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Abstract. We find the characterization of maximum dimensional proper-biharmonic
integral C-parallel submanifolds of a Sasakian space form and then we classify such subman-
ifolds in a 7-dimensional Sasakian space form. Working in the sphere S7 we explicitly find
all 3-dimensional proper-biharmonic integral C-parallel submanifolds. We also determine the
proper-biharmonic parallel Lagrangian submanifolds of CP 3.

1. Introduction. As suggested in 1964 by Eells and Sampson in their famous paper
[17], the biharmonic maps ψ : (M, g) → (N, h) between Riemannian manifolds are a nat-
ural generalization of harmonic maps. The harmonic maps are critical points of the energy
functional

E(ψ) = 1

2

∫
M

|dψ|2 vg ,
while the biharmonic maps are critical points of the bienergy functional

E2(ψ) = 1

2

∫
M

|τ (ψ)|2 vg ,

where τ (ψ) = trace ∇dψ is the tension field that vanishes for harmonic maps. The Euler-
Lagrange equation for the bienergy functional was derived by Jiang in 1986 (see [25]):

τ2(ψ)= −�τ(ψ)− trace RN(dψ, τ(ψ))dψ

= 0

where τ2(ψ) is the bitension field of ψ . Since any harmonic map is biharmonic, we are
interested in non-harmonic biharmonic maps, which are called proper-biharmonic.

An important case of biharmonic maps is represented by the biharmonic Riemannian
immersions, or biharmonic submanifolds, i.e., submanifolds for which the inclusion map is
biharmonic. In Euclidean spaces the biharmonic submanifolds are the same as those defined
by Chen in [13], as they are characterized by the equation �H = 0, where H is the mean
curvature vector field and � is the rough Laplacian.
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Pursuing the founding of proper-biharmonic submanifolds in Riemannian manifolds the
attention was first focused on space forms, and classification results in this context were ob-
tained, for example, in [8, 11, 13, 16]. More recently such results were also found in spaces
of non-constant sectional curvature (see, for example, [12, 23, 28, 29, 33]).

A different and active research direction is the study of proper-biharmonic submanifolds
in pseudo-Riemannian manifolds (see, for example, [2, 3, 14]).

During the efforts of studying the biharmonic submanifolds in space forms, the Eu-
clidean spheres proved to be a very giving environment for obtaining examples and classi-
fication results (see [7] for detailed proofs). Then, the fact that odd-dimensional spheres can
be thought as a class of Sasakian space forms (which do not have constant sectional curvature,
in general) led to the idea that the next step would be the study of biharmonic submanifolds
in Sasakian space forms. Following this direction, the proper-biharmonic Legendre curves
and Hopf cylinders in a 3-dimensional Sasakian space form were classified in [24], whilst in
[19] their parametric equations were found. In [20] all proper-biharmonic Legendre curves
in any dimensional Sasakian space forms were classified, and it was provided a method to
obtain proper-biharmonic anti-invariant submanifolds from proper-biharmonic integral sub-
manifolds. Also, classification results for proper-biharmonic hypersurfaces were obtained in
[21].

The goals of our paper are to characterize the maximum dimensional proper-biharmonic
integral, and integral C-parallel, submanifolds in a Sasakian space form, and then to use these
results in order to obtain the 3-dimensional proper-biharmonic integral C-parallel submani-
folds of a 7-dimensional Sasakian space form. The paper is organized as follows. In Section
2 we briefly recall some general facts on Sasakian space forms with a special emphasis on
the notion of integral C-parallel submanifolds, and also present some old and new results
concerning the proper-biharmonic submanifolds in odd-dimensional spheres. Section 3 is de-
voted to the study of the biharmonicity of maximum dimensional integral submanifolds in
a Sasakian space form. We obtain the necessary and sufficient conditions for such a sub-
manifold to be biharmonic, prove some non-existence results and find the characterization
of proper-biharmonic integral C-parallel submanifolds of maximum dimension. In Section
4 we classify all 3-dimensional proper-biharmonic integral C-parallel submanifolds in a 7-
dimensional Sasakian space form, whilst in Section 5 we find these submanifolds in the 7-
sphere endowed with its canonical and deformed Sasakian structures introduced by Tanno in
[30]. In the last section we classify the proper-biharmonic parallel Lagrangian submanifolds
of CP 3 by determining their horizontal lifts, with respect to the Hopf fibration, in S7(1).

For a general account of biharmonic maps see [26] and The Bibliography of Biharmonic
Maps (http://people.unica.it/ biharmonic/).

CONVENTIONS. We work in the C∞ category, that means manifolds, metrics, connec-
tions and maps are smooth. The Lie algebra of vector fields on M is denoted by C∞(TM).
The manifoldM is always assumed to be connected.



BIHARMONIC INTEGRAL C-PARALLEL SUBMANIFOLDS 197

Acknowledgments. The authors wish to thank Professor David Blair for useful comments and
constant encouragement, and Professor Harold Rosenberg for helpful discussions. The first author would
also like to thank the IMPA in Rio de Janeiro for providing the required conditions to carry out this work.

2. Preliminaries.
2.1. Integral C-parallel submanifolds of a Sasakian manifold. A contact metric

structure on an odd-dimensional manifold N2n+1 is given by (ϕ, ξ, η, g), where ϕ is a tensor
field of type (1, 1) on N , ξ is a vector field, η is a 1-form and g is a Riemannian metric such
that

ϕ2 = −I + η⊗ ξ , η(ξ) = 1

and

g(ϕU, ϕV ) = g(U, V )−η(U)η(V ), g(U, ϕV ) = dη(U, V ) for all U,V ∈ C∞(T N) .

A contact metric structure (ϕ, ξ, η, g) is called normal if

Nϕ + 2dη⊗ ξ = 0 ,

where

Nϕ(U, V ) = [ϕU, ϕV ] − ϕ[ϕU,V ] − ϕ[U, ϕV ] + ϕ2[U,V ] for all U,V ∈ C∞(T N) ,

is the Nijenhuis tensor field of ϕ.
A contact metric manifold (N, ϕ, ξ, η, g) is regular if for any point p ∈ N there exists a

cubic neighborhood such that any integral curve of ξ passes through it at most once; and it is
strictly regular if all integral curves of ξ are homeomorphic to each other.

A contact metric manifold (N, ϕ, ξ, η, g) is a Sasakian manifold if it is normal or, equiv-
alently, if

(∇N
U ϕ)(V ) = g(U, V )ξ − η(V )U for all U,V ∈ C∞(T N) ,

where ∇N is the Levi-Civita connection on (N, g). We shall often use in our paper the formula
∇N
U ξ = −ϕU , which holds on a Sasakian manifold.

Let (N, ϕ, ξ, η, g) be a Sasakian manifold. The sectional curvature of a 2-plane gen-
erated by U and ϕU , where U is a unit vector orthogonal to ξ , is called ϕ-sectional curva-
ture determined by U . A Sasakian manifold with constant ϕ-sectional curvature c is called a
Sasakian space form and is denoted by N(c). The curvature tensor field of a Sasakian space
form N(c) is given by

RN(U, V )W = ((c + 3)/4){g(W, V )U − g(W,U)V } + ((c− 1)/4){η(W)η(U)V
−η(W)η(V )U + g(W,U)η(V )ξ − g(W, V )η(U)ξ

+g(W, ϕV )ϕU − g(W, ϕU)ϕV + 2g(U, ϕV )ϕW } .
The classification of the complete, simply connected Sasakian space forms N(c) was given
in [30]. Thus, if c = 1 then N(1) is isometric to the unit sphere S2n+1 endowed with its
canonical Sasakian structure, and if c + 3 > 0 then N(c) is isometric to S2n+1 endowed with
the deformed Sasakian structure introduced by Tanno in [30], which we present below.
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Let S2n+1 = {z ∈ Cn+1; |z| = 1} be the unit (2n + 1)-dimensional Euclidean sphere.
Consider the following structure tensor fields on S2n+1: ξ0(z) = −J z for each z ∈ S2n+1,
where J is the usual complex structure on Cn+1 defined by

J z = (−y1, . . . ,−yn+1, x1, . . . , xn+1)

for z = (x1, . . . , xn+1, y1, . . . , yn+1), and ϕ0 = s ◦J , where s : TzCn+1 → TzS2n+1 denotes
the orthogonal projection. Equipped with these tensors and the standard metric g0, the sphere
S2n+1 becomes a Sasakian space form with ϕ0-sectional curvature equal to 1, denoted by
S2n+1(1).

