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OF IMAGINARY QUADRATIC FIELDS

STÉPHANE VIGUIÉ

(Received November 21, 2011, revised September 25, 2012)

Abstract. Let p be a prime number at least 5, and let k be an imaginary quadratic
number field in which p decomposes into two conjugate primes. Let k∞ be the unique Z2

p-
extension of k, and let K∞ be a finite extension of k∞, abelian over k. We prove that in
K∞, the characteristic ideal of the projective limit of the p-class group coincides with the
characteristic ideal of the projective limit of units modulo elliptic units. Our approach is based
on Euler systems, which were first used in this context by Rubin.

1. Introduction. Let p /∈ {2, 3} be a prime number, and let k be an imaginary
quadratic field in which p decomposes into two distinct primes p and p̄. Let k∞ be the
unique Z2

p-extension of k, and let K∞ be a finite extension of k∞, abelian over k. We set
G∞ := Gal(K∞/k), G := Gal(K∞/k∞), and we fix a decompositionG∞ := G × Γ , such
that Γ is a topological group isomorphic to Z2

p.
For any global or local number field L, we denote by OL the ring of integers of L, and

for any ring R we write R× the group of units in R. If L is a finite abelian extension of k,
let AL be the p-part of the class group Cl(OL) of OL, and let CL be the group of elliptic
units (see Definition 4.1). Then we set EL := Zp ⊗Z O×L and CL := Zp ⊗Z CL. If L is an
infinite abelian extension of k, we define AL, EL and CL by taking projective limits over finite
sub-extensions, under the norm maps. We set A∞ := AK∞ , E∞ := EK∞ , and C∞ := CK∞ .

For any profinite group G, and any commutative ring R, we define the Iwasawa algebra
R[[G]] := lim←−R[H], where the projective limit is taken over all finite quotient H of G. We
also setΛG := Zp[[G]] andΛ∞ := ΛG∞ . Then A∞ and E∞/C∞ are naturallyΛ∞-modules.
As we shall see below, they are finitely generated and torsion over ΛΓ . For any finite exten-
sion L/Qp, it is well known that OL[[Γ ]] is a Noetherian local Krull ring. We also recall that
OL[[Γ ]] is a unique factorization domain. Let R be a Noetherian Krull ring which is not a
field, and let M be a finitely generated R-module. We say that M is pseudo-null if and only
if its localization at every height 1 prime ideal is zero. A morphism between two finitely gen-
erated R-modules is called pseudo-isomorphism if its kernel and its cokernel are pseudo-null.
One may find height 1 prime ideals q1, . . . , qr in R, and nonnegative integers n1, . . . , nr , such
that there is a pseudo-isomorphism

M −−−→
r⊕
i=1

R/q
ni
i .
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Moreover, the ideal q
n1
1 · · · qnrr is uniquely determined by M , and is called the characteristic

ideal ofM , which we denote by charR(M).
We denote by Cp the completion of an algebraic closure of Qp. Let χ : G −→ C×p be an

irreducible character of G. Let Qp(χ) ⊂ Cp be the extension of Qp generated by the values
of χ . We denote by Zp[χ] the ring of integers of Qp(χ). The groupG acts on Qp(χ) through
χ . For any Zp[G]-module Y , we define its χ-quotient by Yχ := Zp[χ] ⊗Zp[G] Y . Note that
if Y is a Λ∞-module, then Yχ is a Zp[χ][[Γ ]]-module in a natural way. As a particular case,
Λ∞,χ � Zp[χ][[Γ ]].

The goal of the article is to prove Theorem 1.1 below, which is a formulation of the
(two-variables) main conjecture. In [16, Theorem 4.1] and [17, Theorem 2], Rubin used Euler
systems to prove the main conjectures for Zp- or Z2

p-extensions of a finite abelian extension
F of k, where p � wk[F : k], wk being the number of roots of unity in k. More recently,
Hassan Oukhaba adapted Rubin’s method and obtained Theorem 1.1 for p = 2, still under
the condition 2 � #G (see [9]). Also, we draw the attention of the readers to a cohomological
two-variables main conjecture, which has been recently proved by Johnson-Leung and Kings
in [8, 5.2 and 5.5]. In [8, 5.4], they recover the classical two-variables main conjecture in the
case already treated by Rubin (i.e. p � #G). The contribution of the present paper is to extend
Rubin’s two-variables result to the general case, where we allow p to divide #G. One could
try to deduce Theorem 1.1 below from the cohomological result of [8], but it is not clear that
this strategy would succeed. Our approach is more elementary.

THEOREM 1.1. For all irreducible Cp-character χ ofG, the following equality holds:

charΛ∞,χ (E∞/C∞)χ = charΛ∞,χA∞,χ .

Let us denote by k∞,0 (resp. k0,∞) the unique Zp-extension of k unramified outside of
p (resp. p̄). We set Υ := Gal(K∞/k0,∞K) and Υ := Gal(K∞/k∞,0K), where K is the

subfield of K∞ fixed by Γ . For all n ∈ N , we set Υn := Υ pn and Υ n := Υ p
n

. Also we set
Υ∞ := {1} and Υ∞ := {1}. For all (n, n̄) ∈ (N ∪ {∞})2, we denote by Kn,n̄ the subfield
of K∞ fixed by Γn,n̄ := ΥnΥ n̄. We choose topological generators γ and γ̄ of Υ and Υ ,
respectively, and for all n ∈ N we set γn := γ pn and γ̄n := γ̄ pn .

We fix an irreducible Cp-character χ of G, and we set ψ : G −→ Qp, σ 
→ Tr(χ(σ )),
where Tr is the trace map for the extension Qp(χ)/Qp. We denote by eχ (resp. eψ ) the
idempotent of Qp(χ)[G] (resp. Qp[G]) attached to χ (resp. ψ), i.e.,

eχ := (#G)−1
∑
g∈G

χ(g)g−1 and eψ := (#G)−1
∑
g∈G

ψ(g)g−1 .

For any closed subgroup H of G∞, and any Λ∞-module N , we denote by NH the
module of H -invariants of N , and we denote by NH the Λ∞-module of coinvariants of N .
Let F be the set of all finite extensions F ⊂ K∞ of k. Let (MF )F∈F be a projective system
of Λ∞-modules. We assume that for all F ∈ F , MF is invariant under Gal(K∞/F ). For all
F ⊂ F ′ in F , let NF ′/F : MF ′ −→ MF be the transition map (in all the case encountered in
the sequel, these transition maps are the usual norm maps). For any extension L ⊆ K∞ of k,
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we setML := lim←−F MF , where the projective limit is taken over all F ∈ F such that F ⊂ L.

We denote by πML : (MK∞)ΓL −→ ML and π
Mχ
L : (MK∞,χ )ΓL −→ ML,χ the canonical maps,

where ΓL := Gal(K∞/L). Notice thatMK∞,χ may not be equal to lim←−F MF,χ . For any two
extensionsL ⊂ L′ ⊆ K∞ of k, we denote by NL′/L : ML′ −→ ML the canonical map obtained
from the transition maps by taking the projective limit. For all (n, n̄) ∈ (N ∪ {∞})2, MKn,n̄ ,

πMKn,n̄ and π
Mχ
Kn,n̄

are respectively denoted byMn,n̄, πMn,n̄ and π
Mχ
n,n̄ . We setM∞ := MK∞ .

2. Semilocal units and ideal class group. Let F be an abelian extension of k. If
[F : k] <∞, for any maximal ideal r of OF , we denote by Fr the completion of F at r. Then
we write UF for the pro-p-completion of

∏
q|p O×Fq

, where the product is over all primes of F
above p. If [F : k] is not finite, UF is defined in accordance with our conventions (Section 1).
For any field L and any n ∈ N , we denote by μn(L) the group of n-th roots of unity. We set
μ(L) :=⋃

n>0 μn(L) and μp∞(L) :=⋃
n∈N μpn(L). We denote by D and D̄ the respective

decomposition groups of p and p̄ in K∞/k.

THEOREM 2.1. Let U∞ := UK∞ . For any prime q of K∞ above p, we set K∞,q :=⋃
(n,n̄)∈N2 Kn,n̄,q, whereKn,n̄,q is the completion ofKn,n̄ at q. Then there is an exact sequence

(2.1) 0 �� U∞ �� Λ∞ ��
∏

q|p T (μp∞(K∞,q)) �� 0 ,

where the product is over all prime q of K∞ above p, and where the letter T stands for the
Tate module.

PROOF. By class field theory and since kp � Qp, D is a quotient of (Z/(p − 1)Z) ×
Ẑ × Zp, where Ẑ is the profinite completion of Z. Moreover, the Zp-rank of the pro-p-part
ofD is 2. From these two facts we deduce thatD � Δ×Z2

p for some finite groupΔ of order
prime to p. Then we can apply [21, Théorème]. �

LEMMA 2.2. Let F � K∞ be an extension ofK , such thatK∞/F is unramified at all
the places above p. Then πUF : (U∞)ΓF −→ UF is an isomorphism, where ΓF := Gal(K∞/F ).

PROOF. Let F̃ be the subfield ofK∞ fixed by ΓF ∩D. Since all the primes of F above
p are totally split in F̃ /F , we have (UF̃ )ΓF � UF . Thus we are reduced to prove Lemma 2.2
when F = F̃ . In that case we have Ker(πUF ) = 0 by [21, Lemme 5.2 (i)], and πUF is surjective
by local class field theory, since K∞/F is unramified at all the places above p. �

Let Υ ′ be a subgroup of Γ such that Γ = Υ × Υ ′, and let γ ′ be a topological generator
of Υ ′. For all n ∈ N , we set γ ′n := (γ ′)pn .

LEMMA 2.3. Let δ′ ∈ N be such that Υ ′ ∩ D = Υ ′
δ′ . For all (n, n̄) ∈ N2, γ ′

δ′ − 1
annihilates the kernel and the cokernel of the natural map (U∞,n̄)Υ ′n −→ UK ′n,n̄ , where K ′n,n̄ is

the subfield of K∞ fixed by Υ n̄Υ ′n.

PROOF. Lemma 2.3 is obvious if n ≤ δ′. We fix n̄ ∈ N and n > δ′. Let P be a maximal
ideal of OK∞ such that P ∩Ok = p. For all m ∈ N , we denote by U ′m the pro-p-completion
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of O×
K ′
m,n̄,P

and we set U ′∞ := lim←−m≥δ′ U ′m, projective limit under the norm maps. Then we

are reduced to show that γ ′
δ′ − 1 annihilates the kernel and the cokernel of the natural map

π ′n : (U ′∞)Υ ′n −→ U ′n. For all m ∈ N ∪ {∞}, we denote by Mm the maximal abelian pro-
p-extension of K ′

m,n̄,P, and Lm the maximal unramified abelian pro-p-extension of K ′
m,n̄,P.

