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Abstract. We discuss the ascending chain condition for lengths of extremal rays. We
prove that the lengths of extremal rays of n-dimensional Q-factorial toric Fano varieties with
Picard number one satisfy the ascending chain condition.

1. Introduction. We discuss the ascending chain condition (ACC, for short) for (min-
imal) lengths of extremal rays.

First, let us recall the definition of Q-factorial log canonical Fano varieties with Picard
number one.

DEFINITION 1.1 (Q-factorial log canonical Fano varieties with Picard number one).
Let X be a normal projective variety with only log canonical singularities. Assume that X

is Q-factorial, −KX is ample, and ρ(X) = 1. In this case, we call X a Q-factorial log
canonical Fano variety with Picard number one.

DEFINITION 1.2 ((Minimal) lengths of extremal rays). Let (X,D) be a log canonical
pair and let f : X → Y be a projective surjective morphism. Let R be a (KX + D)-negative
extremal ray of NE(X/Y ). Then

min[C]∈R
(−(KX + D) · C)

is called the (minimal ) length of the (KX + Δ)-negative extremal ray R.

From now on, we want to discuss the following conjecture. It seems to be the first time
that the ascending chain condition for lengths of extremal rays is discussed in the literature.

CONJECTURE 1.3 (ACC for lengths of extremal rays of Q-factorial log canonical Fano
varieties with Picard number one). We set

Ln :=
{
l(X) ; X is an n-dimensional Q-factorial log canonical

Fano variety with Picard number one

}
.
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Here

l(X) := min
C

(−KX · C)

where C runs over integral curves on X. For every n, the set Ln satisfies the ascending chain
condition. This means that if Xk is an n-dimensional Q-factorial log canonical Fano variety
with Picard number one for every k such that

l(X1) ≤ l(X2) ≤ · · · ≤ l(Xk) ≤ · · ·
then there is a positive integer l such that l(Xm) = l(Xl) for every m ≥ l.

We note that l(X) ≤ 2 dim X when X is a Q-factorial log canonical Fano variety with
ρ(X) = 1 (see, for example, [Fj3, Theorem 18.2]).

Although, for inductive treatments, it may be better to consider the ascending chain
condition for lengths of extremal rays of log Fano pairs (X,D) such that the coefficients of
D are contained in a set satisfying the descending chain condition, we only discuss the case
when D = 0 for simplicity. In this paper, we are mainly interested in Q-factorial toric Fano
varieties with Picard number one. Note that a Q-factorial toric variety always has only log
canonical singularities. So, we define

Ltoric
n :=

{
l(X) ; X is an n-dimensional Q-factorial toric

Fano variety with Picard number one

}
.

Let X be an n-dimensional Q-factorial toric Fano variety with ρ(X) = 1. Then we have
l(X) ≤ n + 1. Furthermore, l(X) ≤ n if X �� P n (see [Fj1, Proposition 2.9]). We can easily
see that X � P (1, 1, 2, . . . , 2) if and only if l(X) = n (see [Fj1, Section 2], [Fj2, Proposition
2.1], and [Fj4]).

The following result is the main theorem of this paper, which supports Conjecture 1.

THEOREM 1.4 (Main theorem). For every n, Ltoric
n satisfies the ascending chain con-

dition.

In 2003, Professor Vyacheslav Shokurov explained his ideas on minimal log discrepan-
cies, log canonical thresholds, and lengths of extremal rays to the first author at his office. He
pointed out some analogies among them and asked the ascending chain condition for lengths
of extremal rays. It is a starting point of this paper. For his ideas on minimal log discrepan-
cies and log canonical thresholds, see, for example, [BS]. We note that Hacon-McKernan-Xu
announced that they have established the ACC for log canonical thresholds (see [HMX]). We
also note that the ACC for minimal log discrepancies is closely related to the termination of
log flips (see [S]). We recommend the reader to see [K] and [T] for various aspects of log
canonical thresholds.

We close this section with examples. Example 1.5 shows that the set Ltoric
n does not sat-

isfy the descending chain condition. Example 1.6 implies that the ascending chain condition
does not necessarily hold for (minimal) lengths of extremal rays of birational type.
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EXAMPLE 1.5. We consider Xk = P (1, k − 1, k) with k ≥ 2. Then

l(Xk) = 2

k − 1
.

