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HARDY TYPE INEQUALITIES ON BALLS

SHUJI MACHIHARA, TOHRU OZAWA AND HIDEMITSU WADADE
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Abstract. Hardy type inequalities are presented on balls with radius R at the origin
in Rn with n = 2 at least. A special attention is paid on the behavior of functions on the
boundary.

1. Introduction. The classical Hardy inequalities in one space dimension are formu-
lated as

(1.1)
∫ ∞

0
x−r−1

∣∣∣∣
∫ x

0
f (y)dy

∣∣∣∣
p

dx ≤
(p
r

)p ∫ ∞

0
xp−r−1|f (x)|pdx ,

(1.2)
∫ ∞

0
xr−1

∣∣∣∣
∫ ∞

x

f (y)dy

∣∣∣∣
p

dx ≤
(p
r

)p ∫ ∞

0
xp+r−1|f (x)|pdx ,

where 1 ≤ p < ∞ and r > 0 (see [6] for instance). For higher space dimensions, there are
substitutes for (1.1) and (1.2) which are also known as the Hardy inequalities. For n ≥ 3, the
following inequality holds for all f ∈ H 1(Rn):

(1.3)

∥∥∥∥ f|x|
∥∥∥∥
L2(Rn)

≤ 2

n− 2
‖∇f ‖L2(Rn) .

In [2], (1.3) is regarded as a special case of Pitt’s inequality. In [16], (1.3) is called the uncer-
tainty principle lemma. A dilational characterization of this inequality is given in [14]. There
is a number of both mathematical and physical applications of Hardy type inequalities. We
refer the reader to [1, 2, 4, 5, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18].

For n = 2, (1.3) makes no sense and the inequality

(1.4)

∥∥∥∥ f

|x|(1 + | log |x||)
∥∥∥∥
L2(B1)

≤ C‖f ‖H 1(R2)

holds for all f ∈ H 1(R2), where B1 = {x ∈ R2; |x| < 1} (see [5]). The inequality (1.4) is
equivalent to ∥∥∥∥ f

|x|(1 + | log |x||)
∥∥∥∥
L2(R2)

≤ C‖f ‖H 1(R2)(1.5)
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since ∥∥∥∥ f

|x|(1 + | log |x||)
∥∥∥∥
L2(R2\B1)

≤ ‖f ‖L2(R2) .

The purpose of this paper is to study Hardy type inequalities on the ball BR ≡ {x ∈
Rn; |x| < R} with R > 0 and n ≥ 2, with taking into account the behavior of H 1 functions
on the boundary ∂BR = {x ∈ Rn; |x| = R}. Corresponding Hardy inequalities outside the
balls are easily obtained by the Kelvin transform.

THEOREM 1. Let n ≥ 3. For any R > 0 and any f ∈ H 1(Rn) the following inequali-
ties hold:

(1.6)

( ∫
BR

1

|x|2
∣∣∣∣f (x)− f

(
R
x

|x|
)∣∣∣∣

2

dx

)1/2

≤ 2

n− 2

( ∫
BR

∣∣∣∣ x|x| · ∇f (x)
∣∣∣∣
2

dx

)1/2

,

(1.7)

( ∫
BR

1

|x|2 |f (x)|2dx
)1/2

≤
(

n

n− 2

)1/2 1

R

( ∫
BR

|f (x)|2dx
)1/2

+ 2

n− 2

(
1 +

(
n

n− 2

)1/2)( ∫
BR

∣∣∣∣ x|x| · ∇f (x)
∣∣∣∣
2

dx

)1/2

.

COROLLARY 2. Let n ≥ 3 and R > 0.
(1) The inequality

(1.8)

( ∫
BR

1

|x|2 |f (x)|2dx
)1/2

≤ 2

n− 2

( ∫
BR

∣∣∣∣ x|x| · ∇f (x)
∣∣∣∣
2

dx

)1/2

holds for all f ∈ H 1
0 (BR) and fails for some f ∈ H 1(BR).