Remark that L∞ is abelian over kp. For all m ≥ δ′, local class field theory gives us an
isomorphism φm : U ′m −→ Gal(Mm/Lm). Taking projective limits under the norm and the
restriction maps, we obtain an isomorphism φ∞ : U ′∞ −→ Gal(M∞/L∞) of ΛD-modules,
which induces an isomorphism

(2.2) Cok(π ′n) � Gal(L∞/Ln).

The restriction map Gal(M∞/K∞,n̄,P) −→ Gal(Mn/K ′n,n̄,P) induces an isomorphism

(2.3) Gal(M∞/K∞,n̄,P)Υ ′n � Gal(Mn/K∞,n̄,P) .

Since μp∞(K∞,n̄,P) is finite by class field theory, we deduce from [6, Theorem 25 (i)] that

(2.4) Gal(M∞/K∞,n̄,P)Υ
′
n = 0 .

Since L∞ is abelian over kp, we have

(2.5) Gal(L∞/K∞,n̄,P)Υ
′
n = Gal(L∞/K∞,n̄,P) � Gal(L∞/K∞,n̄,P)Υ ′n .

The exact sequence 0 → U ′∞ → Gal(M∞/K∞,n̄,P) → Gal(L∞/K∞,n̄,P), together with
(2.3), (2.4) and (2.5), gives us the following commutative diagram with exact rows:

0 �� Gal(L∞/K∞,n̄,P) �� (U ′∞)Υ ′n

��

�� Gal(Mn/K∞,n̄,P)

��

�� Gal(L∞/K∞,n̄,P)

��

�� 0

0 �� U ′n �� Gal(Mn/K ′n,n̄,P) �� Gal(Ln/K ′n,n̄,P) �� 0 .

From this diagram we deduce an isomorphism ofΛD-modules Ker(π ′n) � Gal(L∞/K∞,n̄,P).
Since L∞ is abelian over kp, Lemma 2.3 follows from this last isomorphism and (2.2). �

For any abelian extension F of k, we denote by Mp(F ) the maximal pro-p-extension of
F which is unramified outside the primes above p. We set BF := Gal(Mp(F )/F ). For any
closed subgroupH ofG∞, we denote by JH the ideal ofΛ∞ generated by all the h−1, with
h ∈ H . We set J∞ := JG∞ .

THEOREM 2.4. Let F � K∞ be an extension of K . Then we have the following.
(i) BF is finitely generated over ΛGal(F/K). B∞ := BK∞ is finitely generated and

torsion overΛ∞.
(ii) Ker(πB

F ) is finitely generated over Zp, and if Gal(K∞/F ) ⊆ Υ then it is annihi-
lated by JD .

(iii) Cok(πB
F ) is finitely generated over Zp, annihilated by J∞, and if Gal(K∞/F ) ⊆

Υ then it is finite.
(iv) If Gal(K∞/F ) ⊆ Υ then we have the exact sequence
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0 �� Ker(πB
F )

�� ΛF/JDΛF �� Zp �� Cok(πB
F )

�� 0 ,

where ΛF := ΛGal(F/K).

PROOF. We refer the readers to [16, Theorem 5.3]. �

PROPOSITION 2.5. The module B∞ enjoys the following properties.
(i) B∞ has no nonzero pseudo-nullΛΓ -submodule.

(ii) B∞ has no torsion over Zp.

(iii) For all n ∈ N , (B∞)Υ n = 0.

PROOF. (i) is proved in [11, Théorème 23]. We identify B∞ with lim←−n B∞,n. Let m ∈
N and x := (xn)n∈N be an element of B∞ such that pmx = 0. For all n ∈ N , ΛΥ ′xn is a
submodule of B∞,n, and a quotient ofΛΥ ′/(pm). By the result of Gillard [3, 3.4. Théorème],
the Iwasawa μ-invariant μΛΥ ′ (B∞,n) is 0. Hence ΛΥ ′xn must be pseudo-null over ΛΥ ′ . By
the result of Greenberg [4, end of Section 4], B∞,n has no nonzero finite ΛΥ ′ -submodule.
Then xn = 0, for all n ∈ N , and (ii) is verified. Let us fix n ∈ N . From Theorem 2.4 and the
exact sequence

0 �� Ker(πB∞,n) �� (B∞)Υ n �� B∞,n �� Cok(πB∞,n) �� 0,

we deduce that (B∞)Υ n is torsion over ΛΥ ′ . Then by [11, Lemme 4 (2)], (B∞)Υ n is torsion

over ΛΥ ′ . By (ii) we deduce that (B∞)Υ n is finitely generated over Zp. Then (B∞)Υ n is
pseudo-null overΛΓ , and (i) implies (iii). �

For any abelian extension F of k, we denote by M(F ) the maximal unramified pro-p-
extension of F . We set AF := Gal(M(F )/F ). Hence if [F : k] is finite, AF is identified to
the p-part of Cl(OF ) by class field theory.

THEOREM 2.6. Let F � K∞ be an extension of K . Then we have the following.
(i) AF is finitely generated overΛGal(F/K). A∞ is finitely generated and torsion over

Λ∞.
(ii) Ker(πA

F ) is finitely generated over Zp, and annihilated by JDJDJ∞.
(iii) Cok(πA

F ) is finitely generated over Zp, annihilated by J∞, and if [F : K] < ∞
then it is finite.

PROOF. We refer the readers to [16, Theorem 5.4]. �

REMARK 2.7. Proceeding as in the proof of Proposition 2.5, one can show that for any
closed subgroup H of Γ , (A∞)H and (A∞)H are finitely generated torsion ΛΓ/H -modules.
As a consequence, for all g ∈ Γ \ {1}, charΛΓ (A∞) is prime to 1− g .

PROPOSITION 2.8. We have μΛΥ ′ (A∞)Υ = 0. As a consequence, the image of
charΛ∞,χ (A∞,χ ) in Zp[χ][[Υ ′]] is prime to uχ , where uχ is a uniformizer of Zp[χ].
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PROOF. We have μΛΥ ′ (Ker(πA∞,0)) = 0 because Ker(πA∞,0) is finitely generated over
Zp. But μΛΥ ′ (A∞,0) = 0 by Gillard’s result [3, 3.4. Théorème], and then we deduce
μΛΥ ′ (A∞)Υ = 0. The rest of Proposition 2.8 follows by [11, Lemme 4 (2)]. �

LEMMA 2.9. Let (n, n̄) ∈ N2. Then JDJDJ 2∞Ker(π
Aχ
n,n̄) = 0, Cok(π

Aχ
n,n̄) is finite and

annihilated by J∞.

PROOF. The assertions about Cok(π
Aχ
n,n̄) follow from Theorem 2.6 (iii). We have the

obvious exact sequences

(2.6) Ker(πA
n,n̄)χ

�� (A∞,χ )Γn,n̄ �� Im(πA
n,n̄)χ

�� 0 ,

(2.7)

Tor1
Λ∞(Cok(πA

n,n̄),Λ∞,χ ) �� Im(πA
n,n̄)χ

�� An,n̄,χ �� Cok(πA
n,n̄)χ

�� 0 .

By Theorem 2.6 we have J∞Tor1
Λ∞(Cok(πA

n,n̄),Λ∞,χ ) = 0 and JDJDJ∞Ker(πA
n,n̄)χ = 0,

from which we derive the lemma. �

Let us fix a pseudo-isomorphism τ∞,χ : A∞,χ −→⊕s
j=1(Λ∞,χ /(Pj )), where P1, . . . ,

Ps are nonzero elements of Λ∞,χ .

LEMMA 2.10. There is an ideal I0 of Λ∞,χ of height greater than 1, and for all
(n, n̄) ∈ N2 there is a morphism

τn,n̄,χ : An,n̄,χ −−−→
s⊕
j=1

(Λ∞,χ/(Pj , γn − 1, γ̄n̄ − 1))

such that Cok(τn,n̄,χ ) is annihilated by I0(γ
′
δ′ − 1)2(γ̄δ̄ − 1)2(γ̄ − 1), where δ̄ ∈ N is such

that Υ δ̄ = D ∩ Υ .

PROOF. For all x ∈ An,n̄,χ we choose x̃ ∈ (A∞,χ )Γn,n̄ such that π
Aχ
n,n̄(x̃) = (γ̄ − 1)x.

Such a choice is possible by Lemma 2.9. Then we set τn,n̄,χ (x) := (γ ′δ′−1)2(γ̄δ̄−1)2τ̃n,n̄,χ (x̃),
where

τ̃n,n̄,χ : (A∞,χ )Γn,n̄ −−−→
s⊕
j=1

(Λ∞,χ /(Pj , γn − 1, γ̄n̄ − 1))

is obtained from τ∞,χ by taking the quotients. It follows from Lemma 2.9 that τn,n̄,χ is well
defined. Lemma 2.10 is satisfied if we let I0 be the annihilator of Cok(τ∞,χ ) overΛ∞,χ . �

3. Global units. Let F be an abelian extension of k. If [F : k] < ∞, we set EF :=
Zp ⊗Z O×F . If [F : k] = ∞, then we set EF := lim←− EL, where the limit is taken over all finite
subextensionsL ⊂ F of k under the norm maps. In all cases, by an appropriate version of the
Leopoldt conjecture which is known to be true for abelian extensions of imaginary quadratic
fields, one can identify EF with a submodule of UF . We set E∞ := EK∞ .
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LEMMA 3.1. For any n ∈ N , we have the following commutative diagram with exact
rows:

(3.1) 0 �� (E∞)Υ n ��
� �

��

(U∞)Υ n ��

�
��

(U∞/E∞)Υ n ��

����

0

0 �� E∞,n �� U∞,n �� U∞,n/E∞,n �� 0.

PROOF. By class field theory, for any abelian extension F of k we have an exact se-
quence

(3.2) 0 �� EF �� UF �� BF �� AF �� 0.

By Proposition 2.5 (iii) and (3.2) applied to F = K∞, we have (U∞/E∞)Υ n = 0. Moreover
(U∞)Υ n � U∞,n by Lemma 2.2. Then we deduce Lemma 3.1 from the tautological exact

sequence 0 �� E∞ �� U∞ �� U∞/E∞ �� 0. �

LEMMA 3.2. For any n̄ ∈ N , there is cn̄ ∈ N such that for all integers n ≥ n̄,

pcn̄ (γ ′δ′ − 1) annihilates Ker((E∞,n̄)Υn −→ En,n̄) and Cok((E∞,n̄)Υn −→ En,n̄) .
PROOF. Let us fix n̄ ∈ N . For all n ∈ N , we recall thatK ′n,n̄ is the subfield ofK∞ fixed

by Υ ′nΥ n̄. We also set K ′∞,n̄ := K∞,n̄. From (3.2) applied to K∞,n̄ and K ′n,n̄, we deduce the
commutative diagram with exact rows below:
(3.3)

(B∞,n̄)Υ
′
n �� (A∞,n̄)Υ

′
n �� (U∞,n̄/E∞,n̄)Υ ′n

��

�� (B∞,n̄)Υ ′n

��

�� (A∞,n̄)Υ ′n

��

�� 0

0 �� UK ′n,n̄/EK ′n,n̄ �� BK ′n,n̄ �� AK ′n,n̄ �� 0.

