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Abstract. This article is devoted to studying the ramification of Galois torsors and of
�-adic sheaves in characteristic p ą 0 (with � ‰ p). Let k be a perfect field of characteristic
p ą 0, X a smooth, separated and quasi-compact k-scheme, D a simple normal crossing
divisor on X, U “ X ´D, Λ a finite local Z�-algebra and F a locally constant constructible
sheaf of Λ-modules on U . We introduce a boundedness condition on the ramification of F
along D, and study its main properties, in particular, some specialization properties that lead
to the fundamental notion of cleanliness and to the definition of the characteristic cycle of F .
The cleanliness condition extends the one introduced by Kato for rank 1 sheaves. Roughly
speaking, it means that the ramification of F along D is controlled by its ramification at
the generic points of D. Under this condition, we propose a conjectural Riemann-Roch type
formula for F . Some cases of this formula have been previously proved by Kato and by the
second author (T. S.).

1. Introduction.
1.1. The purpose of this article is to study the ramification of Galois torsors and of

�-adic sheaves in characteristic p ą 0 (with � ‰ p), developing the project started in [2, 3,
4, 5, 21]. More precisely, this work is a sequel to [21], though it can be read independently.
The leitmotiv of our approach, in particular in this work, is to eliminate the ramification by
blow-ups.

1.2. Let k be a perfect field of characteristic p ą 0, X a smooth, separated and quasi-
compact k-scheme, D a simple normal crossing divisor on X and U “ X ´ D; we say for
short that pX,Dq is an snc-pair over k. We fix a prime number � different from p and a finite
local Z�-algebra Λ. Let F be a locally constant constructible sheaf of Λ-modules on U . The
main problems in ramification theory are the following:

(A) to describe the ramification of F alongD;
(B) to give a Riemann-Roch type formula for F , that is, to compute the Euler-Poincaré

characteristic with compact support of F on U in terms of its invariants of ramifi-
cation (provided by (A)).

In [4], we gave cohomological answers to both problems that rely on the notion of character-
istic class of F . In this article, we develop a more geometric approach to problem (A) and
give a conjectural formula for (B), based on the finer notion of characteristic cycle of F . For
this purpose, we start by studying the ramification of Galois torsors over U , that is, torsors
over U for the étale topology, under finite constant groups.
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1.3. Our approach is based on a geometric construction introduced in [4, 5, 21]. Let
D1, . . . ,Dm be the irreducible components ofD and let pXˆk Xq1 be the blow-up of Xˆk X

alongDiˆkDi for all 1 ď i ď m. We define the framed self-productX˚k X of pX,Dq over k
as the open subscheme of pXˆkXq1 obtained by removing the strict transforms ofDˆkX and
Xˆk D (called the logarithmic self-product in [21]). We give in 5.20 an equivalent definition
using logarithmic geometry, that extends to more general situations. The diagonal morphism
δX : X Ñ X ˆk X lifts uniquely to a morphism δ : X Ñ X ˚k X, called the framed diagonal
of pX,Dq (and the logarithmic diagonal in [21]). We consider X˚k X as anX-scheme by the
second projection.

Let R be an effective rational divisor onX with support inD (i.e., a sum of non-negative
rational multiples of the irreducible components of D). We define in 5.26 the dilatation
pX ˚k XqpRq of X ˚k X along δ of thickening R. It is an affine scheme over X ˚k X that fits
into a canonical Cartesian diagram

U
δU ��

j

��

U ˆk U

jpRq
��

X
δpRq

�� pX ˚k XqpRq

(1.3.1)

where j pRq is a canonical open immersion, δpRq is the unique morphism lifting δ, j is the
canonical injection and δU is the diagonal morphism. If R has integral coefficients, then
pX ˚k XqpRq is a dilatation in the sense of Raynaud. More precisely, pX ˚k XqpRq is the
maximal open subscheme of the blow-up ofX˚kX along δpRq, where the exceptional divisor
is equal to the pull-back of R by the second projection to X (cf. 4.1).

1.4. Let V be a Galois torsor over U of group G and let R be an effective rational
divisor on X with support in D. We introduce a fundamental boundedness property of the
ramification of V {U along D. We consider V ˆk V as a Galois torsor over U ˆk U of group
G ˆ G, and denote by W the quotient of V ˆk V by ∆pGq, where ∆ : G Ñ G ˆ G is the
diagonal homomorphism. The diagonal morphism δV : V Ñ V ˆk V induces a morphism
εU : U Ñ W lifting the diagonal morphism δU : U Ñ U ˆk U . Note that W represents
the sheaf of isomorphisms of G-torsors from U ˆk V to V ˆk U over U ˆk U , and that εU
corresponds to the identity isomorphism of V (identified with the pull-backs of U ˆk V and
V ˆk U by δU ). We denote by Z the integral closure of pX ˚k XqpRq in W , by π : Z Ñ
pX ˚k XqpRq the canonical morphism and by ε : X Ñ Z the morphism induced by εU : U Ñ
W . We have π ˝ ε “ δpRq.

W ��

��

Z

π

��
U

εU
��

δU �� U ˆk U �� pX ˚k XqpRq X

ε
��

δpRq
��

(1.4.1)
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Let x P X. We say that the ramification of V {U at x is bounded by R` if the morphism π is
étale at εpxq, and that the ramification of V {U alongD is bounded by R` if π is étale over an
open neighborhood of εpXq. We establish several properties of this notion. First, we prove that
it satisfies descent for faithfully flat and log-smooth morphisms (7.7). The second property
plays a key role in this article: if R has integral coefficients, we prove that the ramification of
V {U alongD is bounded by R` if and only if there exists an open neighborhood Z0 of εpXq
in Z which is étale over pX˚k XqpRq and such that πpZ0q contains pX˚k XqpRq ˆX R (7.13).
Third, we relate this notion to its analogue for finite separable extensions of local fields (with
possibly imperfect residue fields) defined in [2, 3]: let ξ be a generic point ofD, ξ a geometric
point of X above ξ , S the strict localization of X at ξ , K the fraction field of Γ pS,OSq and r
the multiplicity of R at ξ . We put V ˆU SpecpKq “ SpecpLq, where L “ śn

i“1 Li is a finite
product of finite separable extensions of K . We prove in 7.18 that the ramification of V {U at
ξ is bounded by R` if and only if, for every 1 ď i ď n, the logarithmic ramification of Li{K
is bounded by r` in the sense of [2, 3].

1.5. Let V be a Galois torsor over U of group G, Y the integral closure of X in V , and
R an effective rational divisor on X with support in D. Assume that the following conditions
are satisfied:

(i) for every geometric point y of Y , the inertia group Iy Ă G of y has a normal
p-Sylow subgroup;

(ii) for every generic point ξ of D, the ramification of V {U at ξ is bounded by R`.
Then we prove that the ramification of V {U alongD is bounded by R` (7.19). This result is
an analogue of the Zariski-Nagata purity theorem ([11] X 3.4).

1.6. Let V be a Galois torsor over U of group G. We define the conductor of V {U
relatively to X to be the minimum effective rational divisor R on X with support in D such
that for every generic point ξ of D, the ramification of V {U at ξ is bounded by R`. This
terminology may be slightly misleading as the ramification of V {U along D may not be
bounded by R` in general. However, we prove in 7.22, as a consequence of 1.5, that under a
strong form of resolution of singularities, there exists an snc-pair pX1,D1q over k and a proper
morphism f : X1 Ñ X inducing an isomorphism X1 ´D1 „Ñ U , such that if we denote by R1
the conductor of V {U relatively to X1, the ramification of V {U alongD1 is bounded by R1`.

1.7. Let F be a locally constant constructible sheaf ofΛ-modules onU , R an effective
rational divisor on X with support in D, x P X and x a geometric point of X above x. Recall
that Λ is a finite local Z�-algebra (1.2). We denote by pr1, pr2 : U ˆk U Ñ U the canonical
projections and put

H pF q “ Homppr2̊ F , pr1̊ F q.(1.7.1)

We prove in 8.2 that the base change morphism

α : δpRq˚j pRq
˚ pH pF qq Ñ j˚δŮ pH pF qq “ j˚pEndpF qq(1.7.2)
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relatively to the Cartesian diagram (1.3.1) is injective. Furthermore, the following conditions
are equivalent:

(i) The stalk αx of the morphism α at x is an isomorphism.
(ii) There exists a Galois torsor V over U trivializing F such the ramification of V {U

at x is bounded by R`.
We give also other useful equivalent conditions. We say that the ramification of F at x is
bounded by R` if F satisfies these equivalent conditions. We say that the ramification of
F along D is bounded by R` if the ramification of F at x is bounded by R` for every
geometric point x of X. We establish several properties of this notion similar to those for
Galois torsors. In particular, we relate it to the analogue notion for Galois representations of
local fields (with possibly imperfect residue fields) (8.8).

1.8. Let F be a locally constant constructible sheaf ofΛ-modules on U . We define the
conductor of F relatively to X to be the minimum of the set of effective rational divisors R
onX with support inD such that for every geometric point ξ ofX above a generic point ofD,
the ramification of F at ξ is bounded by R`. As for Galois torsors, this terminology may be
slightly misleading as the ramification of F along D may not be bounded by R` in general.
However, we prove that under a strong form of resolution of singularities, there exists an snc-
pair pX1,D1q over k and a proper morphism f : X1 Ñ X inducing an isomorphismX1 ´D1 „Ñ
U , such that if we denote by R1 the conductor of F relatively to X1, the ramification of F

along D1 is bounded by R1` (8.11).

1.9. The last part of this article is devoted to studying important specialization proper-
ties that lead to the fundamental notion of cleanliness and to the definition of the characteristic
cycle. Let R be an effective divisor onX with support inD.1 We prove (4.6) that pX˚k XqpRq
is smooth over X and that

EpRq “ pX ˚k XqpRq ˆX R(1.9.1)

is canonically isomorphic to the twisted logarithmic tangent bundle

VpΩ1
X{kplogDq bOX OXpRqq ˆX R

over R (cf. 2.2 for the convention on vector bundles). We denote by ĚpRq the dual vector
bundle. Consider the following commutative diagram with Cartesian squares.

EpRq ��

��

pX ˚k XqpRq

pr2

��

U ˆk U

��

jpRq
��

R �� X U��

(1.9.2)

1We consider rational divisors on X with support in D and integral coefficients as Cartier divisors on X.
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Let G be a sheaf of Λ-modules on U ˆk U . We call R-specialization of G and denote by
νRpG ,Xq, the sheaf on EpRq defined by

νRpG ,Xq “ j
pRq
˚ pG q|EpRq .(1.9.3)

Let F be a locally constant constructible sheaf of Λ-modules on U such that its ramifi-
cation along D is bounded by R` and let H pF q be the sheaf on U ˆk U defined in (1.7.1).
We prove in 8.15 that νRpH pF q,Xq is additive, which means that its restrictions to the fibers
of EpRq over R are invariant by translation (cf. 3.1). This important property was first proved
in ([21] 2.25); we give a new proof in 8.15.

We fix a non-trivial additive character ψ : Fp Ñ Λˆ and denote by S Ă ĚpRq the
support of the Fourier-Deligne transform of νRpH pF q,Xq relatively to ψ (cf. 3.4 and 3.5).

The additivity of νRpH pF q,Xq is equivalent to the fact that, for every x P R, the set SXĚpRq
x

is finite (3.6). We call S the Fourier dual support of νRpH pF q,Xq. We prove in fact that
S is the underlying space of a closed subscheme of ĚpRq which is finite over R (8.18). Note
that S is a priori a constructible subset of ĚpRq and that it is not obvious that it is closed in
ĚpRq. We say that νRpH pF q,Xq is non-degenerate if S does not meet the zero section of
ĚpRq over R.

1.10. We need in the following to recall a few facts from the ramification theory of
local fields with imperfect residue fields developed in [2], [3] and [21]. We refer to §6 for a
more detailed review. Let K be a discrete valuation field, OK the valuation ring of K , F the
residue field of OK , K a separable closure ofK and G the Galois group ofK{K . We assume
that OK is henselian and that F has characteristic p. In ([2] 3.12), we defined a decreasing
filtration G r

log pr P Qě0q of G by closed normal subgroups, called the logarithmic ramification
filtration. For a rational number r ě 0, we put

G r`
log “

ď
sąr

G s
log ,

GrrlogpG q “ G r
log{G r`

log .

This filtration satisfies the following properties, among others:
(i) The group P “ G 0`

log is the wild inertia subgroup of G , i.e., the p-Sylow subgroup

of the inertia subgroup G 0
log ([2] 3.15).

(ii) For every rational number r ą 0, the group GrrlogpG q is abelian and is contained in

the centre of the pro-p-group P{G r`
log ([3] Theorem 1).

Further properties are stated below.
For any finite discrete Λ-representation M of G , we have a canonical slope decomposi-

tion

M “ à
rPQě0

Mprq ,(1.10.1)
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characterised by the following properties (cf. 6.4): Mp0q “ MP and for every r ą 0,

pMprqqG r
log “ 0 and pMprqqG r`

log “ Mprq .(1.10.2)

The values r ě 0 for whichMprq ‰ 0 are called the slopes ofM . We say thatM is isoclinic if
it has only one slope. If M is isoclinic of slope r ą 0, we have a canonical central character
decomposition

M “ à
χ

Mχ ,(1.10.3)

where the sum runs over finite characters χ : GrrlogG Ñ Λχ̂ such that Λχ is a finite étale
Λ-algebra (cf. 6.7).

We assume moreover that K has characteristic p and that F is of finite type over k.
Let Ω1

OK
plogq be the OK -module of logarithmic 1-differential forms of OK and Ω1

F plogq “
Ω1

OK
plogq bOK F (cf. 6.11). We have a canonical exact sequence 0 Ñ Ω1

F Ñ Ω1
F plogq Ñ

F Ñ 0. We denote by OK the integral closure of OK in K , by F the residue field of OK , by
ord the valuation of K normalized by ordpKˆq “ Z and, for any rational number r , by mr

K

(resp. mr`
K

) the OK -module of elements x P K such that ordpxq ě r (resp. ordpxq ą r).
The additivity property presented in 1.9 is the geometric incarnation of an important

property of the logarithmic ramification filtration proved in ([21] 1.24), namely, for any ratio-
nal number r ą 0, the group GrrlogG is an Fp-vector space, and we have a canonical injective
homomorphism

rsw : HomZpGrrlogG ,Fpq Ñ HomF pmr

K
{mr`

K
,Ω1

F plogq bF F q ,(1.10.4)

called the refined Swan conductor (cf. 6.13).

1.11. Let F be a locally constant constructible sheaf of Λ-modules on U , ξ a generic
point of D, Xpξq the henselization of X at ξ , ηξ the generic point of Xpξq, ηξ a geometric
generic point of Xpξq and Gξ the Galois group of ηξ over ηξ . We say that F is isoclinic at ξ
if the representation Fηξ of Gξ is isoclinic, and that F is isoclinic along D if it is isoclinic at
all generic points of D.

Assume first that F is isoclinic along D, and let R be its conductor relatively to X. We
say (8.23) that F is clean alongD if the following conditions are satisfied:

(i) the ramification of F along D is bounded by R`;
(ii) there exists a log-smooth morphism of snc-pairs f : pX1,D1q Ñ pX,Dq over k

such that the morphism X1 Ñ X is faithfully flat, that R1 “ f ˚pRq has integral co-
efficients, and if we put U 1 “ X1 ´D1 and F 1 “ F |U 1, that the R1-specialization
ν1
R1pH pF 1q,X1q of H pF 1q in the sense of (1.9.3) relatively to pX1,D1q, is addi-

tive and non-degenerate.
Note that we may replace (ii) by the stronger condition that it holds for any morphism f

satisfying the same assumptions (cf. 8.24).
This notion can be extended to general sheaves as follows. Let x be a geometric point of

X. We say that F is clean at x if there exists an étale neighborhood X1 of x in X such that,
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if we put U 1 “ U ˆX X
1 and denote by D1 the pull-back of D over X1, there exists a finite

decomposition

F |U 1 “ à
1ďiďn

F 1
i(1.11.1)

of F |U 1 into a direct sum of locally constant constructible sheaves of Λ-modules F 1
i p1 ď

i ď nq on U 1 which are isoclinic and clean along D1 in the previous sense. We say that F

is clean along D if it is clean at all geometric points of X (cf. 8.25). Note that for isoclinic
sheaves, the two definitions are equivalent (8.27).

The notion of cleanliness was first introduced by Kato for rank 1 sheaves in [13]. Our
definition extends his. It was extended to isoclinic sheaves by the second author (T. S.) in
([21] §3.2).

Roughly speaking, if F is clean along D, then its ramification along D is controlled
by its ramification at the generic points of D. This is the main idea behind the following
definition of the characteristic cycle of F .

1.12. We assume that X is connected and denote by d the dimension of X, by
TX̊plogDq “ VpΩ1

X{kplogDqq the logarithmic cotangent bundle of X and by ξ1, . . . , ξn the

generic points of D. For each 1 ď i ď n, we denote by Fi the residue field of X at ξi , by
Si “ SpecpOKi q the henselization of X at ξi and by ηi “ SpecpKiq the generic point of Si .
We fix a separable closure Ki of Ki and denote by Gi the Galois group of Ki{Ki .

Let F be a locally constant constructible sheaf of free Λ-modules on U which is clean
along D. We denote by Mi the ΛrGis-module corresponding to F |ηi . Let

Mi “ à
rPQě0

M
prq
i(1.12.1)

be its slope decomposition and, for each rational number r ą 0,

M
prq
i “ à

χ

M
prq
i,χ(1.12.2)

the central character decomposition ofM
prq
i . Note thatM

prq
i,χ is a freeΛ-module of finite type

for all r ą 0 and all χ . By enlarging Λ, we may assume that for all rational numbers r ą 0

and all central characters χ of M
prq
i (i.e., all characters χ : GrrlogGi Ñ Λχ̂ that appear in the

decomposition (1.12.2)), we haveΛχ “ Λ. Since GrrlogGi is abelian and killed by p (6.13), χ

factors uniquely as GrrlogGi Ñ Fp
ψÑ Λˆ, where ψ is the non-trivial additive character fixed

in 1.9. We denote also by χ : GrrlogGi Ñ Fp the induced character and by

rswpχq : mr

Ki
{mr`

Ki
Ñ Ω1

Fi
plogq b F i(1.12.3)

its refined Swan conductor (1.10.4) (where the notation are defined as in 1.10 with K “ Ki).
Let Fχ be the field of definition of rswpχq, which is a finite extension of Fi contained in F i .
The refined Swan conductor rswpχq defines a line Lχ in TX̊plogDq bX Fχ . Let Lχ be the
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closure of the image of Lχ in TX̊plogDq. For each 1 ď i ď n, we put

CCipF q “
ÿ

rPQą0

ÿ
χ

r ¨ rkΛpMprq
i,χ q

rFχ : Fis rLχ s ,(1.12.4)

which is a d-cycle on TX̊plogDq ˆX Di . It follows from the proof of ([21] 1.26) that the
coefficient of rLχ s is an element of Zr1{ps, and hence gives an element of Λ.

Let σ : X Ñ TX̊plogDq be the zero-section of TX̊plogDq over X. We define the char-
acteristic cycle of F and denote by CCpF q, the d-cycle on TX̊plogDq defined by

CCpF q “ rkΛpF qrσ s ´
ÿ

1ďiďn
CCipF q .(1.12.5)

Recall ([4] 2.1.1) that we associated to j!F a characteristic class, denoted by Cpj!F q,
which is a section of H0pX,KXq, where KX “ f !Λ and f : X Ñ Specpkq is the structural
morphism.

CONJECTURE 1.13. Under the assumptions of (1.12), we have in H0pX,KXq
Cpj!F q “ pCCpF q, rσ sq ,(1.13.1)

where the right hand side is the intersection pairing relatively to TX̊plogDq.

Kato defined the characteristic cycle of a clean sheaf of rank 1 in [15]. The second
author (T. S.) extended the definition to isoclinic and clean sheaves in ([21] 3.6) and proved
conjecture 1.13 for these sheaves in (loc. cit. 3.7).

1.14. We may optimistically expect that for any locally constant constructible sheaf F

of Λ-modules on U , there exists an snc-pair pX1,D1q over k and a proper morphism of snc-
pairs pX1,D1q Ñ pX,Dq inducing an isomorphism X1 ´D1 „Ñ U such that F is clean along
D1. Kato proved this property for rank 1 sheaves on surfaces ([15] 4.1).

1.15. We introduce in §2 the general notation and conventions for this article and prove
some preliminary results. Section 3 is devoted to studying additive sheaves on vector bundles.
We recall in §4 the classical notion of dilatation. The first part of Section 5 contains a de-
tailed review of the notion of frame in logarithmic geometry and some representability results
following [16]. Its second part is devoted to the study of snc-pairs over k; we introduce the
framed products and extend the notion of dilatation to rational divisors. Section 6 is a review
of ramification theory of local fields with imperfect residue fields. The last two sections, §7
and §8, are the heart of this article. The former is devoted to studying the ramification of
galois torsors and the latter to studying the ramification of �-adic sheaves.