(2) The inequality

(1.9)

( ∫
BR

1

|x|2 |f (x)|2dx
)1/2

≤
(

n

n− 2

)1/2 1

R

(∫
BR

|f (x)|2dx
)1/2

+ 2

n− 2

(
1 +

(
n

n− 2

)1/2)(∫
BR

∣∣∣∣ x|x| · ∇f (x)
∣∣∣∣
2

dx

)1/2

holds for all f ∈ H 1(BR).

COROLLARY 3. Let n ≥ 3. Then the inequalities

(1.10)

∥∥∥∥ f|x|
∥∥∥∥
L2(Rn)

≤ 2

n− 2

∥∥∥∥ x|x| · ∇f
∥∥∥∥
L2(Rn)

,
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(1.11)

∥∥∥∥ f|x|
∥∥∥∥
L2(Rn)

≤
(

1 +
(

n

n− 2

)1/2)(
‖f ‖L2(Rn) + 2

n− 2

∥∥∥∥ x|x| · ∇f
∥∥∥∥
L2(B1)

)
,

hold for all f ∈ H 1(Rn).

REMARK 4. The inequality (1.9) becomes an equality for f ≡ 1 ∈ H 1(BR). Simi-
larly, (1.7) becomes an equality for f ∈ H 1(Rn) with f ≡ 1 in a neighborhood of BR .

THEOREM 5. Let n = 2. For any R > 0 and any f ∈ H 1(R2), the following inequal-
ities hold:

(1.12)

(∫
BR

1

|x|2∣∣ log R
|x|

∣∣2

∣∣∣∣f (x)− f

(
R
x

|x|
)∣∣∣∣

2

dx

)1/2

≤ 2

(∫
BR

∣∣∣∣ x|x| · ∇f (x)
∣∣∣∣
2

dx

)1/2

,

(1.13)

( ∫
BR

|f (x)|2
|x|2(1 + ∣∣ log R

|x|
∣∣)2
dx

)1/2

≤
√

2

R

( ∫
BR

|f (x)|2dx
)1/2

+ 2(1 + √
2)

(∫
BR

∣∣∣∣ x|x| · ∇f (x)
∣∣∣∣
2

dx

)1/2

.

The inequality

(1.14)

( ∫
BR

|f (x)|2
(1 + |x|)2(1 + | log |x||)2 dx

)1/2

≤ C‖∇f ‖L2(R2)

fails for some f ∈ H 1(R2).

COROLLARY 6. Let n = 2 and R > 0.
(1) The inequality

(1.15)

( ∫
BR

|f (x)|2
|x|2∣∣ log R

|x|
∣∣2 dx

)1/2

≤ 2

(∫
BR

∣∣∣∣ x|x| · ∇f (x)
∣∣∣∣
2

dx

)1/2

holds for all f ∈ H 1
0 (BR) and fails for some f ∈ H 1(BR).

(2) The inequality

(1.16)

( ∫
BR

|f (x)|2
|x|2(1 + ∣∣ log R

|x|
∣∣)2 dx

)1/2

≤
√

2

R

( ∫
BR

|f (x)|2dx
)1/2

+ 2(1 + √
2)

( ∫
BR

∣∣∣∣ x|x| · ∇f (x)
∣∣∣∣
2

dx

)1/2

holds for all f ∈ H 1(BR).
(3) Let f ∈ H 1(BR) satisfy f/(|x| log(R/|x|)) ∈ L2(BR). Then f ∈ H 1

0 (BR).

COROLLARY 7. Let n = 2. Then the inequality

(1.17)

∥∥∥∥ f

|x|(1 + | log |x||)
∥∥∥∥
L2(R2)

≤ (1 + √
2)

(
‖f ‖L2(R2) + 2

∥∥∥∥ x|x| · ∇f
∥∥∥∥
L2(B1)

)
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holds for all f ∈ H 1(R2).

REMARK 8. The inequality (1.16) becomes an equality for f ≡ 1 ∈ H 1(BR). Simi-
larly, (1.13) becomes an equality for f ∈ H 1(R2) with f ≡ 1 in a neighborhood of BR .

REMARK 9. The inequality (1.15) is essentially proved in [10, 11] for smooth func-
tions vanishing on the boundary.

REMARK 10. The inequality same to (1.14) is claimed in [13], where the authors refer
[10] for the proof.

REMARK 11. For a result similar to Corollary 6 (3), see [12, Theorem 11.8].