Now, consider the deformed Sasakian structure on S2n+1

η = aη0 , ξ = 1

a
ξ0 , ϕ = ϕ0 , g = ag0 + a(a − 1)η0 ⊗ η0 ,

where a is a positive constant. The structure (ϕ, ξ, η, g) is still a Sasakian structure and
(S2n+1, ϕ, ξ, η, g) is a Sasakian space form with constant ϕ-sectional curvature c = 4/a−3 >
−3, denoted by S2n+1(c) (see also [10]).

A submanifoldMm of a Sasakian manifold (N2n+1, ϕ, ξ, η, g) is called an integral sub-
manifold if η(X) = 0 for any vector field X tangent to M . We have ϕ(TM) ⊂ NM and
m ≤ n, where TM and NM are the tangent bundle and the normal bundle ofM , respectively.
Moreover, for m = n, one gets ϕ(NM) = TM . If we denote by B the second fundamental
form ofM then, by a straightforward computation, one obtains the relation

g(ϕZ,B(X, Y )) = g(ϕY,B(X,Z))

for any vector fields X,Y and Z tangent toM (see also [6]). We also note that Aξ = 0, where
A is the shape operator of M (see [10]).

A submanifold M̃ of N is said to be anti-invariant if ξ is tangent to M̃ and ϕ maps the
tangent bundle to M̃ into its normal bundle.

Next, we shall recall the notion of an integral C-parallel submanifold of a Sasakian man-
ifold (see, for example, [6]). Let Mm be an integral submanifold of a Sasakian manifold
(N2n+1, ϕ, ξ, η, g). ThenM is said to be integral C-parallel if ∇⊥B is parallel to the charac-
teristic vector field ξ , where ∇⊥B is given by

(∇⊥B)(X, Y,Z) = ∇⊥
XB(Y,Z) − B(∇XY,Z) − B(Y,∇XZ)

for any vector fields X,Y,Z tangent to M , ∇⊥ and ∇ being the normal connection and the
Levi-Civita connection on M , respectively. Thus, Mm is an integral C-parallel submani-
fold if (∇⊥B)(X, Y,Z) = S(X, Y,Z)ξ for any vector fields X, Y , Z tangent to M , where
S(X, Y,Z) = g(ϕX,B(Y,Z)) is a totally symmetric tensor field of type (0, 3) on M . It is
not difficult to check that, when m = n, ∇⊥B = 0 if and only if B = 0, i.e., Mn is totally
geodesic.

Now, let Mm be an integral submanifold of a Sasakian manifold N2n+1, and denote by
H its mean curvature vector field. We say that H is C-parallel if ∇⊥H is parallel to ξ , i.e.,
∇⊥
XH = θ(X)ξ , where θ is a 1-form onM . As we shall see, θ(X) = g(H, ϕX) for any vector

field X tangent to M .



BIHARMONIC INTEGRAL C-PARALLEL SUBMANIFOLDS 199

In general, a Riemannian submanifold M of N is called parallel if ∇⊥B = 0, and we
say that H is parallel if ∇⊥H = 0.

The following two results shall be used later in this paper and, for the sake of complete-
ness, we also provide their proofs.

PROPOSITION 2.1. If the mean curvature vector field H of an integral submanifold
Mn of a Sasakian manifold (N2n+1, ϕ, ξ, η, g) is parallel then Mn is minimal.

PROOF. Let X,Y be two vector fields tangent to M . Since

g(B(X, Y ), ξ) = g(∇N
X Y, ξ) = −g(Y,∇N

X ξ) = g(Y, ϕX) = 0

we have B(X, Y ) ∈ ϕ(TM) and, in particular,H ∈ ϕ(TM). Then

g(∇⊥
XH, ξ) = g(∇N

X H, ξ) = −g(H,∇N
X ξ) = g(H, ϕX) .

Thus, if ∇⊥H = 0 it follows that g(H, ϕX) = 0 for any vector field X tangent toM , and this
means H = 0, since M has maximal dimension. �

PROPOSITION 2.2. Let (N2n+1, ϕ, ξ, η, g) be a Sasakian manifold and Mm be an in-
tegral C-parallel submanifold with mean curvature vector field H . The following hold:

(1) ∇⊥
XH = g(H, ϕX)ξ , for any vector field X tangent to M , i.e.,H is C-parallel;

(2) the mean curvature |H | is constant;
(3) if m = n, then �⊥H = H .

PROOF. In order to prove (1), we consider {Xi}mi=1 to be a local geodesic frame at
p ∈ M . Then we have at p

(∇⊥B)(Xi,Xj ,Xj ) = ∇⊥
Xi
B(Xj ,Xj ) = g(B(Xj ,Xj ), ϕXi)ξ

and, by summing for j = 1, . . . ,m, we obtain ∇⊥
Xi
H = g(H, ϕXi)ξ . Then, for (2), we have

X(|H |2) = 2g(H,∇⊥
XH) = 2g(H, ϕX)g(H, ξ) = 0

for any vector field X tangent to M , i.e., |H | is constant.
For the last item, we assume that m = n. As ∇N

X ξ = −ϕX, from the Weingarten
equation, we get Aξ = 0, where Aξ is the shape operator of M corresponding to ξ , and
∇⊥
Xξ = ∇N

X ξ = −ϕX. Thus

�⊥H = −
n∑
i=1

∇⊥
Xi

∇⊥
Xi
H = −

n∑
i=1

∇⊥
Xi
(g(H, ϕXi)ξ)

= −
n∑
i=1

Xi(g(H, ϕXi))ξ −
n∑
i=1

(g(H, ϕXi))∇N
Xi
ξ

= −
n∑
i=1

Xi(g(H, ϕXi))ξ +
n∑
i=1

(g(H, ϕXi))ϕXi

= −
n∑
i=1

Xi(g(H, ϕXi))ξ +H .
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But, since ∇N
Xi
ϕXi = ϕ∇N

Xi
Xi + ξ , it results

Xi(g(H, ϕXi))= g(∇N
Xi
H, ϕXi)+ g(H, ϕ∇N

Xi
Xi + ξ)

= g(−AHXi + ∇⊥
Xi
H, ϕXi)+ g(H, ϕB(Xi ,Xi))

= 0 .

We have just proved that �⊥H = H . �

2.2. Biharmonic submanifolds in S2n+1(1). We shall first recall the notion of Frenet
curve of osculating order r as it is presented, for example, in [27]. Let (Mm, g) be a Riemann-
ian manifold and γ : I → M a curve parametrized by arc length, that is |γ ′| = 1. Then γ
is called a Frenet curve of osculating order r , 1 ≤ r ≤ m, if for all s ∈ I its higher order
derivatives

γ ′(s) = (∇0
γ ′γ ′)(s) , (∇γ ′γ ′)(s) , . . . , (∇r−1

γ ′ γ ′)(s)
are linearly independent but

γ ′(s) = (∇0
γ ′γ ′)(s) , (∇γ ′γ ′)(s) , . . . , (∇r−1

γ ′ γ ′)(s) , (∇r
γ ′γ ′)(s)

are linearly dependent in Tγ (s)M . Then there exist unique orthonormal vector fields
E1, E2, . . . , Er along γ such that

∇T E1 = κ1E2 , ∇T E2 = −κ1E1 + κ2E3, . . . , ∇T Er = −κr−1Er−1 ,

where E1 = γ ′ = T and κ1, . . . , κr−1 are positive functions on I .

REMARK 2.3. A geodesic is a Frenet curve of osculating order 1; a circle is a Frenet
curve of osculating order 2 with κ1 constant; a helix of order r, r ≥ 3, is a Frenet curve of
osculating order r with κ1, . . . , κr−1 constants; a helix of order 3 is simply called a helix.

In [24] Inoguchi proved that there are no proper-biharmonic Legendre curves in S3(1)
whilst in [20] we found the parametric equations of all proper-biharmonic Legendre curves in
S2n+1(1), n ≥ 2. These curves are given by the following theorem.