Acknowledgment. The first author would like to thank the Institut des Hautes Études Scientifiques
and the University of Tokyo for their hospitalities. Both authors are grateful to the Centre Émile Borel
at the Institut Henri Poincaré for its hospitality during the Galois trimester. This research is partially
supported by Grants-in-Aid for scientific research (B) 18340002 and JSPS Core-to-Core Program 18005
New Developments of Arithmetic Geometry, Motive, Galois Theory, and Their Practical Applications.
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2. Notation and preliminaries.

2.1. In this article, we fix a prime number p, a perfect field k of characteristic p and
an algebraic closure k of k. All k-schemes are assumed to be separated of finite type over k.
We fix also a prime number � different from p, a finite local Z�-algebra Λ and a non-trivial
additive character ψ : Fp Ñ Λˆ.

2.2. Let X be a scheme and E a locally free OX-module of finite type. We call the
spectrum of the quasi-coherent OX-algebra SymOX pE q the vector bundle over X defined by
E and denote it by VpE q.

2.3. Let X be a locally noetherian scheme. In this article, a Galois torsor over X of
groupG stands for a torsor overX for the étale topology under a finite constant groupG, that
is, a principal covering of X of Galois group G in the sense of ([10] V 2.8).

2.4. Let X be a normal and locally noetherian scheme, U a dense open subscheme of
X, V a Galois torsor over U of group G, and Y the integral closure of X in V . Then G acts
on Y and we have X “ Y {G. Let y be a point of Y and y a geometric point of Y above y.
Recall that the inertia group Iy of y is the subgroup of elements σ P G such that gpyq “ y

and that g acts trivially on κpyq. It is convenient to denote Iy also by Iy and to call it also the
inertia group of y. Assume thatX is universally Japanese, which means that every point ofX
has an affine open neighborhood whose ring is universally Japanese ([12] 0.23.1.1). Let x be
the image of y in X. Then we have a canonical isomorphism

Xpxq ˆX V »
ğ

zPYbXκpxq
Ypzq ˆY V ,(2.4.1)

where Ypzq is the strict localization of Y at z. Since Y is normal, Ypzq ˆY V is integral.
Therefore, Iy is the stabilizer of Ypyq ˆY V in G.

2.5. Recall that a scheme locally of finite type over a universally Japanese scheme is
universally Japanese, and that the ring Z (resp. any field) is universally Japanese ([12] 7.7.4).

2.6. Let X be a k-scheme. We denote by pr1, pr2 : X ˆk X Ñ X the canonical pro-
jections. If Y is an X-scheme and Z is an pX ˆk Xq-scheme, we denote by Y ˆX Z (resp.
ZˆXY ) the fibered product of Y and Z overX, whereZ is considered as anX-scheme by pr1
(resp. pr2). In particular, in ZˆXZ, the first factor is considered as anX-scheme by pr2 while
the second factor is considered as anX-scheme by pr1. Let F be an étale sheaf ofΛ-modules
on X. We denote by H pF q the sheaf on X ˆk X defined by

H pF q “ Homppr2̊ F , pr1̊ F q .(2.6.1)

If f : Y Ñ X is a morphism of schemes, we denote (abusively) the pull-back f ˚pF q also by
F |Y .
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LEMMA 2.7. Consider a commutative diagram of finite morphisms of locally noether-
ian schemes

Z1 h ��

i1
��

Z

i

��
Y 1 g 1

��

f 1
��

Y

f

��
X1 g �� X

(2.7.1)

and let X0 be a dense open subscheme of X, z1 P Z1, y1 “ i1pz1q, x1 “ f 1py1q, z “ hpz1q,
y “ ipzq “ g 1py1q and x “ f pyq “ gpx1q. We denote by the index 0 the base change of
schemes or morphisms by the canonical injection X0 Ñ X. Assume that X,X1, Y and Y 1 are
normal, that Y0 is dense in Y , that f0 is étale, that Y 1

0 » Y0 ˆX X
1, that Y 1

0 is dense in Y 1 and
that f ˝ i and f 1 ˝ i1 are closed immersions.

(i) If f is étale at y, then f 1 is étale at y1.
(ii) Assume moreover that the irreducible component of X1 containing x1 dominates

the irreducible component of X containing x, that Z1
0 » Z0 ˆX X

1 and that Z1
0 is

schematically dense in Z1. Then f is étale at y if and only if f 1 is étale at y1.
(i) We denote by V (resp.V 1) the maximal open subscheme of Y (resp.Y 1) where f

(resp.f 1) is étale. Since V ˆX X
1 is étale over X1, it is normal. But Y 1 is the integral closure

of Y ˆX X
1 in Y 1

0. Therefore, V ˆX X
1 is isomorphic to g 1´1pV q, and g 1´1pV q Ă V 1, which

implies the proposition.
(ii) Observe first that i and i1 are closed immersions. By (i), it is enough to prove that

if f 1 is étale at y1, then f is étale at y. We may replace X (resp.X1) by its strict henselization
at a geometric point above x (resp. x1) and Y and Z (resp.Y 1 and Z1) by their pull-back; so we
may assume X,X1, Z and Z1 strictly local. Then we may replace Y by its localization Yy and

Y 1 by g 1´1pYyq. Let Y : be a connected component of Y 1. By assumption Y :
0 is dense in Y :.

Since the restriction Y :
0 Ñ X1

0 of f 1 is finite and étale, it is surjective; hence f 1pY :q “ X1.
If F is a reduced closed subscheme of Y such that f pF q “ X, then F “ Y . We deduce that
g 1pY :q “ Y . SinceZ1

0 is dense in Z1, it is not empty. Then g 1´1pg 1pZ1
0qqXY : “ Z1

0XY : ‰ ∅,
and hence Z1 Ă Y :. Therefore Y 1 is connected and f 1 is an isomorphism (as it is étale). Let ξ
(resp. η) be the generic point of X (resp.Y ). It follows that f induces an isomorphism η » ξ .
Since Y is the integral closure of X in η, f is an isomorphism.

PROPOSITION 2.8. Let X be a regular, locally noetherian and universally Japanese
scheme, U an open dense subscheme of X, V a finite étale covering of U , Y the integral
closure of X in V , V 1 the maximal open subscheme of Y which is étale over X, and T a
closed subscheme of Y . Assume the following conditions satisfied:

(i) All codimension one points of T are contained in V 1.
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(ii) There exists a Galois torsor W over U , with nilpotent groupG, and a subgroup H
of G, such that V is U -isomorphic to the quotient of W by H .

Then T Ă V 1.
Let Z be the integral closure of X in W . For every geometric point z of Z, we denote

by Iz Ă G the inertia group of z. By condition (i), if z is above a codimension one point
of T , then Iz Ă H . We proceed by induction on rG : H s. Let n ě 1. We assume that the
proposition holds true if rG : H s ă n and prove it if rG : H s “ n. The proposition is obvious
if G “ H ; so we may assume that n ą 1. There exists a normal subgroupG1 ofG containing
H and different from G such that G{G1 is abelian ([8] I §6.3 prop. 8). Observe that G1 is
nilpotent. We denote by U 1 the quotient of W by G1, and by X1 the integral closure of X in
U 1. We denote by h : Y Ñ X1 and g : X1 Ñ X the canonical morphisms, and put f “ g ˝ h.
Let N be the maximal open subscheme of X over which g is étale (observe that g is finite). It
follows from the assumption that g is étale at all points hptq P X1, where t is a codimension
one point of T . Since g is Galois, we conclude that for any codimension one point t of T ,
f ptq P N . Let S be the reduced closed subscheme of X with support X ´N . By the Zariski-
Nagata purity theorem ([11] X 3.4), S is a Cartier divisor on X. If f pT q X S ‰ ∅, then there
exists a codimension one point t of T such that f ptq P S, which is a contradiction. Hence
f pT q Ă N . We may replace X by N and U,V and W by their pull-backs. Then X1 is étale
above X; in particular, it is regular. The induction assumption implies that h is étale over an
open neighbourhood of T in Y . Then T Ă V 1.

REMARK 2.9. Under the assumptions of (2.8), if moreover V is connected, then con-
dition (ii) is equivalent to the following condition:

(ii1) V is dominated by a connected finite étale Galois covering W of U with nilpotent
Galois group G (i.e., there exists a dominating U -morphism W Ñ V ).

LEMMA 2.10. Let A be a strictly henselian valuation ring, with fraction field K and
residue field of characteristic p, K a separable closure of K and G the Galois group of K
over K . Then G has a normal p-Sylow subgroup P , and the quotient I t “ G{P is abelian.
In particular, G is solvable.

Let L be a finite Galois extension of K and GL the Galois group of L{K . The integral
closure B of A in L is a strictly henselian valuation ring ([20] Theorem 9). Let PL be the
large valuation group of B defined in ([24] VI §12 page 75), which is a normal subgroup of
GL. Then PL is a p-group (loc. cit., Theorem 24 page 77). The quotient I tL “ GL{PL is
abelian (by construction), and its order is prime to p (loc. cit., (23) page 76). Hence PL is
a normal p-Sylow subgroup of GL. The lemma follows by passing to the limit over finite
Galois extensions of K contained in K .

PROPOSITION 2.11. Let A be a local ring of maximal ideal m, p a prime ideal of A,
κppq the residue field of A at p, and ν : A Ñ Ap the canonical homomorphism. Assume that
pAp Ă νpAq, and consider the following conditions:
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(i) A is henselian.
(ii) Ap and A{p are henselian.
Then we have (i)ñ(ii). If moreover ν is injective, the two conditions are equivalent.

Observe first that we may assume that ν is injective.
(i)ñ(ii). We need only to prove thatAp is henselian. LetB1 be a finite freeAp-algebra.

We need to prove thatB1 is decomposed. By ([12] 8.8.2 and 8.10.5), there exists f P A´p and
a finite Af -algebra of finite presentation B2 such that B1 » B2 bAf Ap. Then by Zariski’s
main theorem ([12] 8.12.6), there exists a finite A-algebra B that fits into a commutative
digram

SpecpB2q j ��

��

SpecpBq

��
SpecpAf q �� SpecpAq

where j is an open immersion. The induced morphism SpecpB2q Ñ SpecpBf q being an open
and closed immersion, we may replace B1 by Bp. Replacing B by its canonical image in Bp,
we may assume that B Ă Bp. We have isomorphisms of A-modules

Bp{B » B bA pAp{Aq » B bA pκppq{pA{pqq ,
where the second follows from the assumption pAp Ă A Ă Ap. We deduce that pBp Ă B.

We put C “ B bA κppq “ Bp{pBp. Since C is an artinian ring, we have

C »
ź
qPQ

Cq ,

where Q is the set of prime ideals of B above p. For each q P Q, we denote by rCq the
canonical image of B in Cq. We put rC “ ś

qPQ rCq and denote by rB its inverse image by the
canonical morphism Bp Ñ Bp{pBp “ C. We have an exact sequence of A-modules

0 Ñ B{pBp Ñ rC Ñ rB{B Ñ 0 .(2.11.1)

We deduce that rB is finite overA and thatBp » rBp. On the other hand, since pAp Ă A Ă Ap,
we have p “ kerpA Ñ κppqq “ pAp, and hence p rB “ pAp

rB “ p rBp. Therefore, the
canonical morphism rB{p rB Ñ rC is an isomorphism.

Consider the following commutative diagram

idemppBpq u �� idemppCq

idempp rBq v ��

��

β �������������
idempp rCq

α

��

γ

��
idempp rB{m rBq
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where idempp´q denotes the set of idempotents. Since A is henselian, β and γ are bijective;
then so is v. For each q P Q, since Cq is an artinian ring, rCq is a local ring and α is a
bijection. We deduce that u is surjective and hence that Bp is decomposed. Note that u is
always injective.

(ii)ñ(i) Let B be a finite free A-algebra. We need to prove that B is decomposed. Con-
sider the following commutative diagram.

idemppBq u ��

��

idemppB{pBq w ��

��

idemppB{mBq

idemppBpq v �� idemppBp{pBpq
By assumption, v and w are bijections. On the other hand, it follows from the assumption
pAp Ă A Ă Ap that the canonical diagram

B ��

��

B{pB

��
Bp �� Bp{pBp

is cartesian with injective vertical arrows. We deduce that u is surjective and hence that B is
decomposed.

DEFINITION 2.12. Let X be a locally noetherian and normal scheme, U a dense open
subscheme of X, V a Galois torsor over U of group G, Y the integral closure of X in V ,
and x a geometric point of X. We say that V {U has the property (NpS) at x if for every
geometric point y of Y above x, the inertia group Iy of y has a normal p-Sylow subgroup (or
equivalently, Iy is a semi-direct product of a group of order prime to p by a p-group ([23]
theorem 4.10)).

LEMMA 2.13. LetXbe a normal, locally noetherian and universally Japanese scheme,
U a dense open subscheme of X, V a Galois torsor over U of groupG, Y the integral closure
of X in V , y and y1 geometric points of Y , and Iy and Iy1 the inertia groups of y and y1,
respectively. If y is a specialization of y1, then Iy1 Ă Iy .

Let Ypyq and Ypy1q be the strict localizations of Y at y and y1, respectively, and let

v : Ypy1q Ñ Ypyq be a specialization map. Let x and x1 be the images of y and y1 in X,
respectively, and let Xpxq and Xpx1q be the corresponding strict localizations of X. There
exists a specialization map u : Xpx1q Ñ Xpxq such that the diagram

Ypy 1q v ��

��

Ypyq

��
Xpx1q u �� Xpxq

(2.13.1)
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where the vertical arrows are the canonical morphisms, is commutative ([6] VIII 7.4). The
morphism

w “ uˆX V : Xpx1q ˆX V Ñ Xpxq ˆX V(2.13.2)

is G-equivariant. If we identify Ypyq ˆY V with a connected component of Xpxq ˆX V and
Ypy1q ˆY V with a connected component of Xpx1q ˆX V (2.4), then we have wpYpy1q ˆY V q Ă
Ypyq ˆY V . We deduce that Iy1 Ă Iy (2.4).

COROLLARY 2.14. Let X be a normal, locally noetherian and universally Japanese
scheme, U a dense open subscheme of X, V a Galois torsor over U of group G, and x a
geometric point of X. Assume that V {U has the property (NpS) at x. Then, there exists an
open neighborhood X0 of x in X such that V {U has the property (NpS) at every geometric
point of X0.

This follows from 2.13, ([6] VIII 7.5) and the fact that if a finite group has a normal
p-Sylow subgroup, then so is any subgroup ([8] I §6.6 cor. 3 of theo. 3).

LEMMA 2.15. Let X,X1 be normal, locally noetherian and universally Japanese
schemes, U a dense open subscheme of X, V a Galois torsor over U of group G, Y the
integral closure of X in V , f : X1 Ñ X a morphism, U 1 “ f´1pUq, V 1 “ U 1 ˆU V , Y 1 the
integral closure of X1 in V 1, g : Y 1 Ñ Y the canonical morphism, y1 a geometric point of Y 1,
y “ gpy1q, x1 the image of y1 in X1, x “ f px1q, and Iy and Iy1 the inertia groups of y and y1,
respectively. Then Iy1 Ă Iy . In particular, if V {U has the property (NpS) at x, V 1{U 1 has the
property (NpS) at x1.

Replacing X1 by the schematic closure of U 1 in X1, we may assume that U 1 is dense
in X1. Let Ypyq (resp.Y 1

py1q) be the strict localization of Y at y (resp.Y 1 at y1) and let Xpxq
(resp.X1

px1q) be the strict localization of X at x (resp.X1 at x1). The morphism

h “ f ˆX V : X1
px1q ˆX1 V 1 Ñ Xpxq ˆX V(2.15.1)

is G-equivariant. If we identify Ypyq ˆY V with a connected component of Xpxq ˆX V and
Y 1

py1qˆY 1V 1 with a connected component ofX1
px1qˆX1V 1 (2.4), then we have hpY 1

py 1qˆY 1V 1q Ă
Ypyq ˆY V . We deduce that Iy1 Ă Iy (2.4). The second assertion follows immediately from
the first one.

PROPOSITION 2.16. Let A be a ring, t P A, X “ SpecpAq, U “ SpecpAtq, B a finite
sub-A-algebra of At and Y “ SpecpBq. Assume that t is not a zero divisor in A. Then the
canonical morphism Y Ñ X is a U -admissible blow-up.

We refer to ([18] §5.1 and [1] §1.13) for generalities on admissible blow-ups. Let fi
p1 ď i ď nq be generators of the A-algebra B, ai p1 ď i ď nq elements of A, and r an integer
ě 1 such that ai “ trfi P At . We put a0 “ tr , I “ pa0, a1, . . . , anq and let ϕ : X1 Ñ X be
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the blow-up of I in X. For 0 ď i ď n, we put

A1
i “A

„
a0

ai
, . . . ,

an

ai


,

Ai “A1
i{Ji ,

where Ji is the ideal of ai-torsion in A1
i (i.e., the ideal of x P A1

i such that ami x “ 0 for some
m ě 1). We see easily that the SpecpAiq’s p0 ď i ď nq form an open covering ofX1; for every
0 ď i ď n, SpecpAiq is the maximal open subscheme of X1 where ϕ˚paiq generates the ideal
IOX1 (cf. [1] 3.1.6 and 3.1.7). It is clear that B “ A0; so Y is canonically identified with an
open subscheme of X1. Since Y is finite over X, the open immersion Y Ñ X1 is also closed.
On the other hand, as U is schematically dense in X ([1] 1.8.30.2), ϕ´1pUq is schematically
dense in X1 ([1] 1.13.3(i)). But ϕ´1pUq Ă Y , so Y “ X1.

COROLLARY 2.17. Let X be a quasi-compact and quasi-separated scheme, D an ef-
fective Cartier divisor on X, U “ X ´ D and f : Y Ñ X a finite morphism inducing an
isomorphism above U such that f´1pUq is schematically dense in Y . Then, there exists a
U -admissible blow-up ϕ : X1 Ñ X and an X-morphism g : X1 Ñ Y .

Let Xi “ SpecpAiq p1 ď i ď nq be a finite affine open covering of X such that, for each
i, D is defined over Xi by one equation in Ai . For each 1 ď i ď n, we put Yi “ Xi ˆX Y

and let fi : Yi Ñ Xi be the restriction of f . By 2.16, each fi is a pU X Xiq-admissible
blow-up. By ([18] 5.3.1), there exists a U -admissible blow-up ϕi : X1

i Ñ X extending fi .
Assume that ϕi is the blow-up of an ideal of finite type Ai of OX such that Ai |U “ OX|U .
Let ϕ : X1 Ñ X be the blow-up of

śn
i“1 Ai . By the universal property of blow-ups, for each

1 ď i ď n, there exists an X-morphism hi : X1 Ñ X1
i . Its restriction above Xi is a morphism

gi : X1 ˆX Xi Ñ Yi . For each 1 ď i, j ď n, the restrictions of gi and gj above Xi X Xj are
canonically identified. By gluing the gi’s, we get an X-morphism g : X1 Ñ Y .

2.18. Let X be a coherent scheme (i.e., a quasi-compact and quasi-separated scheme)
and U an open subscheme of X. We denote by Sch{X the category of X-schemes and by
B the full subcategory of Sch{X of objects pX1, ϕq, where ϕ : X1 Ñ X is a U -admissible
blow-up (cf. [18] §5.1 and [1] §1.13). The Zariski-Riemann space of the pair pX,Uq is the
topological space defined by

XZR “ limÐÝ
pX1 ,ϕqPB

|X1| ,(2.18.1)

where |X1| denotes the topological space underlying to X1. For every ξ P XZR, we put

OXZR,ξ “ limÝÑ
pX1,ϕqPB˝

OX1,ξϕ ,(2.18.2)

where ξϕ is the image of ξ in X1. By ([24] VI §17), XZR is quasi-compact. If U is schemati-
cally dense in X, then the canonical map XZR Ñ |X| is surjective.
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2.19. LetX be a coherent scheme,D an effective Cartier divisor onX andU “ X´D.
We keep the notation of (2.18) and denote by C the full subcategory of Sch{X of objects

pX2, ψq, where ψ is composed of two morphisms X2 ρÑ X1 ϕÑ X satisfying the following
conditions:

(a) ϕ is a U -admissible blow-up;
(b) ρ is a finite morphism inducing an isomorphism above U ;
(c) ψ´1pUq is schematically dense in X2.
Then every object of B is an object of C ([1] 1.13.3(i)). We denote by

ι : B Ñ C(2.19.1)

the canonical injection functor. Then ι˝ is cofinal (cf. [6] I 8.1.1) and C is cofiltered. Indeed,
since B is cofiltered, it is enough to prove that ι˝ satisfies conditions F1q and F2q of ([6] I
8.1.3). Condition F1q follows from 2.17 and ([18] 5.1.4), and condition F2q is an immediate
consequence of condition (c) above. We deduce that the canonical morphism

limÐÝ
pX2,ψqPC

|X2| Ñ limÐÝ
pX1 ,ϕqPB

|X1| “ XZR(2.19.2)

is an isomorphism. For every ξ P XZR, we have a canonical isomorphism

OXZR,ξ
„Ñ limÝÑ

pX2,ψqPC˝
OX2,ξψ ,(2.19.3)

where ξψ is the image of ξ in X2 by the map XZR Ñ |X2| induced by (2.19.2). Note that for
any object pX2, ψq of C , the map XZR Ñ |X2| is surjective (cf. 2.17 and 2.18).