Since (B∞,n̄)Υ ′n = Gal
(
Mp(K

′
n,n̄)/K∞,n̄

)
, the map (B∞,n̄)Υ ′n −→ BK ′n,n̄ is injective. More-

over, it is well known that (B∞,n̄)Υ
′
n = 0 (see [16, Theorem 5.3 (v)]), hence from (3.3) we

deduce that Ker
(
(U∞,n̄/E∞,n̄)Υ ′n −→ UK ′n,n̄/EK ′n,n̄

) � (A∞,n̄)Υ ′n . Since A∞,n̄ is Noetherian

and since (A∞,n̄)Υ
′
n is finite (see [15, Theorem 1.4]), we can find cn̄ ∈ N such that for all

m ∈ N ,

(3.4) pcn̄ annihilates Ker
(
(U∞,n̄/E∞,n̄)Υ ′m −→ UK ′m,n̄/EK ′m,n̄

)
.

From (3.2) we have (U∞,n̄/E∞,n̄)Υ ′m ↪→ (B∞,n̄)Υ
′
m = 0, and the commutative diagram with

exact rows below:

(3.5) 0 �� (E∞,n̄)Υ ′m

��

�� (U∞,n̄)Υ ′m

��

�� (U∞,n̄/E∞,n̄)Υ ′m

��

�� 0

0 �� EK ′m,n̄ �� UK ′m,n̄ �� UK ′m,n̄/EK ′m,n̄ �� 0 .
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Applying the snake lemma for (3.5), we see that Ker
(
(E∞,n̄)Υ ′m −→ EK ′m,n̄

)
is a submodule of

Ker
(
(U∞,n̄)Υ ′m −→ UK ′m,n̄

)
, which is annihilated by (γ ′

δ′ − 1) from Lemma 2.3. Moreover, the
snake lemma gives an exact sequence

0 �� Q �� Cok
(
(E∞,n̄)Υ ′m −→ EK ′m,n̄

)
�� S �� 0,

where Q is a quotient of Ker
(
(U∞,n̄/E∞,n̄)Υ ′m −→ UK ′m,n̄/EK ′m,n̄

)
and S is a submodule of

Cok
(
(U∞,n̄)Υ ′m −→ UK ′m,n̄

)
. Then by (3.4) and Lemma 2.3, pcn̄ (γ ′

δ′ − 1) annihilates

Cok
(
(E∞,n̄)Υ ′m −→ EK ′m,n̄

)
. For all n ≥ n̄ there is m ∈ N such that the image of Υn in

(Υ /Υ n̄)× Υ ′ is Υ ′m. Then Kn,n̄ = K ′m,n̄, (E∞,n̄)Υn = (E∞,n̄)Υ ′m and (U∞,n̄)Υn = (U∞,n̄)Υ ′m ,
from which we deduce Lemma 3.2. �

LEMMA 3.3. There is a natural number m̄0 ∈ N such that, for all nonnegative inte-
gers n̄ ≤ n, pcn̄ (γ ′

δ′ − 1)(γ̄m̄0 − 1)2 annihilates Ker(πEn,n̄) and Cok(πEn,n̄).

PROOF. Let us momentaneously fix n̄. From Lemma 3.1, we deduce an isomorphism
Cok(πE∞,n̄) � Ker(πU/E∞,n̄ ) and an exact sequence

(3.6) Ker(πU/E∞,n̄ )Υn �� (E∞)Γn,n̄ �� (E∞,n̄)Υn �� Ker(πU/E∞,n̄ )Υn �� 0 .

By Proposition 2.5 (iii) we have the commutative diagram with exact rows:

(3.7) 0 �� (A∞)Υ n̄ �� (U∞/E∞)Υ n̄ ��

��

(B∞)Υ n̄ ��

��

(A∞)Υ n̄ ��

��

0

0 �� U∞,n̄/E∞,n̄ �� B∞,n̄ �� A∞,n̄ �� 0 ,

from which we deduce the exact sequence

(3.8) 0 �� (A∞)Υ n̄ �� Ker(πU/E∞,n̄ ) �� Ker(πB∞,n̄) .

Since A∞ is Noetherian, there is m̄0 ∈ N such that (A∞)Υ m̄ ⊆ (A∞)Υ m̄0 for all m̄ ∈ N . We
can choose m̄0 such that γ̄m̄0 ∈ D. Then by Theorem 2.4 (ii),

(3.9) γ̄m̄0 − 1 annihilates Ker(πB∞,m̄) and (A∞)Υ m̄ for all m̄ ∈ N .

By (3.8), (γ̄m̄0 − 1)2 annihilates Ker(πU/E∞,n̄ ). From (3.6) and Lemma 3.2, we deduce Lemma
3.3. �

PROPOSITION 3.4. There is a finite set T , a family (nt )t∈T ∈ NT , and a pseudo-
isomorphism of Λ∞,χ -modules

Θχ : E∞,χ −−−→ Λ∞,χ ⊕
⊕
t∈T
(Λ∞,χ /untχ ) ,

where uχ is a uniformizer of Zp[χ].
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PROOF. By Theorem 2.1, eψ(Qp⊗Zp U∞) is a torsion-free rank one eψ(Qp⊗Zp Λ∞)-
module. From Theorem 2.4 (i) and (3.2), we deduce that the Λ∞,χ -module E∞,χ is of rank 1
and that its torsion is annihilated by a power of p. �

Let pr : Λ∞,χ ⊕⊕
t∈T (Λ∞,χ /u

nt
χ ) −→ Λ∞,χ be the canonical projection. For all non-

negative integers n̄ ≤ n, letΘn,n̄,χ : (E∞,χ )Γn,n̄ −→ Zp[χ][Γ/Γn,n̄] be the map obtained from
pr·Θχ by taking the quotients. Let hχ be a generator of charΛ∞,χ (E∞/C∞)χ . As in [1, proof of
Lemma 3.5] or [19, Lemma 6.3], one can deduce from Lemma 3.3 that p2cn̄ (γ ′

δ′−1)2(γ̄m̄0−1)4

annihilates Ker(π
Eχ
n,n̄) and Cok(π

Eχ
n,n̄). Then one easily verifies that the map

ϑn,n̄,χ : En,n̄,χ −→ Zp[χ][Γ/Γn,n̄] , x 
→ p2cn̄ (γ ′δ′ − 1)2(γ̄m̄0 − 1)4Θn,n̄,χ (x̃)

is well defined, where x̃ ∈ (E∞,χ )Γn,n̄ verifies π
Eχ
n,n̄(x̃) = p2cn̄ (γ ′

δ′ − 1)2(γ̄m̄0 − 1)4x.

4. Elliptic units. For two Z-lattices L and L′ of C such that L ⊆ L′ and [L′ : L]
is prime to 6, we denote by z 
→ ψ(z;L,L′) the elliptic function defined in [14]. For a
nonzero proper ideal m of Ok , and a nonzero ideal a of Ok prime to 6m, Robert proved that
ψ(1;m, a−1m) ∈ H(m), where H(m) is the ray class field modulo m of k. If ϕm(1) ∈ H(m)×
is the Robert-Ramachandra invariant, as defined in [12, p. 15], we have by [13, Corollaire 1.3,
(iii)]

(4.1) ψ(1;m, a−1m)12�(m) = ϕm(1)
N(a)−(a,H(m)/k) ,

where �(m) is the positive generator of m ∩ Z, N(a) := #(Ok/a), and (a,H(m)/k) is the
Artin automorphism of H(m)/k defined by a. Let S(m) be the set of maximal ideals of Ok
which divide m. If we denote by wm the number of roots of unity of k which are congruent
to 1 modulo m, and if we write wk for the number of roots of unity of k, then by [13, p. 21,
(iv′)], we have

(4.2) ϕm(1)OH(m) =
{
(1) if 2 ≤ |S(m)| ,
(q)

12�(m)wm/wk
H(m) if S(m) = {q} ,

where (q)H(m) is the product of the prime ideals of OH(m) which lie above q. Moreover, if a

is prime to 6mq, then by [13, p. 21, (ii′-1)] we have

(4.3) NH(mq)/H(m)(ϕmq(1)) =
{
ϕm(1)�(mq)�(m)−1(1−(q,H(m)/k)−1) if q � m ,

ϕm(1)�(mq)�(m)−1
if q | m .

DEFINITION 4.1. Let F ⊂ C be a finite abelian extension of k. We write ΨF for
the Z[Gal(F/k)]-submodule of F× generated by μ(F) and by all the norms
NH(m)/H(m)∩F(ψ(1;m, a−1m)), where m is a nonzero proper ideal of Ok and a is any nonzero
ideal of Ok prime to 6m. Then we define the groups CF := O×F ∩ ΨF and CF := Zp ⊗Z CF .

For any abelian extension F of k, we set K̃(F ) := lim←−F ′(Qp ⊗Z (F
′)×), where the

limit is taken over all finite subextensions F ′ ⊆ F of k with respect to the norm maps.
We fix a nonzero ideal f of Ok , prime to (p), such that K∞ ⊆ H(fp∞), where
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H(fp∞) :=⋃
n∈N H(fpn). For any ideal g of Ok dividing f, and for any (n, n̄) ∈ N2, we

set

ϕg,n,n̄ := 1

12�(gpn+1p̄n̄+1)
⊗ ϕgpn+1p̄n̄+1(1)

in Qp ⊗Z H(gpn+1p̄n̄+1)×. Then by (4.3) ϕg := (ϕg,n,n̄)(n,n̄)∈N2 is well defined in

K̃(H(gp∞)) = lim←−
n,n̄

(
Qp ⊗Z H(gpn+1p̄n̄+1)×

)
.

Since lim←−F⊂K∞ μ(F) = 0, where the limit is taken over all finite subextensionsF ⊂ K∞
of K with respect to the norm maps, we deduce that the natural map C∞ −→ K̃∞ is injective,
where C∞ and K̃∞ are defined in accordance with our conventions (Section 1). Proceeding
as in [20, Lemma 2.7], one can show that as a Λ∞-submodule of K̃∞, C∞ is generated by all
the elements

(4.4) NH(gp∞)/H(gp∞)∩K∞(ϕg)
N(a)−(a,H(gp∞)/k) ,

where g is an ideal of Ok dividing f and a is an ideal of Ok prime to 6pg. We set

Q := Qp(ζ ) ,

where ζ is a primitive [H(fp∞) : k∞]-th root of unity. Let us also denote by χf the character
of Gal(H(fp∞)/k∞) obtained from χ by inflation.

