(x} ) —= (Q®z, Ar)/Tp5 - (Q®z, Ay) —= Q —0.

We have seen in the proof of Lemma 7.1 that J - (Q ®z, Ay) and J5 - (Q ®z, Ay) are
principal ideals. Hence (7.2) implies that

(1.3) Tool' (Ker(wl o)) = Tp - (Q®z, Ar).
Combining (7.3) with (7.1), we obtain
(7.4) T5¢' (As) ) (Cok( ) = Tooc' (Ker(m /)¢ (Ker(n s ) -

By (3.1), we have c’(Ker(né’lo{g)) = c’(Cok(nfoﬁo)). Moreover, by [11, Lemme 4 (2)], we
have c’((Aoo)T)c(Aoo) = ¢/((Axo)7). Considering these two facts, (7.4) becomes
(7.5) jﬁc/((Aoo)?)C/(COK(ﬂ?o,o)) = JooC/(COK(Tffo,o))C/(Kef(ﬂé\o,o))c(Aoo) .

Combining the obvious relation ¢’ (Ker(% ;)¢ (Axo,0) = ¢'((Aso)y)c'(Cok(rrZ, o)) with
(7.5), we derive the lemma. O
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PROPOSITION 7.3. We have
chargg, ar(exQ®z, Aco)charge, A, (exQ®z, (£00,0/Co0.0))
(7.6) = chargg, A (xR ®z, (Eoo/Coo))Chargg, ., (exQ ®z, Aco0)
in Q®z, Ar.

PROOF. Since (Soo)7 C (L{OO)T, we deduce from Theorem 2.1 that (800)7 = 0. Hence
we have the diagram

(7.7) 0—— (goo/coo)? E—— (Coo)? (500)? (500/600)? —0
0 Coo,O 500,0 goo,O/Coo,O —0,

where the rows are exact. We keep the notation of the proof of Lemma 7.2. Since Ker(rrfo o) =
0 by (3.1) and c’(Ker(ngo’O)) =0Q®z » Ar by Proposition 4.7, the snake lemma applied to
(7.7) gives

(7.8) ¢ ((Ex/Cox) ) (Cok(x S, )¢’ (Cok(xZ/S

00,0

g/

00,0

) = ¢’ (Ker( 3/ g))c' (Cok(rrg, ) .
Applying Lemma 7.2 and then Lemma 7.1 to (7.8), we deduce
(7.9) C(Aso)c ((Exo/Co0) 1) (Cok (2 5)) = ¢/ (Ass0)¢' (Ker(Z/5)) .

Since ¢/ (Ker(2/$))¢' (Ex,0/Co0,0) = ¢/ (Cok(/ §))¢' ((Exo/Co0)7). (1.9) gives

(7.10) ¢/ (€50.0/Co0.0)¢(Ase) (€0 /Co) 1) = ¢/ (Eno/Coo)7)C (Acc0) -
We deduce the proposition by applying [11, Lemme 4 (2)] in (7.10). O
LEMMA 7.4. The image of chars  (£x0/Coo) in Ay is prime to p.

PROOF. We apply the snake lemma to the diagram

(7.11) (Coo)y (ET)? (Eoo/Coc) ——0
0 Coo,O 500,0 goo,O/Coo,O —0 s

where the second vertical arrow is injective by Lemma 3.1. Then chary ., (Ker(rrogo( g)) divides
chary., (Cok(rrocoyo)). By Proposition 4.4, we deduce that

(7.12) chary,, (Ker(r2/()) is primeto p.

By [20, Theorem 1.1] and Gillard result [3, 3.4. Théoreme],

(7.13) charg, (€00,0/Co0,0) = chara, (Ax,0) isprimeto p.