THEOREM 2.4 ([20]). Let γ : I → (S2n+1, ϕ0, ξ0, η0, g0), n ≥ 2, be a proper-
biharmonic Legendre curve parametrized by arc length. Then the parametric equation of
γ in the Euclidean space (R2n+2, 〈, 〉) is either

γ (s) = 1√
2

cos(
√

2s)e1 + 1√
2

sin(
√

2s)e2 + 1√
2
e3 ,

where {ei,J ej }3
i,j=1 are constant unit vectors orthogonal to one another, or

γ (s) = 1√
2

cos(As)e1 + 1√
2

sin(As)e2 + 1√
2

cos(Bs)e3 + 1√
2

sin(Bs)e4 ,

where
A =

√
1 + κ1 , B =

√
1 − κ1 , κ1 ∈ (0, 1)

and {ei}4
i=1 are constant unit vectors orthogonal to one another, satisfying

〈e1,J e3〉 = 〈e1,J e4〉 = 〈e2,J e3〉 = 〈e2,J e4〉 = 0 , A〈e1,J e2〉 + B〈e3,J e4〉 = 0 .
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REMARK 2.5. We note that if γ is a proper-biharmonic Legendre circle, then E2 ⊥
ϕT and n ≥ 3. If γ is a proper-biharmonic Legendre helix, then g0(E2, ϕT ) = −A〈e1,J e2〉
and we have two cases: either E2 ⊥ ϕT and then {ei,J ej }4

i,j=1 is an orthonormal system

in R2n+2, so n ≥ 3, or g0(E2, ϕT ) �= 0 and, in this case, g0(E2, ϕT ) ∈ (−1, 1) \ {0}.
We also observe that ϕT cannot be parallel to E2. When g0(E2, ϕT ) �= 0 and n ≥ 3 the
first four vectors (for example) in the canonical basis of the Euclidean space R2n+2 satisfy
the conditions of Theorem 2.4, whilst for n = 2 we can obtain four vectors {e1, e2, e3, e4}
satisfying these conditions in the following way. We consider constant unit vectors e1, e3

and f in R6 such that {e1, e3, f,J e1,J e3,J f } is a J -basis. Then, by a straightforward
computation, it follows that the vectors e2 and e4 have to be given by

e2 = ∓B
A
J e1 + α1f + α2J f , e4 = ±J e3 ,

where α1 and α2 are constants such that α2
1 + α2

2 = 1 − B2/A2 = 2κ1/A
2. As a concrete

example, we can start with the following vectors in R6:

e1 = (1, 0, 0, 0, 0, 0) , e3 = (0, 0, 1, 0, 0, 0) , f = (0, 1, 0, 0, 0, 0)

and obtain

e2 =
(

0, α1, 0,−B
A
,α2, 0

)
, e4 = (0, 0, 0, 0, 0, 1) ,

where α2
1 + α2

2 = 1 − B2/A2.

The classification of all proper-biharmonic Legendre curves in a Sasakian space form
N2n+1(c) was given in [20]. This classification is invariant under an isometry Ψ of N which
preserves ξ (or, equivalently, Ψ is ϕ-holomorphic).

In order to find higher dimensional proper-biharmonic submanifolds in a Sasakian space
form we gave the following theorem.

THEOREM 2.6 ([20]). Let (N2n+1, ϕ, ξ, η, g) be a strictly regular Sasakian space
form with constant ϕ-sectional curvature c and let i : M → N be an m-dimensional integral
submanifold of N , 1 ≤ m ≤ n. Consider the cylinder

F : M̃ = I ×M → N , F(t, p) = φt (p) = φp(t) ,

where I = S1 or I = R and {φt }t∈I is the flow of the vector field ξ . Then F : (M̃, g̃ =
dt2 + i∗g) → N is an anti-invariant Riemannian immersion, and is proper-biharmonic if and
only if M is a proper-biharmonic submanifold of N .

Working with anti-invariant submanifolds rather than with cylinders, we can state the
following (known) result.

PROPOSITION 2.7. Let M̃m+1 be an anti-invariant submanifold of the strictly regular
Sasakian space form N2n+1(c), 1 ≤ m ≤ n, invariant under the flow-action of the char-
acteristic vector field ξ . Then M̃ is locally isometric to I × Mm, where Mm is an integral
submanifold of N . Moreover, we have

(1) M̃ is proper-biharmonic if and only if M is proper-biharmonic in N;
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(2) if m = n, then M̃ is parallel if and only if M is C-parallel;
(3) if m = n, then the mean curvature vector field of M̃ is parallel if and only if the

mean curvature vector field ofM is C-parallel.

PROOF. The restriction ξ/M̃ of the characteristic vector field ξ to M̃ is a Killing vector

field tangent to M̃ . Since M̃ is anti-invariant, the horizontal distribution defined on M̃ is
integrable. Let p ∈ M̃ be an arbitrary point and M a small enough integral submanifold
of the horizontal distribution on M̃ such that p ∈ M . Then F : I × M → F(I × M) ⊂
M̃ , F(t, p) = φt(p), is an isometry. As M is an integral submanifold of the horizontal
distribution on M̃ , it is an integral submanifold of N .

The item (1) follows immediately from Theorem 2.6, and (2) and (3) are known and can
be checked by straightforward computations. �

As a surface in a strictly regular Sasakian space form which is invariant under the flow-
action of the characteristic vector field is also anti-invariant, we have the following corollary.

COROLLARY 2.8. Let M̃2 be a surface ofN2n+1(c) invariant under the flow-action of
the characteristic vector field ξ . Then M̃ is locally isometric to I × γ , where γ is a Legendre
curve in N and, moreover, M̃ is proper-biharmonic if and only if γ is proper-biharmonic in
N .

Now, consider M̃2 a surface of N2n+1(c) invariant under the flow-action of the char-
acteristic vector field ξ and let T = γ ′ and E2 be the first two vector fields defined by the
Frenet equations of the above Legendre curve γ . As ∇F

∂/∂t τ (F ) = −ϕ(τ(F )), where ∇F is
the pull-back connection determined by the Levi-Civita connection on N , we can prove the
following proposition.

PROPOSITION 2.9. Let M̃2 be a proper-biharmonic surface ofN2n+1(c) invariant un-
der the flow-action of the characteristic vector field ξ . Then M̃ has parallel mean curvature
vector field if and only if c > 1 and ϕT = ±E2.

COROLLARY 2.10. The proper-biharmonic surfaces of S2n+1(1) invariant under the
flow-action of the characteristic vector field ξ0 are not of parallel mean curvature vector field.

We shall see that we do have examples of maximum dimensional proper-biharmonic
anti-invariant submanifolds of S2n+1(1), invariant under the flow-action of ξ0, which have
parallel mean curvature vector field.

In [31] the parametric equations of all proper-biharmonic integral surfaces in S5(1) were
obtained. Up to an isometry of S5(1)which preserves ξ0, we have only one proper-biharmonic
integral surface given by

x(u, v) = 1√
2
(exp(iu), i exp(−iu) sin(

√
2v), i exp(−iu) cos(

√
2v)) .

The map x induces a proper-biharmonic Riemannian embedding from the 2-dimensional torus
T 2 = R2/Λ into S5, where Λ is the lattice generated by the vectors (2π, 0) and (0,

√
2π).
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REMARK 2.11. We recall that an isometric immersion x : M → Rn+1 of a compact
manifold is said to be of k-type if its spectral decomposition contains exactly k non-constant
terms excepting the center of mass x0 = (Vol(M))−1

∫
M
x vg . When x0 = 0, the submanifold

is called mass-symmetric (see [13]). It was proved in [8, 9] that a proper-biharmonic compact
constant mean curvature submanifold Mm of Sn is either a 1-type submanifold of Rn+1 with
center of mass of norm equal to 1/

√
2, or a mass-symmetric 2-type submanifold of Rn+1.

Now, using [4, Theorem 3.5], where all mass-symmetric 2-type integral surfaces in S5(1)
were determined, and [11, Proposition 4.1], the result in [31] can be (partially) reobtained.

Further, we consider the cylinder over x and we recover the result in [1]: up to an isom-
etry of S5(1) which preserves ξ0, we have only one 3-dimensional proper-biharmonic anti-
invariant submanifold of S5(1) invariant under the flow-action of ξ0 ,

y(t, u, v) = exp(−it)x(u, v) .

The map y is a proper-biharmonic Riemannian immersion with parallel mean curvature vec-
tor field and it induces a proper-biharmonic Riemannian immersion from the 3-dimensional
torus T 3 = R3/Λ into S5, whereΛ is the lattice generated by the vectors (2π, 0, 0), (0, 2π, 0)
and (0, 0,

√
2π). Moreover, a closer look shows that y factorizes to a proper-biharmonic Rie-

mannian embedding in S5, and its image is the Riemannian product between three Euclidean
circles, one of radius 1/

√
2 and each of the other two of radius 1/2. Indeed, we may consider

the orthogonal transformation of R3 given by

T (t, u, v) =
(−t + u√

2
,
−t − u√

2
, v

)
= (t ′, u′, v′)

and the map y becomes

y1(t
′, u′, v′) = 1√

2
(exp(i

√
2t ′), i exp(i

√
2u′) sin(

√
2v′), i exp(i

√
2u′) cos(

√
2v′)) .

Then, acting with an appropriate holomorphic isometry of C4, y1 becomes

y2(t
′, u′, v′) =

(
1√
2

exp(i
√

2t ′),
1

2
exp(i(u′ − v′)) ,

1

2
exp(i(u′ + v′))

)

and, further, an obvious orthogonal transformation of the domain leads to the desired results.