LEMMA 4.2. Let fχ be the smallest ideal of Ok dividing f such that χf is trivial on the
Galois group Gal(H(fp∞)/K∞ ∩ H(fχp∞)). Then in Q⊗Zp K̃∞, we have

(4.5) eχ (Q⊗Zp C∞) = eχ (Q⊗Zp Jμ)NH(fχp∞)/H(fχp∞)∩K∞(ϕfχ ) ,

where Jμ is the annihilator of μp∞(K∞) overΛ∞.

PROOF. Let g be an ideal of Ok dividing f. Let us first assume that fχ |g. We set a :=
[H(gp∞)∩K∞ : H(fχp∞)∩K∞], and for any prime l dividing f and not dividing fχ , we set
σl := (l,H(fχp∞)/k)−1. Since χf is trivial on Gal(H(fp∞)/K∞ ∩ H(fχp∞)) we obtain

eχNH(gp∞)/H(gp∞)∩K∞(ϕg)= a−1eχNH(gp∞)/H(fχp∞)∩K∞(ϕg)

=
(∏

l

(1− σl)
)
a−1eχNH(fχp∞)/H(fχp∞)∩K∞(ϕfχ ) ,

where the product is over all primes l dividing g but not dividing fχ . Now assume that fχ � g.
Then χf is not trivial on Gal(H(fp∞)/K∞ ∩ H(gp∞)), and

eχNH(gp∞)/H(gp∞)∩K∞(ϕg) = [H(fp∞) : H(gp∞)]−1eχNH(fp∞)/H(gp∞)∩K∞(ϕg) = 0 .

Then the lemma follows from (4.4), (4.1) and the description of Jμ given in [18, IV, Lemme
1.1]. �

For all ideal g of Ok dividing fp̄m for some m ∈ N , and for all n ∈ N , we set

ϕ′g,n :=
1

12�(gpn+1)
⊗ ϕgpn+1(1)
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in Qp ⊗Z H(gpn+1)×. Then ϕ′g := (ϕ′g,n)n∈N is well defined in K̃(H(gp∞)) = lim←−n
(Qp ⊗Z H(gpn+1)×).

REMARK 4.3. It is well known that Stark units can be constructed by means of elliptic
units (see [13] for a precise statement). Then it is an easy matter to verify that C∞,0 = St∞,
where St∞ is the module of Stark units for K∞,0, as defined in [7]. Then from [7, Theorem
3.2 and Proposition 2.1] we deduce that C∞,0 is finitely generated over ΛΥ ′ of rank [K : k],
and the rank of C∞,0,χ over Zp[χ][[Υ ′]] is 1.

We arbitrarily lift Γ into a subgroup Γf of Gal(H(fp∞)/k). We denote by Υ f the sub-
group corresponding to Υ , and we denote by J f the inertia group of p̄ in H(fp∞)/k. Let

N ∈ N be such that J f ∩ Γf = Υ p
N

f . For any module M over any ring R, we denote by

NulR(M) the annihilator of M over R. As a Λ∞-submodule of K̃∞,0 := K̃(K∞,0), C∞,0 is
generated by all the elements

(4.6) NH(gp∞)/H(gp∞)∩K∞,0(ϕ′g)α ,

where g is an ideal of Ok dividing fp̄N+1 and α ∈ NulΛ∞(μp∞(K∞,0)) if g �= 1, α ∈
NulΛ∞(μp∞(K∞,0))∩J∞ if g = 1 (see [20, Lemma 2.7]). We denote by J̄ the inertia group
of p̄ in K∞/k, and by χ̃ the character of G∞ obtained from χ by inflation.

PROPOSITION 4.4. As a ΛΥ ′ -module, Cok(πC∞,0) is finitely generated, torsion and
annihilated by JD . Its characteristic ideal over ΛΥ ′ is prime to p. Moreover, we have

eχ (Q⊗Zp Cok(πC∞,0))=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Q⊗Zp ΛΥ ′)/JD(Q⊗Zp ΛΥ ′) if χ̃ �= 1 is trivial on J ,

0 if χ̃ is not trivial on J ,

J∞(Q⊗Zp ΛΥ ′)/JD(Q⊗Zp ΛΥ ′) if χ = 1 .

PROOF. Since μ(K∞,0) is finite, calculations which are similar to those done in the
proof of Lemma 4.2 give us the following equalities:

eχ(Q⊗Zp C∞,0)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eχ(Q⊗Zp ΛΥ ′)NH(fχp∞)/H(fχp∞)∩K∞,0(ϕ′fχ ) if χ̃ �= 1 is

trivial on J ,

eχ(Q⊗Zp ΛΥ ′)NH(fχ p̄N+1p∞)/H(fχ p̄N+1p∞)∩K∞,0(ϕ
′
fχ p̄N+1) if χ̃ is not

trivial on J ,

eχ(Q⊗Zp J∞)NH(p∞)/H(p∞)∩K∞,0(ϕ′(1)) if χ = 1 .

(4.7)

On the other hand, for all ideals g dividing f, one has

(4.8) NK∞/K∞,0(NH(gp∞)/H(gp∞)∩K∞(ϕg)) = NH(gp̄N+1p∞)/H(gp̄N+1p∞)∩K∞,0(ϕ
′
gp̄N+1) ,
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where the norm maps are defined in accordance with our conventions (Section 1). From (4.8)
and Lemma 4.2, one can calculate the image of eχ (Q ⊗Zp C∞) in Q ⊗Zp C∞,0, and then

derive from (4.7) the expressions of eχ(Q ⊗Zp Cok(πC∞,0)) given in Proposition 4.4. From
(4.8) we deduce that, for all ideal g dividing f and for all α ∈ NulΛ∞(μp∞(K∞,0)),

(4.9) NH(gp∞)/H(gp∞)∩K∞,0(ϕ′g)(1−σp̄)α ∈ Im(C∞) ,
where Im(C∞) is the image of C∞ in C∞,0, and σp̄ := (p̄,H(gp∞)/k)−1. We deduce that
JD annihilates Cok(πC∞,0). Then Cok(πC∞,0) is torsion over ΛΥ ′ , and finitely generated by

Remark 4.3. In order to verify that charΛΥ ′ (Cok(πC∞,0)) is prime to p, we just have to notice

that ΛΥ ′/JDΛΥ ′ � Zp[Γ/D Υ ] is finitely generated over Zp. �

LEMMA 4.5. Let M be a finitely generated torsion ΛΓ -module, such that MΥ is tor-
sion overΛΥ ′ and charΛΥ ′MΥ is prime to p. Then charΛΓ M is prime to p.

PROOF. Let (rt )t∈T be a finite family of height 1 prime ideals ofΛΓ , and (mt)t∈T ∈ NT

be such that M ′ :=⊕
t∈T ΛΓ /r

mt
t is pseudo-isomorphic to M . Then there exists an exact

sequence

0 �� M ′ �� M �� P �� 0 ,

where P is a pseudo-nullΛΓ -module. Then we have an exact sequence

(4.10) PΥ
�� M ′
Υ

�� MΥ �� PΥ �� 0 .

Moreover, by [11, Lemme 4 (2)] and since MΥ is torsion over ΛΥ ′ , PΥ and PΥ are both
finitely generated and torsion overΛΥ ′ , and

(4.11) charΛΥ ′ (P
Υ ) = charΛΥ ′ (PΥ ) .

From (4.10) and (4.11), and since charΛΥ ′MΥ is prime to p, we deduce that charΛΥ ′ (M
′
Υ
) is

prime to p. From the equalityM ′ =⊕
t∈T ΛΓ /r

mt
t , we deduce that charΛΓ (M

′) is prime to
p. SinceM andM ′ are pseudo-isomorphic, the lemma follows. �

THEOREM 4.6. The following properties hold.
(i) C∞ is a torsion-free finitely generatedΛΓ -module of rank [K : k].

(ii) U∞/C∞, U∞/E∞ and E∞/C∞ are finitely generated and torsion overΛΓ .
(iii) charΛΓ (U∞/C∞), charΛΓ (U∞/E∞) and charΛΓ (E∞/C∞) are prime to p and

γ − 1.
(iv) U∞,0/C∞,0, U∞,0/E∞,0, and E∞,0/C∞,0 are finitely generated and torsion over

ΛΥ ′ .

PROOF. The module C∞ is a submodule of U∞, hence it is torsion-free and finitely
generated over ΛΓ , of rank at most [K : k] by Theorem 2.1. By Lemma 4.2, we see that
eχ (Q ⊗Zp C∞) has rank 1 over Q ⊗Zp ΛΓ , or is zero. But we know from Remark 4.3
that eχ(Q ⊗Zp C∞,0) has rank 1 over Q ⊗Zp ΛΥ ′ . Hence from Proposition 4.4 we see that
eχ (Q⊗Zp C∞) has rank 1 over Q⊗Zp ΛΓ . Considering all irreducible Cp-characters of G,
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we deduce (i). Then (ii) follows from (i) and Theorem 2.1. We have the exact sequence

0 �� Cok(πC∞,0) �� U∞,0/Im(C∞) �� U∞,0/C∞,0 �� 0 ,

where Im(C∞) is the image of C∞ in C∞,0. But charΛΥ ′ (Cok(πC∞,0)) is prime to p by Propo-
sition 4.4, and charΛΥ ′ (U∞,0/C∞,0) is prime to p by [20, Theorem 1.1] and Gillard’s result
[3, 3.4. Théorème]. Hence charΛΥ ′ (U∞,0/Im(C∞)) is prime to p. By Lemma 2.2, we have
the following commutative diagram with exact rows:

(C∞)Υ ��

����

(U∞)Υ ��

�
��

(U∞/C∞)Υ ��

��

0

0 �� Im(C∞) �� U∞,0 �� U∞,0/Im(C∞) �� 0 .

A diagram chase shows that the last vertical arrow is an isomorphism. Then charΛΓ (U∞/C∞)
is prime to p by Lemma 4.5, and by [11, Lemme 4 (1)] charΛΓ (U∞/C∞) is prime to γ̄ − 1.
Since E∞/C∞ and U∞/E∞ are respectively a submodule and a quotient of U∞/C∞, (iii) is
entirely proved. (iv) is a corollary of Remark 4.3 (see [20, Proposition 4.2] or [19, Proposition
3.1] for more details). �

PROPOSITION 4.7. We have Q⊗Zp Ker(πC∞,0) = 0.