Therefore, l(Xk) → 0 when k → ∞.

EXAMPLE 1.6. We fix N = Z2 and let {e1, e2} be the standard basis of N . We con-
sider the cone σ = 〈e1, e2〉 in N ′ = N + Ze3, where e3 = 1

b
(1, a). Here, a and b are positive

integers such that gcd(a, b) = 1. Let Y = X(σ) be the associated affine toric surface which
has only one singular point P . We take a weighted blow-up of Y at P with the weight 1

b
(1, a).

This means that we divide σ by e3 and obtain a fan Δ of N ′
R . We define X = X(Δ). It is

obvious that X is Q-factorial and ρ(X/Y ) = 1. We can easily obtain

KX = f ∗KY +
(

1 + a

b
− 1

)
E,

where E = V (e3) � P 1 is the exceptional curve of f : X → Y , and

−KX · E = 1 − b − 1

a
.

We note that

−KX · E = min
C

(−KX · C)

where C runs over curves on X such that f (C) is a point. We also note that NE(X/Y ) =
NE(X/Y ) is spanned by E. In the above construction, we set a = k2 and b = mk + 1 for
arbitrary positive integers k, m. Then it is obvious that gcd(a, b) = 1, and we obtain

−KX · E = 1 − m

k
.

Therefore, the minimal lengths of KX-negative extremal rays do not satisfy the ascending
chain condition in this local setting. More precisely, the minimal lengths of KX-negative
extremal rays can take any values in Q ∩ (0, 1) in this example.

We note that the minimal length of the KX-negative extremal ray associated to a toric
birational contraction morphism f : X → Y is bounded by dim X − 1 (see [Fj4]).

For estimates of lengths of extremal rays of toric varieties and related topics, see [Fj1],
[Fj2], and [Fj4].

Acknowledgments. The first author would like to thank Professor Vyacheslav Shokurov for ex-
plaining his ideas at Baltimore in 2003. The both authors would like to thank Professor Tetsushi Ito for
warm encouragement. They also would like to thank the referee for useful comments and pointing out
some ambiguities.

2. Preliminaries. In this section, we prepare various definitions and notation. We
recommend the reader to see [Fj1, Section 2] for basic calculations.

2.1. Let N � Zn be a lattice of rank n. A toric variety X(Δ) is associated to a fan Δ,
a collection of convex cones σ ⊂ NR = N ⊗Z R satisfying the following conditions:



96 O. FUJINO AND Y. ISHITSUKA

(i) Each convex cone σ is a rational polyhedral cone in the sense there are finitely
many v1, . . . , vs ∈ N ⊂ NR such that

σ = {r1v1 + · · · + rsvs; ri ≥ 0} =: 〈v1, . . . , vs〉,
and it is strongly convex in the sense

σ ∩ −σ = {0} .

(ii) Each face τ of a convex cone σ ∈ Δ is again an element in Δ.
(iii) The intersection of two cones in Δ is a face of each.

DEFINITION 2.2. The dimension dim σ of σ is the dimension of the linear space R ·
σ = σ + (−σ) spanned by σ .

We denote by Nσ the sublattice of N generated (as a subgroup) by σ ∩ N , i.e.,

Nσ := σ ∩ N + (−σ ∩ N) .

If σ is a k-dimensional simplicial cone, and v1, . . . , vk are the first lattice points along
the edges of σ , the multiplicity of σ is defined to be the index of the lattice generated by the
{vi} in the lattice Nσ ;

mult(σ ) := |Nσ : Zv1 + · · · + Zvk | .
We note that X(σ), which is the affine toric variety associated to σ , is non-singular if and only
if mult(σ ) = 1.

Let us recall a well-known fact. See, for example, [M, Lemma 14-1-1].

LEMMA 2.3. A toric variety X(Δ) is Q-factorial if and only if each cone σ ∈ Δ is
simplicial.

2.4. The star of a cone τ can be defined abstractly as the set of cones σ in Δ that
contain τ as a face. Such cones σ are determined by their images in N(τ) := N/Nτ , that is,
by

σ = (σ + (Nτ )R)/(Nτ )R ⊂ N(τ)R .