3. Biharmonic integral submanifolds of maximum dimension in Sasakian space
forms. Let (N2n+1, ϕ, ξ, η, g) be a Sasakian space form with constant ϕ-sectional curvature
c, and Mn an n-dimensional integral submanifold of N . We recall that this means η(X) = 0
for any vector field X tangent to M . We shall denote by B, A and H the second fundamental
form of M in N , the shape operator and the mean curvature vector field, respectively. By ∇⊥
and �⊥ we shall denote the connection and the Laplacian in the normal bundle. We have the
following theorem.
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THEOREM 3.1. The integral submanifold i : Mn → N2n+1 is biharmonic if and only
if

(3.1)


�

⊥H + traceB(·, AH ·)− c(n+ 3)+ 3n− 3

4
H = 0 ,

4 traceA∇⊥
(·)H

(·)+ n grad(|H |2) = 0 .

PROOF. Let us denote by ∇N , ∇ the Levi-Civita connections on N andM , respectively.
Consider {Xi}ni=1 to be a local geodesic frame at p ∈ M . Then, since τ (i) = nH , we have at
p

(3.2) τ2(i) = −�τ(i)− traceRN(di, τ (i))di = n

{ n∑
i=1

∇N
Xi

∇N
Xi
H −

n∑
i=1

RN(Xi,H)Xi

}
.

Using the Weingarten equation ,

∇N
Xi
H = ∇⊥

Xi
H − AH(Xi)

and the Gauss equation, we get around p

∇N
Xi

∇N
Xi
H = ∇⊥

Xi
∇⊥
Xi
H − A∇⊥

Xi
H (Xi)− ∇XiAH (Xi)− B(Xi,AH (Xi)) .

Thus, at p, one obtains

− 1

n
�τ(i) =

n∑
i=1

∇N
Xi

∇N
Xi
H

= −�⊥H − traceB(·, AH ·)− traceA∇⊥
(·)H

(·)− trace ∇AH(·, ·) .
(3.3)

The next step is to compute trace ∇AH(·, ·). We obtain, at p,

trace ∇AH(·, ·) =
n∑
i=1

∇XiAH (Xi) =
n∑

i,j=1

∇Xi (g(AH (Xi),Xj )Xj )

=
n∑

i,j=1

Xi(g(AH (Xi),Xj ))Xj =
n∑

i,j=1

Xi(g(B(Xj ,Xi),H))Xj

=
n∑

i,j=1

Xi(g(∇N
Xj
Xi,H))Xj ,
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and then

trace ∇AH(·, ·) =
n∑

i,j=1

{g(∇N
Xi

∇N
Xj
Xi,H)+ g(∇N

Xj
Xi,∇N

Xi
H)}Xj

=
n∑

i,j=1

g(∇N
Xi

∇N
Xj
Xi,H)Xj +

n∑
i,j=1

g(B(Xj ,Xi),∇⊥
Xi
H)Xj

=
n∑

i,j=1

g(∇N
Xi

∇N
Xj
Xi,H)Xj +

n∑
i,j=1

g(A∇⊥
Xi
H (Xi),Xj )Xj

=
n∑

i,j=1

g(∇N
Xi

∇N
Xj
Xi,H)Xj + traceA∇⊥

(·)H
(·) .

Further, using the expression of the curvature tensor field RN , we have

trace ∇AH(·, ·) =
n∑

i,j=1

g(∇N
Xj

∇N
Xi
Xi + RN(Xi,Xj )Xi + ∇N

[Xi,Xj ]Xi,H)Xj

+ traceA∇⊥
(·)H
(·)

=
n∑

i,j=1

g(∇N
Xj

∇N
Xi
Xi,H)Xj +

n∑
i,j=1

g(RN (Xi,Xj )Xi,H)Xj

+ traceA∇⊥
(·)H
(·) .

(3.4)

But
n∑

i,j=1

g(∇N
Xj

∇N
Xi
Xi,H)Xj

=
n∑

i,j=1

g(∇N
Xj
B(Xi,Xi),H)Xj +

n∑
i,j=1

g(∇N
Xj

∇XiXi,H)Xj

= n

n∑
j=1

g(∇N
Xj
H,H)Xj +

n∑
i,j=1

g(∇Xj∇XiXi + B(Xj ,∇XiXi),H)Xj

= n

2
grad(|H |2)

(3.5)

and
n∑

i,j=1

g(RN (Xi,Xj )Xi,H)Xj

=
n∑

i,j=1

g(RN (Xi,H)Xi,Xj )Xj = (traceRN(di,H)di)� .
(3.6)
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Replacing (3.5) and (3.6) into (3.4), we have

trace ∇AH(·, ·) = n

2
grad(|H |2)+ (traceRN(di,H)di)� + traceA∇⊥

(·)H
(·)

and therefore

traceA∇⊥
(·)H

(·)+ trace ∇AH(·, ·) =2 traceA∇⊥
(·)H

(·)+ n

2
grad(|H |2)

+ (traceRN(di,H)di)� .
(3.7)

Now, let {Xi}ni=1 be a local orthonormal frame on M . Then {Xi, ϕXj , ξ}ni,j=1 is a local
orthonormal frame on N . By using the expression of the curvature tensor field and H ∈
span{ϕXi; i = 1, . . . , n} one obtains, after a straightforward computation ,

RN(Xi,H)Xi = −c + 3

4
H + 3(c − 1)

4
g(ϕH,Xi)ϕXi .

Hence

traceRN(di,H)di =
n∑
i=1

RN(Xi,H)Xi

= − (c + 3)n

4
H +

n∑
i=1

3(c− 1)

4
g(ϕH,Xi)ϕXi

= − (c + 3)n

4
H − 3(c − 1)

4
H

= −c(n+ 3)+ 3n− 3

4
H ,

(3.8)

which implies (traceRN(di,H)di)� = 0.
From (3.2), (3.3), (3.7) and (3.8) we have

1

n
τ2(i) = −�⊥H − traceB(·, AH ·)+ c(n+ 3)+ 3n− 3

4
H

− 2 traceA∇⊥
(·)H

(·)− n

2
grad(|H |2) ,

and we come to the conclusion. �

COROLLARY 3.2. Let N2n+1(c) be a Sasakian space form with constant ϕ-sectional
curvature c ≤ (3 − 3n)/(n + 3). Then an integral submanifold Mn with constant mean
curvature |H | in N2n+1(c) is biharmonic if and only if it is minimal.
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PROOF. Assume thatMn is a biharmonic integral submanifold with constant mean cur-
vature |H | in N2n+1(c). It follows, from Theorem 3.1, that

g(�⊥H,H) = −g(traceB(·, AH ·),H)+ c(n+ 3)+ 3n− 3

4
|H |2

= c(n+ 3)+ 3n− 3

4
|H |2 −

n∑
i=1

g(B(Xi ,AHXi),H)

= c(n+ 3)+ 3n− 3

4
|H |2 −

n∑
i=1

g(AHXi,AHXi)

= c(n+ 3)+ 3n− 3

4
|H |2 − |AH |2 .

Thus, from the Weitzenböck formula

1

2
�|H |2 = g(�⊥H,H)− |∇⊥H |2 ,

one obtains

(3.9)
c(n+ 3)+ 3n− 3

4
|H |2 − |AH |2 − |∇⊥H |2 = 0 .

If c < (3 − 3n)/(n + 3), relation (3.9) is equivalent to H = 0. Now, assume that c =
(3 − 3n)/(n+ 3). As for integral submanifolds ∇⊥H = 0 is equivalent to H = 0, again (3.9)
is equivalent to H = 0. �

COROLLARY 3.3. Let N2n+1(c) be a Sasakian space form with constant ϕ-sectional
curvature c ≤ (3 − 3n)/(n + 3). Then a compact integral submanifold Mn is biharmonic if
and only if it is minimal.

PROOF. Assume thatMn is a biharmonic compact integral submanifold. As in the proof
of Corollary 3.2 we have

g(�⊥H,H) = c(n+ 3)+ 3n− 3

4
|H |2 − |AH |2

and so �|H |2 ≤ 0, which implies that |H |2 is constant. Therefore we obtain that M is
minimal in this case too. �

REMARK 3.4. From Corollaries 3.2 and 3.3 it is easy to see that in a Sasakian space
form N2n+1(c) with constant ϕ-sectional curvature c + 3 ≤ 0 a biharmonic compact inte-
gral submanifold, or a biharmonic integral submanifoldMn with constant mean curvature, is
minimal whatever the dimension of N is.

PROPOSITION 3.5. Let N2n+1(c) be a Sasakian space form and i : Mn → N2n+1 be
an integral C-parallel submanifold. Then (τ2(i))� = 0.