PROOF. Since μ(K∞,0) is finite, ΛΥ ′/JμΛΥ ′ is finite. Then from Lemma 4.2 and the
proof of Theorem 4.6 (i), we deduce that eχ(Q ⊗Zp C∞)Υ is a free rank one Q ⊗Zp ΛΥ ′ -
module. Considering all irreducible Cp-characters of G, we see that (Q⊗Zp C∞)Υ is a free
Q ⊗Zp ΛΥ ′ -module of rank [K : k]. But Q ⊗Zp C∞,0 has rank [K : k] over Q⊗Zp ΛΥ ′ by

Remark 4.3, hence by Proposition 4.4 we must have Q⊗Zp Ker(πC∞,0) = 0. �

Let hχ be a generator of charΛ∞,χ (E∞/C∞)χ . Let h′χ be a divisor of hχ such that hχ/h′χ
is prime to charΛ∞,χ (A∞,χ ), and such that any height one prime ideal ofΛ∞,χ which divides
h′χ also divides charΛ∞,χ (A∞,χ ).

LEMMA 4.8. There is an ideal I1 of Λ∞,χ of height greater than 1, and there is h̃χ ∈
Λ∞,χ prime to charΛ∞,χ (A∞,χ ) such that I1p

4cn̄ h̃χh
′
χ ⊆ ϑn,n̄,χ (Im(Cn,n̄,χ )) in Zp[χ][Γ/

Γn,n̄] for all nonnegative integers n̄ ≤ n, where Im(Cn,n̄,χ ) is the canonical image of Cn,n̄,χ in
En,n̄,χ .

PROOF. The ideal N ′ := NulΛ∞,χ (hχ · (E∞/C∞)χ ) is of height greater than 1 since
hχ · (E∞/C∞)χ is pseudo-null. The ideal N ′′ := pr·Θχ(E∞,χ ) is of height greater than 1
since Cok(pr·Θχ) is pseudo-null. We set I1 := N ′N ′′. Then I1hχ ⊆ pr·Θχ(Im(C∞,χ )). For
all i ∈ I1, there is zi ∈ Im(C∞,χ ) such that ihχ = pr·Θχ(zi). An easy calculation gives

(4.12) p4cn̄ (γ ′δ′ − 1)4(γ̄m̄0 − 1)8ihχ = ϑn,n̄,χ (z̄i) in Zp[χ][Γ/Γn,n̄] ,
where z̄i is the image of zi in En,n̄,χ . Then we set h̃χ := (γ ′δ′ − 1)4(γ̄m̄0 − 1)8hχ(h′χ )−1.

Remark that h̃χ is prime to charΛ∞,χ (A∞,χ ) by Remark 2.7 and by definition of h′χ . �
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5. Euler systems. Let us write Ak as a direct product of cyclic p-groups,

Ak = 〈cl(p1)〉 × · · · × 〈cl(pr )〉 ,

where p1, . . . , pr are prime ideals of Ok , prime to p, and cl(pi ) is the class of pi in Cl(Ok).
For any i ∈ {1, . . . , r}, we let pRi be the order of 〈cl(pi )〉, and we choose αi ∈ Ok such that

αiOk = p
pRi

i . LetR :=∑r
i=1 Ri and letM �= 1 be a power of p, such that pR = #(Ak) ≤M .

Let kab be the abelian closure of k in C, and let F ⊂ kab be a finite abelian extension of
k. We set μM := μM(kab). We denote by LF the set of maximal ideals � of Ok such that �
splits completely in F(μM,M

√
α1, . . . ,M

√
αr)/k, and such that � /∈ {p1, . . . , pr}. We denote by

SF the set of squarefree ideals of Ok whose prime divisors belongs to LF . As in [10, Lemma
3.1], we define for each � ∈ LF a cyclic subextension F(�) of H(�)F , of degreeM over F ,
which is totally ramified above � and unramified anywhere else. We denote its Galois group
byG�, and we fix a generator σ� ofG�. For m := �1 · · · �n an ideal in SF , we define F(m) :=
F(�1) · · ·F(�n), the composite of the fields F(�i). We setGm := Gal(F (m)/F ) �∏

�|mG�.
For any ideal m �= 0 of Ok , we denote by SF (m) the set of ideals in SF which are prime

to m. We denote by UF (m) the set of maps ε : SF (m)→ (kab)× satisfying the conditions (a)
to (d) below.

(a) ε(a) ∈ F(a)× for all a ∈ SF (m).
(b) ε(a) ∈ O×F(a) if a �= (1).
(c) NF(a�)/F (a)(ε(a�)) = ε(a)(�,F (a)/k)−1 for all a ∈ SF (m) and all � ∈ LF which is

prime to ma.
(d) ε(a�) ≡ ε(a)(N(�)−1)/M modulo all prime ideals of OF(a�) above �.
For any ideal a �= (0) of Ok , any ε ∈ UF (a) and any m ∈ SF (a), one can con-

struct (in a canonical way) an inhomogeneous 1-cocycle c : Gm −→ F(m)× such that
c(σ )M = ε(m)Dm(σ−1) for all σ ∈ Gm, where Dm :=∏

�|m
∑M−1
i=1 iσ

i
� belongs to Z[Gm].

Since H1(Gm, F (m)
×) = 0, one can find β(m) ∈ F(m)× such that c(σ ) = β(m)σ−1

for all σ ∈ Gm (if m = 1 one takes β(1) = 1). We set κε : SF (a) → F×/(F×)M ,
m 
→ ε(m)Dmβ(m)−M . This construction is due to Rubin. We refer the readers to [16, Propo-
sition 2.2] for details. Notice that κε(1) = ε(1).

PROPOSITION 5.1 (See [16, Proposition 1.2]). Let U :=⋃
UF (m), where the union

is over all nonzero ideals m of Ok . Then for any u ∈ ΨF (in particular for u ∈ CF ), there
exists ε ∈ U such that κε(1) = u.

PROOF. For any nonzero ideal m �= (1) of Ok , any maximal ideal q of Ok , and any
nonzero ideal a of Ok prime to 6mq, by [13, Corollaire 1.3, (ii-1)] we have

(5.1) Nk(mq)/k(m)(ψ(1;mq, a−1mq))wm/wmq

=

⎧⎪⎨⎪⎩
ψ(1;m, a−1m)1−(q,H(m)/k)−1

if q � m ,

ψ(1;m, a−1m) if q | m .
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Moreover, when q � m, by [13, Corollaire 1.3, (v-1)] we have

(5.2) ψ(1;mq, a−1mq) ≡ ψ(1;m, a−1m)(q,k(m)/k) modulo (q)H(mq) .

From (5.1) we deduce that ΨF is generated by μ(F) and by all the norms

(5.3) NH(m)/H(m)∩F(ψ(1;m, a−1m)) ,

where m �= (1) is a nonzero ideal of Ok such that wm = 1 and a is any nonzero ideal
of Ok prime to 6m. Hence we have to prove the proposition in two particular cases: when
u ∈ μ(F) and when u is a norm as in (5.3). The case u ∈ μ(F) is treated in [16]. If
u = NH(m)/H(m)∩F(ψ(1;m, a−1m)), we set

ε : SF (mawF) −→ (kab)×, n 
→ NH(mn)/F (n)∩H(mn)(ψ(1;mn, a−1mn))
∏
�|n f�,n ,

where wF := #μ(F) and where for any �|n, f�,n is the automorphism of F(n) which is the
identity on F(�) and the Frobenius of � in F(n�−1)/k. This is well defined since � splits
completely in F/k. The condition (a) is obviously verified, and (b) is implied by (4.1) and
(4.2). Conditions (c) and (d) respectively follow from (5.1) and (5.2). �

For � ∈ LF , we let IF,� :=⊕
λ|� Zλ be the free Z-module generated by the prime ideals

of OF lying above �. For any x ∈ F×, we denote by (x)� ∈ IF,� and [x]� ∈ IF,�/MIF,� the
projections of the fractional ideal (x) := xOF . Remark that we have an isomorphism

(5.4) (OF(�)/�′)×/
(
(OF(�)/�′)×

)M � (OF /�OF )×/((OF /�OF )×)M
,

where �′ is a product of the prime ideals of OF(�) above �. For any z ∈ F(�)×, one verifies
that the image of z1−σ� in (OF(�)/�′)× is annihilated byM . Thus using (5.4) we can consider
the map

θ� : F(�)× −→ (OF /�OF )×/
(
(OF /�OF )×

)M
,

which associates to z the sum
⊕
λ|� zλ such that the image of z1−σ� in (OF /λ)× is equal to

(zλ)
(N(�)−1)/M. By [16, Proposition 2.3], there exists a unique Gal(F/k)-equivariant isomor-

phism

ϕ� : (OF /�OF )×/
(
(OF /�OF )×

)M → IF,�/MIF,�
satisfying the relation (ϕ� ◦ θ�)(x) = [NF(�)/F (x)]� for x ∈ F(�)×. For x ∈ F×, we can
choose y ∈ F(�)× such that xyM is a unit at the prime ideals of OF(�) above �. We denote by

{xyM} the class of xyM in (OF /�OF )×/
(
(OF /�OF )×

)M under (5.4). Then we set ϕ�(x) :=
ϕ�({xyM}), which does not depend on the choice of y.

By [16, Proposition 2.4], for any ideal a �= (0) of Ok , any ε ∈ UF (a), any m ∈ SF (a),
and any � ∈ LF , we have

(5.5) [κε(m)]� =
{

0 if � � m ,

ϕ�(κε(m�
−1)) if � | m .

For any extensionL ⊆ F of k and any maximal ideal q of OL, we denote by vq the normalized
valuation at q, and by v̄q : L×/(L×)M → Z/MZ the map defined from vq by taking the
quotient.
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The following theorem is a classical step in the Euler system machinery. The first ver-
sions are due to Rubin (see [16, Theorem 3.1]), and to Greither for abelian extensions over Q

(see [5, Theorem 3.7]). We took our inspiration in [1, Theorem 3.4].

THEOREM 5.2. Let f be the conductor of F/k, and set c := vp̄(f) and GF :=
Gal(F/k). Assume that we are given an ideal class c ∈ AF , a finite GF -submodule W of
F×/(F×)M , and a GF -morphism Ψ : W → Z/MZ[GF ]. Suppose that, for any prime ideal
q of F which is above pi for some i, q is unramified in F/k and that v̄q(w) = 0 for any
w ∈ W . If m is a positive integer which is divisible by p2c+1, then there are infinitely many
maximal ideals λ of OF such that:

(i) clp(λ) = cm, where clp(λ) is the ideal class of λ in AF ,
(ii) � := λ ∩Ok belongs to LF ,

(iii) for all w ∈ W , [w]� = 0,
(iv) there exists u ∈ (Z/MZ)×, such that for all w ∈ W , ϕ�(w) = up2c+R+1Ψ (w)λ.

PROOF. Let HF be the Hilbert p-class field of F . Let

Fi :=
{
F(μM) if i = 0 ,
Fi−1(M

√
αi) if 1 ≤ i ≤ r .

Exactly as in [1, proof of Theorem 3.4], one can prove the following claims.
Claim (A) [HF ∩ F(μp∞) : F ] ≤ pc.
Claim (B) Gal(HF ∩ Fr(M

√
W)/F) is annihilated by p2c+1.