These cones {σ ; τ ≺ σ } form a fan of N(τ), and we denote this fan by Star(τ ). We set
V (τ) = X(Star(τ )). It is well known that V (τ) is an (n − k)-dimensional torus invariant
closed subvariety of X(Δ), where k = dim τ . If dim V (τ) = 1 (resp. n − 1), then we
call V (τ) a torus invariant curve (resp. torus invariant divisor). For the details about the
correspondence between τ and V (τ), see [Fl, 3.1 Orbits].

2.5. (Intersection Theory) Assume that Δ is simplicial. If σ, τ ∈ Δ span γ with
dim γ = dim σ + dim τ , then

V (σ) · V (τ) = mult(σ ) · mult(τ )

mult(γ )
V (γ )

in the Chow group A∗(X)Q. For the details, see [Fl, 5.1 Chow groups]. If σ and τ are
contained in no cone of Δ, then V (σ) · V (τ) = 0.
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2.6. (Q-factorial toric Fano varieties with Picard number one) Now we fix N � Zn.
Let {v1, . . . , vn+1} be a set of primitive vectors such that NR = ∑

i R≥0vi . We define n-
dimensional cones

σi := 〈v1, . . . , vi−1, vi+1, . . . , vn+1〉
for 1 ≤ i ≤ n + 1. Let Δ be the complete fan generated by n-dimensional cones σi and
their faces for all i. Then we obtain a complete toric variety X = X(Δ) with Picard number
ρ(X) = 1. It is well known that X has only log canonical singularities (see, for example,
[M, Proposition 14-3-2]) and that −KX is ample. We call it a Q-factorial toric Fano variety
with Picard number one (see also Lemma 2.7 below). We define (n − 1)-dimensional cones
μi,j = σi ∩ σj for i �= j . We can write

∑
i aivi = 0, where ai ∈ Z>0 for every i and

gcd(a1, . . . , an+1) = 1. From now on, we simply write V (vi) to denote V (〈vi 〉) for every i.
Note that mult(〈vi〉) = 1 for every i. Then we obtain

0 < V (vl) · V (μk,l) = mult(μk,l)

mult(σk)
,

V (vi) · V (μk,l) = ai

al

· mult(μk,l)

mult(σk)
,

and

−KX · V (μk,l) =
n+1∑
i=1

V (vi) · V (μk,l)

= 1

al

( n+1∑
i=1

ai

)
mult(μk,l)

mult(σk)
,

where KX = − ∑n+1
i=1 V (vi) is a canonical divisor of X. For the procedure to compute

intersection numbers, see 2.5 or [Fl, p. 100].

We note the following well-known fact.

LEMMA 2.7. Let X be an n-dimensional Q-factorial complete normal variety with
Picard number one. Assume that X is toric. Then X is an n-dimensional Q-factorial toric
Fano variety with Picard number one.

Let us recall the following easy lemma, which will play crucial roles in the proof of our
main theorem: Theorem 1.4. The proof of Lemma 2.8 is obvious by the description in 2.6.

LEMMA 2.8. We use the notations in 2.6. We consider the sublattice N ′ of N spanned
by {v1, . . . , vn+1}. Then the natural inclusion N ′ → N induces a finite toric morphism f :
X′ → X from a weighted projective space X′ such that f is étale in codimension one. In
particular, X(Δ) is a weighted projective space if and only if {v1, . . . , vn+1} generates N .

For a toric description of weighted projective spaces, see [Fj1, Section 2].
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2.9. In Lemma 2.8, we consider C = V (μk,l) � P 1 ⊂ X and the unique torus invariant
curve C′ ⊂ X′ such that f (C′) = C. We set

mk,l := deg(f |C ′ : C′ → C) ∈ Z>0

for every (k, l). Then we can check that

mk,l = ∣∣N(μk,l)/N
′(μk,l)

∣∣
by definitions, where N ′(μk,l) = N ′/N ′

μk,l
and N(μk,l) = N/Nμk,l . Let D be a Cartier

divisor on X. Then we obtain

C · D = 1

mk,l

(C′ · f ∗D)

by the projection formula. Therefore, we have

C · V (vk) = V (μk,l) · V (vk)

= mult(μk,l)

mult(σl)
= gcd(ak, al)

mk,lal

.