PROOF. Indeed, from Proposition 2.2 we have |H | is constant and ∇⊥H is parallel to
ξ , which implies that A∇⊥

XH
= 0 for any vector field X tangent to M , since Aξ = 0. Thus we

conclude the proof. �
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PROPOSITION 3.6. A non-minimal integral C-parallel submanifoldMn of a Sasakian
space form N2n+1(c) is proper-biharmonic if and only if c > (7 − 3n)/(n+ 3) and

traceB(·, AH ·) = c(n+ 3)+ 3n− 7

4
H .

PROOF. We know, from Proposition 2.2, that �⊥H = H . Hence, from Theorem 3.1
and the above proposition, it follows that Mn is biharmonic if and only if

traceB(·, AH ·) = c(n+ 3)+ 3n− 7

4
H .

Next, if Mn verifies the above condition, we contract with H and get

|AH |2 = c(n+ 3)+ 3n− 7

4
|H |2 .

Since AH and H do not vanish it follows that c > (7 − 3n)/(n+ 3). �

Now, let {Xi}ni=1 be an arbitrary orthonormal local frame field on the integral C-parallel
submanifoldMn of a Sasakian space formN2n+1(c), and let Ai = AϕXi , i = 1, . . . , n, be the
corresponding shape operators. Then, from Proposition 3.6, we obtain

PROPOSITION 3.7. A non-minimal integral C-parallel submanifoldMn of a Sasakian
space form N2n+1(c), c > (7 − 3n)/(n+ 3), is proper-biharmonic if and only if


g(A1, A1) . . . g(A1, An)

...
...

...

g(An,A1) . . . g(An,An)







traceA1
...

traceAn


 = k




traceA1
...

traceAn


 ,

where k = (c(n+ 3)+ 3n− 7)/4.

4. 3-dimensional biharmonic integral C-parallel submanifolds of a Sasakian space
form N7(c). In [6] Baikoussis, Blair and Koufogiorgios classified the 3-dimensional inte-
gral C-parallel submanifolds in a Sasakian space form (N7(c), ϕ, ξ, η, g). In order to obtain
the classification, they worked with a special local orthonormal basis (see also [15]). Here we
shall briefly recall how this basis is constructed.

Let i : M3 → N7(c) be an integral submanifold of non-zero constant mean curvature.
Let p be an arbitrary point ofM , and consider the function fp : UpM → R given by

fp(u) = g(B(u, u), ϕu) ,

where UpM = {u ∈ TpM; g(u, u) = 1} is the unit sphere in the tangent space TpM . If
fp(u) = 0 for all u ∈ UpM , then, for any v1, v2 ∈ UpM such that g(v1, v2) = 0 we have that

g(B(v1, v1), ϕv1) = 0 , g(B(v1, v1), ϕv2) = 0 , g(B(v1, v2), ϕv1) = 0 .

Now, if {X1,X2,X3} is an arbitrary orthonormal basis at p, it follows that traceAϕXi = 0,
for any i ∈ {1, 2, 3}, and thereforeH(p) = 0. Consequently, the function fp does not vanish
identically.
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Since UpM is compact, fp attains an absolute maximum at a unit vector X1. It follows
that 


g(B(X1,X1), ϕX1) > 0 , g(B(X1,X1), ϕX1) ≥ |g(B(w,w), ϕw)| ,
g(B(X1,X1), ϕw) = 0 , g(B(X1,X1), ϕX1) ≥ 2g(B(w,w), ϕX1) ,

where w is a unit vector in TpM orthogonal to X1. It is easy to see that X1 is an eigenvector
of A1 = AϕX1 with corresponding eigenvalue λ1. Then, since A1 is symmetric, we consider
X2 and X3 to be unit eigenvectors of A1 orthogonal to each other and to X1. Further, we
distinguish two cases.

If λ2 �= λ3, we can choose X2 and X3 such that

g(B(X2,X2), ϕX2) ≥ 0 , g(B(X3,X3), ϕX3) ≥ 0 ,

g(B(X2,X2), ϕX2) ≥ g(B(X3,X3), ϕX3) .

If λ2 = λ3, we consider f1,p the restriction of fp to {w ∈ UpM; g(w,X1) = 0}, and we have
two subcases:

(1) The function f1,p is identically zero. In this case, we have

g(B(X2,X2), ϕX2) = 0 , g(B(X2,X2), ϕX3) = 0 ,

g(B(X2,X3), ϕX3) = 0 , g(B(X3,X3), ϕX3) = 0 .

(2) The function f1,p does not vanish identically. Then we choose X2 such that
f1,p(X2) is an absolute maximum. We have that


g(B(X2,X2), ϕX2) > 0 , g(B(X2,X2), ϕX2) ≥ g(B(X3,X3), ϕX3) ≥ 0 ,

g(B(X2,X2), ϕX3) = 0 , g(B(X2,X2), ϕX2) ≥ 2g(B(X3,X3), ϕX2) .

Now, with respect to the orthonormal basis {X1,X2,X3}, the shape operatorsA1, A2 = AϕX2

and A3 = AϕX3 , at p, can be written as

(4.1) A1 =

 λ1 0 0

0 λ2 0
0 0 λ3


 , A2 =


 0 λ2 0
λ2 α β

0 β µ


 , A3 =


 0 0 λ3

0 β µ

λ3 µ δ


 .

We also have A0 = Aξ = 0. With these notations we have

(4.2) λ1 > 0 , λ1 ≥ |α| , λ1 ≥ |δ| , λ1 ≥ 2λ2 , λ1 ≥ 2λ3 .

For λ2 �= λ3 we get

(4.3) α ≥ 0 , δ ≥ 0 and α ≥ δ ,

and for λ2 = λ3 we obtain that

(4.4) α = β = µ = δ = 0

or

(4.5) α > 0 , δ ≥ 0 , α ≥ δ , β = 0 and α ≥ 2µ .
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We can extend X1 on a neighbourhood Vp of p such that X1(q) is a maximal point of
fq : UqM → R for any point q of Vp.

If the eigenvalues of A1 have constant multiplicities, then the above basis {X1,X2, X3},
defined at p, can be smoothly extended and we can work on the open dense subset of M
defined by this property.

Using this basis, in [6], the authors proved that, whenM is an integral C-parallel subman-
ifold, the functions λi , i ∈ {1, 2, 3}, and α, β, µ, δ are constant on Vp. Then, they classified
all 3-dimensional integral C-parallel submanifolds in a 7-dimensional Sasakian space form.

According to that classification, if c+ 3 > 0 thenM is a non-minimal integral C-parallel
submanifold if and only if either:

Case I. M is flat, it is locally a product of three curves which are helices of osculating
orders r ≤ 4, and λ1 = (λ2 − (c + 3)/4)/λ, λ2 = λ3 = λ = constant �= 0, α = constant,
β = 0, µ = constant, δ = constant, such that −√

c + 3/2 < λ < 0, 0 < α ≤ λ1, α > 2µ,
α ≥ δ ≥ 0, (c+ 3)/4 + λ2 + αµ−µ2 = 0 and ((3λ2 − (c+ 3)/4)/λ)2 + (α+µ)2 + δ2 > 0,
or

Case II. M is locally isometric to a product γ × M̄2, where γ is a curve and M̄2 is a
C-parallel surface, and either

(1) λ1 = 2λ2 = −λ3 = √
c + 3/(2

√
2), α = µ = δ = 0, β = ±√

3(c+ 3)/(4
√

2).
In this case γ is a helix in N with curvatures κ1 = 1/

√
2 and κ2 = 1, and

M̄2 is locally isometric to the 2-dimensional Euclidean sphere of radius ρ =√
8/(3(c+ 3)), or

(2) λ1 = (λ2 − (c + 3)/4)/λ, λ2 = λ3 = λ = constant, α = β = µ = δ = 0, such
that −√

c + 3/2 < λ < 0 and λ2 �= (c+ 3)/12. In this case, γ is a helix in N with
curvatures κ1 = λ1 and κ2 = 1, and M̄2 is the 2-dimensional Euclidean sphere of
radius ρ = 1/

√
(c + 3)/4 + λ2.

Now, identifying the shape operatorsAi with the corresponding matrices, from Proposi-
tion 3.7, we get the following proposition.

PROPOSITION 4.1. A non-minimal integral C-parallel submanifoldM3 of a Sasakian
space form N7(c), c > −1/3, is proper-biharmonic if and only if

(4.6)

( 3∑
i=1

A2
i

) 
 traceA1

traceA2

traceA3


 = 3c+ 1

2


 traceA1

traceA2

traceA3


 ,

where matrices Ai are given by (4.1).

Now, we can state the theorem.