As in [16, Lemma 2.5], one verifies that the canonical map F×/(F×)M −→ F×0 /(F
×
0 )
M

is injective. It implies the following claim.
Claim (C) The canonical map K : Gal(F0(

M
√
W)/F0) → Hom(W,μM) from Kummer

theory is an isomorphism.
Let us remark that Fi−1(

M
√
W)/Fi−1 is unramified at all the places above pi by the hy-

pothesis v̄q(w) = 0 for all w ∈ W and all q|pi . On the other hand, [Fi : Fi−1] dividesM and
the ramification index of any q|pi in Fi/Fi−1 is at leastMp−Ri . Therefore

(5.6) pRi annihilates Gal(Fi−1(
M
√
W) ∩ Fi/Fi−1) .

Let Li := F0(
M
√
W) ∩ Fi . As Li ∩ Fi−1 = Li−1 we have

(5.7) Gal(Li/Li−1) � Gal(LiFi−1/Fi−1) .

Since Gal(LiFi−1/Fi−1) is a quotient of Gal(Fi−1(
M
√
W) ∩ Fi/Fi−1), this implies that pRi

annihilates Gal(Li/Li−1) thanks to (5.6). In particular, we deduce Claim (D) below.
Claim (D) Gal(F0(

M
√
W) ∩ Fr/F0) is annihilated by pR .

Let ζ be a primitive M-th root of unity, and ι : Z/MZ[GF ] → μM be the morphism
such that ι(σ ) = 0 for σ ∈ GF \ {1} and ι(1) = ζ . Combining Claim (C) and Claim (D), one
may find α ∈ Gal(Fr(

M
√
W)/F0) such that

(5.8) α|Fr = 1 and K(α|F0(
M√
W)
) = (ι ◦ Ψ )pR .
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From Claim (B), we may choose β ∈ Gal(HFFr(
M
√
W)/F) such that

(5.9) β|Fr (M
√
W)
= αp2c+1

and β|HF = (c,HF /F)m (Artin symbol) .

Now, from (5.8) we see that β ∈ Gal(HFFr(
M
√
W)/Fr).

By the Čebotarev density theorem, we can find infinitely many primes λ in OF , of abso-
lute degree 1, prime to

∏r
i=1 pi , such that λ ∩ Ok is unramified in HFFr(

M
√
W)/k, and such

that the conjugacy class of β in Gal(HFFr(
M
√
W)/F) is the Frobenius of λ. Then the condi-

tion (i) of Theorem 5.2 holds as a consequence of the general properties of the Frobenius. The
condition (ii) is also satisfied since β is the identity on Fr . Let w ∈ W . Then for any prime
λ′ of O

F0(
M√
W)

above λ, we have v̄λ(w) = v̄λ′(w) = Mv̄λ′(M√w) = 0, and the condition (iii)
follows. Assertion (iv) is proved as in the proof of [16, Theorem 8.1,(iii)]. �

For any Zp[G]-module N and any z ∈ N , we denote by zχ the canonical image of z in
Nχ .

LEMMA 5.3. Let F be a finite abelian extension of k. Let G be a subgroup of GF :=
Gal(F/k), and let χ be an irreducible Cp-character of G. Let �1, . . . , �i ∈ LF , and for each
j = 1, . . . , i, let λj be a prime of OF above �j , and let clp(λj ) be the image of λj in AF . Let
x ∈ F× be such that vq(x) ∈ MZ for any prime q of OF which is prime to �1 · · · �iOF .

Let W be the Zp[GF ]-span of the image xM of x in F×/(F×)M , and let L be the
Zp[GF ]-submodule of AF generated by clp(λ1), . . . , clp(λi−1). Assume that there are
Z, g, η, η′ ∈ Zp [GF ] such that

(i) Z.NulZp[GF ]χ ([clp(λi)]L,χ ) ⊆ gη′Zp[GF ]χ , where NulZp [GF ]χ ([clp(λi)]L,χ) is
the annihilator of the image [clp(λi)]L,χ of clp(λi) in (AF/L)χ ,

(ii) η′Zp[GF ]χ/gη′Zp[GF ]χ is finite,
(iii) #(η((IF,�i /MIF,�i )/W ′)χ )#(AF,χ ) ≤ M , where W ′ is the image of W in IF,�i /

MIF,�i through w 
→ [w]�i .
Then, there exists a morphism of Zp[GF ]-modules Ψ : Wχ → (Z/MZ)[GF ]χ such that

gΨ (xM,χ)λi,χ = Zη[x]�i,χ .
PROOF. The proof is similar to that of [5, Lemma 3.12], up to the point that we have to

take into account the extra variable η′. �

6. The divisibility obtained by Euler systems. This section is devoted to the proof
of Proposition 6.1 below.

PROPOSITION 6.1. We have charΛ∞,χ (A∞,χ )|charΛ∞,χ (E∞/C∞)χ .

Let X be the set of irreducible Cp-characters ξ of Γ such that Im(ξ) is finite. For all
f ∈ Λ∞,χ , we set

X (χ, f ) := {ξ ∈ X /ξ(f ) = 0} and J (χ, f ) :=⋂
ξ∈X (χ,f )Ker(ξ) ,

where all ξ ∈ X are extended to Λ∞,χ by linearity.
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REMARK 6.2. As in [16, Proposition 7.11 (ii)], one can deduce from Remark 2.7 that
J (χ, f ) is of height greater than 1 whenever f divides charΛ∞,χ (A∞,χ ).

Since J := J (χ, charΛ∞,χ (A∞,χ )) and I0I1 are of height greater than 1, we can choose
η′ ∈ J and I ∈ I0I1 both prime to charΛ∞,χ (A∞,χ ). Let n̄ ≤ n be two nonnegative integers.
Let c′̄n be the valuation at p̄ of the conductor of Kn,n̄ (which does not depend on n).

For all i ∈ Z, we set

Δi := [K : k]i−1p(2c
′̄
n+R+1)(2i−3)+4cn̄ .

Since J ⊆ J (χ, h′χ ), the group η′Zp[Gn,n̄]χ/Δs+1h
′
χη
′Zp[Gn,n̄]χ is finite. LetM �= 1 be

a power of p such that

(6.1) #Ak#An,n̄,χ#(η′Zp[Gn,n̄]χ/Δs+1h
′
χη
′Zp[Gn,n̄]χ ) ≤M .

For all maximal ideal λ of OKn,n̄ such that � := λ ∩Ok ∈ LKn,n̄ , we denote by ωλ and ω̄λ the
maps

ωλ : K×n,n̄ �� Zp[Gn,n̄] such that ωλ(x)λ = (x)� ,
and

ω̄λ : K×n,n̄/(K×n,n̄)M �� (Z/MZ)[Gn,n̄] such that ω̄λ(xM)λ = [x]�.
We know by Lemma 2.10 that for every j ∈ {1, . . . , s}, there is a class cj ∈ An,n̄ such that

τn,n̄,χ (cj,χ ) = (0, . . . , 0, Ĩ , 0, . . . , 0) ,
where Ĩ := I (γ ′

δ′ − 1)2(γ̄δ̄ − 1)2(γ̄ − 1) is at the j -th place. We also choose arbitrarily one
more class cs+1 ∈ An,n̄. By Lemma 4.8, there is ξ ∈ Cn,n̄ such that

(6.2) ϑn,n̄,χ (ξ
′) = I h̃χp4cn̄h′χ in (Z/MZ)[Gn,n̄]χ ,

where ξ ′ is the image of ξ in Im(Cn,n̄,χ ). By Remark 5.1, we can fix an ideal m of Ok and
ε ∈ UKn,n̄ (m) such that κε(1) = ξ . We assume that all the pi are unramified in K∞/k and
prime to (p) in order to apply Theorem 5.2.

The main step is to define recursively maximal ideals λ1, . . . , λs+1 of OKn,n̄ and ideals
a1, . . . , as+1 of Ok such that

(a) �i := λi ∩Ok belongs to LKn,n̄ for all i = 1, . . . , s + 1,

(b) clp(λi) = c
p

2c′̄
n
+R+1

i for all i = 1, . . . , s + 1,
(c) ai := �1 · · · �i ,
(d) ω̄λ1(κε(�1))χ = u1p

4cn̄+2c′̄n+R+1[K : k]I h̃χh′χ in (Z/MZ)[Gn,n̄]χ , for some
u1 ∈ (Z/MZ)×,

(e) for every i ∈ {2, . . . , s + 1} there is ui ∈ (Z/MZ)× such that

Pi−1ω̄λi (κε(ai ))χ = uip4c′̄n+2R+2[K : k](η′)2i−1
Ĩ 2i−2

(I h̃χ )
2i−2
ω̄λi−1(κε(ai−1))χ .

We define a morphism of Zp[Gn,n̄]-modules

 : Zp[χ][Γ/Γn,n̄] −→ Zp[Gn,n̄], χ(g)υ 
→ [K : k]eψgυ



FOR EXTENSIONS OF IMAGINARY QUADRATIC FIELDS 459

for all (g, υ) ∈ G× (Γ /Γn,n̄). Let us consider the map ◦ ϑn,n̄,χ ◦ η : O×Kn,n̄ → Zp[Gn,n̄],
where η : O×Kn,n̄ → En,n̄,χ is the natural map. Further, by taking the quotients we obtain a
map

Ψ1 : O×Kn,n̄/(O×Kn,n̄ )M �� (Z/MZ)[Gn,n̄] .
We apply Theorem 5.2 to the data

F := Kn,n̄, m := p2c′̄n+R+1 , W := W1 , Ψ := Ψ1 , and c := c1 ,

where W1 is the Zp[Gn,n̄]-span of the image ξM of ξ in F×/(F×)M . We obtain a maximal

ideal λ1 of OKn,n̄ such that clp(λ1) = c
p

2c′̄
n
+R+1

1 and such that the ideal �1 := λ1 ∩Ok belongs
to LKn,n̄ . Moreover, for all w ∈ W1, we have [w]�1 = 0 and there is u1 ∈ (Z/MZ)× such
that for all w ∈ W1, we have

(6.3) ϕ�1(w) = u1p
2c′̄n+R+1Ψ1(w)λ1 .