We prove the main theorems in subsequent sections. In Sections 2 and 3, we study the
cases n ≥ 3 and n = 2, respectively.

2. The case n ≥ 3.

PROOF OF THEOREM 1. By a density argument it suffices to prove (1.6) and (1.7) for
f ∈ C∞

0 (R
n). We introduce polar coordinates (r, ω) = (|x|, x/|x|) ∈ (0,∞)× Sn−1 and the

Lebesgue measure σ on the unit sphere Sn−1. We rewrite the integral on the left-hand side of
(1.6) in polar coordinates and then by integration by parts to obtain

∫
BR

1

|x|2
∣∣∣∣f (x)− f

(
R
x

|x|
)∣∣∣∣

2

dx =
∫ R

0
rn−3

∫
Sn−1

|f (rω)− f (Rω)|2dσ(ω)dr

=
[

1

n− 2
rn−2

∫
Sn−1

|f (rω)− f (Rω)|2dσ(ω)
]r=R
r=0

− 1

n− 2

∫ R

0
rn−2

(
d

dr

∫
Sn−1

|f (rω)− f (Rω)|2dσ(ω)
)
dr

= − 2

n− 2

∫ R

0
rn−2Re

∫
Sn−1

(f (rω)− f (Rω))ω · ∇f (rω)dσ(ω)dr .

By the Schwarz inequality, we have

∫
BR

1

|x|2
∣∣∣∣f (x)− f

(
R
x

|x|
)∣∣∣∣

2

dx

≤ 2

n− 2

( ∫ R

0
rn−3

∫
Sn−1

|f (rω)− f (Rω)|2dσ(ω)dr
)1/2

·
(∫ R

0
rn−1

∫
Sn−1

|ω · ∇f (rω)|2dσ(ω)dr
)1/2

= 2

n− 2

( ∫
BR

1

|x|2
∣∣∣∣f (x)− f

(
R
x

|x|
)∣∣∣∣

2

dx

)1/2( ∫
BR

∣∣∣∣ x|x| · ∇f
∣∣∣∣
2

dx

)1/2

,
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from which we have (1.6). The left-hand side of (1.7) is bounded by

(2.1)

( ∫
BR

1

|x|2 |f (x)|2dx
)1/2

≤
( ∫

BR

1

|x|2
∣∣∣∣f (x)− f

(
R
x

|x|
)∣∣∣∣

2

dx

)1/2

+
( ∫

BR

1

|x|2
∣∣∣∣f

(
R
x

|x|
)∣∣∣∣

2

dx

)1/2

.

The second term on the right-hand side of (2.1) is rewritten and estimated as
(2.2)( ∫

BR

1

|x|2
∣∣∣∣f

(
R
x

|x|
)∣∣∣∣

2

dx

)1/2

=
(∫ R

0
rn−3

∫
Sn−1

|f (Rω)|2dσ(ω)dr
)1/2

=
(
Rn−2

n− 2

∫
Sn−1

|f (Rω)|2dσ(ω)
)1/2

=
(
Rn−2

n− 2

n

Rn

∫ R

0
rn−1

∫
Sn−1

|f (Rω)|2dσ(ω)dr
)1/2

=
(

n

n− 2

)1/2 1

R

( ∫
BR

∣∣∣∣f
(
R
x

|x|
)∣∣∣∣

2

dx

)1/2

≤
(

n

n− 2

)1/2 1

R

[( ∫
BR

∣∣∣∣f
(
R
x

|x|
)

− f (x)

∣∣∣∣
2

dx

)1/2

+
( ∫

BR

|f (x)|2dx
)1/2]

≤
(

n

n− 2

)1/2(∫
BR

1

|x|2
∣∣∣∣f

(
R
x

|x|
)

− f (x)

∣∣∣∣
2

dx

)1/2

+
(

n

n− 2

)1/2 1

R

( ∫
BR

|f (x)|2dx
)1/2

.