This is because

(C′ · f ∗V (vk)) = gcd(ak, al)

al

since X′ is a weighted projective space.

2.10. (Lemma on the ACC) We close this section with an easy lemma for the ascending
chain condition.

LEMMA 2.11. We have the following elementary properties on ACC.

(1) If A satisfies the ascending chain condition, then any subset B of A satisfies the
ascending chain condition.

(2) If A and B satisfy the ascending chain condition, then so does

A + B = {a + b ; a ∈ A, b ∈ B} .

(3) If there exists a real number t0 such that

A ⊂ {x ∈ R ; x ≥ t0}
and A ∩ {x ∈ R ; x > t} is a finite set for any t > t0, then A satisfies the ascending
chain condition.

All the statements in Lemma 2.11 directly follow from definitions.

3. Proof of the main theorem. In this section, we prove the main theorem of this
paper: Theorem 1.4. We will freely use the notation in Section 2.

PROOF OF THEOREM 1.4. Let X be an n-dimensional Q-factorial toric Fano variety
with Picard number one as in 2.6. It is sufficient to consider {v1, . . . , vn+1} with the condition

mult(μ1,2)

a1mult(σ2)
≤ mult(μk,l)

akmult(σl)
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for every (k, l). We note that

mult(μk,l)

akmult(σl)
= mult(μk,l)

almult(σk)

for every k �= l. We also note that we can easily check that

l(X) = min
1≤i≤n+1

(−KX · V (vi))

(cf. [M, Proposition 14-1-2]). In our notation, we have

l(X) = mult(μ1,2)

a1mult(σ2)

n+1∑
i=1

ai

for this {v1, . . . , vn+1} by the formula in 2.6. Therefore, we can write

Ltoric
n =

{
mult(μ1,2)

a1mult(σ2)

n+1∑
i=1

ai ; mult(μ1,2)

a1mult(σ2)
≤ mult(μk,l)

akmult(σl)
for every (k, l)

}
.

It is sufficient to prove that

Mi =
{

mult(μ1,2)

a1mult(σ2)
ai ; mult(μ1,2)

a1mult(σ2)
≤ mult(μk,l)

akmult(σl)
for every (k, l)

}

satisfies the ascending chain condition. This is because Ltoric
n is contained in{

mult(μ1,2)

mult(σ2)

}
+

{
mult(μ1,2)

mult(σ1)

}
+ M3 + · · · + Mn+1 .

We note that {
mult(μ1,2)

mult(σ2)

}
,

{
mult(μ1,2)

mult(σ1)

}
⊂

{
1

m
; m ∈ Z>0

}
.

Therefore, it is sufficient to prove the following proposition by Lemma 2.11.

PROPOSITION 3.1. For 3 ≤ i ≤ n + 1, Mi ∩ {x ∈ R ; x > ε} is a finite set for every
ε > 0.

From now on, we fix i with 3 ≤ i ≤ n + 1. Since

Mi =
{

mult(μ1,2)

a1mult(σ2)
ai ; mult(μ1,2)

a1mult(σ2)
≤ mult(μk,l)

akmult(σl)
for every (k, l)

}
,

we have

ε <
mult(μ1,2)

a1mult(σ2)
ai

= mult(μ1,2)

a1mult(σ2)
· aimult(σj )

mult(μi,j )
· mult(μi,j )

mult(σj )

≤ mult(μi,j )

mult(σj )
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for every 1 ≤ j ≤ n + 1 with j �= i. Therefore, we obtain

mult(σj )

mult(μi,j )
≤ �ε−1�

for every 1 ≤ j ≤ n+1 with j �= i, where �ε−1� is the integer satisfying ε−1 −1 < �ε−1� ≤
ε−1. We set

Z(i, j) = Zv1 + · · · + Zvi−1 + Zvi+1 + · · · + Zvj−1 + Zvj+1 + · · · + Zvn+1

for j �= i and

Z(j) = Zv1 + · · · + Zvj−1 + Zvj+1 + · · · + Zvn+1 .

We consider the following diagram.