We denote by ϑ̄n,n̄,χ : En,n̄,χ −→ (Z/MZ)[Gn,n̄]χ and  ̄ : (Z/MZ)[Gn,n̄]χ −→
(Z/MZ)[Gn,n̄] the morphisms obtained from ϑn,n̄,χ and  ̄ respectively, by taking the quo-
tients. By (5.5), we deduce

(6.4) [κε(�1)]�1 = ϕ�1(ξ) = u1p
2c′̄n+R+1Ψ1(ξM)λ1 = u1p

2c′̄n+R+1 ̄ ◦ ϑ̄n,n̄,χ (ξ ′)λ1

in IKn,n̄,�1/MIKn,n̄,�1 . From (6.4) and (6.2), we deduce that in (Z/MZ)[Gn,n̄]χ we have

ω̄λ1(κε(�1))χ = u1p
2c′̄n+R+1[K : k]ϑ̄n,n̄,χ (ξ ′)

= u1p
4cn̄+2c′̄n+R+1[K : k]I h̃χh′χ ,(6.5)

that is to say (d).
Let i ∈ {2, . . . , s+1}, and assume that λ1, . . . , λi−1 has been constructed. From (d) and

(e) we deduce

(6.6)

( i−2∏
j=1

Pj

)
ω̄λi−1(κε(ai−1))χ =

( i−1∏
j=1

uj

)
Δi(I h̃χ )

2i−2
(η′)2i−1−2Ĩ 2i−2−1h′χ

in (Z/MZ)[Gn,n̄]χ , with the convention that an empty product is 1 and an empty sum is 0.

LEMMA 6.3. Let Li be the Zp[Gn,n̄]-submodule of An,n̄ generated by clp(λ1), . . . ,

clp(λi−2), and let Wi be the Zp[Gn,n̄]-span of the image of κε(ai−1) in K×n,n̄/(K
×
n,n̄)

M . We

set ηi := (I h̃χ )2i−2
(η′)2i−1−1Ĩ 2i−2−1, Zi := η′Ĩp2c′̄n+R+1, and we choose gi ∈ Zp[Gn,n̄]

such that the image of gi in Zp[Gn,n̄]χ is equal to that of Pi−1. Then
(i) vq(κε(ai−1)) ∈ MZ for any maximal ideal q of OKn,n̄ which is prime to ai−1,

(ii) Zi.NulZp[Gn,n̄]χ ([clp(λi−1)]Li,χ ) ⊆ giη′Zp[Gn,n̄]χ , where [clp(λi−1)]Li,χ is the
image of clp(λi−1) in (An,n̄/Li)χ ,

(iii) η′Zp[Gn,n̄]χ/giη′Zp[Gn,n̄]χ is finite,
(iv) #(ηi((IKn,n̄,�i−1/MIKn,n̄,�i−1)/W

′
i )χ )#(An,n̄,χ ) ≤ M , whereW ′i is the image ofWi

in IKn,n̄,�i−1/MIKn,n̄,�i−1 through w 
→ [w]�i−1 .
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PROOF. (i) is a direct consequence of (5.5). (iii) is due to the fact that η′ ∈ J and
J ⊆ J (χ, Pi−1). We can define from τn,n̄,χ a morphism of Zp[Gn,n̄]χ -modules

τ ′n,n̄,χ : (An,n̄/Li)χ −→ Zp[Gn,n̄]χ/giZp[Gn,n̄]χ ,
such that the diagram

An,n̄,χ
τn,n̄,χ ��

����

s⊕
j=1
Λ∞,χ /(Pj , 1− γn, 1− γ̄n̄)

φ

����
(An,n̄/Li)χ

τ ′n,n̄,χ �� Zp[Gn,n̄]χ/giZp[Gn,n̄]χ ,

commutes, where φ is the canonical projection

s⊕
j=1

Λ∞,χ /(Pj , 1−γn, 1−γ̄n̄) −→ Λ∞,χ /(Pi−1, 1−γn, 1−γ̄n̄) � Zp[Gn,n̄]χ/giZp[Gn,n̄]χ .

Let α ∈ NulZp[Gn,n̄]χ ([clp(λi−1)]Li,χ ). Then αp2c′̄n+R+1(φ◦τn,n̄,χ )(ci−1,χ ) = 0, i.e.,

p2c′̄n+R+1Ĩα ∈ giZp[Gn,n̄]χ , and (ii) is verified. From (6.6), we see that ηi((IKn,n̄,�i−1/

MIKn,n̄,�i−1)/W
′
i )χ is a quotient of η′(Zp[Gn,n̄]χ/Δih′χZp[Gn,n̄]χ). The inequality (6.1)

then implies (iv). �

Let us apply Lemma 5.3 to the material furnished in Lemma 6.3. There is a morphism
of Zp[Gn,n̄]-modules Ψ ′i : Wi,χ −→ (Z/MZ)[Gn,n̄]χ such that

(6.7) giΨ ′i (κε(ai−1)M,χ )λi−1,χ = Ziηi[κε(ai−1)]�i−1,χ .

We define Ψi by composing ◦Ψ ′i withWi −→ Wi,χ . The condition (i) of Lemma 6.3 allows
us to apply Theorem 5.2 to the data

F := Kn,n̄ , m := p2c′̄n+R+1 , c := ci , W := Wi , and Ψ := Ψi .

We obtain a maximal ideal λi of OKn,n̄ such that clp(λi) = c
p

2c′̄
n
+R+1

i (condition (b)) and
such that �i := λi ∩ Ok belongs to LKn,n̄ (condition (a)). Moreover, for all w ∈ Wi , we
have [w]�i = 0 and there is ui ∈ (Z/MZ)× such that for all w ∈ Wi , we have ϕ�i (w) =
uip

2c′̄n+R+1Ψi(w)λi . By (5.5) we have

(6.8) [κε(ai )]�i ,χ = ϕ�i (κε(ai−1))χ = uip2c′̄n+R+1Ψi(κε(ai−1)M)λi,χ

in (IKn,n̄,�i /MIKn,n̄,�i )χ . Then in (Z/MZ)[Gn,n̄]χ , by (6.8) and (6.7) we have

Pi−1ω̄λi (κε(ai ))χ = ui[K : k]p2c′̄n+R+1giΨ ′i (κε(ai−1)M,χ )

= ui[K : k]p2c′̄n+R+1Ziηiω̄λi−1(κε(ai−1))χ ,

which demonstrates (e).
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So we can construct recursively the primes λ1, . . . , λs+1, and from (d) and (e) we deduce

(6.9)

( s∏
j=1

Pj

)
ω̄λs+1(κε(as+1))χ =

( s+1∏
j=1

uj

)
Δs+2(I h̃χ )

2s (η′)2s+1−2Ĩ 2s−1h′χ

in (Z/MZ)[Gn,n̄]χ . By lettingM and n vary, this implies that

s∏
j=1

Pj divides Δs+2(I h̃χ )
2s (η′)2s+1−2Ĩ 2s−1h′χ

in Zp[χ][[Υ ′]][Υ /Υ n̄]. Let (al)l∈N ∈ (Zp[χ][[Υ ′]])N be such that
∏s
j=1 Pj =

∑∞
l=0 alT

l
,

where T := γ̄ − 1. By Proposition 2.8, a0 is prime to uχ in Zp[χ][[Υ ′]]. From Lemma 6.4

below, we deduce that
∏s
j=1 Pj divides (I h̃χ )2

s
(η′)2s+1−2Ĩ 2s−1h′χ in Zp[χ][[Υ ′]][Υ /Υ n̄].

By letting n̄ vary,
∏s
j=1 Pj divides (I h̃χ )2

s
(η′)2s+1−2Ĩ 2s−1h′χ in Λ∞,χ . Since

∏s
j=1 Pj is

prime to (I h̃χ )2
s
(η′)2s+1−2Ĩ 2s−1, we deduce Proposition 6.1.

LEMMA 6.4. We identifyΛ∞,χ with Zp[χ][[Υ ′]][[ T ]]. Let a :=∑∞
l=0 alT

l
and b be

two elements ofΛ∞,χ such that a0 is prime to uχ . Let n̄ ∈ N . We assume that there is m ∈ N

such that a divides pmb in Zp[χ][[Υ ′]][Υ /Υ n̄]. Then a divides b in Zp[χ][[Υ ′]][Υ /Υ n̄].
PROOF. We can assume thatm ∈ N is minimal such that a divides pmb in Zp[χ][[Υ ′]]

[Υ /Υ n̄]. We assume that m �= 0, and then we will find a contradiction to the minimality

of m. There is an element α of Λ∞,χ such that (aα − pmb) ∈ (1 − γ n̄). Let (βl)
pn̄−1
l=0 ∈

(Zp[χ][[Υ ′]])pn̄ be such that α ≡ β modulo (1 − γ n̄), where β :=∑pn̄−1
l=0 βlT

l
. For all

s :=∑∞
j=0 slT

l
in (1− γ n̄), there is z :=∑∞

j=0 zlT
l

in Λ∞,χ such that

s = (γ n̄ − 1)z =
∞∑
j=1

( min{j,pn̄}∑
l=1

(
pn̄

l

)
zj−l

)
T
j
.

Then for any j ∈ {1, . . . , pn̄ − 1} and any l ∈ {1, . . . , j }, we have p|(pn̄
l

)
, hence p|sj .

Moreover s0 = 0. Considering s := aβ − pmb, we obtain

(6.10)

⎧⎪⎪⎨⎪⎪⎩
a0β0 = pmb0

a0βj ≡ −
j∑
l=1

alβj−l modulo p for all j ∈ {1, . . . , pn̄ − 1},

where b :=∑∞
l=1 blT

l
. Since a0 is prime to uχ , we deduce p|βi for all i ∈ {

0, pn̄ − 1
}
.

Then p|β, and setting α̃ := p−1β we have (aα̃ − pm−1b) ∈ (1 − γ n̄), which contradicts the
minimality of m. �

7. Proof of Theorem 1.1. We letG act on Q⊗Zp ΛΥ ′ through χ , and Γ/Υ � Υ ′ act
naturally on Q⊗Zp ΛΥ ′ . These two actions commute, so that Q⊗Zp ΛΥ ′ is a Λ∞-module.
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LEMMA 7.1. We have

J∞charQ⊗ZpΛΥ ′ (eχQ⊗Zp Cok(πC∞,0)) = JD · (Q⊗Zp ΛΥ ′) .

PROOF. We denote by χ̃ the character on G∞ defined by χ . If χ̃ is not trivial on J ,
then

J∞ · (Q⊗Zp ΛΥ ′) = JD · (Q⊗Zp ΛΥ ′) = Q⊗Zp ΛΥ ′ .

If χ̃ is trivial on J and χ �= 1, then J∞ ·(Q⊗Zp ΛΥ ′) = Q⊗Zp ΛΥ ′ and JD ·(Q⊗Zp ΛΥ ′) is
generated by 1− χ(g)υ, where (g, υ) ∈ G× Υ ′ is such thatD/(J(D ∩ Υ )) is topologically
generated by gυ. If χ = 1, thenJ∞·(Q⊗ZpΛΥ ′) is generated by 1−γ ′, andJD ·(Q⊗ZpΛΥ ′)

is generated by 1 − (γ ′)pn , where n ∈ N is such that the image of D through the projection
G∞ −→ Υ ′ is Υ ′n. In all cases, J∞ · (Q⊗Zp ΛΥ ′) and JD · (Q⊗Zp ΛΥ ′) are principal ideals
and then Lemma 7.1 follows from Proposition 4.4. �

LEMMA 7.2. We have

J∞charQ⊗ZpΛΓ
(eχQ⊗Zp A∞)charQ⊗ZpΛΥ ′ (eχQ⊗Zp Cok(πE∞,0))

= JDcharQ⊗ZpΛΥ ′ (eχQ⊗Zp A∞,0)

in Q⊗Zp ΛΥ ′ .