LEMMA 2.20. Let X be a coherent scheme, D a closed subscheme of finite presenta-
tion of X, U “ X ´ D, x P D, ξ a point of XZR above x, and J the ideal of OX,x defined
by D. Assume that U is schematically dense in X, and put Oξ “ OXZR,ξ and p “ Ş

n J
nOξ .

Then:
(i) Oξ equipped with the J -adic topology, is a prevaluative ring, which means that

it is local and that every open ideal of finite type is invertible ([1] 1.9.1). Let t P Oξ be a
generator of JOξ .

(ii) Oξ r1{ts is a local ring.
(iii) Oξ {p is a valuation ring with fraction field the residue field of Oξ r1{ts. In particu-

lar, Oξ r1{ts is the localization of Oξ at p.
(iv) The ideal pOξ r1{ts is contained in the image of the canonical homomorphism

Oξ Ñ Oξ r1{ts.
Since the transition homomorphisms of the inductive limit (2.18.2) are local, the ring Oξ

is local and J is contained in the maximal ideal of Oξ . Replacing X by its blow-up along
D, we may assume that J is invertible, generated by t P OX,x . For every object pX1, ϕq of
B (2.18), ϕ´1pUq is schematically dense in X1 ([1] 1.13.3(i)). It follows that t is not a zero
divisor in Oξ . Let I be an open ideal of finite type of Oξ . Then I is induced by an ideal of
finite type I of OX1 for an object pX1, ϕq of B such that I |U “ OU . By blowing-up I in
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X1, we obtain an object pX1, φq of B ([18] 5.1.4) such that I OX1 is invertible. Therefore,
the ideal I is monogenic. Since I is open and since t is not a zero divisor in Oξ , I is invertible,
which proves the proposition (i).

Propositions (ii) and (iii) follow from ([1] 1.9.4). Proposition (iv) is obvious.

LEMMA 2.21. LetXbe a normal, locally noetherian and universally Japanese scheme,
D an effective Cartier divisor on X, U “ X ´D and V a Galois torsor over U of group G.
Then with the notation of (2.18) and (2.19), for every ξ P XZR, there exists an object pX2, ψq
of C satisfying the following properties:

(i) X2 is normal.
(ii) If πψ : XZR Ñ |X2| is the morphism induced by the isomorphism (2.19.2) and

ξψ “ πψpξq, then V {U has property (NpS) at every geometric point ξψ of X2 above ξψ .

We put Oξ “ OXZR,ξ and S “ SpecpOξ q. Let s be a geometric closed point of S and
S “ SpecpAq the corresponding strictly local scheme. For each object pX2, ψq of C , we
denote by πψ : XZR Ñ |X2| the morphism induced by the isomorphism (2.19.2), and put
ξψ “ πψpξq, Oξψ “ OX2,ξψ and Sψ “ SpecpOξψ q. We have a canonical isomorphism
(2.19.3)

S
„Ñ limÐÝ

pX2,ψqPC

Sψ .(2.21.1)

Let pX2, ψq be an object of C . Since the canonical homomorphism Oξψ Ñ Oξ is local, s
determines a geometric closed point of Sψ (also denoted by s). We denote by ξψ the geometric
point of X2 above ξψ corresponding to s, and by Sψ the strict localization of Sψ at s. Then
the canonical morphisms S Ñ Sψ induce an isomorphism

S
„Ñ limÐÝ

pX2,ψqPC

Sψ .(2.21.2)

Indeed, the projective limit above is a strictly local scheme, with the same residue field as S.
We may assume that x “ ξid P D. Let J be the ideal of OX,x defined by D. We put

p “ Ş
n J

nOξ . It follows from 2.20 that the ideal JOξ is invertible, generated by t P Oξ ,
that Oξ {p is a valuation ring and that Oξ r1{ts is the localization of Oξ at p. The scheme
T “ SpecpA{pAq is the strict localization of T “ SpecpOξ {pq at s. Since S has only one
point above p P S ([6] VIII 7.6), namely pA, we have ApA “ A bOξ pOξ qp “ Ar1{ts. Then
it follows from 2.20(iv) that pApA is contained in the image of the canonical homomorphism
A Ñ ApA. Therefore, Ar1{ts is a henselian local ring by 2.11, and hence the canonical map

π0pT ˆX V q Ñ π0pS ˆX V q(2.21.3)

is bijective.
Since Oξ {p is a valuation ring, A{pA is a strictly henselian valuation ring. This follows

from ([7] §2.4, prop. 11) and ([20] Fundamental lemma on the extensions of valuations, page
50). Let K be the fraction field of A{pA,K a separable closure of K and G the Galois group
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of K over K . By (2.21.2), (2.21.3) and ([12] 8.4.1), there exists an object pX2, ψq of C such
that the canonical map

π0pT ˆX V q Ñ π0pSψ ˆX V q(2.21.4)

is injective. We may assume that X2 is normal. Since the map (2.21.4) is G-equivariant
and since G acts transitively on the source and on the target, it is bijective. Let Y 2 be the
normalization of X2 in V . The set π0pSψ ˆX V q is isomorphic to Y 2 bX2 κpξψq (cf. (2.4.1)).
For y2 P Y 2 bX2 κpξψq, we denote by Iy2 Ă G the inertia group of y2. As Iy2 is the stabilizer

in G of the connected component of Sψ ˆX V corresponding to y2 (2.4), it follows from the
bijection (2.21.4) that Iy2 is isomorphic to a quotient of G . Therefore, by 2.10, V {U has

property (NpS) at ξψ .

PROPOSITION 2.22. Let X be a normal, locally noetherian and universally Japanese
scheme, U a dense open subscheme, and V a Galois torsor over U . Then there exists a U -
admissible blow-up ϕ : X1 Ñ X, such that if we denote by X2 the normalization of X1, V {U
has the property (NpS) at every geometric point of X2.

Replacing X by a U -admissible blow-up, we may assume that there exists an effective
Cartier divisorD onX such that U “ X´D; we take again the notation of (2.18) and (2.19).
Let D be the full subcategory of C of objects pX2, ψq such that X2 is normal. It follows
from ([6] I 8.1.3(c)) that D˝ is cofinal in C ˝. For each object pX2, ψq of D , we denote by
πψ : XZR Ñ |X2| the morphism induced by (2.19.2), and byX2

0 the maximal open subscheme
of X2 such that V {U has the property (NpS) at every geometric point of X2

0 (2.14). By 2.21,
we have

XZR “
ď

pX2,ψqPD

π´1
ψ pX2

0 q.(2.22.1)

Since XZR is quasi-compact (2.18), there exists an object pX2, ψq of D such that XZR “
π´1
ψ pX2

0 q. As πψ is surjective, we deduce that V {U has the property (NpS) at every geometric
point of X2.

LEMMA 2.23. LetG,G1 be smooth connected group schemes over k, and let f : G Ñ
G1 be an étale morphism of k-group schemes. Then:

(i) f is finite and surjective.
(ii) IfG1 is commutative, then so isG; ifG1 is isomorphic to An

k
for some integer n ě 1,

then so is G and the kernel of f is a finite dimensional Fp-vector space.

(i) The proposition follows from ([9] VIB 1.3.2 and 1.4.1).
(ii) Assume first that G1 is commutative. Then the derived group pG,Gq is contained

in the kernel of f and hence is the unit group. Therefore G is commutative. Assume next
that G1 » An

k
. Any maximal torus of G is contained in the kernel of f , and hence is the unit

group. Therefore, G is unipotent ([9] XVII 4.1.1). Since pG is contained in the kernel of f
and G is connected, we deduce that pG “ 0. Therefore, G is isomorphic to An

k
.
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2.24. Let f : X Ñ Y be a morphism of schemes, F a locally constant and constructible
sheaf of Λ-modules on Y , and G a sheaf of Λ-modules on Y . Then the canonical morphism

f ˚pHompF ,G qq Ñ Hompf ˚pF q, f ˚pG qq(2.24.1)

is an isomorphism. Indeed, the statement is obviously true if f is étale (even if F is not
locally constant and constructible). Hence, by replacing Y by an étale covering Y 1 and X by
X ˆY Y

1, we may assume that F is constant on Y of value a finite Λ-module M . Since Λ
is noetherian, we have an exact sequence Λm Ñ Λn Ñ M Ñ 0. We deduce the following
commutative diagram with exact lines.

0 �� f ˚pHompF ,G qq ��

α

��

f ˚pG nq ��

β

��

f ˚pGmq
γ

��
0 �� Hompf ˚pF q, f ˚pG qq �� f ˚pG qn �� f ˚pG qm

(2.24.2)

Since β and γ are clearly isomorphisms, α is an isomorphism.

PROPOSITION 2.25. Let X be a normal scheme, U a dense open subscheme of X, F

a locally constant and constructible sheaf of Λ-modules on U , and f : Y Ñ X a morphism.
We put V “ f´1pUq and denote by i : U Ñ X and j : V Ñ Y the canonical injections. We
assume that V is schematically dense in Y . Then the base change morphism

α : i˚pF q|Y Ñ j˚pF |V q(2.25.1)

relatively to f is injective.

Let y be a geometric point of Y and x “ f pyq. It is enough to prove that the stalk αy of
α at y is injective. We may replace X and Y by their strict henselizations at x and y. Since V
is dense in Y , it is not empty. Let η be a geometric point of V , η Ñ y a specialization map
and ξ “ f pηq. Then we have a commutative diagram

pi˚pF qqx u ��

αy

��

Fξ

αη

��
pj˚pF |V qqy v �� pF |V qη

(2.25.2)

where u and v are the specialization homomorphisms. Since αη is an isomorphism, it is
enough to prove that u is injective. Since X is normal and strictly local, U is connected and
we have pi˚pF qqx “ Γ pX, i˚pF qq “ Γ pU,F q. There exists a connected Galois torsor U 1
over U that trivializes F . Then u is identified with the canonical morphism Γ pU,F q Ñ
Γ pU 1,F q, which is obviously injective. This concludes the proof.

LEMMA 2.26. Let X be a normal, locally noetherian and universally Japanese
scheme, U a dense open subscheme of X, j : U Ñ X the canonical injection, V a Galois
torsor over U of group G, and M a ΛrGs-module. The constant étale sheaf MV on V de-
fines by Galois descent a locally constant and constructible sheaf F of Λ-modules on U . Let
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s P M , H the stabilizer of s in G, U 1 the quotient of V by H , X1 the integral closure of X in
U 1, and j 1 : U 1 Ñ X1 the canonical injection.

U 1 j 1
��

��

X1

��
U

j �� X

(2.26.1)

We put F 1 “ F |U 1 and consider s as a section of j 1̊ pF 1qpX1q “ F 1pU 1q “ F pU 1q “
F pV qH . Let x1 be a geometric point of X1 and x its image in X. Then the base change
morphism

α : j˚pF q|X1 Ñ j 1̊ pF 1q(2.26.2)

relatively to the Cartesian diagram (2.26.1) is injective. Moreover, the following conditions
are equivalent:

(i) The stalk

αx1 : pj˚F qx Ñ pj 1̊ F 1qx1(2.26.3)

of the morphism α at x1 is an isomorphism.
(ii) The image of s in pj 1̊ F 1qx1 is in the image of the morphism (2.26.3).

(iii) The morphism X1 Ñ X is étale at x1.
Observe first that the implications (iii)ñ(i)ñ(ii) are obvious. Let Y be the integral clo-

sure of X in V , Y Ñ X1 the canonical morphism, y a geometric point of Y above x1, and
I Ă G the inertia group of y. Then the morphism (2.26.3) can be canonically identified with
the canonical injection

MI Ñ MIXH ,(2.26.4)

which proves the first assertion. It follows from (2.26.4) that condition (ii) is equivalent to
I Ă H , which is also equivalent to each of the conditions (i) and (iii).

LEMMA 2.27. Let X be a scheme, U an open subscheme of X, F a locally constant
constructible sheaf of Λ-modules on X, x a geometric point of X, Xpxq the corresponding
strictly local scheme, and V1 a Galois torsor over U1 “ Xpxq ˆX U trivializing F |U1. Then,
there exists an étale morphism f : X1 Ñ X, a geometric point x1 above x and a Galois torsor
V 1 over U 1 “ f´1pUq trivializing F |U 1 such that if we identify the strictly local schemes
X1

px1q and Xpxq by f , there exists a U1-isomorphism V 1 ˆX1 X1
px1q » V1.

It follows from ([12] 8.8.2 and 10.8.5) (cf. [5] 6.2).
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3. Additive sheaves on vector bundles.

DEFINITION 3.1. Let X be a scheme with residual characteristics different from �,
π : E Ñ X a vector bundle, and F a constructible sheaf of Λ-modules on E. We say that
F is additive if for every geometric point ξ of X and for every e P Epξq, denoting by τe the
translation by e on Eξ “ E ˆX ξ , τe̊ pF |Eξ q is isomorphic to F |Eξ .

We can make the following remarks:
(i) We may restrict to the geometric points ξ of X with algebraically closed residue

fields.
(ii) If F is additive, then for any X-scheme X1, denoting by E1 the vector bundle

E ˆX X
1 over X1, F |E1 is additive.

(iii) F is additive if and only if for every geometric point ξ of X with algebraically
closed residue field, F |Eξ is additive.

PROPOSITION 3.2. Let X be a scheme with residue characteristics different from �,
f : E1 Ñ E a morphism of vector bundles over X, and F presp. F 1q a constructible sheaf of
Λ-modules on E presp.E1q. Then:

(i) If F is additive, f ˚pF q is additive.
(ii) If F 1 is additive and if f surjective, Rnf!pF 1q is additive for all n ě 0.

(iii) Assume f surjective. Then F is additive if and only if f ˚pF q is additive.

Propositions (i) and (ii) follow immediately from the definition (3.1). To prove (iii), it
remains to show that if f ˚pF q is additive then so is F . The problem being local on X, we
may assume that there exists a section σ : E Ñ E1 of f . Then the required property follows
from (i).

3.3. Let Lψ be the Artin-Schreier sheaf ofΛ-modules of rank 1 over the additive group
A1

Fp
over Fp, associated to the character ψ fixed in (2.1) ([19] 1.1.3). Then Lψ is additive.

Indeed, if µ : A1
Fp

ˆFp A1
Fp

Ñ A1
Fp

denotes the addition, we have an isomorphism

µ˚Lψ » pr1̊ Lψ b pr2̊ Lψ .(3.3.1)

We will show that to a certain extent, all additive sheaves in characteristic p come from Lψ .
If f : X Ñ A1

Fp
is a morphism of schemes, we put Lψpf q “ f ˚Lψ .

3.4. LetX be a k-scheme, π : E Ñ X a vector bundle of constant rank d , and π̌ : Ě Ñ
X the dual vector bundle. We denote by x , y : E ˆX Ě Ñ A1

Fp
the canonical pairing, by

pr1 : E ˆX Ě Ñ E and pr2 : E ˆX Ě Ñ Ě the canonical projections and by

Fψ : DbcpE,Λq Ñ DbcpĚ,Λq(3.4.1)

the Fourier-Deligne transform defined by

FψpKq “ Rpr2!ppr1̊K b Lψpx , yqq .(3.4.2)

We recall some properties of this transform that will be used later.
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Let π5 : E5 Ñ X be the bidual vector bundle of π : E Ñ X, a : E „Ñ E5 the anti-
canonical isomorphism defined by apxq “ ´xx, y, and F_

ψ the Fourier-Deligne transform for

π̌ : Ě Ñ X. For every objectK of DbcpE,Λq, we have a canonical isomorphism ([19] 1.2.2.1)

F_
ψ ˝ FψpKq » a˚pKqp´dqr´2ds .(3.4.3)

Let π 1 : E1 Ñ X be a vector bundle of constant rank d 1, F1
ψ its Fourier-Deligne trans-

form, f : E Ñ E1 a morphism of vector bundles, and f̌ : Ě1 Ñ Ě its dual. For every object
K of DbcpE,Λq, we have canonical isomorphisms

F1
ψ ˝ Rf!pKq „Ñ f̌ ˚ ˝ FψpKq ,(3.4.4)

F1
ψ ˝ Rf˚pKqpd 1qr2d 1s „Ñ f̌ ! ˝ FψpKqpdqr2ds ,(3.4.5)

and for every object K 1 of DbcpE1,Λq, we have canonical isomorphisms

Rf̌! ˝ F1
ψpK 1qpd 1qr2d 1s „Ñ Fψ ˝ f ˚pK 1qpdqr2ds ,(3.4.6)

Rf̌˚ ˝ F1
ψpK 1q „Ñ Fψ ˝ f !pK 1q .(3.4.7)

Indeed, isomorphism (3.4.4) is proved in ([19] 1.2.2.4). It implies isomorphism (3.4.6) by
(3.4.3), and isomorphism (3.4.5) by duality and (3.4.3). Finally, isomorphism (3.4.7) is ob-
tained from (3.4.5) by (3.4.3).

For any section e P EpXq and any object K of DbcpE,Λq, if we denote by τe : E „Ñ E

the translation by e, we have a canonical isomorphism ([19] 1.2.3.2)

Fψpτe˚Kq „Ñ FψpKq b Lψpxe, yq .(3.4.8)

3.5. Let X be a scheme and K an object of DbcpX,Λq. The support of K is the sub-
set of points of X where the stalks of the cohomology sheaves of K are not all zero. It is
constructible in X. This definition is in general different from the one introduced in ([6] IV
8.5.2).

PROPOSITION 3.6. LetX be a k-scheme, π : E Ñ X a vector bundle of constant rank,
π̌ : Ě Ñ X the dual vector bundle, F a constructible sheaf of Λ-modules on E, and S Ă Ě

the support of FψpF q. Then F is additive if and only if for every x P X, the set S X Ěx is
finite.

By the proper base change theorem, we may assume X “ Specpkq and k algebraically
closed. Then we are reduced to the following:

PROPOSITION 3.7. Assume k is algebraically closed and letE be a vector bundle over
k, π̌ : Ě Ñ X the dual vector bundle and F a constructible sheaf of Λ-modules over E. The
following conditions are equivalent:

(i) F is additive.
(ii) The support of FψpF q is finite.

(iii) F is isomorphic to a finite direct sum of sheaves of the form M b Lψpf q, where
M is a Λ-module of finite type and f : E Ñ A1

k is a linear form.
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(iv) F is locally constant and all its Jordan-Holder subquotients are of the form
Lψpf q bΛ Λ, where Λ is the residue field of Λ and f : E Ñ A1

k is a linear form.
(v) F is locally constant and all its Jordan-Holder subquotients are additive.

First we prove (i)ñ(ii). For every point e P Epkq, we have (3.4.8)

FψpF q » FψpF q b Lψpxe, yq .(3.7.1)

If G is a cohomology sheaf of FψpF q, we have G » G bLψpxe, yq for every point e P Epkq.
Let U be an integral locally closed subscheme of Ě such that G |U is locally constant and not
zero. It is enough to prove that U is a closed point of Ě. We may assume that Λ is a field.
Let π : V Ñ U be a finite étale connected covering such that π˚pG |Uq is constant. Then
for every point e P Epkq, the sheaf π˚pLψpxe, yq|Uq is constant; equivalently, for every
linear form f : Ě Ñ A1

k , the sheaf Lψpf q|V is constant. So the equation T p ´ T “ f has a

solution in the function field kpV q of V . If U is not a closed point of Ě, there exists a linear
form f : Ě Ñ A1

k such that f |U : U Ñ A1
k “ Specpkrtsq is dominant. For all c P kˆ, the

equation T p ´ T “ ct has a solution in kpV q. We obtain infinitely many linearly disjoint
extensions of degree p of kptq contained in kpV q, which is not possible. So U is a closed
point.

Next we prove (ii)ñ(iii). By (3.4.3), we may assume that the support of FψpF q is a
point i : Specpkq Ñ Ě; then it is enough to observe that for any Λ-module of finite type M ,
we have

F_
ψ pi˚Mq » M b Lψpf q ,(3.7.2)

which follows from (3.4.8) and (3.4.4).
It is clear that we have (iii)ñ(i), (iii)ñ(iv)ñ(ii) and (vi)ñ(v). Finally, since conditions

(i) and (ii) are equivalent and that the latter is stable by extensions, we have (v)ñ(i).

DEFINITION 3.8. Let X be a k-scheme, π : E Ñ X a vector bundle of constant rank,
π̌ : Ě Ñ X the dual vector bundle, and F an additive constructible sheaf of Λ-modules on
E. We call the Fourier dual support of F the support of FψpF q in Ě. We say that F is
non-degenerate if the closure of its Fourier dual support does not meet the zero section of Ě.

We can make the following remarks:
(i) If we replace ψ by aψ for an element a P Fp̂ , then the Fourier dual support of F

will be replaced by its inverse image by the multiplication by a on Ě. In particular, the notion
of being non-degenerate does not depend on ψ .

(ii) Let X1 be an X-scheme and E1 the vector bundle E ˆX X
1 over X1. Then the

Fourier dual support of F |E1 is the inverse image of the Fourier dual support of F ([19]
1.2.2.9).