From (7.12) and (7.13) it follows that char., (£0/Coo)7 is prime to p. Then Lemma 7.4
follows from Lemma [11, Lemme 4 (2)]. O
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Now we prove Theorem 1.1. By Proposition 6.1, there is g € A,y such that

(7.14) gchaeron (Aco,y) = charAOO’X (E0/Co0)y -

By Proposition 2.8, the image of chaeron (Aco,y) in Zp[x][[T’]] is prime to p. By (7.13),
Charzp[x][['r/]](goo,o/coo,o)x and Chaer[X][[T’]](Aoo,O,X) are prime to p. From Lemma 7.4
we deduce that the image of char, , (Eco/Coo)y in Zp[x][[Y']] is prime to p. Since all the
ideals involved are prime to p, we deduce from (7.6) that

chara,, , (Aco,y)charz [, 1i11711(E00,0/Co0,0)
(7. 15) = chaero,X (goo/coo)x Charzp[x][['r/]] (Aoo,O,x)
in Zp[x][[T’]]. By [1, Theorem 3.1] or [19, Theorem 1.1] for the general case, we know that

(7.16) charz [ 117711(€00,0/Co0,0)x = charz ,(x111111(Acc,0,x) -

Combining (7.16) and (7.14) with (7.15), we obtain that the image of g in Z,[x][[T']] is a
unit. Then g must be a unit of A ,, and Theorem 1.1 follows.

Acknowledgments. 1 would like to thank the referee for his valuable comments.

REFERENCES

[1] W. BLEY, Equivariant Tamagawa number conjecture for abelian extensions of a quadratic imaginary field,
Doc. Math. 11 (2006), 73-118.

[2] E.DE SHALIT, Iwasawa theory of elliptic curves with complex multiplication. p-adic L functions, Perspect.
Math. 3, Academic Press, Inc., Boston, MA, 1987.

[3]1 R.GILLARD, Fonctions L p-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes, J.
Reine Angew. Math. 358 (1985), 76-91.

[4] R.GREENBERG, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85-99.

[5] C. GREITHER, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble) 42
(1992), 445-499.

[6] K.IWASAWA,On Z;-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.

[7] A.JILALI AND H. OUKHABA, Stark units in Z ,-extensions, Funct. Approx. Comment. Math. 45 (2011), part
I, 105-124.

[8] J.JOHNSON-LEUNG AND G. KINGS, On the equivariant main conjecture for imaginary quadratic fields, J.
Reine Angew. Math. 653 (2011), 75-114.

[9] H. OUKHABA, On Iwasawa theory of elliptic units and 2-ideal class groups, J. Ramanujan Math. Soc. 27
(2012), no. 3, 255-373.

[10] H. OUKHABA AND S. VIGUIE, The Gras conjecture in function fields by Euler systems, Bull. Lond. Math.
Soc. 43 (2011), 523-535.

[11] B. PERRIN-RIOU, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Supplément au Bulletin de la
société mathématique de France 112 n°4 Mém. Soc. Math. France (N.S.) No. 17 (1984), 130 pp.

[12] G. ROBERT, Unités elliptiques, Bull. Soc. Math. France No 36, Bull. Soc. Math. France, Tome 101, Société
Mathématique de France, Paris, 1973.

[13] G. ROBERT, Unités de Stark comme unités elliptiques, Prépublication de I’Institut Fourier 143, 1989.

[14] G. ROBERT, Concernant la relation de distribution satisfaite par la fonction ¢ associée a un réseau complexe,
Invent. Math. 100 (1990), 231-257.

[15] K. RUBIN, On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math. 93 (1988),
701-713.



FOR EXTENSIONS OF IMAGINARY QUADRATIC FIELDS 465

[16] K. RUBIN, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991),
25-68.

[17] K. RUBIN, More “main conjectures” for imaginary quadratic fields. Elliptic curves and related topics, 23-28,
CRM Proc. Lecture Notes 4, Amer. Math. Soc., Providence, RI, 1994.

[18] J. TATE, Les conjectures de Stark sur les fonctions L d’Artin en s = 0, Lecture notes edited by Dominique
Bernardi and Norbert Schappacher, Progr. Math. 47, Birkhduser Boston, Inc., Boston, MA, 1984.

[19] S. VIGUIE, On the classical main conjecture for imaginary quadratic fields, to appear in JP J. Algebra Number
Theory Appl.

[20] S. VIGUIE, Global units modulo elliptic units and ideal class groups, Int. J. Number Theory 8 (2012), 569-588.

[21] J.-P. WINTENBERGER, Structure galoisienne de limites projectives d’unités locales, Compositio Math. 42
(1980/81), 89-103.

MATHEMATISCHES INSTITUT
DER UNIVERSITAT MUNCHEN
THERESIENSTRASSE 39
BURO 413 D-80333
MUNCHEN

GERMANY

E-mail address: stephane.viguie @math.Imu.de