PROOF. We set c(N) := charQ⊗ZpΛΓ
(eχQ ⊗Zp N) for any finitely generated torsion

Λ∞-module N . Also, we set c′(P ) := charQ⊗ZpΛΥ ′ (eχQ ⊗Zp P ) for any finitely generated
torsion ΛΥ ′-module P . Applying the snake lemma to (3.7) and using (3.1) and Theorem 2.4
(iii), we obtain

c′((A∞)Υ )c′(Ker(πB
∞,0))c

′(Cok(πA
∞,0))= c′(Ker(πU/E∞,0 ))c

′(Ker(πA
∞,0)) .(7.1)

By Theorem 2.4 (iii) and (iv), we have the exact sequence
(7.2)

0 �� Q⊗Zp Ker(πB∞,0) �� (Q⊗Zp ΛΥ ′)/JD · (Q⊗Zp ΛΥ ′) �� Q �� 0 .

We have seen in the proof of Lemma 7.1 that J∞ · (Q⊗Zp ΛΥ ′) and JD · (Q⊗Zp ΛΥ ′) are
principal ideals. Hence (7.2) implies that

(7.3) J∞c′(Ker(πB∞,0)) = JD · (Q⊗Zp ΛΥ ′) .

Combining (7.3) with (7.1), we obtain

(7.4) JDc′((A∞)Υ )c′(Cok(πA∞,0)) = J∞c′(Ker(πU/E∞,0 ))c
′(Ker(πA∞,0)) .

By (3.1), we have c′(Ker(πU/E∞,0 )) = c′(Cok(πE∞,0)). Moreover, by [11, Lemme 4 (2)], we

have c′((A∞)Υ )c(A∞) = c′((A∞)Υ ). Considering these two facts, (7.4) becomes

(7.5) JDc′((A∞)Υ )c′(Cok(πA∞,0)) = J∞c′(Cok(πE∞,0))c′(Ker(πA∞,0))c(A∞) .

Combining the obvious relation c′(Ker(πA∞,0))c′(A∞,0) = c′((A∞)Υ )c′(Cok(πA∞,0)) with
(7.5), we derive the lemma. �



FOR EXTENSIONS OF IMAGINARY QUADRATIC FIELDS 463

PROPOSITION 7.3. We have

(7.6)

charQ⊗ZpΛΓ
(eχQ⊗Zp A∞)charQ⊗ZpΛΥ ′ (eχQ⊗Zp (E∞,0/C∞,0))

= charQ⊗ZpΛΓ
(eχQ⊗Zp (E∞/C∞))charQ⊗ZpΛΥ ′ (eχQ⊗Zp A∞,0) ,

in Q⊗Zp ΛΥ ′ .

PROOF. Since (E∞)Υ ⊆ (U∞)Υ , we deduce from Theorem 2.1 that (E∞)Υ = 0. Hence
we have the diagram

(7.7) 0 �� (E∞/C∞)Υ �� (C∞)Υ ��

��

(E∞)Υ ��

��

(E∞/C∞)Υ ��

��

0

0 �� C∞,0 �� E∞,0 �� E∞,0/C∞,0 �� 0 ,

where the rows are exact. We keep the notation of the proof of Lemma 7.2. Since Ker(πE∞,0) =
0 by (3.1) and c′(Ker(πC∞,0)) = Q ⊗Zp ΛΥ ′ by Proposition 4.7, the snake lemma applied to
(7.7) gives

c′((E∞/C∞)Υ )c′(Cok(πC∞,0))c′(Cok(πE/C∞,0 ))= c′(Ker(πE/C∞,0))c
′(Cok(πE∞,0)) .(7.8)

Applying Lemma 7.2 and then Lemma 7.1 to (7.8), we deduce

(7.9) c(A∞)c′((E∞/C∞)Υ )c′(Cok(πE/C∞,0)) = c′(A∞,0)c′(Ker(πE/C∞,0 )) .

Since c′(Ker(πE/C∞,0))c′(E∞,0/C∞,0) = c′(Cok(πE/C∞,0))c′((E∞/C∞)Υ ), (7.9) gives

(7.10) c′(E∞,0/C∞,0)c(A∞)c′((E∞/C∞)Υ ) = c′((E∞/C∞)Υ )c′(A∞,0) .
We deduce the proposition by applying [11, Lemme 4 (2)] in (7.10). �

LEMMA 7.4. The image of charΛ∞(E∞/C∞) in ΛΥ ′ is prime to p.

PROOF. We apply the snake lemma to the diagram

(7.11) (C∞)Υ ��

��

(E∞)Υ ��
� �

��

(E∞/C∞)Υ ��

��

0

0 �� C∞,0 �� E∞,0 �� E∞,0/C∞,0 �� 0 ,

where the second vertical arrow is injective by Lemma 3.1. Then charΛΥ ′ (Ker(πE/C∞,0 )) divides

charΛΥ ′ (Cok(πC∞,0)). By Proposition 4.4, we deduce that

(7.12) charΛΥ ′ (Ker(πE/C∞,0)) is prime to p .

By [20, Theorem 1.1] and Gillard result [3, 3.4. Théorème],

(7.13) charΛΥ ′ (E∞,0/C∞,0) = charΛΥ ′ (A∞,0) is prime to p .

From (7.12) and (7.13) it follows that charΛΥ ′ (E∞/C∞)Υ is prime to p. Then Lemma 7.4
follows from Lemma [11, Lemme 4 (2)]. �
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Now we prove Theorem 1.1. By Proposition 6.1, there is g ∈ Λ∞,χ such that

(7.14) gcharΛ∞,χ (A∞,χ ) = charΛ∞,χ (E∞/C∞)χ .
By Proposition 2.8, the image of charΛ∞,χ (A∞,χ ) in Zp[χ][[Υ ′]] is prime to p. By (7.13),
charZp[χ][[Υ ′]](E∞,0/C∞,0)χ and charZp[χ][[Υ ′]](A∞,0,χ ) are prime to p. From Lemma 7.4
we deduce that the image of charΛ∞,χ (E∞/C∞)χ in Zp[χ][[Υ ′]] is prime to p. Since all the
ideals involved are prime to p, we deduce from (7.6) that

(7.15)

charΛ∞,χ (A∞,χ )charZp[χ][[Υ ′]](E∞,0/C∞,0)χ
= charΛ∞,χ (E∞/C∞)χcharZp [χ][[Υ ′]](A∞,0,χ )

in Zp[χ][[Υ ′]]. By [1, Theorem 3.1] or [19, Theorem 1.1] for the general case, we know that

(7.16) charZp[χ][[Υ ′]](E∞,0/C∞,0)χ = charZp[χ][[Υ ′]](A∞,0,χ ) .

Combining (7.16) and (7.14) with (7.15), we obtain that the image of g in Zp[χ][[Υ ′]] is a
unit. Then g must be a unit of Λ∞,χ , and Theorem 1.1 follows.
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REFERENCES

[ 1 ] W. BLEY, Equivariant Tamagawa number conjecture for abelian extensions of a quadratic imaginary field,
Doc. Math. 11 (2006), 73–118.

[ 2 ] E. DE SHALIT, Iwasawa theory of elliptic curves with complex multiplication. p-adic L functions, Perspect.
Math. 3, Academic Press, Inc., Boston, MA, 1987.

[ 3 ] R. GILLARD, Fonctions L p-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes, J.
Reine Angew. Math. 358 (1985), 76–91.

[ 4 ] R. GREENBERG, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85–99.
[ 5 ] C. GREITHER, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble) 42

(1992), 445–499.
[ 6 ] K. IWASAWA, On Zl -extensions of algebraic number fields, Ann. of Math. 98 (1973), 246–326.
[ 7 ] A. JILALI AND H. OUKHABA, Stark units in Zp-extensions, Funct. Approx. Comment. Math. 45 (2011), part

I, 105–124.
[ 8 ] J. JOHNSON-LEUNG AND G. KINGS, On the equivariant main conjecture for imaginary quadratic fields, J.

Reine Angew. Math. 653 (2011), 75–114.
[ 9 ] H. OUKHABA, On Iwasawa theory of elliptic units and 2-ideal class groups, J. Ramanujan Math. Soc. 27

(2012), no. 3, 255–373.
[10] H. OUKHABA AND S. VIGUIÉ, The Gras conjecture in function fields by Euler systems, Bull. Lond. Math.

Soc. 43 (2011), 523–535.
[11] B. PERRIN-RIOU, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Supplément au Bulletin de la

société mathématique de France 112 n◦4 Mém. Soc. Math. France (N.S.) No. 17 (1984), 130 pp.
[12] G. ROBERT, Unités elliptiques, Bull. Soc. Math. France No 36, Bull. Soc. Math. France, Tome 101, Société

Mathématique de France, Paris, 1973.
[13] G. ROBERT, Unités de Stark comme unités elliptiques, Prépublication de l’Institut Fourier 143, 1989.
[14] G. ROBERT, Concernant la relation de distribution satisfaite par la fonction ϕ associée à un réseau complexe,

Invent. Math. 100 (1990), 231–257.
[15] K. RUBIN, On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math. 93 (1988),

701–713.



FOR EXTENSIONS OF IMAGINARY QUADRATIC FIELDS 465

[16] K. RUBIN, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991),
25–68.

[17] K. RUBIN, More “main conjectures” for imaginary quadratic fields. Elliptic curves and related topics, 23–28,
CRM Proc. Lecture Notes 4, Amer. Math. Soc., Providence, RI, 1994.

[18] J. TATE, Les conjectures de Stark sur les fonctions L d’Artin en s = 0, Lecture notes edited by Dominique
Bernardi and Norbert Schappacher, Progr. Math. 47, Birkhäuser Boston, Inc., Boston, MA, 1984.

[19] S. VIGUIÉ, On the classical main conjecture for imaginary quadratic fields, to appear in JP J. Algebra Number
Theory Appl.

[20] S. VIGUIÉ, Global units modulo elliptic units and ideal class groups, Int. J. Number Theory 8 (2012), 569–588.
[21] J.-P. WINTENBERGER, Structure galoisienne de limites projectives d’unités locales, Compositio Math. 42

(1980/81), 89–103.

MATHEMATISCHES INSTITUT

DER UNIVERSITAT MUNCHEN

THERESIENSTRASSE 39
BURO 413 D-80333
MUNCHEN

GERMANY

E-mail address: stephane.viguie@math.lmu.de