(iii) Let f : E Ñ A1
X be a linear form, i : X Ñ Ě the associated section,M a non zero

Λ-module of finite type, and d the rank of E. Then the Fourier dual support ofMb Lψp´f q
is ipXq. Indeed, by (3.4.3), (3.4.4) and (3.4.8), we have

FψpM b Lψp´f qq » i˚Mp´dqr´2ds.(3.8.1)
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(iv) Assume X “ Specpkq and k algebraically closed. Then F is locally constant,
and its Fourier dual support is the union of the Fourier dual supports of its Jordan-Holder
subquotients (3.7).

LEMMA 3.9. Let f : X1 Ñ X be a finite morphism of k-schemes, π : E Ñ X a vector
bundle of constant rank, E1 “ E ˆX X

1, π 1 : E1 Ñ X1 and fE : E1 Ñ E the canonical
projections, and F 1 an additive constructible sheaf of Λ-modules on E1. Then fE˚pF 1q is
additive and its Fourier dual support is the image of the Fourier dual support of F 1.

By the proper base change theorem, we may assume X “ Specpkq and k is algebraically
closed. Then we may reduce the proof to the case where X1 is a finite disjoint sum of copies
of X, where the assertion is obvious.

LEMMA 3.10. Let X be a k-scheme, π : E Ñ X a vector bundle of constant rank,
and F an additive constructible sheaf of Λ-modules on E. If F is non-degenerate then
Rπ˚F “ Rπ!F “ 0.

It follows from (3.4.3), (3.4.6) and (3.4.7) (applied to f the zero section of the dual
vector bundle Ě of E andK 1 “ FψpF q).

LEMMA 3.11. Let X be a k-scheme, π : E Ñ X a vector bundle of constant rank, G

an additive constructible sheaf ofΛ-modules on E, F a constructible sheaf ofΛ-modules on
E, and u : G Ñ F a surjective morphism presp. v : F Ñ G an injective morphismq. Assume
that F is locally constant on all geometric fibers of π . Then F is additive and its Fourier
dual support is contained in the Fourier dual support of G .

We may assume X “ Specpkq and k algebraically closed. Then G is locally constant
(3.7), and the assertion follows from 3.7 and 3.8(iv).

LEMMA 3.12. Let X be a k-scheme, π : E Ñ X a vector bundle of constant rank, G
a group scheme over X, ρ : G Ñ E an étale surjective morphism of group schemes over X,
and F a constructible sheaf of Λ-modules on E. Assume that for every geometric point x of
X, ρ˚pF q|Gx is constant; then F is additive.

We prove first that ρ˚pρ˚F q is additive. Let x be a geometric point of X and a P Epxq.
There exists g P Gpxq such that ρpgq “ a. If we denote by τa (resp. τg ) the translation by a
on E (resp. g onG), then

τå ppρ˚pρ˚F qq|Exq » ρ˚pτg̊ ppρ˚F q|Gxqq » pρ˚pρ˚F qq|Ex .
On the one hand, the adjunction morphism F Ñ ρ˚pρ˚F q is injective and F is locally
constant on the geometric fibers of π . So F is additive by 3.11.

LEMMA 3.13 ([21] 2.7). Let X be a normal k-scheme, π : E Ñ X a vector bundle
of constant rank, π̌ : Ě Ñ X the dual vector bundle, U a dense open subscheme of X, F a
constructible sheaf of Λ-modules on E, and S Ă Ě the support of FψpF q. We put EU “
π´1pUq, ĚU “ π̌´1pUq, SU “ S X ĚU , and denote by j : EU Ñ E the canonical injection.
Assume that the following conditions are satisfied:
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(i) The adjunction morphism u : F Ñ j˚j˚pF q is injective.
(ii) j˚pF q is locally constant and additive.

(iii) F is locally constant on all fibers of π .
Then F is additive and its Fourier dual support S is contained in the Zariski closure SU

of SU in Ě. Moreover, if F is locally constant, then S “ SU .

It is enough to prove that for every x P X, the set Sx “ S X Ěx is finite and is contained
in SU (3.7), moreover, if F is locally constant then Sx “ SU X Ěx . We may shrink U .
The assertion is obvious for the generic points of X; so we assume that x is not a generic
point of X. Let f : X1 Ñ X be a proper surjective morphism such that X1 is normal and
U 1 “ f´1pUq is dense in X1. Let E1 “ E ˆX X

1, Ě1 “ Ě ˆX X
1, fE : E1 Ñ E and

f
Ě

: Ě1 Ñ Ě the canonical projections, F 1 “ fE̊ pF q, and S1 Ă Ě1 the support of F1
ψpF 1q.

We put E1
U “ f´1

E pEU q, Ě1
U “ f´1

Ě
pĚU q, S1

U “ S1 X Ě1
U and denote by j 1 : E1

U Ñ E1 the

canonical injection. We have S1 “ f´1
Ě

pSq, S “ f
Ě

pS1q and f
Ě

pS1
U q “ SU . On the other

hand, the adjunction morphism u1 : F 1 Ñ j 1̊ j 1˚pF 1q is composed of

F 1 f˚
E puq

�� fE̊ j˚j˚pF q v �� j 1̊ j 1˚pF 1q ,(3.13.1)

where v is the base change morphism relatively to fE . Since v is injective by 2.25, u1 is
injective. Hence, it is enough to prove the assertions after replacing X by X1 and x by a point
x1 of X1 above it. Taking for X1 the normalization of the blow-up of X along the Zariski
closure of x in X, we are reduced to the case where OX,x is a discrete valuation ring.

We may assume X integral. Let η be the generic point of X and K “ kpηq the residue
field of η. Replacing X by its normalization in a finite extension of K , we may assume that
Sη “ SX Ěη is a finite set ofK-rational points. After shrinkingU , we may assume that every
f P Sη extends to a linear form on EU . Then there exist constant sheaves pGf qf PSη on EU
such that j˚pF q “ À

fPSη Lψpf q b Gf by 3.7 and ([6] IX 2.14.1). Let Sη,x Ă Sη be the

subset of elements f P Sη which are regular at x. For f P Sη,x , we denote by f P Ěx its
reduction. We claim that

j˚pLψpf q b Gf q|Ex “
"

Lψpf q b Gf if f P Sη,x ,
0 if f R Sη,x .(3.13.2)

Indeed, let f P Sη, t be a geometric generic point of Ex . It follows from ([21] 2.8) that
Lψpf q is ramified at t if and only if f R Sη,x . If f P Sη,x , then j˚pLψpf q b Gf q|Ex “
Lψpf q b Gf by ([6] IX 2.14.1). On the other hand, for every geometric point y of Ex and
for every specialization map t Ñ y, the specialization homomorphism j˚pLψpf q b Gf qy Ñ
j˚pLψpf q b Gf qt is injective (cf. the proof of 2.25). Hence j˚pLψpf q b Gf q|Ex “ 0 if
f R Sη,x .

Since F |Ex is locally constant and the adjunction morphism u : F Ñ j˚j˚pF q is
injective, we deduce from (3.13.2) that the Jordan-Holder subquotients of F |Ex are of the
form Lψpf q b Gf , for some f P Sη,x . Hence, F |Ex is additive and Sx Ă tf ; f P Sη,xu “
SU X Ěx by 3.7 and 3.8(iv). Assume that F is locally constant. Then u is an isomorphism
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([6] IX 2.14.1), and Sη,x “ Sη as the rank of the stalks of j˚j˚pF q is constant. Therefore
Sx “ tf ; f P Sη,xu, which conclude the proof of the required assertion.

COROLLARY 3.14. LetX be a k-scheme, π : E Ñ X a vector bundle of constant rank,
π̌ : Ě Ñ X the dual vector bundle, and F a locally constant, constructible and additive sheaf
ofΛ-modules on E. Then the Fourier dual support S of F is the underlying space of a closed
subscheme of Ě which is finite over X.

Let f : X1 Ñ X be a proper surjective morphism, E1 “ E ˆX X
1, Ě1 “ Ě ˆX X

1,
fE : E1 Ñ E and f

Ě
: Ě1 Ñ Ě the canonical projections, and S1 the Fourier dual support of

f ˚pF q. We have S1 “ f´1
Ě

pSq and S “ f
Ě

pS1q. First, we take for X1 the normalization of

X. Since S1 is closed in Ě1 by 3.13, S is closed in Ě. We denote also by S the reduced closed
subscheme of Ě with support S. We prove that S is finite over X. We may assume that X
is normal and integral. Let η be the generic point of X and K “ kpηq. Replacing X by its
normalization in a finite extension of K , we may assume that Sη “ S X Ěη is a finite set of
K-rational points.

We know (3.6) that S is quasi-finite over X. It is enough to prove that it is proper over
X. Let R be a discrete valuation ring, Y “ SpecpRq, and y (resp. κ) the closed (resp. generic)
point of Y . Consider a commutative diagram

κ
β ��

ρ

��

S

��
Y

α �� X

(3.14.1)

where ρ is the canonical injection. It is enough to prove that there exists an X-morphism
γ : Y Ñ S such that β “ γ ˝ ρ. We may replace X by any normal scheme X1 such that α

factors as Y Ñ X1 fÑ X, where f is proper and surjective. Replacing X successively by
the normalization of the blow-up of X along the Zariski closure of x “ αpyq in X, we may
assume that OX,x is a discrete valuation ring. Then the assertion follows from the proof of
3.13. Indeed, with the notation of loc. cit., we have Sη,x “ Sη because u : F Ñ j˚j˚pF q is
an isomorphism.

4. Dilatations.
4.1. Let X be a scheme, u : P Ñ X a morphism, Y a closed subscheme of P defined

by a quasi-coherent ideal IY of OP , R a closed subscheme of X defined by a quasi-coherent
ideal J of OX and RY “ R ˆX Y .

RY ��

���
��

��
��

� Y ��

		�
��

��
��

� P

u

��
R �� X

Let I be the ideal of OP associated to the closed immersion RY Ñ P ; we have I “
IY ` J OP . We denote by X1 the blow-up of X along R and by P 1 the blow-up of P
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along RY . We call the maximal open subschemeW of P 1 where we have J OW “ I OW the
dilatation of P along Y of thickeningR and denote it by P pRq (also called the dilatation ofRY
in P relatively to R in [5] 2.4; see loc. cit. 2.8). There is a unique X-morphism P pRq Ñ X1.

P pRq ��

��

P 1 �� P

u

��
X1 �� X

LEMMA 4.2. We keep the assumptions of (4.1) and assume moreover that R is a
Cartier divisor on X and that JY is of finite type. We put U “ X ´ R and denote by
jP : PU Ñ P the canonical injection. Then P pRq is affine over P and it corresponds to the
quasi-coherent sub-OP -algebra of jP˚pOPU q generated by the image of the canonical mor-
phism u˚pOXpRqq bOP IY Ñ jP˚pOPU q.

We may assume that X “ SpecpAq and P “ SpecpBq are affine, that R is defined in X
by an equation t P A and that Y is defined by an ideal of finite type JY of B. Let I be the
ideal of B generated by JY and t , and let P 1 be the blow-up of P along I . Then P pRq is the
maximal open subscheme of P 1 where the exceptional divisor IOP 1 is generated by t . Let
a1, . . . , an P B be generators of JY . We put

C1 “B

”a1

t
, . . . ,

an

t

ı
“ Brξ1, . . . , ξns

pa1 ´ tξ1, . . . , an ´ tξnq ,
C “C1{C1

t -tor ,

where C1
t -tor is the ideal of C1 of elements annihilated by a power of t . Then we have P pRq “

SpecpCq, which implies the assertion.

4.3. Let X be a scheme, u : P Ñ X and g : Q Ñ P morphisms, i : Y Ñ P and
j : Z Ñ Q closed immersions and h : Z Ñ Y a morphism such that g ˝ j “ i ˝ h; so the
diagram

Z
j ��

h

��

Q

g

��
Y

i �� P

is commutative. Let R be a closed subscheme ofX and let P pRq (resp.QpRq) be the dilatation
of P (resp.Q) along Y (resp.Z) of thickening R. By the functorial property of dilatations ([5]
2.6), there is a canonical morphism

gpRq : QpRq Ñ P pRq(4.3.1)

lifting g .
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LEMMA 4.4. We keep the assumptions of (4.3) and assume moreover that Z »
Y ˆP Q. We put RY “ R ˆX Y and RZ “ R ˆX Z and denote by P 1 presp.Q1q the
blow-up of P along RY presp.Q along RZq. Then:

(i) There exists a unique morphism g 1 : Q1 ÑP 1 lifting g; we haveQpRq “g 1´1pP pRqq
and gpRq is the restriction of g 1.

(ii) If g is flat, the morphismQpRq Ñ P pRq ˆP Q induced by gpRq is an isomorphism.

Since RZ » RY ˆP Q, there exists a unique morphism g 1 : Q1 Ñ P 1 lifting g . We
know ([5] 2.6) that g 1pQpRqq Ă P pRq and that gpRq is the restriction of g 1. On the other hand,
g 1´1pP pRqq Ă QpRq by ([5] 2.7). Therefore, QpRq “ g 1´1pP pRqq, which proves assertion (i).
Assertion (ii) is an immediate consequence of (i).

4.5. Let X be a scheme, u : P Ñ X a separated morphism, σ : X Ñ P a section of
u, R an effective Cartier divisor on X, U “ X ´ R and P pRq the dilatation of P along σ of
thickening R. Then we have a canonical isomorphism

P pRq ˆX U » PU .(4.5.1)

By the universal property of dilatations ([5] 2.7), there exists a unique X-morphism

σ pRq : X Ñ P pRq(4.5.2)

lifting σ .

LEMMA 4.6. We keep the assumptions of (4.5) and assume moreover that X is locally
noetherian and that u is smooth. Then P pRq is smooth over X, and we have a canonical
R-isomorphism

P pRq ˆX R
„Ñ Vpσ˚pΩ1

P {Xq bOX OXpRqq ˆX R .(4.6.1)

The isomorphism (4.6.1) follows from ([5] 3.5). Since R is a Cartier divisor on X, the
isomorphisms (4.5.1) and (4.6.1) imply that P pRq is flat over X ([1] 1.12.9). Since all fibers
of P pRq over X are smooth, P pRq is smooth over X.

LEMMA 4.7. LetX be a locally noetherian scheme,R a Cartier divisor onX, u : P Ñ
X and v : Q Ñ X separated morphisms of finite type and σ : X Ñ P and τ : X Ñ Q sections
of u and v, respectively. We denote by P pRq presp.QpRq, resp. pP ˆX QqpRqq the dilatation of
P presp.Q, resp.P ˆXQq along σ presp. τ , resp. pσ, τ qq of thickeningR. If P orQ is smooth
over X, then the canonical morphism

w : pP ˆX QqpRq Ñ P pRq ˆX Q
pRq(4.7.1)

is an isomorphism.

We denote by JP (resp. JQ, resp. JPˆXQ) the ideal of OP (resp. OQ, resp. OPˆXQ)
defined by σ (resp. τ , resp. pσ, τ q). Since JPˆXQ “ JPOPˆXQ ` JQOPˆXQ, it follows
from 4.2 that the canonical morphism w (4.7.1) is a closed immersion. By construction, PU
(resp.QU , resp.PU ˆU QU ) is schematically dense in P pRq (resp.QpRq, resp. pP ˆX QqpRq).
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Since P pRq or QpRq is smooth over X (4.6), PU ˆU QU is schematically dense in
P pRq ˆX Q

pRq. Therefore w is an isomorphism.

4.8. Consider a commutative diagram of morphisms of finite type of locally noetherian
schemes

Y
τ ��

f

��

Q
v ��

g

��

Y

f

��
X

σ �� P
u �� X

(4.8.1)

such that u and v are smooth and separated, u ˝ σ “ idX and v ˝ τ “ idY . Let R be a
Cartier divisor on X such that RY “ R ˆX Y is a Cartier divisor on Y . We denote by P pRq
(resp.QpRqq the dilatation of P (resp.Q) along σ (resp. τ ) of thickening R and by

gpRq : QpRq Ñ P pRq(4.8.2)

the morphism induced by g (4.3.1). Note that QpRq is also the dilatation of Y in Q of thick-
ening RY . Let NX{P and NY {Q be the conormal bundles of X in P and Y in Q, respectively.

Then the morphism gpRqˆXR : QpRqˆXR Ñ P pRqˆXR can be identified with the morphism

VpNY {Q bOY OY pRY qq ˆY RY Ñ VpNX{P bOX OXpRqq ˆX R(4.8.3)

induced by the canonical morphism f ˚pNX{P q Ñ NY {Q ([5] 3.4).

LEMMA 4.9. We keep the assumptions of (4.8), and assume moreover that g is smooth
and that f is an isomorphism. Then gpRq : QpRq Ñ P pRq is smooth.

Observe first that P pRq and QpRq are smooth over X (4.6). We put U “ X ´ D. Then
gpRq ˆX U “ gU , which is smooth by assumption. On the other hand, gpRq ˆX R is the
morphism of vector bundles over R induced by the canonical morphism NX{P Ñ NX{Q
(4.8.3). Since the latter is locally left invertible, gpRq ˆX R is smooth. Then the assertion
follows from ([12] 17.8.2).

5. Frames and strict normal crossing pairs.

5.1. In this article, a monoid stands for a commutative monoid. If M is a monoid, we
denote byMgp the associated group, byMˆ the group of units inM and byM the orbit space
M{Mˆ (which is also the quotient of M by Mˆ in the category of monoids). We say that
a monoid M is integral if the canonical homomorphism M Ñ Mgp is injective, that M is
fine if it is finitely generated and integral and that M is saturated if it is integral and equal
to its saturation in Mgp (i.e., equal to tm P Mgp;mn P M for some n ě 1u). If a monoid
M is integral, M is integral. We say that a homomorphism of monoids u : M Ñ N is strict
if the induced morphism u : M Ñ N is an isomorphism. We denote by Mon the category
of monoids and by Monfs the full subcategory of fine and saturated monoids (usually called
fs-monoids for short).
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5.2. A pre-logarithmic structure on a schemeX is a pair pM , αq where M is a sheaf of
abelian monoids on the étale site ofX and α is a homomorphism from M to the multiplicative
monoid OX . A pre-logarithmic structure pM , αq is called a logarithmic structure if α induces
an isomorphism α´1pOˆ

X q „Ñ Oˆ
X . Pre-logarithmic structures onX form naturally a category,

containing the full subcategory of logarithmic structures on X. The canonical injection from
the category of logarithmic structures onX to the category of pre-logarithmic structures onX
has a left adjoint. It associates to a pre-logarithmic structure pP, βq the logarithmic structure
pM , αq, where M is defined by the following co-cartesian diagram.

β´1pOˆ
X q ��

��

P

��
Oˆ
X

�� M

(5.2.1)

We say that pM , αq is the logarithmic structure associated to pP, βq.
If f : X Ñ Y is a morphism of schemes and pM , αq is a pre-logarithmic structure on

Y , the sheaf of monoids f´1pM q equipped with the composed homomorphism f´1pM q Ñ
f´1pOY q Ñ OX is a pre-logarithmic structure on X called the inverse image of pM , αq and
denoted by f´1pM , αq.

5.3. A logarithmic scheme is a triple pX,MX,αXq, usually simply denoted by pX,MXq
or even by X, consisting of a scheme X and a logarithmic structure pMX, αXq on X. Log-
arithmic schemes form a category; we refer to [14] for more details. If pX,MX, αXq is a
logarithmic scheme, we denote by M ˆ

X the sheaf of units in MX, by M
gp
X the sheaf asso-

ciated to the presheaf U ÞÑ Γ pU,MXqgp and by M̄X the sheaf associated to the presheaf
U ÞÑ Γ pU,MXq{Γ pU,MXqˆ (which is the quotient of MX by M ˆ

X in the category of
sheaves of monoids). Observe that αX identifies M ˆ

X with Oˆ
X .

We say that a morphism of logarithmic schemes f : pX,MX, αXq Ñ pY,MY , αY q is
strict if pMX, αXq is the logarithmic structure associated to the pre-logarithmic structure
f´1pMY , αY q on X, or equivalently if the canonical morphism f´1pM̄Y q Ñ M̄X is an
isomorphism.

We say that a logarithmic scheme pX,MX, αXq is integral (resp. fine, resp. saturated) if
for every x P X, there exists an étale neighbourhood U of x in X such that pMX|U,αX|Uq
is associated to a pre-logarithmic structure pPU, βq on U , where PU is a constant sheaf of
monoids on U of value an integral (resp. a fine, resp. a saturated) monoid P . If
pX,MX, αXq is integral (resp. saturated), the monoid Γ pX,MXq is integral (resp. saturated).
If pX,MX, αXq is integral (resp. fine), for every geometric point x of X, the monoid M̄X,x is
integral (resp. fine).

5.4. Let M be a monoid and X a logarithmic scheme. We denote by BrMs the scheme
SpecpZrMsq equipped with the logarithmic structure induced by the pre-logarithmic structure
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M Ñ ZrMs (denoted by SrMs in [16] §4.1), and by MX the constant sheaf of monoids on X
of value M . Then the following data are equivalent (and will be identified in what follows):

(i) A homomorphism M Ñ Γ pX,MXq;
(ii) A homomorphism MX Ñ MX;

(iii) A morphism of logarithmic schemes X Ñ BrMs.
Moreover, the following conditions are equivalent:
(a) MX is associated to the pre-logarithmic structure induced on MX.
(b) The morphism X Ñ BrMs is strict.
We say then that M is a chart for X.