0

��

0

��

0

��
0 �� Z(i, j)

��

�� Z(j)

��

�� Z

��

�� 0

0 �� Nμi,j

��

�� N

πj

��

�� N/Nμi,j

��

�� 0

0 �� Nμi,j /Z(i, j)

��

�� N/Z(j)
pj ��

��

Aj

(i,j)
��

��

0

0 0 0

We note that ∣∣Aj

(i,j)

∣∣ = mult(σj )

mult(μi,j )
≤ �ε−1� .

Therefore, for any v ∈ N , we have

pj ◦ πj

(
(�ε−1�)!v) = 0

in Aj

(i,j)
. Thus,

πj

(
(�ε−1�)!v) ∈ Nμi,j /Z(i, j) .

This holds for every 1 ≤ j ≤ n + 1 with j �= i. Let us consider the natural projection
π : N → N/N ′ where N ′ = ∑n+1

k=1 Zvk . Then, by the above argument, we obtain that

π
(
(�ε−1�)!v) ∈

⋂
j �=i

Nμi,j /(N
′ ∩ Nμi,j ) ⊂ N/N ′.

CLAIM. π
(
(�ε−1�)!v) = 0 in N/N ′, equivalently, (�ε−1�)!v ∈ N ′ .
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PROOF OF CLAIM. By replacing vi with vn+1, we may assume that i = n + 1. We
embed N and N ′ into Qn by setting v1 = (1, 0, . . . , 0), v2 = (0, 1, 0, . . . , 0), . . . , and
vn = (0, . . . , 0, 1). Then it is easy to see that⋂

1≤j≤n

(N ′ + Nμn+1,j
) = N ′ .

On the other hand, we have

Nμn+1,j
/(N ′ ∩ Nμn+1,j

) � (N ′ + Nμn+1,j
)/N ′

for 1 ≤ j ≤ n. Therefore,

π
(
(�ε−1�)!v) ∈

⋂
1≤j≤n

Nμn+1,j
/(N ′ ∩ Nμn+1,j

) ⊂ N/N ′

implies that
π

(
(�ε−1�)!v) = 0

in N/N ′, equivalently,
(�ε−1�)!v ∈ N ′ .

This completes the proof of Claim. �

Thus, we obtain
1 ≤ m1,2 ≤ (�ε−1�)!.

Moreover,

ε <
mult(μ1,i)

mult(σ1)
= gcd(a1, ai)

m1,ia1
≤ gcd(a1, ai)

a1
.

By the same way, we obtain

ε <
gcd(a2, ai)

a2
.

We note the following obvious inequality:

mult(μ1,2)

a1mult(σ2)
ai ≤ mult(μ1,2)

a1mult(σ2)
· aimult(σ2)

mult(μ2,i)
≤ 1 .

Since a1, a2, and ai are positive integers, we have

gcd(l, ai) = gcd(a1, ai) · gcd(a2, ai)

gcd(d, ai)

where d := gcd(a1, a2) and l := lcm(a1, a2) = a1a2/d . Therefore, we obtain

gcd(l, ai)

l
= gcd(a1, ai)

a1
· gcd(a2, ai)

a2
· d

gcd(d, ai)
> ε2 d

gcd(d, ai)
≥ ε2 .

This means that
l

gcd(l, ai)
≤ ε−2 .

Thus, we have

1 ≥ mult(μ1,2)

a1mult(σ2)
ai = ai

m1,2l
= gcd(l, ai)

l
· ai

m1,2 gcd(l, ai)
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≥ ε2 ai

m1,2 gcd(l, ai)
.

So, we obtain
ai

gcd(l, ai)
≤ ε−2m1,2 ≤ ε−2(�ε−1�)!.

On the other hand,
mult(μ1,2)

a1mult(σ2)
ai = ai

m1,2l
.

We note that

ai

m1,2l
=

ai

gcd(l, ai)

m1,2
l

gcd(l, ai)

.

This implies that Mi ∩ {x ∈ R ; x > ε} is a finite set. This is because

ai

gcd(l, ai)
,

l

gcd(l, ai)
, m1,2

are positive integers and

ai

gcd(l, ai)
≤ ε−2(�ε−1�)! , l

gcd(l, ai)
≤ ε−2 , m1,2 ≤ (�ε−1�)! .

Thus we proved the proposition and Ltoric
n satisfies the ascending chain condition. �
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