THEOREM 4.2. A 3-dimensional integral C-parallel submanifold M3 of a Sasakian
space form N7(c) is proper-biharmonic if and only if either:
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(1) c > −1/3 andM3 is flat and it is locally a product of three curves:
• a helix with curvatures κ1 = (λ2 − (c + 3)/4)/λ and κ2 = 1,
• a helix of order 4 with curvatures κ1 = √

λ2 + α2, κ2 = (α/κ1)
√
λ2 + 1 and

κ3 = −(λ/κ1)
√
λ2 + 1,

• a helix of order 4 with curvatures κ1 = √
λ2 + µ2 + δ2, κ2 = (δ/κ1)√

λ2 + µ2 + 1 and κ3 = (κ2/δ)
√
λ2 + µ2, if δ �= 0, or a circle with curva-

ture κ1 = √
λ2 + µ2, if δ = 0,

where λ, α,µ, δ are constants given by

(4.7)




(
3λ2 − c + 3

4

)(
3λ4 − 2(c + 1)λ2 + (c + 3)2

16

)
+ λ4((α + µ)2 + δ2) = 0 ,

(α + µ)

(
5λ2 + α2 + µ2 − 7c+ 5

4

)
+ µδ2 = 0 ,

δ

(
5λ2 + δ2 + 3µ2 + αµ − 7c+ 5

4

)
= 0 ,

c + 3

4
+ λ2 + αµ− µ2 = 0

such that −√
c + 3/2 < λ < 0, 0 < α ≤ (λ2 − (c + 3)/4)/λ, α ≥ δ ≥ 0, α > 2µ

and λ2 �= (c + 3)/12 ;
or

(2) M3 is locally isometric to a product γ × M̄2 between a curve and a C-parallel
surface of N , and either
(a) c = 5/9, γ is a helix in N7(5/9) with curvatures κ1 = 1/

√
2 and κ2 = 1,

and M̄2 is locally isometric to the 2-dimensional Euclidean sphere with radius√
3/2, or

(b) c ∈ [(−7 + 8
√

3)/13,+∞) \ {1}, γ is a helix in N7(c) with curvatures
κ1 = (λ2 − (c + 3)/4)/λ and κ2 = 1, and M̄2 is locally isometric to the
2-dimensional Euclidean sphere with radius 2/

√
4λ2 + c + 3, where

(4.8) λ < 0 and λ2 =




4c + 4 ± √
13c2 + 14c− 11

12
if c < 1 ,

4c + 4 − √
13c2 + 14c− 11

12
if c > 1 .

PROOF. Let M3 be a proper-biharmonic integral C-parallel submanifold of a Sasakian
space form N7(c). From Proposition 4.1 we see that c > −1/3.
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Next, we easily get that the equation (4.6) is equivalent to the system

(4.9)




( 3∑
i=1

λi

)( 3∑
i=1

λ2
i − 3c + 1

2

)
+ (α + µ)(αλ2 + µλ3)

+(β + δ)(βλ2 + δλ3) = 0 ,( 3∑
i=1

λi

)
(αλ2 + µλ3)+ (α + µ)

(
2λ2

2 + α2 + 3β2 + µ2 + βδ − 3c + 1

2

)

+µ(β + δ)2 = 0 ,( 3∑
i=1

λi

)
(βλ2 + δλ3)+ β(α + µ)2

+(β + δ)

(
2λ2

3 + δ2 + 3µ2 + β2 + αµ− 3c+ 1

2

)
= 0 .

In the following, we shall split the study of this system, as M3 is given by Case I or Case
II of the classification.

Case I. The system (4.9) is equivalent to the system given by the first three equations
of (4.7). Now, M is not minimal if and only if at least one of the components of the mean
curvature vector fieldH does not vanish and, from the first equation of (4.7), it follows that λ2

must be different from (c+ 3)/12. Thus, again using [6] for the expressions of the curvatures
of the three curves, we obtain the first case of the theorem.

Case II. (1) In this case, the second equation of (4.9) is identically satisfied and the
other two are equivalent to c = 5/9. Thus, from the classification of the integral C-parallel
submanifolds, we get the first part of the second case of the theorem.

(2) The second and the third equation of (4.9) are satisfied, in this case, and the first
equation is equivalent to

3λ4 − 2(c+ 1)λ2 + (c+ 3)2

16
= 0 .

This equation has solutions if and only if

c ∈
(

− ∞,
−7 − 8

√
3

13

]
∪

[−7 + 8
√

3

13
,+∞

)
,

and these solutions are given by

λ2 = 4c + 4 ± √
13c2 + 14c− 11

12
.

Since c > −1/3 it follows that c ∈ [(−7 + 8
√

3)/13,+∞). Moreover, if c = 1, from the
above relation, it follows that λ2 must be equal to 1 or 1/3, which is a contradiction, and
therefore c ∈ [(−7 + 8

√
3)/13,+∞) \ {1}. Further, it is easy to check that λ2 = (4c +

4 + √
13c2 + 14c− 11)/12 < (c + 3)/4 if and only if c ∈ [(−7 + 8

√
3)/13, 1) and λ2 =

(4c + 4 − √
13c2 + 14c− 11)/12 < (c + 3)/4 if and only if c ∈ [(−7 + 8

√
3)/13,+∞) \

{1}. �
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5. Proper-biharmonic submanifolds in the 7-sphere. In this section we shall work
with the standard model for simply connected Sasakian space forms N7(c) with c + 3 > 0,
which is the sphere S7 endowed with its canonical Sasakian structure or with the deformed
Sasakian structure introduced by Tanno.

In [6] the authors obtained the explicit equation of the 3-dimensional integral C-parallel
flat submanifolds in S7(1), whilst in [22] we gave the explicit equation of such submanifolds
in S7(c), c + 3 > 0.

Using these results and Theorem 4.2 we easily get the following theorem.

THEOREM 5.1. A 3-dimensional integral C-parallel submanifold M3 of S7(c), c =
4/a − 3 > −3, is proper-biharmonic if and only if either:

(1) c > −1/3 and M3 is flat, it is locally a product of three curves and its position
vector in C4 is

x(u, v,w)= λ√
λ2 + 1/a

exp

(
i

(
1

aλ
u

))
E1

+ 1√
a(µ− α)(2µ− α)

exp(−i(λu− (µ− α)v))E2

+ 1√
aρ1(ρ1 + ρ2)

exp(−i(λu+ µv + ρ1w))E3

+ 1√
aρ2(ρ1 + ρ2)

exp(−i(λu+ µv − ρ2w))E4 ,

where ρ1,2 = (
√

4µ(2µ− α)+ δ2 ± δ)/2 and λ, α,µ, δ are real constants given
by (4.7) such that −1/

√
a < λ < 0, 0 < α ≤ (λ2 − 1/a)/λ, α ≥ δ ≥ 0, α > 2µ,

λ2 �= 1/(3a) and {Ei}4
i=1 is an orthonormal basis of C4 with respect to the usual

Hermitian inner product;
or

(2) M3 is locally isometric to a product γ × M̄2 between a curve and a C-parallel
surface of N , and either
(a) c = 5/9, γ is a helix in S7(5/9) with curvatures κ1 = 1/

√
2 and κ2 = 1, and

M̄2 is locally isometric to the 2-dimensional Euclidean sphere with radius√
3/2, or

(b) c ∈ [(−7 + 8
√

3)/13,+∞) \ {1}, γ is a helix in S7(c) with curvatures
κ1 = (λ2 − (c + 3)/4)/λ and κ2 = 1, and M̄2 is locally isometric to the
2-dimensional Euclidean sphere with radius 2/

√
4λ2 + c + 3, where

λ < 0 and λ2 =




4c + 4 ± √
13c2 + 14c− 11

12
if c < 1 ,

4c + 4 − √
13c2 + 14c− 11

12
if c > 1 .
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Now, applying this theorem in the case of the 7-sphere endowed with its canonical
Sasakian structure we get the following corollary, which also shows that, for c = 1, the
system (4.7) can be completely solved.

COROLLARY 5.2. A 3-dimensional integral C-parallel submanifold M3 of S7(1) is
proper-biharmonic if and only if it is flat, it is locally a product of three curves and its position
vector in C4 is

x(u, v,w)= − 1√
6

exp(−i
√

5u)E1 + 1√
6

exp

(
i

(
1√
5
u− 4

√
3√

10
v

))
E2

+ 1√
6

exp

(
i

(
1√
5
u+

√
3√

10
v − 3

√
2

2
w

))
E3

+ 1√
2

exp

(
i

(
1√
5
u+

√
3√

10
v +

√
2

2
w

))
E4 ,

where {Ei}4
i=1 is an orthonormal basis of C4 with respect to the usual Hermitian inner product.