5.5. We denote by LS the category of fine and saturated logarithmic schemes (usually
called fs-logarithmic schemes for short) and by xLS the category of presheaves of sets over
LS. Since the canonical functor LS Ñ xLS is fully faithful, we will identify the objects of
LS with their canonical images in xLS. Fibred products are representable in the category LS.
For morphisms X Ñ S and Y Ñ S of LS, we will denote by X ˆlog

S Y the fibered product
in the category LS and reserve the notation X ˆS Y for the fibered product of the underlying
schemes. To avoid any risk of confusion, we will usually use the same notation for fibered
products in xLS (but not for products as there is no risk of confusion).

5.6. We have a functor

Monf̋s Ñ LS , M ÞÑ BrMs .(5.6.1)

Let g : N Ñ M and g 1 : N Ñ M 1 be two morphisms of Monfs. We denote byMgp ‘Ngp M 1gp

the cokernel of the homomorphism ggp ´ g 1gp : Ngp Ñ Mgp ‘ M 1gp and by M ‘sat
N M 1 the

saturation of the image of the canonical homomorphismMˆM 1 Ñ Mgp‘NgpM 1gp (M‘sat
N M

1
is the amalgamated sum of g and g 1 in Monfs). Then we have a canonical isomorphism in LS

BrM ‘sat
N M 1s „Ñ BrMs ˆlog

BrNs BrM 1s.(5.6.2)

Consider a commutative diagram of LS

X ��

��

Y

��

X1��

��
BrMs �� BrNs BrM 1s��

(5.6.3)

where the vertical arrows are strict and the lower horizontal morphisms are induced by g and
g 1. Then we have a canonical isomorphism of the underlying schemes

X ˆlog
Y X1 „Ñ pX ˆY X

1q ˆBrMˆM1s BrM ‘sat
N M 1s(5.6.4)

and X ˆlog
Y X1 is strict over BrM ‘sat

N M 1s.
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5.7. Following ([16] 4.1.1), we denote by

Monf̋s Ñ xLS , M ÞÑ rMs ,(5.7.1)

the functor defined, for a fine and saturated monoid M and X P ObpLSq, by

rMspXq “ HompM,Γ pX, M̄Xqq .(5.7.2)

We denote by MLS the following category. Objects of MLS are triples pX,M, uq, where
X P ObpLSq, M is a fine and saturated monoid and u : X Ñ rMs is a morphism of xLS. Let
pX,M, uq and pY,N, vq be two objects of MLS. A morphism from pX,M, uq to pY,N, vq
is a pair pf, gq made of a morphism f : X Ñ Y of LS and a homomorphism of monoids
g : N Ñ M such that the diagram

X
u ��

f

��

rMs
rgs
��

Y
v �� rNs

(5.7.3)

is commutative. An object pX,M, uq of MLS is called a framed logarithmic scheme (and
pM,uq is called a frame on X) if for every geometric point x of X, there exists an étale
neighbourhood U of x in X such that the morphism U Ñ rMs induced by u factors as
U

vÑ BrMs wÑ rMs, where v is a strict morphism and w is the canonical morphism ([16]
4.1.2); we say also that u is strict.

PROPOSITION 5.8 ([16] 4.2.1). Let g : N Ñ M be a morphism of Monfs such that
ggp : Ngp Ñ Mgp is surjective. Then:

(i) The morphism rgs : rMs Ñ rNs is representable, log étale and affine, i.e., for every

X P ObpLSq and every morphism u : X Ñ rNs, the fibre productXˆlog
rNs rMs is representable

by an object of LS which is log-étale and affine over X.
(ii) Let rM be the inverse image of M by ggp : Ngp Ñ Mgp. Then the canonical mor-

phism rMs Ñ r rMs is an isomorphism, and for every morphism u : X Ñ BrNs, the canonical
morphism

X ˆlog
BrNs Br rMs Ñ X ˆlog

rNs r rMs(5.8.1)

is an isomorphism.

5.9. Let X,Y, S be objects of LS, M a finitely generated and saturated monoid and
X Ñ S ˆ rMs and Y Ñ S ˆ rMs two morphisms of xLS. We will denote such a diagram

by X,Y Ñ S ˆ rMs and its projective limit by X ˆlog
SˆrMs Y . Let µ : M ˆ M Ñ M be the

multiplication and i1, i2 : M Ñ M ˆM the homomorphisms defined by i1pmq “ pm, 1q and
i2pmq “ p1,mq. Since the diagram

M
i1 ��
i2

�� M ˆM
µ �� M(5.9.1)
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is co-exact in the category of monoids (i.e., µ is the cokernel of the pair of morphisms i1 and
i2), the diagram

X ˆlog
SˆrMs Y ��

��

rMs
rµs
��

X ˆlog
S Y

uˆv �� rM ˆMs

(5.9.2)

where uˆ v is induced by u and v, is cartesian in xLS.

COROLLARY 5.10 ([16] 4.2.3). For every diagram X,Y Ñ S ˆ rMs of xLS,

Xˆlog
SˆrMs Y is representable by an object of LS, which is log-étale and affine overXˆlog

S Y .

PROPOSITION 5.11 ([16] 4.2.5). Let g : N Ñ M be a homomorphism of finitely gen-
erated and saturated monoids, X, Y and S objects of LS and

X ��

��

S

��

Y��

��
rMs rgs �� rNs rMsrgs��

(5.11.1)

a commutative diagram. Assume that X Ñ rMs and S Ñ rNs are strict. Then the canonical

projection X ˆlog
SˆrMs Y Ñ Y is strict.

COROLLARY 5.12. Under the assumptions of (5.11), if moreover X Ñ S is log-
smooth, then the canonical projection X ˆlog

SˆrMs Y Ñ Y is strict and smooth.

It follows from 5.10 and 5.11 as X ˆlog
SˆrMs Y Ñ Y is composed of X ˆlog

SˆrMs Y Ñ
X ˆlog

S Y Ñ Y .

5.13. Let pX,M, uq be an object of MLS and Y Ñ X Ñ S two morphisms of LS.
Then we can form a diagram X,Y Ñ S ˆ rMs, and the canonical morphism

X ˆlog
SˆrMs Y Ñ pX ˆlog

SˆrMs Xq ˆlog
X Y(5.13.1)

is an isomorphism. In particular, if the morphism X Ñ S can be extended to a morphism
of framed logarithmic schemes pX,M, uq Ñ pS,N, vq, then the canonical morphism of the
underlying schemes

X ˆlog
SˆrMs Y Ñ pX ˆlog

SˆrMs Xq ˆX Y(5.13.2)

is an isomorphism, and X ˆlog
SˆrMs Y is strict over Y (5.11).

5.14. Let pX,M, uq and pY,N, vq be two objects of MLS, X Ñ S and Y Ñ S two
morphisms of LS and g : M Ñ N a homomorphism; so we can form a diagram X,Y Ñ
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S ˆ rMs. We denote by θ : M ˆN Ñ N the homomorphism defined by θpm,nq “ gpmq ¨ n.
Since the diagram

M ˆM
µ ��

idˆg

��

M

g

��
M ˆN

θ �� N

(5.14.1)

is co-cartesian in the category of monoids, the diagram

X ˆlog
SˆrMs Y

w ��

��

rNs
rθs
��

X ˆlog
S Y

uˆv �� rM ˆNs

(5.14.2)

where w is the composed morphism X ˆlog
SˆrMs Y Ñ Y

vÑ rNs, is cartesian in xLS.

5.15. Let pf, gq : pY,N, vq Ñ pX,M, uq be a morphism of MLS and h : X Ñ S a
morphism of LS; so we have the following commutative diagram.

Y
v ��

f

��

rNs
rgs
��

X

h

��

u �� rMs

S

(5.15.1)

Then the canonical projection pr2 : X ˆlog
SˆrMs Y Ñ Y induces an isomorphism

Y ˆlog
XˆrNs pX ˆlog

SˆrMs Y q „Ñ Y ˆlog
SˆrNs Y .(5.15.2)

Indeed, the commutative diagram

Y ˆlog
SˆrNs Y ��

pr1

��

X ˆlog
SˆrMs Y

idˆv
��

Y
fˆv �� X ˆ rNs

(5.15.3)

defines the inverse.

5.16. Let X be a regular noetherian scheme, D a normal crossing divisor on X, U “
X ´ D and j : U Ñ X the canonical injection. There is a canonical fine and saturated
logarithmic structure pMD, αDq on X defined by MD “ OX ˆj˚pOU q j˚pOˆ

U q. We denote

pX,MD, αDq by XlogD . The sheaf M̄D is canonically isomorphic to the sheaf Γ DpD iv`
X q
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of effective Cartier divisors on X with support in D. Assume that D has simple normal
crossings, and let D1, . . . ,Dm be the irreducible components of D. We denote by MD the
free abelian monoid generated by D1, . . . ,Dm. Then the canonical morphism uD : XlogD Ñ
rMDs defines a frame on X.

5.17. A strict normal crossing pair over k (or an snc-pair over k for short) stands for
a pair pX,Dq where X is a smooth k-scheme and D is a simple normal crossing divisor on
X. Let pX,Dq and pY,Eq be two snc-pairs over k. A morphism f : pY,Eq Ñ pX,Dq is a
k-morphism f : Y Ñ X such that the support of f´1pDq is contained in E. We denote by
SNCPk the category of snc-pairs over k. We have a canonical functor

SNCPk Ñ MLS , pX,Dq ÞÑ pXlogD,MD, uDq(5.17.1)

whereXlogD ,MD and uD are defined in (5.16). We say that a morphism f : pY,Eq Ñ pX,Dq
of snc-pairs over k is log-smooth (resp. log-étale) if the associated morphism YlogE Ñ XlogD

is log-smooth (resp. log-étale).

LEMMA 5.18. Let f : pX1,D1q Ñ pX,Dq be a log-smooth morphism of snc-pairs
over k such that the morphism of the underlying schemes X1 Ñ X is flat, x P f pX1q Ă X

and D1, . . . ,Dn the irreducible components of D containing x. Then there exists x 1 P X1
contained in exactly n irreducible componentsD1

1, . . . ,D
1
n ofD1 such that f px1q “ x andD1

i

dominates Di for all 1 ď i ď n.

We may shrink X, so we may assume that the irreducible components of D are D1, . . . ,

Dn. Let y1 P X1 such that f py1q “ x. Since f is flat, for each 1 ď i ď n, there exists an
irreducible component D1

i of D1 containing y1 and dominating Di . We put Y “ Ş
1ďiďn Di

and Y 1 “ Ş
1ďiďn D1

i and denote by g : Y 1 Ñ Y the restriction of f . We equip Y 1 with
the strictly normal crossing divisor E1 defined by the irreducible components of D1 different
from D1

1, . . . ,D
1
n. We have the following canonical commutative diagram of OY 1 -modules

with exact lines.

0 �� g˚pΩ1
Y {kq ��

��

g˚pΩ1
X{kplogDq bOX OY q g˚presq��

��

On
Y 1 �� 0

0 �� Ω1
Y 1{kplogE1q �� Ω1

X1{kplogD1q bOX1 OY 1 res �� On
Y 1 �� 0

(5.18.1)

Therefore, the morphism g˚pΩ1
Y {kq Ñ Ω1

Y 1{kplogE1q is injective and its cokernel is locally

free. Then the morphism of snc-pairs pY 1, E1q Ñ pY, ∅q induced by g is log-smooth ([14]
3.12), which implies that g is smooth (in the usual sense) and thatE1 is a strict normal crossing
divisor on Y 1 relatively to Y ([14] 3.5). In particular, Y 1

x is smooth over kpxq andE1
x is a divisor

on Y 1
x . Hence, there exists x1 P Y 1

x ´ E1
x .

LEMMA 5.19. Let f : pX:,D:q Ñ pX,Dq and g : pX1,D1q Ñ pX,Dq be two mor-
phisms of snc-pairs over k and x: P X:. Assume that g is log-smooth, that the morphism
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X1 Ñ X is flat and that f px:q P gpX1q. Then there exists a commutative diagram of snc-
pairs over k

pX;,D;q f 1
��

g:
��

pX1,D1q
g

��
pX:,D:q f �� pX,Dq

(5.19.1)

such that g: is log-smooth, that the morphism X; Ñ X: is flat and that x: P g:pX;q. More-
over, if f is log-smooth, then we can choose pX;,D;q such that f 1 is log-smooth.

We denote by M ,M 1 and M : the sheaves of monoids overX,X1 andX: defined by the
divisors D,D1 and D: respectively; Let x: be a geometric point of X: above x:, x “ f px:q
and x1 a geometric point of X1 above x. We put M “ M̄x , M 1 “ M̄ 1

x1 and M: “ M̄
:
x: . By

5.18, we may assume that the following condition is satisfied:
(C1) The canonical homomorphism u : M Ñ M 1 induces an isomorphism

Mgp bZ Q
„Ñ M 1gp bZ Q

and M is the inverse image ofM 1 by the morphism ugp : Mgp Ñ M 1gp.
Replacing X1 by an étale neighborhood of x1, we may assume that the following condi-

tion is satisfied:
(C2) The divisors D1 and g˚pDq have the same support.
Let N be an integer annihilating the cokernel of ugp. We put Q “ pM:qgp ˆ M: and

denote by q : M: Ñ Q the morphism defined by t ÞÑ pt, tN q. Replacing X: by an étale
neighborhood of x:, we may assume that there exists a chart X: Ñ BrM:s. We put X1 “
X: ˆlog

BrM:s BrQs. Then X1 Ñ X: is log-smooth and the underlying morphism of schemes

is faithfully flat. Hence, by replacing X: by X1, we may further assume that the following
condition is satisfied:

(C3) The canonical homomorphism u: : M Ñ M: factors as M uÑ M 1 vÑ M:.
Under assumptions (C1), (C2) and (C3), we put X; “ X: ˆlog

X X1. The saturation
M: ‘sat

M M 1 of the amalgamated sum ofM: andM 1 over M , is equal to M: (5.6). Hence, the
canonical projection g: : X; Ñ X: is strict. Since g: is log-smooth, the underlying morphism
of schemes is smooth. Let D; be the inverse image of D: by g:. Then the logarithmic struc-
ture onX; is induced byD;. On the other hand, X; is the normalization ofX: ˆX X

1. Hence
X; Ñ X: ˆX X

1 is surjective. The first assertion is proved, and the second one is obvious
from the definition of X;.

5.20. Let pX,Dq and pY,Eq be two snc-pairs over k and g : MD Ñ ME a homomor-
phism of monoids (5.17); so we can form the diagram XlogD, YlogE Ñ Specpkq ˆ rMDs. We
call the g-framed product of pX,Dq and pY,Eq over k and denote byX˚k,g Y the logarithmic
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scheme

X ˚k,g Y “ XlogD ˆlog
SpecpkqˆrMDs YlogE .(5.20.1)

We know that the canonical morphism X ˚k,g Y Ñ XlogD ˆlog
k YlogE is log-étale (5.10)

and that the second projection X ˚k,g Y Ñ Y is strict and smooth (5.12). Observe that

XlogD ˆlog
k YlogE is the logarithmic scheme associated to the snc-pair pX ˆk Y, pr1̊ pDq `

pr2̊ pEqq.

5.21. Let f : pY,Eq Ñ pX,Dq be a morphism of snc-pairs over k. Then f induces
a homomorphism of monoids g : MD Ñ ME . We call the f -framed product of pX,Dq and
pY,Eq over k and denote by X ˚k,f Y the logarithmic scheme X ˚k,g Y (5.20.1); we omit f
from the terminology and the notation if there is no risk of confusion. In particular, we call
X ˚k,id X the framed self-product of pX,Dq over k and denote it simply by X ˚k X.

There is a canonical morphism

γf : YlogE Ñ X ˚k,f Y(5.21.1)

called the framed graph of f . The framed graph of the identity δ : X Ñ X ˚k X is called the
framed diagonal of pX,Dq.

The formation ofX˚k,f Y is functorial in f . In particular, we have canonical morphisms

Y ˚k Y
f1ÝÑ X ˚k Y

f2ÝÑ X ˚k X .(5.21.2)

We put rf “ f2 ˝ f1. By (5.13.2), the canonical morphism of the underlying schemes

X ˚k Y Ñ pX ˚k Xq ˆX Y(5.21.3)

is an isomorphism.

PROPOSITION 5.22. Let pX,Dq be an snc-pair over k andD1, . . . ,Dm the irreducible
components of D. For 1 ď i ď m, let Ii be the ideal of the closed subscheme Di ˆk Di of
X ˆk X, and let pX ˆk Xq1 be the blow-up of X ˆk X along the ideal

ś
1ďiďmIi . Then

X ˚k X is canonically isomorphic to the open subscheme Z of pX ˆk Xq1 complementary to
the strict transforms of D ˆk X and X ˆk D.

Let V “ SpecpAq and W “ SpecpBq be affine open subschemes of X such that for all
1 ď i ď m, Di |V (resp.Di |W ) is defined by an equation ti P A (resp. si P B). The inverse
image of V ˆk W in Z is the affine scheme of the ring

Abk Bru˘1
1 , . . . , u˘1

m s
pti b 1 ´ ui ¨ 1 b si p1 ď i ď mqq .(5.22.1)

Hence, Z equipped with the exceptional divisor E is an snc-pair over k. By construction, for
all 1 ď i ď m, the ideals pr1̊ pOXp´DiqqOZ and pr2̊ pOXp´DiqqOZ are equal and invertible.
Therefore, the canonical morphism Z Ñ X ˆk X lifts to a morphism Z Ñ X˚k X, which is
an isomorphism as it can be easily checked from the local description (5.22.1).

REMARKS 5.23. We keep the assumptions of (5.22).
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(i) The universal property of X ˚k X can be restated without logarithmic geometry
as follows. Let ϕ : Y Ñ X ˆk X be a morphism such that for all 1 ď i ď m, the ideals
pr1̊ pOXp´DiqqOY and pr2̊ pOXp´DiqqOY are equal and invertible. Then there exists a unique
morphism ψ : Y Ñ X ˚k X lifting ϕ.

(ii) Let U “ X ´ D. Then, with the conventions of 2.6, we have canonical isomor-
phisms

U ˆX pX ˚k Xq » U ˆk U » pX ˚k Xq ˆX U.(5.23.1)

(iii) The canonical projections X ˚k X Ñ X will be denoted also by pr1 and pr2;
they are smooth. The framed diagonal δ : X Ñ X ˚k X is a regular closed immersion with
conormal bundle canonically isomorphic to the sheaf of logarithmic differentials Ω1

XplogDq
([16] 4.2.8).

PROPOSITION 5.24. Let f : pY,Eq Ñ pX,Dq be a log-smooth presp. log-étaleq mor-
phism of snc-pairs over k. Then the canonical morphism Y ˚k Y Ñ X ˚k Y is smooth presp.
étaleq.

By (5.15.2), the canonical morphism

Y ˚k Y Ñ YlogE ˆlog
XlogDˆrMEs pX ˚k Y q(5.24.1)

is an isomorphism. Therefore Y ˚k Y is log-étale over YlogE ˆlog
XlogD

pX ˚k Y q (5.10). Hence
Y ˚k Y Ñ X˚k Y is log-smooth (resp. log-étale). Since the second projections Y ˚k Y Ñ Y

and X ˚k Y Ñ Y are strict, Y ˚k Y Ñ X ˚k Y is smooth (resp. étale).

5.25. Let pX,Dq be an snc-pair over k and D1, . . . ,Dm the irreducible components
of D. A rational divisor on X with support in D is an element R “ řm

i“1 riDi of the Q-
vector space generated by D1, . . . ,Dm. We say that R is effective if ri ě 0 for all i, and that
R has integral coefficients if ri is integral for all i. We call generic points of R the generic
points of the Di ’s such that ri ‰ 0. For every integer n ě 0, we denote by tnRu the divisorřm
i“1tnriuDi onX, where tnriu is the integral part of nri . IfR andR1 are two rational divisors

onX with support inD, we say thatR1 is bigger than R and use the notation R1 ě R ifR1 ´R
is effective. If f : pY,Eq Ñ pX,Dq is a morphism of snc-pairs over k and R is an effective
rational divisor on X with support in D, we can define the pull-back f ˚pRq as a rational
divisor on Y with support in E.

5.26. Let pX,Dq be an snc-pair over k,R an effective rational divisor onXwith support
in D, u : P Ñ X a smooth separated morphism of finite type and s : X Ñ P a section of u.
We put U “ X ´ D, and denote by j : U Ñ X and jP : PU Ñ P the canonical injections
and by IX the ideal of X in P . We call dilatation of P along s of thickening R and denote by
P pRq the affine scheme over P defined by the quasi-coherent sub-OP -algebra of jP˚pOPU qÿ

ně0

u˚pOXptnRuqq ¨ I n
X .(5.26.1)
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This notion extends the one introduced in 4.1 if R has integral coefficients (cf. 4.2). We have
a canonical isomorphism

P pRq ˆX U » PU .(5.26.2)

The image of the algebra (5.26.1) by the surjective homomorphism jP˚pOPU q Ñ s˚j˚pOU q
is canonically isomorphic to s˚pOXq. Hence we have a canonical section

spRq : X Ñ P pRq(5.26.3)

lifting s.
Let R1 be another rational divisor on X with support in D such that R1 ě R. Then for

every n ě 0, there is a canonical injection OXptnRuq Ñ OXptnR1uq. We deduce a canonical
P -morphism

P pR1q Ñ P pRq(5.26.4)

that fits into the following commutative diagram.