Combining (2.1), (2.2) and (1.6), we obtain (1.7). This proves Theorem 1. �

PROOF OF COROLLARY 2. We first prove (1.8) for f ∈ H 1
0 (BR). By a density argu-

ment, it suffices to prove (1.8) for f ∈ C∞
0 (BR), which follows from (1.6). The inequality

(1.8) fails for f ≡ 1 since the right-hand side of (1.8) vanishes while the left-hand side of
(1.8) is positive unless R = 0. The inequality (1.9) follows from (1.6) by another density
argument. �

PROOF OF COROLLARY 3. The inequality (1.10) follows from (1.6) or (1.8) by a den-
sity argument and the limiting argument on R → ∞. The inequality (1.11) follows from (1.7)
with R = 1 and ( ∫

Rn\B1

1

|x|2 |f (x)|2dx
)1/2

≤ ‖f ‖L2(Rn) .

�
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3. The case n = 2.

PROOF OF THEOREM 5. By a density argument is suffices to prove (1.12) and (1.13)
for f ∈ C∞

0 (R
2). We rewrite the integral on the left-hand side of (1.12) in polar coordinates

and then by integration by parts to obtain∫
BR

1

|x|2| log(R/|x|)|2
∣∣∣∣f (x)− f

(
R
x

|x|
)∣∣∣∣

2

dx

=
∫ R

0

1

r
(

log(R/r)
)2

∫
S1

|f (rω)− f (Rω)|2dσ(ω)dr

=
[

1

log(R/r)

∫
S1

|f (rω)− f (Rω)|2dσ(ω)
]r=R
r=0

−
∫ R

0

1

log(R/r)

(
d

dr

∫
S1

|f (rω)− f (Rω)|2dσ(ω)
)
dr

= −2
∫ R

0

1

log(R/r)
Re

∫
S1
(f (rω)− f (Rω))ω · ∇f (rω)dσ(ω)dr,

where the boundary value at r = R vanishes since

log
R

r
= log

(
1 +

(
R

r
− 1

))
≥ R

r
− 1 = R − r

r
,

|f (rω)− f (Rω)|2 ≤ ‖∇f ‖2
L∞|R − r|2 .

By the Schwarz inequality, we have∫
BR

1

|x|2| log(R/|x|)|2
∣∣∣∣f (x)− f

(
R
x

|x|
)∣∣∣∣

2

dx

≤ 2

(∫ R

0

1

r(log(R/r))2

∫
S1

|f (rω)− f (Rω)|2dσ(ω)dr
)1/2

·
( ∫ R

0
r

∫
S1

|ω · ∇f (rω)|2dσ(ω)dr
)1/2

= 2

(∫
BR

1

|x|2| log(R/|x|)|2
∣∣∣∣f (x)− f

(
R
x

|x|
)∣∣∣∣

2

dx

)1/2( ∫
BR

∣∣∣∣ x|x| · ∇f (x)
∣∣∣∣
2

dx

)1/2

,

from which we have (1.12). The left-hand side of (1.13) is bounded by

(3.1)

( ∫
BR

1

|x|2(1 + | log(R/|x|)|)2 |f (x)|2dx
)1/2

≤
( ∫

BR

1

|x|2(1 + | log(R/|x|)|)2
∣∣∣∣f (x)− f

(
R
x

|x|
)∣∣∣∣

2

dx

)1/2

+
( ∫

BR

1

|x|2(1 + | log(R/|x|)|)2
∣∣∣∣f

(
R
x

|x|
)∣∣∣∣

2

dx

)1/2

.
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The second term on the right-hand side of (3.1) is rewritten and estimated as

(3.2)

( ∫
BR

1

|x|2(1 + | log(R/|x|)|)2
∣∣∣∣f

(
R
x

|x|
)∣∣∣∣

2

dx

)1/2

=
( ∫ R

0

1

r(1 + | log(R/r)|)2
∫
S1

|f (Rω)|2dσ(ω)dr
)1/2

=
( ∫

S1
|f (Rω)|2dσ(ω)

)1/2

=
(

2

R2

∫ R

0
r

∫
S1

|f (Rω)|2dσ(ω)dr
)1/2

=
√

2

R

( ∫
BR

∣∣∣∣f
(
R
x

|x|
)∣∣∣∣

2

dx

)1/2

≤
√

2

R

[( ∫
BR

∣∣∣∣f
(
R
x

|x|
)

− f (x)

∣∣∣∣
2

dx

)1/2

+
( ∫

BR

|f (x)|2dx
)1/2]

≤ √
2

( ∫
BR

1

|x|2(1 + | log(R/|x|)|)2
∣∣∣∣f

(
R
x

|x|
)

− f (x)

∣∣∣∣
2

dx

)1/2

+
√

2

R

(∫
BR

|f (x)|2dx
)1/2

,

where we have used

1

R2 ≤ 1

r2
(
1 + log(R/r)

)2 ,

which follows from

d

dr

(
1

r2(1 + log(R/r))2

)
≤ 0 .