Moreover, the xu-curve is a helix with curvatures κ1 = 4
√

5/5 and κ2 = 1, the xv-curve is
a helix of order 4 with curvatures κ1 = √

29/
√

10, κ2 = 9
√

2/
√

145 and κ3 = 2
√

3/
√

145
and the xw-curve is a helix of order 4 with curvatures κ1 = √

5/
√

2, κ2 = 2
√

3/
√

10 and
κ3 = √

3/
√

10.

PROOF. Since c = 1 the system (4.7) becomes

(5.1)




(3λ2 − 1)2(λ2 − 1)+ λ4((α + µ)2 + δ2) = 0 ,

(α + µ)(5λ2 + α2 + µ2 − 3)+ µδ2 = 0 ,

δ(5λ2 + δ2 + 3µ2 + αµ− 3) = 0 ,

λ2 + αµ− µ2 + 1 = 0

with the supplementary conditions

(5.2) −1 < λ < 0 , 0 < α ≤ λ2 − 1

λ
, α ≥ δ ≥ 0 , α > 2µ and λ2 �= 1

3
.

We note that, since α > 2µ, from the fourth equation of (5.1) it results that µ < 0.
The third equation of system (5.1) suggests that, in order to solve this system, we need

to split our study in two cases as δ is equal to 0 or not.
Case 1: δ = 0. In this case the third equation holds whatever the values of λ, α and µ

are, and so does the condition α ≥ δ. We also note that α �= −µ, since otherwise, from the
first equation, it results λ2 = 1 or λ2 = 1/3, which are both contradictions.

In the following, we shall look for α of the form α = ωµ, where ω ∈ (−∞, 0) \ {−1},
since α > 0, µ < 0 and α �= −µ. From the second and the fourth equations of the system
we have λ2 = −(ω2 + 3ω − 2)/((ω − 2)(ω − 3)), µ2 = 8/((ω − 2)(ω − 3)) and then α2 =
8ω2/((ω− 2)(ω− 3)). Replacing in the first equation, after a straightforward computation, it
can be written as

8(ω + 1)3(1 − 3ω)

(ω − 3)3(ω − 2)
= 0
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and its solutions are −1 and 1/3. But ω ∈ (−∞, 0) \ {−1} and therefore we conclude that
there are no solutions of the system that verify all conditions (5.2) when δ = 0.

Case 2: δ > 0. In this case the third equation of (5.1) becomes

5λ2 + δ2 + 3µ2 + αµ− 3 = 0 .

Now, since α > 0 and µ < 0, we can take again α = ωµ, with ω ∈ (−∞, 0), and then, from
the last three equations of the system, we easily get λ2 = −(ω2 + 5ω+ 2)/((ω− 1)(ω− 2)),
α2 = 8ω3/((ω − 1)2(ω − 2)), µ2 = 8ω/((ω − 1)2(ω − 2)) and δ2 = 8(ω + 1)2/(ω − 1)2.
Next, from the first equation of (5.1), after a straightforward computation, one obtains

16(ω + 1)3(ω + 3)

(ω − 2)(ω − 1)3
= 0 ,

whose solutions are −3 and −1. If ω = −1 it follows that λ2 = 1/3, which is a contradiction,
and therefore we obtain that ω = −3. Hence

λ2 = 1

5
, α2 = 27

10
, µ2 = 3

10
and δ2 = 2 .

As λ < 0, α > 0, µ < 0 and δ > 0 it results that λ = −1/
√

5, α = 3
√

3/
√

10, µ =
−√

3/
√

10 and δ = √
2. It can be easily seen that also the conditions (5.2) are verified by

these values, and then, by the meaning of the first statement of Theorem 5.1, we come to the
conclusion. �

REMARK 5.3. A proper-biharmonic compact submanifold M of Sn of constant mean
curvature |H | ∈ (0, 1) is of 2-type and mass-symmetric (see [8, 9]). In our case, the Rie-
mannian immersion x can be written as x = x1 + x2, where

x1(u, v,w)= 1√
2

exp

(
i

(
1√
5
u+

√
3√

10
v +

√
2

2
w

))
E4 ,

x2(u, v,w)= − 1√
6

exp(−i
√

5u)E1 + 1√
6

exp

(
i

(
1√
5
u− 4

√
3√

10
v

))
E2

+ 1√
6

exp

(
i

(
1√
5
u+

√
3√

10
v − 3

√
2

2
w

))
E3 ,

and �x1 = 3(1 − |H |)x1 = x1, �x2 = 3(1 + |H |)x2 = 5x2, |H | = 2/3. Now, Corollary 5.2
could also be proved by using the main result in [5] and [11, Proposition 4.1].

REMARK 5.4. By a straightforward computation we can deduce that the map x fac-
torizes to a map from the torus T 3 = R3/Λ into R8, where Λ is the lattice generated by
the vectors a1 = (6π/

√
5,

√
3π/

√
10, π/

√
2), a2 = (0,−3

√
5π/

√
6,−π/√2) and a3 =

(0, 0,−4π/
√

2), and the quotient map is a Riemannian immersion.

By the meaning of Theorem 2.6 we know that the cylinder over x, given by

y(t, u, v,w) = φt (x(u, v,w)) ,

is a proper-biharmonic map into S7(1). Moreover, we have the following proposition.
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PROPOSITION 5.5. The cylinder over x determines a proper-biharmonic Riemannian
embedding from the torus T 4 = R4/Λ into S7, where the lattice Λ is generated by a1 =
(2π/

√
6, 0, 0, 0), a2 = (0, 2π/

√
6, 0, 0), a3 = (0, 0, 2π/

√
6, 0) and a4 = (0, 0, 0, 2π/

√
2).

The image of this embedding is the Riemannian product between a Euclidean circle of radius
1/

√
2 and three other Euclidean circles, each of radius 1/

√
6.

PROOF. As the flow of the characteristic vector field ξ is given by φt(z) = exp(−it)z
we get

y(t, u, v,w)= − 1√
6

exp(−i(t + √
5u))E1 + 1√

6
exp

(
i
(

− t + 1√
5
u− 4

√
3√

10
v
))

E2

+ 1√
6

exp
(

i
(

− t + 1√
5
u+

√
3√

10
v − 3

√
2

2
w

))
E3

+ 1√
2

exp
(

i
(

− t + 1√
5
u+

√
3√

10
v +

√
2

2
w

))
E4 ,

where {Ei}4
i=1 is an orthonormal basis of C4 with respect to the usual Hermitian inner product.

Now, we consider the following two orthogonal transformations of R4:


1√
2
t + 1√

10
u+

√
3

2
√

5
v + 1

2
w = t ′,

2√
5
u−

√
6

4
√

5
v −

√
2

4
w = u′,

√
5

2
√

2
v −

√
3

2
√

2
w = v′,

1√
2
t − 1√

10
u−

√
3

2
√

5
v − 1

2
w = w′ ,

and 


√
2√
6
t ′ + 2√

6
u′ = t̃ ,

−
√

2√
6
t ′ + 1√

6
u′ −

√
3√
6
v′ = ũ ,

−
√

2√
6
t ′ + 1√

6
u′ +

√
3√
6
v′ = ṽ ,

w′ = w̃ .

Then we obtain

ỹ(t̃ , ũ, ṽ, w̃)= − 1√
6

exp(−i(
√

6t̃ ))E1 + 1√
6

exp(i(
√

6ũ))E2 + 1√
6

exp(i(
√

6ṽ))E3

+ 1√
2

exp(i(
√

2w̃))E4 ,
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which ends the proof. �

REMARK 5.6. We see that y can be written as y = y1 + y2, where y1(t, u, v,w) =
exp(−it)x1, y2(t, u, v,w) = exp(−it)x2, and �y1 = 2y1, �y2 = 6y2, the mean curvature of
y being equal to 1/2.

REMARK 5.7. It is known that the parallel flat (n + 1)-dimensional compact anti-
invariant submanifolds in S2n+1(1) are Riemannian products of circles of radii ri , i = 1, . . . ,
n+ 1, where

∑n+1
i=1 r

2
i = 1 (see [32]). The biharmonicity of such submanifolds was solved in

[33].

6. Proper-biharmonic parallel Lagrangian submanifolds of CP 3. We consider the
Hopf fibration π : S2n+1(1) → CPn(4), and M a Lagrangian submanifold of CPn. Then
M̃ = π−1(M) is an (n+ 1)-dimensional anti-invariant submanifold of S2n+1 invariant under
the flow-action of the characteristic vector field ξ0 and, locally, M̃ is isometric to S1×Mn. The
submanifoldM is a parallel Lagrangian submanifold if and only ifM is an integral C-parallel
submanifold (see [27]), and it was proved in [18] that a parallel Lagrangian submanifold M
is biharmonic if and only if M is (−4)-biharmonic.