P pR1q

��
X

spR1q


�������� spRq
��
P pRq PU

����������
��

(5.26.5)

PROPOSITION 5.27. We keep the assumptions of (5.26), moreover, let λ be an integer
ě 1 such that λR has integral coefficients, Xpλq the λ-th infinitesimal neighbourhood of
s : X Ñ P , and P : the dilatation of P along Xpλq of thickening λR in the sense of (4.1).
Then P pRq is canonically isomorphic to the integral closure of P : in PU .

Recall (4.2) that P : is the affine scheme over P defined by the quasi-coherent sub-OP -
algebra of jP˚pOPU q generated by the image of the canonical morphism u˚pOXpλRqq¨I λ

X Ñ
jP˚pOPU q. Therefore, there is a canonical integral P -morphism P pRq Ñ P : extending the
identity of PU . To prove the proposition, it is enough to show that P pRq is normal. We put
R1 “ λR. The canonical morphism ρ : P pRq Ñ P is an isomorphism above u´1pX ´ R1q,
and ρpP pRq ˆX R

1q Ă spR1q. Then P pRq is normal at all points above P ´ spR1q. Hence, it
is enough to prove that P pRq is normal at spxq for x P R1.

By the Jacobian criterion of smoothness, there exists an open neighborhood V of spxq
in P and sections g1, . . . , gm P Γ pV,IXq such that g1, . . . , gm generate IX at spxq and
dg1, . . . , dgm generate Ω1

P {X at spxq. Let g : V Ñ AmX be the X-morphism defined by

g1, . . . , gm. Then g is étale at spxq by ([12] 17.11.1). After shrinking V , we may assume
that spXq X V coincides with the inverse image by g of the zero section of AmX. Hence, we
are reduced to the case where P “ AmX and s is the zero section. By shrinking X, we may
further assume that there exists a smooth morphism X Ñ Adk such that D is the pull-back of
the union of the coordinates hyperplanes of Adk . Hence, we are further reduced to the case
where X “ Adk and D is the union of the coordinates hyperplanes.
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We denote by M the free monoid Nd with basis T1, . . . , Td , and by N the free monoid
Nm with basis Td`1, . . . , Td`m. We identifyX with SpecpkrMsq and let f “ śd

i“1 T
ai
i be an

equation defining the divisor λR on X. Let H be the submonoid ofMgp ˆN generated by Ti
for 1 ď i ď d and T λj {f for d ` 1 ď j ď d `m. We denote by H sat the saturation of H and
by σ : N Ñ N the homomorphism sending Td`1, . . . , Td`m to 1. ThenH sat is the submonoid
ofMgp ˆN of elements pα, βq such that if we write α “ pα1, . . . , αdq P Zd “ Mgp, we have
for all 1 ď i ď d ,

λαi ` aiσ pβq ě 0 .(5.27.1)

Therefore, we have

H sat “ ž
ně0

tpα, βq P Mgp ˆN ; α ě tnRu and σ pβq “ nu ,(5.27.2)

where R is considered as an element ofMgp bZ Q. Hence, we have a canonical isomorphism
P pRq » SpecpkrH satsq, and P pRq is normal as H sat is saturated.

5.28. Let f : pY,Eq Ñ pX,Dq be a morphism of snc-pairs over k, U “ X ´ D,
V “ Y ´ E, R a rational effective divisor on X with support in D and RY “ f ˚pRq. Let
u : P Ñ X and v : Q Ñ Y be smooth separated morphisms of finite type, s : X Ñ P a
section of u, t : Y Ñ Q a section of v and g : Q Ñ P a morphism such that the diagram

Y
t ��

f

��

Q

g

��

v �� Y

f

��
X

s �� P
u �� X

(5.28.1)

is commutative. We denote byP pRq (resp.QpRY q) the dilatation ofP (resp.Q) along s (resp. t)
of thickening R (resp.RY ) and by spRq : X Ñ P pRq (resp. tpRY q : Y Ñ QpRY q) the canonical
lifting of s (resp. t). Let IX be the ideal of X in P , IY the ideal of Y in Q and jP : PU Ñ P

and jQ : QV Ñ Q the canonical injections. The morphism g induces a homomorphism of
OQ-algebras

g˚jP˚pOPU q Ñ jQ˚pOQV q .(5.28.2)

We have g˚pIXqOQ Ă IY and f ˚ptnRuq ď tnRY u for every n ě 0. Therefore, (5.28.2)
induces a homomorphism of OQ-algebras g˚pOP pRq q Ñ O

QpRY q , and hence a morphism

gpRq : QpRY q Ñ P pRq(5.28.3)

lifting g . We clearly have

gpRq ˝ tpRY q “ spRq ˝ f .(5.28.4)

If R has integral coefficients, gpRq is the morphism defined in (4.8.2).

PROPOSITION 5.29. We keep the assumptions of (5.28) and assume moreover that
Q “ P ˆX Y and g and v are the canonical projections. Then QpRY q is the integral closure
of P pRq ˆP Q in QV .
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Let n be an integer ě 1 such that nR has integral coefficients, Xpnq (resp.Y pnq) the n-th
infinitesimal neighbourhood of s (resp. t), and P : (resp.Q:) the dilatation of P along Xpnq
(resp.Q along Y pnq) of thickening nR in the sense of (4.1). We denote by F (resp.G) the
inverse image of nR inXpnq (resp.Y pnq) and byP 1 (resp.Q1) the blow-up of P (resp.Q) along
F (resp.G). Since Y pnq » Xpnq ˆP Q, g lifts to a morphism g 1 : Q1 Ñ P 1 and we haveQ: “
g 1´1pP :q (4.4). Let g: : Q: Ñ P : be the restriction of g 1. By 5.27, P pRq (resp.QpRY q) is
the integral closure of P : (resp.Q:) in PU (resp.QV ). It is clear that the canonical morphism
gpRq : QpRY q Ñ P pRq (5.28.3) is induced by g:. The morphism Q1 Ñ P 1 ˆP Q induced by
g 1 is a closed immersion ([5] 2.5). Therefore, the morphism Q: Ñ P : ˆP Q induced by g:
is a closed immersion, and the integral closures in QV of Q: and P : ˆP Q are isomorphic.
The proposition follows because the integral closures in QV of P pRq ˆP Q and P : ˆP Q are
isomorphic.

PROPOSITION 5.30. We keep the assumptions of (5.28) and assume moreover that g
is étale and that f is an isomorphism. Then gpRq : QpRq Ñ P pRq is étale.

Let n be an integer ě 1 such that nR has integral coefficients, Xpnq (resp. Y pnq) the
n-th infinitesimal neighborhood of s (resp. t), and P : (resp.Q:) be the dilatation of P along
Xpnq (resp.Q along Y pnq) of thickening nR in the sense of (4.1). We prove first that the
morphism g: : Q: Ñ P : induced by g is étale (4.3.1). Since g is étale, Y pnq is an open and
closed subscheme of Z “ Xpnq ˆP Q. Let Q; be the dilatation of Q along Z of thickening
nR. Then the canonical morphism Q: Ñ Q; is an open immersion. Since the morphism
g; : Q; Ñ P : induced by g is étale by 4.4(iii), g: is étale. On the other hand, by 5.27, P pRq
(resp.QpRq) is the integral closure of P : in PU (resp.Q: in QV ), and gpRq is induced by g:.
We deduce that the morphism QpRq Ñ P pRq ˆP : Q: induced by gpRq is an isomorphism,
which implies that gpRq is étale.

5.31. Let pX,Dq be an snc-pair over k, U “ X´D and R an effective rational divisor
on X with support in D. We consider X˚k X as an X-scheme by pr2, and denote by δ : X Ñ
X ˚k X the framed diagonal of pX,Dq and by pX˚k XqpRq the dilatation of X˚k X along δ
of thickening R (5.26). We can make the following remarks:

(i) If we consider X ˚k X as an X-scheme by pr1 instead of pr2, then the dilatation
of X ˚k X along δ of thickening R is equal to pX ˚k XqpRq. In particular, the automorphism
of X ˚k X switching the factors induces an isomorphism

σ : pX ˚k XqpRq „Ñ pX ˚k XqpRq.(5.31.1)

(ii) There is a canonical morphism

δpRq : X Ñ pX ˚k XqpRq(5.31.2)

lifting δ, and a canonical open immersion

j pRq : U ˆk U Ñ pX ˚k XqpRq.(5.31.3)
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(iii) If R has integral coefficients, then the canonical projections pX ˚k XqpRq Ñ X

are smooth (4.6) and we have canonical R-isomorphisms (4.6.1)

R ˆX pX ˚k XqpRq „Ñ VpΩ1
X{kplogDq bOX OXpRqq ˆX R

„Ñ pX ˚k XqpRq ˆX R .

(5.31.4)

5.32. Let f : pY,Eq Ñ pX,Dq be a morphism of snc-pairs over k, U “ X ´ D,
V “ Y ´E, R a rational effective divisor onX with support inD and RY “ f ˚pRq. We have
a commutative diagram

Y

δY

��

Y
f ��

γf

��

X

δX

��
Y ˚k Y

f1 �� X ˚k Y
f2 �� X ˚k X

(5.32.1)

where f1 and f2 are the morphisms defined in (5.21.2), δX and δY are the framed diagonals
and γf is the framed graph of f . We put rf “ f2 ˝ f1. We consider Y ˚k Y and X˚k Y as Y -
schemes andX˚k X as an X-scheme by the second projections. We denote by pY ˚k Y qpRY q
(resp. pX˚k Y qpRY q) the dilatation of Y ˚k Y (resp.X˚k Y ) along δY (resp.γf ) of thickening
RY , and by pX ˚k XqpRq the dilatation of X ˚k X along δX of thickening R. Then we have
canonical morphisms

Y

δ
pRY q
Y ��

Y
f ��

γ
pRY q
f

��

X

δ
pRq
X��

pY ˚k Y qpRY q f
pRY q
1 �� pX ˚k Y qpRY q f

pRq
2 �� pX ˚k XqpRq

(5.32.2)

where f
pRY q
1 and f

pRq
2 are defined in (5.28.3) and the vertical morphisms are the canonical

liftings of the vertical morphisms in (5.32.1); we have rf pRq “ f
pRq
2 ˝ f pRY q

1 .
Since the canonical morphism X ˚k Y Ñ pX ˚k Xq ˆX Y is an isomorphism (5.21.3),

the morphism f
pRq
2 is described by the proposition 5.29.

PROPOSITION 5.33. We keep the assumptions of (5.32).
(i) If f is log-étale, then the morphism

f
pRY q
1 : pY ˚k Y qpRY q Ñ pX ˚k Y qpRY q(5.33.1)

is étale.
(ii) If f is log-smooth and if RY “ f ˚pRq has integral coefficients, then the morphism

f
pRY q
1 is smooth.

(i) Indeed, f1 is étale by 5.24, and hence f
pRY q
1 is étale by 5.30.

(ii) Indeed, f1 is smooth by 5.24, and hence f
pRY q
1 is smooth by 4.9.
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5.34. Let pX,Dq be an snc-pair over k. We put

X ˚k X ˚k X “ XlogD ˆlog
SpecpkqˆrMDs XlogD ˆlog

SpecpkqˆrMDs XlogD .(5.34.1)

We denote by pri : X ˚k X ˚k X Ñ X p1 ď i ď 3q and prij : X ˚k X ˚k X Ñ X ˚k X

p1 ď i ă j ď 3q the canonical projections, by ∆ : X Ñ X ˚k X ˚k X the unique morphism
such that pri ˝ ∆ “ idX for all 1 ď i ď 3 and by δ : X Ñ X ˚k X the framed diagonal of
pX,Dq. It follows immediately from the definition that the diagram

X ˚k X ˚k X
pr23 ��

pr12

��

X ˚k X

pr1

��
X ˚k X

pr2 �� X

(5.34.2)

is cartesian. The projection pr23 is strict and smooth by 5.12. Then so is pr13 by symmetry.
Let R be an effective divisor on X with support in D. We consider X ˚k X ˚k X

(resp.X ˚k X) as an X-scheme by pr3 (resp. pr2) and denote by pX ˚k X ˚k XqpRq (resp.
pX ˚k XqpRq) the dilatation of X ˚k X ˚k X (resp.X ˚k X) along ∆ (resp. δ) of thickening
R. Observe that if we consider X ˚k X ˚k X as an X-scheme by any of the projections pri
p1 ď i ď 3q, the dilatation of X ˚k X ˚k X along ∆ of thickening R does not change. We
deduce by 4.7 that we have a canonical isomorphism

pX ˚k X ˚k XqpRq „Ñ pX ˚k XqpRq ˆX pX ˚k XqpRq .(5.34.3)

By the universal property of dilatations (4.3), pr13 induces a morphism

µ : pX ˚k XqpRq ˆX pX ˚k XqpRq Ñ pX ˚k XqpRq(5.34.4)

that fits into the following commutative diagram.

pX ˚k XqpRq ˆX pX ˚k XqpRq µ ��

��

pX ˚k XqpRq

��
pX ˚k Xq ˆX pX ˚k Xq X ˚k X ˚k X

pr13 �� X ˚k X

(5.34.5)

PROPOSITION 5.35 ([21] 2.24). Under the assumptions of (5.34), µ is smooth and
µˆX R is the addition of the vector bundle E “ pX ˚k XqpRq ˆX R over R (5.31.4).

Since pr13 is smooth, µ is smooth (4.9). The closed subscheme R ˆX pX ˚k XqpRq of
pX ˚k XqpRq is equal to E, and the canonical projections pX ˚k XqpRq Ñ X induce the
same morphism E Ñ R. On the other hand, α “ µ ˆX R is a linear morphism of vector
bundles E ˆR E Ñ E (4.8). Let i1, i2 : E Ñ E ˆR E be the homomorphisms defined by
i1pxq “ px, 0q and i2pxq “ p0, xq. To prove that α is the addition of E, it is enough to prove
that α ˝ i1 “ α ˝ i2 “ idE . Consider the morphism ι1 “ id ˆX δ

pRq : pX ˚k XqpRq Ñ
pX˚k X˚k XqpRq. We have i1 “ ι1 ˆX R : E Ñ E ˆR E. Since µ ˝ ι1 “ idpX˚kXqpRq , then
α ˝ i1 “ idE . The same argument shows that α ˝ i2 “ idE .
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6. Review of ramification theory of local fields with imperfect residue fields.
6.1. In this section, K denotes a discrete valuation field, OK the valuation ring of K ,

mK the maximal ideal of OK , F the residue field of OK , K a separable closure of K , G the
Galois group of K{K and ord the valuation of K normalized by ordpKˆq “ Z. We assume
that OK is henselian and that F has characteristic p. In ([2] 3.12), we defined a decreasing
filtration G r

log pr P Qą0q of G by closed normal subgroups, called the logarithmic ramification

filtration. Unlike the convention in loc. cit., it is more convenient to extend it by letting G 0
log

be the inertia subgroup of G . For a rational number r ě 0, we put

G r`
log “

ď
sąr

G s
log ,(6.1.1)

GrrlogpG q “ G r
log{G r`

log .(6.1.2)

Then P “ G 0`
log is the wild inertia subgroup of G , i.e., the p-Sylow subgroup of G 0

log ([2]
3.15).

6.2. Let L be a finite separable extension of K and r a rational number ě 0. Then G

acts on HomKpL,Kq via its action on K . We say that the ramification of L{K is bounded by
r (resp. by r`) if G r

log (resp. G r`
log ) acts trivially on HomKpL,Kq. We define the conductor

c of L{K as the infimum of rational numbers r ą 0 such that the ramification of L{K is
bounded by r . Then c is a rational number, and the ramification of L{K is bounded by c`
([2] 9.5). If c ą 0, the ramification of L{K is not bounded by c.

THEOREM 6.3 ([3] Theorem 1). For every rational number r ą 0, the group GrrlogpG q
is abelian and is contained in the center of the pro-p-group P{G r`

log .

LEMMA 6.4 ([17] 1.1). Let M be a Zr1{ps-module on which P acts through a finite
discrete quotient, say by ρ : P Ñ AutZpMq. Then,

(i) M has a unique direct sum decomposition

M “ à
rPQě0

Mprq(6.4.1)

into P-stable submodules Mprq, such that Mp0q “ MP and for every r ą 0,

pMprqqG r
log “ 0 and pMprqqG r`

log “ Mprq.(6.4.2)

(ii) If r ą 0, thenMprq “ 0 for all but the finitely many values of r for which ρpG r
logq Ľ

ρpG r`
log q.

(iii) For variable M but fixed r , the functor M ÞÑ Mprq is exact.
(iv) ForM,N as above, we have HomP-modpMprq, Npr 1qq “ 0 if r ‰ r 1.
DEFINITION 6.5. The decomposition M “ À

rPQě0
Mprq of lemma 6.4 is called the

slope decomposition of M . The values r ě 0 for which Mprq ‰ 0 are called the slopes of M .
We say that M is isoclinic if it has only one slope.
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These notions apply in particular to the case where M is a Zr1{ps-module on which G

acts through a finite discrete quotient.

LEMMA 6.6 ([17] 1.4). If A is a Zr1{ps-algebra and M is a left A-module on which
P acts A-linearly through a finite discrete quotient, then in the slope decomposition M “À

r M
prq, eachMprq is a sub-A-module ofM . For anyA-algebra B, the slope decomposition

of B bA M is given by B bA M “ À
rpB bA M

prqq.

LEMMA 6.7. Let M be a Λ-module on which P acts Λ-linearly through a finite dis-
crete quotient, which is isoclinic of slope r ą 0; so the subgroup G r`

log acts trivially on M .

(i) Let Xprq be the set of isomorphism classes of finite characters χ : G r
log{G r`

log Ñ
Λχ̂ such that Λχ is a finite étale Λ-algebra, generated by the image of χ , and having a
connected spectrum. ThenM has a unique direct sum decomposition

M “ à
χPXprq

Mχ(6.7.1)

into P-stable sub-Λ-modules Mχ , such that ΛrG r
logs acts on Mχ throughΛχ for every χ .

(ii) There are finitely many characters χ P Xprq for which Mχ ‰ 0.
(iii) For variable M but fixed χ , the functorM ÞÑ Mχ is exact.
(iv) ForM,N as above, we have HomΛrPspMχ,Nχ 1 q “ 0 if χ ‰ χ 1.

Let P be a finite discrete quotient of P{G r`
log through which P acts on M and let C be

the image of G r
log{G r`

log in P . We know by 6.3 that C is contained in the center of P . The
connected components of SpecpΛrCsq correspond to the isomorphism classes of characters
χ : C Ñ Aˆ, where A is a finite étale Λ-algebra, generated by the image of χ , and having a
connected spectrum. We obtain a set of orthogonal idempotents eχ of ΛrCs, indexed by such
characters, whose sum is 1, and are clearly central in ΛrP s. The lemma follows.

REMARK 6.8. If pnC “ 0 and Λ contains a primitive pn-th root of unity, then Λχ “
Λ for every χ such that Mχ ‰ 0.

DEFINITION 6.9. The decompositionM “ À
χ Mχ of lemma 6.7 is called the central

character decomposition of M . The characters χ : G r
log{G r`

log Ñ Λχ̂ for which Mχ ‰ 0 are
called the central characters of M .

LEMMA 6.10. If A is a Λ-algebra, and M is a left A-module on which P acts A-
linearly through a finite discrete quotient, which is isoclinic, then in the central character
decomposition M “ À

χ Mχ , each Mχ is a sub-A-module of M . For any A-algebra B, the
central character decomposition of B bA M is given by B bA M “ À

χ pB bA Mχ q.

This is clear from the proof of 6.7.

6.11. For the rest of this section, we assume that K has characteristic p and that F is
of finite type over k. We denote by Ω1

OK
plogq the OK -module of logarithmic 1-differential
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forms

Ω1
OK

plogq “ pΩ1
OK

‘ pOK bZ K
ˆqq{S ,(6.11.1)

where S is the sub-OK -module of Ω1
OK

‘ pOK bZ K
ˆq generated by elements of the form

pda, 0q´p0, abaq, for a P OK ´t0u. For every a P Kˆ, we denote by d logpaq P Ω1
OK

plogq
the class of p0, 1baq. Let π be a uniformizer of OK . The morphismΩ1

OK
‘OK Ñ Ω1

OK
plogq

that maps pω, aq to ω`ad logpπq is surjective, and its kernel is generated by pdπ, 0q´p0, πq.
We putΩ1

F plogq “ Ω1
OK

plogq bOK F and denote by d logrπs the class of d logpπq. It is

easy to see that Ω1
F plogq is canonically isomorphic to the quotient of Ω1

F ‘ pF bZ K
ˆq by

the sub-F -module generated by elements of the form pda, 0q ´ p0, ab aq, for a P OK ´ t0u,
where a is the residue class of a in F . Then we have an exact sequence

0 ÝÑ Ω1
F ÝÑ Ω1

F plogq resÝÑ F ÝÑ 0 ,(6.11.2)

where respp0, a b bqq “ a ¨ ordpbq for a P F and b P Kˆ. In particular, Ω1
F plogq is an

F -vector space of finite dimension.