Combining (3.1), (3.2) and (1.12), we obtain (1.13).
To prove that (1.14) fails, we define a sequence of functions {ϕj } on R by

ϕj (r) =

⎧⎪⎪⎨
⎪⎪⎩

1 if | log r| ≤ j ,

2 − | log r|/j if j < | log r| < 2j ,

0 if | log r| ≥ 2j ,

and fj (x) = ϕj (|x|) for x ∈ R2. Then∫
B1

1

(1 + |x|)2(1 + | log |x||)2 |fj (x)|2dx

= 2π
∫ 1

0

1

(1 + r)2(1 + | log r|)2 |ϕj (r)|2rdr

= 2π
∫ ∞

0

1

e2t (1 + e−t )2(1 + t)2
|ϕj (e−t )|2dt
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≥ 2π
∫ 1

0

1

(et + 1)2(1 + t)2
|ϕj (e−t )|2dt

≥ 2π

(e + 1)2

∫ 1

0

1

(1 + t)2
dt = 2π

(e+ 1)2
,

while, with ψj(t) = ϕj (e
−t ),

‖∇fj ‖2
L2(R2)

= 2π
∫ ∞

0
|ϕ′
j (r)|2rdr = 2π

∫ ∞

−∞
|ϕ′
j (e

−t )|2e−2tdt

= 2π
∫ ∞

−∞
|ψ ′
j (t)|2dt = 4π

∫ 2j

j

1

j2 dt = 4π

j
→ 0

as j → ∞. This is a contradiction to (1.14). This proves Theorem 5. �

PROOF OF COROLLARY 6. Parts (1) and (2) are proved similarly as Corollary 2. We
prove Part (3) following the argument of [12, Theorem 11.8]. Let f ∈ H 1(BR) satisfy
(|x|| log(R/|x|)|)−1f ∈ L2(BR). Then the inequality

log
R

|x| = log

((
R

|x| − 1

)
+ 1

)
≤ R

|x| − 1 = R − |x|
|x|

implies that (R − |x|)−1f ∈ L2(BR). Let ζ be a smooth function on R satisfying 0 ≤ ζ ≤
1, ζ(r) = 0 for r ≤ 1/2, ζ(r) = 1 for r ≥ 1. We define ρj (x) = ζ(j (1 − |x|/R)), x ∈
R2, j ≥ 1. Then ρj (x) = 1 for |x| ≤ R(1 − (1/j)) and ρj (x) = 0 for |x| ≥ R(1 − (1/2j)).
Moreover, we have

(∇ρj )(x) = −jζ ′
(
j

(
1 − |x|

R

))
x

R|x| = −
(
j

(
1 − |x|

R

)
ζ ′

(
j

(
1 − |x|

R

)))
1

R − |x|
x

|x|
and therefore

|(∇ρj )(x)| ≤ M

R − |x|χ{y;R(1−(1/j))<|y|<R(1−(1/2j))}(x) ,

where M = sup{|rζ ′(r)|; r ∈ R} and χS is the characteristic function of a set S. Then,
supp(ρjf ) is compact in BR and ρjf → f, ρj∇f → ∇f, (∇ρj )f → 0 in L2(BR) by the
Lebesgue dominated convergence theorem. By mollyfying ρjf , we conclude that f is the
H 1(BR) limit of a sequence of functions in C∞

0 (BR), namely f ∈ H 1
0 (BR). �

PROOF OF COROLLARY 7. The inequality (1.17) follows from (1.13) with R = 1 and
the inequality

( ∫
R2\B1

1

|x|2(1 + | log |x||)2 |f (x)|2dx
)1/2

≤ ‖f ‖L2(R2) .

�
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