We recall here that a map ψ : (M, g) → (N, h) is (−4)-biharmonic if it is a critical
point of the (−4)-bienergyE2(ψ)− 4E(ψ), i.e., ψ verifies τ2(ψ)+ 4τ (ψ) = 0. Also, a real
submanifoldM of CPn is called Lagrangian if it has dimension n and the complex structure
J of CPn maps the tangent space to M onto the normal one.

Thus, in order to determine all proper-biharmonic parallel Lagrangian submanifolds of
CP 3, we shall determine the (−4)-biharmonic integral C-parallel submanifolds of S7(1).

Just as in the case of Theorem 3.1 we obtain the following theorem.

THEOREM 6.1. The integral submanifold i : M3 → S7(1) is (−4)-biharmonic if and
only if 


�⊥H + traceB(·, AH ·)− 7H = 0

4 traceA∇⊥
(·)H

(·)+ 3 grad(|H |2) = 0 .

Therefore it follows the next proposition.

PROPOSITION 6.2. A non-minimal integral C-parallel submanifold M3 of S7(1) is
(−4)-biharmonic if and only if

(6.1) traceB(·, AH ·) = 6H .

Now, we can state the theorem.

THEOREM 6.3. A 3-dimensional integral C-parallel submanifoldM3 of S7(1) is (−4)-
biharmonic if and only if either:

(1) M3 is flat and it is locally a product of three curves:
• a helix with curvatures κ1 = (λ2 − 1)/λ and κ2 = 1,
• a helix of order 4 with curvatures κ1 = √

λ2 + α2, κ2 = (α/κ1)
√
λ2 + 1 and

κ3 = −(λ/κ1)
√
λ2 + 1,
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• a helix of order 4 with curvatures κ1 = √
λ2 + µ2 + δ2, κ2 = (δ/κ1)√

λ2 + µ2 + 1 and κ3 = (κ2/δ)
√
λ2 + µ2, if δ �= 0, or a circle with curva-

ture κ1 = √
λ2 + µ2, if δ = 0,

where λ, α,µ, δ are constants given by

(6.2)




(3λ2 − 1)(3λ4 − 8λ2 + 1)+ λ4((α + µ)2 + δ2) = 0 ,

(α + µ)(5λ2 + α2 + µ2 − 7)+ µδ2 = 0 ,

δ(5λ2 + δ2 + 3µ2 + αµ− 7) = 0 ,

1 + λ2 + αµ− µ2 = 0

such that −1 < λ < 0, 0 < α ≤ (λ2 − 1)/λ, α ≥ δ ≥ 0, α > 2µ and λ2 �= 1/3;
or

(2) M3 is locally isometric to a product γ × M̄2 between a helix with curvatures κ1 =
(
√

13−1)/
√

12 − 3
√

13 and κ2 = 1, and a C-parallel surface of S7(1)which is lo-

cally isometric to the 2-dimensional Euclidean sphere with radius
√

3/(7 − √
13).

PROOF. It is easy to see that the equation (6.1) is equivalent to the system

(6.3)




( 3∑
i=1

λi

)( 3∑
i=1

λ2
i − 6

)
+ (α + µ)(αλ2 + µλ3)+ (β + δ)(βλ2 + δλ3) = 0 ,

( 3∑
i=1

λi

)
(αλ2 + µλ3)+ (α + µ)(2λ2

2 + α2 + 3β2 + µ2 + βδ − 6)

+µ(β + δ)2 = 0 ,( 3∑
i=1

λi

)
(βλ2 + δλ3)+ β(α + µ)2 + (β + δ)(2λ2

3 + δ2 + 3µ2 + β2 + αµ− 6)

= 0 .

In the same way as for the study of biharmonicity, we shall split the study of this system,
as M3 is given by Case I or Case II of the classification.

Case I. The system (6.3) is equivalent to the system given by the first three equations of
(6.2) and, just like in the proof of Theorem 4.2, we conclude the result.

Case II. (1) It is easy to verify that this case cannot occur in this setting.
(2) The second and the third equation of system (6.3) are satisfied and the first equation

is equivalent to 3λ4 − 8λ2 + 1 = 0, whose solutions are λ2 = (4 ± √
13)/3. Since λ2 < 1

it follows that λ2 = (4 − √
13)/3 and this, together with the classification of the integral

C-submanifolds, leads to the conclusion. �

Using the explicit equation of the 3-dimensional integral C-parallel flat submanifolds in
S7(1) (see [6]), we obtain the following corollary.
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COROLLARY 6.4. Any 3-dimensional flat (−4)-biharmonic integral C-parallel sub-
manifoldM3 of S7(1) is given locally by

x(u, v,w)= λ√
λ2 + 1

exp
(

i
(1

λ
u
))

E1 + 1√
(µ− α)(2µ− α)

exp(−i(λu− (µ− α)v))E2

+ 1√
ρ1(ρ1 + ρ2)

exp(−i(λu+ µv + ρ1w))E3

+ 1√
ρ2(ρ1 + ρ2)

exp(−i(λu+ µv − ρ2w))E4 ,

where ρ1,2 = (
√

4µ(2µ− α)+ δ2 ± δ)/2, −1 < λ < 0, 0 < α ≤ (λ2 − 1)/λ, α ≥ δ ≥ 0,
α > 2µ, λ2 �= 1/3, the tuple (λ, α,µ, δ) being one of the following

(
−

√
4 − √

13

3
,

√
7 − √

13

6
, −

√
7 − √

13

6
, 0

)
,

(
−

√
1

5 + 2
√

3
,

√
45 + 21

√
3

13
, −

√
6

21 + 11
√

3
, 0

)
,

or (
−

√
1

6 + √
13
,

√
523 + 139

√
13

138
, −

√
79 − 17

√
13

138
,

√
14 + 2

√
13

3

)
,

and {Ei}4
i=1 is an orthonormal basis of C4 with respect to the usual Hermitian inner product.

PROOF. In order to solve the system (6.2), we first note that, since α > 2µ, from the
fourth equation it results µ < 0.

The third equation suggests that we need to split our study in two cases as δ is equal to 0
or not.

Case 1: δ = 0. In this case the third equation holds whatever the values of λ, α and µ
are, and so does the condition α ≥ δ.

If α = −µ we easily obtain that the solution of the system is

λ = −
√

4 − √
13

3
, α =

√
7 − √

13

6
, µ = −

√
7 − √

13

6
.

In the following, we shall look for α of the form α = ωµ, where ω ∈ (−∞, 0) \ {−1},
since α > 0 and µ < 0. From the second and the fourth equations of the system we have
λ2 = −(ω2 + 7ω − 6)/((ω − 2)(ω − 3)), µ2 = 12/((ω − 2)(ω − 3)) and then α2 =
12ω2/((ω − 2)(ω − 3)). Replacing in the first equation, after a straightforward computation,
it can be written as

3ω6 + 16ω5 − 58ω4 − 140ω3 + 531ω2 − 444ω+ 108 = 0 ,

which is equivalent to

(ω − 2)2(3ω4 + 28ω3 + 42ω2 − 84ω + 27) = 0 ,
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whose solutions are 2, −3 ± 2
√

3 and (−5 ± 2
√

13)/3. From these solutions the only one to
verify the supplementary conditions is ω = −3 − 2

√
3, for which we have

λ = −
√

1

5 + 2
√

3
, α =

√
45 + 21

√
3

13
, µ = −

√
6

21 + 11
√

3
.

Case 2: δ > 0. In this case the third equation of (6.2) becomes

5λ2 + δ2 + 3µ2 + αµ− 7 = 0 .

Now, again taking α = ωµ, this time with ω ∈ (−∞, 0), from the last three equations of the
system, we easily get

λ2 = − ω2 + 9ω + 2

(ω − 1)(ω − 2)
, α2 = 12ω3

(ω − 1)2(ω − 2)
,

µ2 = 12ω

(ω − 1)2(ω − 2)
, δ2 = 12(ω + 1)2

(ω − 1)2
.

Replacing in the first equation of the system we obtain the solutions −2 ±√
3 and −4 ±√

13,
from which only ω = −4 − √

13 verifies the supplementary conditions. Therefore, we obtain

λ = −
√

1

6 + √
13
, α =

√
523 + 139

√
13

138
,

µ = −
√

79 − 17
√

13

138
, δ =

√
14 + 2

√
13

3
,

and we are done. �

REMARK 6.5. By some straightforward computations we can check that the images of
the cylinders over the above x are, respectively: the Riemannian product of a circle of radius√
(5 − √

13)/12 and three circles, each of radius
√
(7 + √

13)/36; the Riemannian product

of two circles each of radius
√
(3 + √

3)/12 and two circles each of radius
√
(3 − √

3)/12;

the Riemannian product of a circle of radius
√
(5 + √

13)/12 and three circles each of radius√
(7 − √

13)/36.
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