6.12. Let OK be the integral closure of OK in K and F its residue field. For a rational
number r , we put mr

K
“ tx P K ; ordpxq ě ru, mr`

K
“ tx P K ; ordpxq ą ru and

Θ
prq
F

“ HomF pΩ1
F plogq,mr

K
{mr`

K
q ,(6.12.1)

which is an F -vector space of finite dimension. We consider Θ
prq
F

as a smooth additive F -

group-scheme. Let πalg
1 pΘprq

F
q be the quotient of the abelianized fundamental group

πab
1 pΘprq

F
q of Θ

prq
F

classifying étale isogenies; it is an abelian profinite group killed by p.

Recall that Lang’s isogeny A1
F

Ñ A1
F

, defined by x ÞÑ xp ´ x (where x is the canonical

parameter of A1
F

), is a basis of the F -vector space HomZpπalg
1 pA1

F
q,Fpq. Therefore, we have

a canonical isomorphism

HomZpπalg
1 pΘprq

F
q,Fpq „Ñ HomF pmr

K
{mr`

K
,Ω1

F plogq bF F q .(6.12.2)

THEOREM 6.13 ([21] 1.24). For every rational number r ą 0, there exists a canoni-
cal surjective homomorphism

π
alg
1 pΘprq

F
q Ñ GrrlogG .(6.13.1)

Consequently, the group GrrlogG is killed by p, and we have a canonical injective homomor-
phism

rsw : HomZpGrrlogG ,Fpq Ñ HomF pmr

K
{mr`

K
,Ω1

F plogq bF F q .(6.13.2)

The homomorphism (6.13.2) is called the refined Swan conductor. This theorem has
been recently extended to the unequal characteristic case by one of the authors (T. S.) [22].
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7. Ramification of Galois torsors.
7.1. In this section, we fix an snc-pair pX,Dq over k, and put U “ X ´D. We denote

by j : U Ñ X the canonical injection, by X ˚k X the framed self-product of pX,Dq and
by δ : X Ñ X ˚k X the framed diagonal (5.21). We will no longer consider the logarithmic
structure of X ˚k X; only the underlying scheme will be of interest for us. We consider
X ˚k X as an X-scheme by the second projection. For any effective rational divisor R on X
with support in D, we denote by pX ˚k XqpRq the dilatation of X˚k X along δ of thickening
R (5.31), by

δpRq : X Ñ pX ˚k XqpRq(7.1.1)

the canonical lifting of δ, and by

j pRq : U ˆk U Ñ pX ˚k XqpRq(7.1.2)

the canonical open immersion. Then we have the following Cartesian diagram.

U
δU ��

j

��

U ˆk U

jpRq
��

X
δpRq

�� pX ˚k XqpRq

(7.1.3)

7.2. Let V be a Galois torsor over U of group G and R an effective rational divisor on
X with support inD. We consider V ˆk V as a Galois torsor overUˆk U of groupGˆG, and
denote byW the quotient of VˆkV by the group∆pGq, where∆ : G Ñ GˆG is the diagonal
homomorphism. The diagonal morphism δV : V Ñ V ˆk V induces a morphism εU : U Ñ
W above the diagonal morphism δU : U Ñ U ˆk U . Note that W represents the sheaf of
isomorphisms of G-torsors from U ˆk V to V ˆk U over U ˆk U , and that εU corresponds
to the identity isomorphism of V (identified with the pull-backs of U ˆk V and V ˆk U by
δU ). We denote by Z the integral closure of pX ˚k XqpRq in W , by π : Z Ñ pX ˆk XqpRq
the canonical morphism and by ε : X Ñ Z the morphism induced by εU : U Ñ W . We have
π ˝ ε “ δpRq.

W ��

��

Z

π

��
U

εU
��

δU �� U ˆk U �� pX ˚k XqpRq X

ε
��

δpRq
��

(7.2.1)

DEFINITION 7.3. We keep the assumptions of (7.2) and let x P X. We say that the
ramification of V {U at x is bounded by R` if the morphism π : Z Ñ pX˚k XqpRq is étale at
εpxq, and that the ramification of V {U along D is bounded by R` if π is étale over an open
neighborhood of εpXq.

LEMMA 7.4. Let V be a Galois torsor over U , R an effective rational divisor on X
with support in D and x P X. The ramification of V {U at x is bounded by R` if and only
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if there exists an open neighborhood X1 of x in X such that if we put U 1 “ U ˆX X
1 and

V 1 “ V ˆX X
1 and if we denote by D1 and R1 the pull-backs of D and R over X1, then the

ramification of V 1{U 1 alongD1 is bounded by R1`.

Only the necessity of the condition requires a proof. Assume that the ramification of
V {U at x is bounded by R`. Then with the notation of (7.2), there exists an open neighbor-
hood X1 of x in X such that the morphism π : Z Ñ pX ˚k XqpRq is étale at each point εpx1q
for x1 P X1. It is clear that X1 satisfies the required property.

LEMMA 7.5. Let V be a Galois torsor over U , x P X and R and R1 effective rational
divisors on X with supports in D such that R1 ě R. Then if the ramification of V {U at x
presp. alongDq is bounded by R`, it is also bounded by R1`.

We use the notation of (7.2) both for R and R1; we equip objects relative to R1 with a
prime. There is a canonical morphism u : pX˚k XqpR1q Ñ pX˚k XqpRq (5.26.4) that fits into
the following commutative diagram.

pX ˚k XqpR1q

u

��
X

δpR1q
������������� δpRq

�� pX ˚k XqpRq U ˆk U



�����������
��

(7.5.1)

It induces a canonical morphism v : Z1 Ñ Z that fits into the following commutative diagram.

Z1

v

��

�� pX ˚k XqpR1q

u

��
X

ε1
���������� ε �� Z �� pX ˚k XqpRq

(7.5.2)

Moreover, Z1 is the integral closure of u˚pZq in W . Let Z (resp.Z1) be the maximal open
subscheme of Z (resp.Z1) which is étale over pX ˚k XqpRq (resp. pX ˚k XqpR1q). Since
pX ˚k XqpR1q is normal (5.27), u˚pZq is normal. Therefore, we can identify u˚pZq with
v´1pZq Ă Z1, and we have v´1pZq Ă Z1, which implies the proposition.

PROPOSITION 7.6. Let V be a Galois torsor over U of group G, x P X, H a normal
subgroup of G and V 1 the quotient of V by H . Then if the ramification of V {U at x presp.
along Dq is bounded by R`, the ramification of V 1{U at x presp. along Dq is bounded by
R`.

It is enough to prove the proposition relative to x. We use the notation of (7.2) for the
Galois torsor V over U . We put G1 “ G{H and denote by ∆1 : G1 Ñ G1 ˆG1 the diagonal
homomorphism, by W 1 the quotient of V 1 ˆk V

1 by ∆1pG1q and by Z1 the integral closure of
pX˚k XqpRq inW 1. LetH 1 be the subgroup ofGˆG of elements pg, g 1q such that g 1g´1 P H
(i.e., the inverse image of∆1pG1q inGˆG). ThenW 1 is the quotient of V ˆk V byH 1. Since
∆pGq Ă H 1, there exists a canonical pV ˆk V q-morphism W Ñ W 1, which induces an
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pX ˚k XqpRq-morphism ρ : Z Ñ Z1. By assumption, there exists an open neighborhood Z0

of εpxq in Z, which is étale over pX ˚k XqpRq. Then Z0 is unramifed over Z1, and by ([12]
18.10.1), Z0 is étale over Z1; in particular, Z0 is flat over Z1 and ρpZ0q is an open subscheme
of Z1. We conclude by ([12] 17.7.7) that ρpZ0q is étale over pX˚k XqpRq, which implies that
the ramification of V 1{U at x is bounded by R`.

PROPOSITION 7.7. Let V be a Galois torsor over U , R an effective rational divisor
on X with support in D, f : pX1,D1q Ñ pX,Dq a morphism of snc-pairs, U 1 “ X1 ´ D1,
V 1 “ V ˆU U

1, R1 “ f ˚pRq, x1 P X1 and x “ f px1q. Then:
(i) If the ramification of V {U at x presp. alongDq is bounded byR`, the ramification

of V 1{U 1 at x1 presp. alongD1q is bounded by R1`.
(ii) Assume that f is log-smooth (5.17) and that the morphism X1 Ñ X is flat at x1.

Then the ramification of V {U at x is bounded by R` if and only if the ramification of V 1{U 1
at x1 is bounded by R1`.

(iii) Assume that f is log-smooth and that the morphism X1 Ñ X is faithfully flat.
Then the ramification of V {U along D is bounded by R` if and only if the ramification of
V 1{U 1 alongD1 is bounded by R1`.

Let G be the Galois group of V {U . We denote by W (resp.W 1) the quotient of V ˆk V

(resp.V 1 ˆk V
1) by ∆pGq (cf. 7.2). We have a commutative diagram (5.32.1)

X1

δX1
��

X1 f ��

γf

��

X

δX

��
X1 ˚k X

1 f1 �� X ˚k X
1 f2 �� X ˚k X

(7.7.1)

where f1 and f2 are the morphisms defined in (5.21.2), δX and δX1 are the framed diagonals
and γf is the framed graph of f . We put rf “ f2 ˝ f1. Let U1 “ f´1pUq and let U1 ˚k U1

be the framed self-product of pU1,D
1|U1q. Then we have

U1 ˚k U1 “ pX1 ˚k X
1q ˆpX1ˆkX1q pU1 ˆk U1q .

We put W1 “ W ˆpUˆkUq pU ˆk U1q and rW “ W ˆpUˆkUq pU1 ˚k U1q. We have the
following commutative diagram (cf. 7.2).

U 1 ��

��

U1

��

U1 ��

��

U

��
W 1 ��

��
l

rW ��

��
l

W1 ��

��
l

W

��
U 1 ˆk U

1 ��

������������
U1 ˚k U1 ��

��
l

U ˆk U1 ��

��
l

U ˆk U

��
X1 ˚k X

1 f1 �� X ˚k X
1 f2 �� X ˚k X

(7.7.2)
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We denote by pX1 ˚k X
1qpR1q (resp. pX˚k X

1qpR1q) the dilatation of X1 ˚k X
1 (resp.X˚k X

1)
along δX1 (resp.γf ) of thickening R1. Let Z (resp.Z1, resp.Z1) be the integral closure of
pX ˚k XqpRq in W (resp. pX ˚k X

1qpR1q in W1, resp. pX1 ˚k X
1qpR1q in W 1). Since W 1 is a

dense open subscheme of rW and since the latter is regular, Z1 is identified with the integral
closure of pX1 ˚k X

1qpR1q in rW . Then we have the following commutative diagram (5.32.2).

X1

ε1
��

X1 h ��

ε1

��

X

ε

��
Z1 f 1

1 ��

π 1
��

Z1
f 1

2 ��

π1

��

Z

π

��
pX1 ˚k X

1qpR1q f
pR1q
1 �� pX ˚k X

1qpR1q f
pRq
2 �� pX ˚k XqpRq

(7.7.3)

We put rf pRq “ f
pR1q
2 ˝ f pRq

1 and rf 1 “ f 1
2 ˝ f 1

1. Let Z (resp.Z1, resp.Z1) be the maximal
open subscheme of Z (resp.Z1, resp.Z1) where π (resp.π 1, resp.π1) is étale.

(i) It is enough to prove the local proposition. We denote by Z: (resp.Z:) the base
change ofZ (resp.Z) by rf pRq. Since pX1˚kX

1qpR1q is normal (5.27),Z: is normal. Therefore,
we can identify Z: with rf 1´1pZq Ă Z1, and we have rf 1´1pZq Ă Z1. We have εpxq P Z by
assumption; then ε1px1q P Z1.

(ii) By (i), there is only one implication to prove: we assume that π 1 is étale at ε1px1q
and prove that π is étale at εpxq. We proceed in three steps.

(A) Assume first that the morphism f : X1 Ñ X is smooth (in the usual sense) and
that R1 has integral coefficients. Since f is log-smooth, the first condition is satisfied if for

instance the morphism X1
logD1 Ñ XlogD is strict (5.17). By 5.33(ii), the morphism f

pR1q
1 is

smooth. Then the diagram

Z1 f 1
1 ��

π 1
��

Z1

π1

��
pX1 ˚k X

1qpR1q f
pR1q
1 �� pX ˚k X

1qpR1q

(7.7.4)

is cartesian, and hence π1 is étale at ε1px1q. On the other hand, f2 induces an isomorphism
(5.21.3)

X ˚k X
1 „Ñ pX ˚k Xq ˆX X

1 .(7.7.5)

It follows from 5.29 that the diagram

pX ˚k X
1qpR1q f

pRq
2 ��

��

pX ˚k XqpRq

��
X1 f �� X

(7.7.6)
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is cartesian. Then f
pRq
2 is smooth and the diagram

Z1
f 1

2 ��

π1

��

Z

π

��
pX ˚k X

1qpR1q f
pRq
2 �� pX ˚k XqpRq

(7.7.7)

is cartesian. Hence π is étale at εpxq.
(B) Assume next that the following conditions are satisfied:
(a) The irreducible componentsD1, . . . ,Dm ofD are defined by equations t1, . . . , tm P

Γ pX,OXq.
(b) There exists integers a1, . . . , am ě 1 such that

X1 “ XrSi, U˘1
i ; 1 ď i ď ms

pUiSaii ´ ti; 1 ď i ď mq ,(7.7.8)

and that the divisor D1 is defined by the equation
śm
i“1 Si . Observe that pX1,D1q is an snc-

pair over k, that pX1,D1q Ñ pX,Dq is log-smooth and that X1 Ñ X is faithfully flat.
(c) R1 has integral coefficients.
It follows from the first half of the proof of case (A) that π1 is étale at ε1px1q. Consider

the X-scheme

X2 “ XrTi, U˘1
i ; 1 ď i ď ms

pUiTi ´ ti; 1 ď i ď mq ,(7.7.9)

and denote by h : X2 Ñ X the structural morphism (which is smooth). Let g : X1 Ñ X2 be
the finite X-morphism defined by Ti ÞÑ S

ai
i p1 ď i ď mq and let x2 “ gpx1q. The morphism

f2 factors as

X ˚k X
1 g2ÝÑ X ˚k X

2 h2ÝÑ X ˚k X .(7.7.10)

We put R2 “ h˚pRq, U2 “ h´1pUq, W2 “ W ˆpUˆkUq pU ˆk U2q, and denote by

pX ˚k X
2qpR2q the dilatation of X ˚k X

2 along the framed graph of h of thickening R2,
and by Z2 the integral closure of pX ˚k X

2qpR2q in W2. We have the following commutative
diagram.

X1 g ��

ε1

��

X2 h ��

ε2

��

X

ε

��
Z1

g 1
2 ��

π1

��

Z2
h1

2 ��

π2

��

Z

π

��
pX ˚k X

1qpR1q g
pR2q
2 ��

��

pX ˚k X
2qpR2q h

pRq
2 ��

��

pX ˚k XqpRq

��
X1 g �� X2 h �� X

(7.7.11)
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By 5.29, each irreducible component of pX ˚k X
1qpR1q dominates an irreducible component

of pX ˚k X
2qpR2q. Then it follows from 2.7 that π2 is étale at ε2px2q. Since h is smooth, we

deduce, as in the second half of the proof of case (A), that π is étale at εpxq.
(C) We consider finally the general case. We may assume that the morphismX1 Ñ X is

flat and that the ramification of V 1{U 1 alongD1 is bounded by R1` (7.4). Let D1, . . . ,Dn be
the irreducible components of D containing x. By 5.18, we may assume that x 1 is contained
in exactly n irreducible components D1

1, . . . ,D
1
n of D1 such that D1

i dominates Di for all
1 ď i ď n. Moreover, we may assume that D “ Ť

1ďiďn Di and D1 “ Ť
1ďiďn D1

i , and
that for each 1 ď i ď n, Di is defined by an equation ti P Γ pX,OXq and D1

i is defined by a
section si P Γ pX1,OX1q. We write R “ řn

i“1 riDi and f ˚pDiq “ eiD
1
i p1 ď i ď nq; so we

have ti “ uis
ei
i , where ui P Γ pX,Oˆ

X q. For each 1 ď i ď n, let bi be an integer ě 1 such
that biri is an integer. We put ai “ biei p1 ď i ď nq and

Y “ XrSi, U˘1
i ; 1 ď i ď ns

pUiSaii ´ ti; 1 ď i ď nq ,(7.7.12)

that we equip with the simple normal crossing divisor E defined by
śn
i“1 Si . Consider the

logarithmic scheme (5.17)

Y 1 “ YlogE ˆlog
XlogD

X1
logD1 .(7.7.13)

Since ei divides ai for all 1 ď i ď n, the morphism Y 1 Ñ YlogE is strict, and since it is log-
smooth, the morphism of the underlying schemes Y 1 Ñ Y is smooth. Hence, if E1 denotes
the pull-back of E on Y 1, pY 1, E1q is an snc-pair over k, and the logarithmic structure on Y 1
is defined by E1. On the other hand, Y 1 Ñ X1 ˆX Y is finite and dominant. Since Y Ñ X

is faithfully flat, there exists a point y1 P Y 1 above x1. We have the following commutative
diagram of SNCPk .

pY 1, E1q α ��

γ

��

pY,Eq
β

��
pX1,D1q f �� pX,Dq

(7.7.14)

By applying first (i) to the morphism γ at the point y1, then (ii) case (A) to the morphism α at
the point y1, and finally (ii) case (B) to the morphism β at the point αpy 1q, we conclude that
the ramification of V {U at x is bounded by R`.

(iii) It follows from (ii).

COROLLARY 7.8. Let V be a Galois torsor over U of group G, I a subgroup of G
and R an effective rational divisor on X with support in D. We denote by U 1 the quotient
of V by I , by X1 the integral closure of X in U 1, by f : X1 Ñ X the structural morphism.
Let X1

0 be an open subscheme of X1 which is étale over X, x1 P X1
0 and x “ f px1q. We put

U 1
0 “ U 1 ˆX1 X1

0, V0 “ V ˆU 1 U 1
0 and denote by D1

0 and R1
0 the pull-backs of D and R over

X1
0; so pX1

0,D
1
0q is an snc-pair over k. Then the ramification of V {U at x is bounded by R`

if and only if the ramification of V0{U 1
0 at x1 is bounded by R1

0`.
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By 7.7(i), we may replace X1
0 by the maximal open subscheme of X1 which is étale over

X. So we may assume that U 1
0 “ U 1 Ă X1

0 and V0 “ V . We put V 1 “ V ˆU U
1 and consider

it as a G torsor over U 1. We have a U 1-isomorphismž
IzG

V
„Ñ V 1 .(7.8.1)

The action of G on V 1 induces an action on
š
IzG V defined, for g, g 1 P G and x P V , by

gpxIg 1q “ pgpxqqIg 1g´1 .(7.8.2)

Let ∆ : G Ñ G ˆ G be the diagonal homomorphism, W the quotient of V ˆk V by ∆pGq,
W1 the quotient of V ˆk V by∆pIq andW 1 the quotient of V 1 ˆk V

1 by∆pGq. We denote by
� : V ˆk V Ñ W1 the canonical morphism and by ε : U Ñ W , ε1 : U 1 Ñ W1 and ε1 : U 1 Ñ
W 1 the sections induced by the diagonal morphisms V Ñ V ˆk V and V 1 Ñ V 1 ˆk V

1.
The isomorphism (7.8.1) induces an isomorphismž

IzGˆIzG
V ˆk V

„Ñ V 1 ˆk V
1 .(7.8.3)

We denote also by∆ : IzG Ñ IzGˆIzG the diagonal map. Then
š
∆pIzGq VˆkV is an open

subscheme of V 1 ˆk V
1 stable under the action of ∆pGq. Moreover, the diagonal morphism

V 1 Ñ V 1 ˆk V
1 is induced by the disjoint sum over ∆pIzGq of the diagonal morphisms

V Ñ V ˆk V . On the other hand, the morphismž
∆pIzGq

V ˆk V Ñ W1(7.8.4)

sending ppx, yqIgq to � ppgpxq, gpyqqq makes
š
∆pIzGq V ˆk V as a G-torsor over W1. It

follows thatW1 is an open and closed subscheme ofW 1 and that ε1 is induced by ε1. Therefore,
the ramification of V 1{U 1 at x1 is bounded byR1

0` if and only if the ramification of V {U 1 at x1
is bounded by R1

0`. On the other hand, by 7.7(ii), the ramification of V {U at x is bounded by
R` if and only if the ramification of V 1{U 1 at x1 is bounded by R1

0`, hence the proposition.

REMARK 7.9. Let R be an effective rational divisor on X with support in D. Then
there exists a log-smooth morphism of snc-pairs f : pX1,D1q Ñ pX,Dq such that the under-
lying morphism of schemesX1 Ñ X is faithfully flat and that f ˚pRq has integral coefficients.
Indeed, let x P X, D1, . . . ,Dn be the irreducible components of D containing x. The ques-
tion being local on X, we may assume that D “ Ť

1ďiďn Di and that for each 1 ď i ď n, Di
is defined by an equation ti P Γ pX,OXq. We write R “ řn

i“1 riDi . For each 1 ď i ď n, let
ai be an integer ě 1 such that airi is an integer. Then

X1 “ XrSi, U˘1
i ; 1 ď i ď ns

pUiSaii ´ ti; 1 ď i ď nq(7.9.1)

equipped with the normal crossing divisor D1 defined by
śn
i“1 Si answers the question.
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7.10. Let V be a Galois torsor over U of group G and let ∆ : G Ñ G ˆ G be the
diagonal homomorphism. We denote by W the quotient of V ˆk V by the group ∆pGq. The
diagonal morphism δV : V Ñ V ˆk V induces a morphism εU : U Ñ W above the diagonal
morphism δU : U Ñ U ˆk U .

We claim that the quotient of V ˆk V ˆk V by the diagonal action of G is canonically
isomorphic toW ˆU W . Indeed, the quotient of V ˆk V ˆk V by∆pGqˆG (resp.Gˆ∆pGq)
is W ˆk U (resp.U ˆk W ).

V ˆk V ˆk V

Gˆ∆pGq
�������������

∆pGqˆG
��											

W ˆk U

������������� U ˆk W

��											

U ˆk U ˆk U

Since p∆pGqˆGqXpGˆ∆pGqq is the image of the diagonal homomorphismG Ñ GˆGˆG,
we deduce that the quotient of V ˆk V ˆk V by the diagonal action of G is canonically
isomorphic to pW ˆk Uq ˆpUˆkUˆkUq pU ˆk Wq, and hence to W ˆU W .

The morphism �13 : V ˆk V ˆk V Ñ V ˆk V defined by �13px1, x2, x3q “ px1, x3q
is equivariant for the diagonal actions of G on both sides. Taking quotients, we obtain a
morphism

W ˆU W Ñ W(7.10.1)

that fits into the commutative diagram

W ˆU W ��

��

W

��
pU ˆk Uq ˆU pU ˆk Uq U ˆk U ˆk U

pr13 �� U ˆk U

(7.10.2)

where the morphism pr13 is defined by pr13px1, x2, x3q “ px1, x3q. If we consider W as the
G-torsor of isomorphisms of G-torsors from U ˆk V to V ˆk U over U ˆk U , then the
morphism (7.10.1) is the composition of isomorphisms.

LetR be an effective divisor onX with support inD. We denote byZ the integral closure
of pX ˚k XqpRq in W , by π : Z Ñ pX ˚k XqpRq the canonical morphism, by ε : X Ñ Z

the morphism induced by εU (cf. 7.2) and (abusively) by pr1, pr2 : Z Ñ X the morphisms
induced by the canonical projections pr1 and pr2 of pX ˚k XqpRq. We put

X “ pX ˚k XqpRq ˆX pX ˚k XqpRq

and denote by Y be the integral closure of X in W ˆU W . Recall (5.34.4) that there is a
canonical morphism µ : X Ñ pX ˚k XqpRq extending pr13. Then diagram (7.10.2) induces a
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morphism ν : Y Ñ Z that fits into the following commutative diagram.

Y
ν ��

��

Z

��
X

µ �� pX ˚k XqpRq

(7.10.3)

Let Z0 be the maximal open subscheme of Z which is étale over pX ˚k XqpRq. Observe
that Y is the integral closure of Z ˆX Z in W ˆU W . The canonical projections pr1, pr2 :
pX˚k XqpRq Ñ X are smooth. Then X is smooth over X, and hence regular. Since Z0 ˆX Z0

is étale over X, it is regular. Therefore, we can identify Z0 ˆX Z0 with an open subscheme of
Y. We claim that

Z0 ˆX Z0 Ă ν´1pZ0q .(7.10.4)

We denote by µ˚pZq (resp.µ˚pZ0q) the base change of Z (resp.Z0) by µ. Then ν induces
a finite X-morphism Y Ñ µ˚pZq. Since µ is smooth (5.35), µ˚pZ0q is the maximal open
subscheme of µ˚pZq which is étale over X. Since Z0 ˆX Z0 is étale over X, it is unramified
over µ˚pZq. Then by ([12] 18.10.1), Z0 ˆX Z0 is étale over µ˚pZq; in particular, it is flat
over µ˚pZq. Hence the inclusion (7.10.4) follows from ([12] 17.7.7). By (7.10.4), ν induces
a morphism that we denote also by

ν : Z0 ˆX Z0 Ñ Z0 .(7.10.5)

The automorphism i of VˆkV switching the factors is equivariant for the diagonal action
of G. Taking quotients, we obtain an automorphism ιU of W that lifts the automorphism of
U ˆk U switching the factors. Then ιU extends to an automorphism ι of Z that fits into the
commutative diagram

Z
ι ��

π

��

Z

π

��
pX ˚k XqpRq σ �� pX ˚k XqpRq

(7.10.6)

where σ is the automorphism (5.31.1). It is clear that ιpZ0q “ Z0; we denote also by ι the
automorphism of Z0 induced by ι. Let

α : Z0 ˆX Z0 Ñ Z0 ˆX Z0(7.10.7)
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be the morphism defined by αpx, yq “ pιpyq, ιpxqq. It is well defined because of the following
commutative diagram.

Z0 ˆX Z0
pr2 ��

pr1

��

Z0

pr1

��

ι �� Z0

pr2

��

Z0
pr2 ��

ι

��

X

��
��

��
��

��
��

��
��

Z0
pr1 �� X

(7.10.8)

LEMMA 7.11. We keep the assumptions of (7.10).
(i) The diagrams

Z0 ˆX Z0 ˆX Z0
idˆν ��

νˆid
��

Z0 ˆX Z0

ν

��
Z0 ˆX Z0

ν �� Z0

(7.11.1)

Z0 ˆX Z0
α ��

ν

��

Z0 ˆX Z0

ν

��
Z0

ι �� Z0

(7.11.2)

are commutative.
(ii) Assume moreover that the ramification of V {U along D is bounded by R`; so

we have εpXq Ă Z0. We denote also by ε : X Ñ Z0 the morphism induced by ε. Then the
diagrams

Z0
idˆε ��

εˆid
��

id











��










Z0 ˆX Z0

ν

��
Z0 ˆX Z0

ν �� Z0

(7.11.3)

Z0
pr1 ��

idˆι
��

X

ε

��

Z0
pr2��

ιˆid
��

Z0 ˆX Z0
ν �� Z0 Z0 ˆX Z0

ν��

(7.11.4)

are commutative.
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(i) The diagram

V ˆk V ˆk V ˆk V
�124 ��

�134

��

V ˆk V ˆk V

�13

��
V ˆk V ˆk V

�13 �� V ˆk V

(7.11.5)

where �1i4px1, x2, x3, x4q “ px1, xi, x4q for i P t2, 3u, is commutative and equivariant for
the diagonal actions ofG. It induces by taking quotients the following commutative diagram.

W ˆU W ˆU W
idˆνU ��

νUˆid
��

W ˆU W

νU

��
W ˆU W

νU �� W

(7.11.6)

Indeed, if we denote by ∆ : G Ñ G ˆG and ∇ : G Ñ G ˆG ˆG the diagonal homomor-
phisms, then the quotient of V ˆk V ˆk V ˆk V by ∆pGq ˆGˆG (resp. by Gˆ ∇pGq) is
W ˆk U ˆk U (resp.U ˆk W ˆU W ).

V ˆk V ˆk V ˆk V

∆pGqˆGˆG
����������������

Gˆ∇pGq
��















W ˆk U ˆk U

��













 U ˆk W ˆU W

����������������

U ˆk U ˆk U ˆk U

(7.11.7)

Since p∆pGq ˆ G ˆ Gq X pG ˆ ∇pGqq is the image of the diagonal homomorphism G Ñ
G ˆ G ˆ G ˆ G, it follows that �124 induces by quotient by the diagonal actions of G the
morphism

id ˆ νU : W ˆU W ˆU W Ñ W ˆU W .

By switching the second and the third factors, we prove that �134 induces by quotient by the
diagonal actions of G the morphism νU ˆ id : W ˆU W ˆU W Ñ W ˆU W . Therefore, the
diagram (7.11.6) is commutative, and hence so is the diagram (7.11.1).

The diagram

V ˆk V ˆk V
β ��

�13

��

V ˆk V ˆk V

�13

��
V ˆk V

i �� V ˆk V

(7.11.8)
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where βpx, y, zq “ pz, y, xq and ipx, yq “ py, xq, is commutative and equivariant for the
diagonal actions of G. It induces by taking quotients the following commutative diagram.

W ˆU W
αU ��

νU

��

W ˆU W

νU

��
W

ιU �� W

(7.11.9)

The latter proves that the diagram (7.11.2) is commutative.
(ii) The diagram

V ˆk V
idˆδV ��

δVˆid
��

id
������

��������

V ˆk V ˆk V

�13

��
V ˆk V ˆk V

�13 �� V ˆk V

(7.11.10)

is commutative and equivariant for the diagonal actions of G. It induces by taking quotients
the following commutative diagram.

W
idˆεU ��

εUˆid
��

id











��










W ˆU W

νU

��
W ˆU W

νU �� W

(7.11.11)

The latter proves that the diagram (7.11.3) is commutative.
The diagram

V ˆk V
pr1 ��

α

��

V

δV

��
V ˆk V ˆk V

�13 �� V ˆk V

(7.11.12)

where αpx, yq “ px, y, xq is commutative and equivariant for the diagonal actions of G. It
induces by taking quotients the following commutative diagram.

W
pr1 ��

idˆιU
��

U

εU

��
W ˆU W

νU �� W

(7.11.13)

The latter proves that the left square in the diagram (7.11.4) is commutative. The same argu-
ment shows that the right square is also commutative.

PROPOSITION 7.12. We keep the assumptions of (7.10) pso R has integral coefficientsq
and assume moreover that the ramification of V {U along D is bounded by R`. We put
F “ Z0 ˆX R and E “ pX ˚k XqpRq ˆX R, which is a vector bundle over R (5.31.4). Then:
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(i) F is a group scheme over R, and the morphism πR : F Ñ E induced by π is a
surjective étale morphism of group schemes over R.

(ii) For every geometric point x of R, the neutral connected component Fx̋ of Fx is
isomorphic to a product of additive groups over x, the morphism πx : Fx̋ Ñ Ex is finite étale
and surjective and its kernel is an Fp-vector space of finite dimension.

(i) The closed subscheme R ˆX pX ˚k XqpRq of pX ˚k XqpRq is equal to E, and
the canonical projections pr1, pr2 : pX ˚k XqpRq Ñ X induce the same morphism E Ñ R.
Hence, the closed subscheme R ˆX Z0 of Z0 is equal to F , and the canonical morphisms
pr1, pr2 : Z0 Ñ X induce the same morphism F Ñ R. Then it follows from 7.11 that F is a
group scheme over R. We deduce from 5.35 and the commutative diagram

Z0 ˆX Z0
ν ��

πˆπ
��

Z0

π

��
pX ˚k XqpRq ˆX pX ˚k XqpRq µ �� pX ˚k XqpRq

(7.12.1)

that πR is a morphism of group schemes over R. By the definition of Z0, πR is étale, and it
follows from (ii) that it is surjective.

(ii) It follows from 2.23.

COROLLARY 7.13. We keep the assumptions of (7.2) and assume moreover thatR has
integral coefficients. Then the following conditions are equivalent:

(i) The ramification of V {U alongD is bounded by R`.
(ii) There exists an open neighbourhood Z0 of εpXq in Z which is étale over

pX ˚k XqpRq and such that πpZ0q contains E “ pX ˚k XqpRq ˆX R.

REMARK 7.14. We can deduce 7.13 from (7.10.4) by a shorter argument using only
5.35.

7.15. Let R be an effective divisor on X with support in D, ξ a generic point of D, ξ a
geometric point of X above ξ , S the strict localization of X at ξ , η the generic point of S, η1
an integral finite étale extension of η and S1 the integral closure of S in η1. We put

pX ˚k S
1qpRq “ pX ˚k XqpRq ˆX S

1 .(7.15.1)

(This notation could be justified by 5.29). The morphism δpRq induces a section δ
pRq
S1 : S1 Ñ

pX ˚k S
1qpRq of the canonical projection pX ˚k S

1qpRq Ñ S1.
Let V be a Galois torsor overU of groupG, Y the integral closure ofX in V , f : Y Ñ X

the canonical morphism,∆ : G Ñ GˆG the diagonal homomorphism andW the quotient of
V ˆk V by the group ∆pGq. The diagonal morphism δV : V Ñ V ˆk V induces a morphism
εU : U Ñ W above the diagonal morphism δU : U Ñ U ˆk U . We denote by Z the integral
closure of pX ˚k XqpRq in W , by π : Z Ñ pX ˆk XqpRq the canonical morphism and by
ε : X Ñ Z the morphism induced by εU : U Ñ W . We have π ˝ ε “ δpRq (cf. (7.2.1)).
Let rZS1 be the normalization of ZS1 “ Z ˆX S

1, or equivalently, the integral closure of



834 A. ABBES AND T. SAITO

pX ˚k S
1qpRq in W ˆU η

1. The morphism ε induces a section εS1 : S1 Ñ rZS1 of the canonical

morphism rZS1 Ñ S1, that lifts δ
pRq
S1 . Observe that rZS “ ZS .

We denote by QS1 the normalization of Y ˆX pX ˚k S
1qpRq, or equivalently, the integral

closure of pX˚kS
1qpRq in Vˆkη

1. If the canonical morphism S1 Ñ X factors as S1 Ñ Y
fÑ X,

then we have canonical isomorphisms

V ˆk η
1 » pV ˆk V q ˆV η

1 » pW ˆU V q ˆV η
1 » W ˆU η

1 .(7.15.2)

Hence, we obtain an isomorphism

QS1 „Ñ rZS1 .(7.15.3)

LEMMA 7.16. We keep the assumptions of (7.15) and let σ : S1 Ñ QS1 be a section

of the canonical morphism QS1 Ñ S1 lifting the section δ
pRq
S1 : S1 Ñ pX ˚k S

1qpRq. If the

canonical morphism QS1 Ñ pX ˚k S
1qpRq is étale on an open neighborhood of σ , then it is

étale everywhere.

Observe first that pX ˚k S
1qpRq is regular since it is smooth over S1. The group G acts

on QS1 , and the quotient of QS1 by G is pX ˚k S
1qpRq. Therefore, the morphism QS1 Ñ

pX ˚k S
1qpRq is étale above an open neighborhood of δ

pRq
S1 pS1q. Then the assertion follows

from Zariski-Nagata’s purity theorem ([11] X 3.4).

LEMMA 7.17. Under the assumptions of (7.15), the following conditions are equiva-
lent:

(i) The canonical morphism ZS Ñ pX ˚k SqpRq is étale on an open neighborhood of
εSpSq.

(ii) For any integral finite étale extension η1 of η, the canonical morphism rZS1 Ñ
pX ˚k S

1qpRq is étale on an open neighborhood of εS1pS1q.
(iii) There exists an integral finite étale extension η1 of η such that the canonical mor-

phism rZS1 Ñ pX ˚k S
1qpRq is étale on an open neighborhood of εS1pS1q.

(iv) For any connected component T of Y ˆX S, the canonical morphism QT Ñ
pX ˚k T qpRq is étale.

(v) There exists an integral finite étale extension η1 of η such that the canonical mor-
phism QS1 Ñ pX ˚k S

1qpRq is étale.

Conditions (i), (ii) and (iii) are equivalent by 2.7. We have (ii)ñ(iv) by (7.15.3) and 7.16.
It is clear that we have (iv)ñ(v). If the condition (v) holds true, then it holds under the extra

assumption that the canonical morphism S1 Ñ X factors as S1 Ñ Y
fÑ X. Then we have

(v)ñ(iii) by (7.15.3).

PROPOSITION 7.18. Let V be a Galois torsor over U , R a rational divisor on X
with support in D, ξ a generic point of D, ξ a generic point of X above ξ , S the strict
localization of X at ξ , K the fraction field of Γ pS,OS q and r the multiplicity of R at ξ . We
put V ˆU SpecpKq “ SpecpLq, where L “ śn

i“1 Li is a finite product of finite separable
extensions of K . Then the following conditions are equivalent:
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(i) The ramification of V {U at ξ is bounded by R`.
(ii) For every 1 ď i ď n, the logarithmic ramification of Li{K is bounded by r` (6.2).

By 7.7(ii), 7.9 and ([3] 5.2), we may assume that R has integral coefficients. We take
again the notation of 7.15. Condition (i) is equivalent to condition 7.17(i). Condition (ii)
is equivalent to condition 7.17(v) by ([21] 1.13 and the remark after its proof). Hence, the
proposition follows from 7.17.

PROPOSITION 7.19. Let V be a Galois torsor over U of group G, Y the integral clo-
sure of X in V and R an effective rational divisor on X with support in D. Assume that the
following conditions are satisfied:

(i) V {U has the property (NpS) at every geometric point ofX (2.12), that is, for every
geometric point y of Y , the inertia group Iy Ă G of y has a normal p-Sylow subgroup;

(ii) for every generic point ξ of D, the ramification of V {U at ξ is bounded by R`.
Then the ramification of V {U alongD is bounded by R`.

It is enough to prove that for every x P X, the ramification of V {U at x is bounded
by R`. Let y be a geometric point of Y localized at a point y P Y above x. We denote by
U 1 the quotient of V by the inertia group Iy of y, by X1 the integral closure of X in U 1, by
f : X1 Ñ X the structural morphism, by X1

0 the maximal open subscheme of X1 which is
étale overX and byD1

0 and R1
0 the pull-backs ofD and R over X1

0; so pX1
0,D

1
0q is an snc-pair

over k and U 1 Ă X1
0. Since x P f pX1

0q, it is enough to prove that the ramification of V {U 1
along D1

0 is bounded by R1
0` (7.8). Replacing V {U and pX,Dq by V {U 1 and pX1

0,D
1
0q ([2]

3.15) (cf. 7.20), we may assume that G has a normal p-Sylow subgroup. By 7.7, 7.9, 7.18
and ([2] 3.15), we may also assume that R has integral coefficients.

Assume next that G has a normal p-Sylow subgroup H and that R has integral coeffi-
cients. It is enough to prove that for every x P X, the ramification of V {U at x is bounded
by R`. Let U1 be the quotient of V by H ; so U1 is a Galois torsor over U which is tamely
ramified alongD. By Abhyankar’s lemma ([10] XIII 5.2 and 5.4), there exists a morphism of
snc-pairs h : pX1,D1q Ñ pX,Dq satisfying the following properties:

(P) The morphism h is log-smooth, the morphism X1 Ñ X is flat and x P hpX1q.
(Q) We put U 1 “ X1 ´D1 and U 1

1 “ U1 ˆU U
1, and denote by X1

1 the integral closure
of X1 in U 1

1 ; then X1
1 is étale over X1.

We put V 1 “ V ˆU U
1 and denote byD1

1 and R1
1 the pull-backs ofD and R over X1

1. By
7.7 and 7.8, it is enough to prove that the ramification of V 1{U 1

1 along D1
1 is bounded by R1

1.
Hence, we are reduced to the case where G is nilpotent and R has integral coefficients ([2]
3.15) (cf. 7.20).

Assume finally that G is nilpotent and that R has integral coefficients. Let ∆ : G Ñ
GˆG be the diagonal homomorphism,W the quotient of V ˆk V by∆pGq and εU : U Ñ W

the morphism induced by the diagonal morphism δV : V Ñ V ˆk V . We denote by Z the
integral closure of pX ˚k XqpRq in W and by ε : X Ñ Z the morphism induced by εU . Since
pX ˚k XqpRq is smooth over X, it is regular (4.6). Then the proposition follows from 2.8
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applied to the open subscheme U ˆk U of pX ˚k XqpRq, to the finite étale covering W of
U ˆk U and to the closed subscheme εpXq of Z.

REMARK 7.20. We keep the assumptions of 7.19 and consider the following condi-
tions

(i1) G has a normal p-Sylow subgroup.
(i2) G is nilpotent.
Then we have (i2)ñ(i1)ñ(i). Indeed, the first implication follows from ([8] chap. I §6.7

theo. 4) and the second is a consequence of ([8] chap. I §6.6 cor. 3 of theo. 3).

DEFINITION 7.21. Let V be a Galois torsor overU of groupG. We define the conduc-
tor of V {U relatively to X to be the minimum effective rational divisor R on X with support
in D such that for every generic point ξ of D, the ramification of V {U at ξ is bounded by
R`.

This terminology may be slightly misleading as the ramification of V {U along D may
not be bounded by R` in general. However, we have the following:

PROPOSITION 7.22. Let V be a Galois torsor over U of group G. Assume that the
following strong form of resolution of singularities holds:

(RS) For any U -admissible blow-up Y of X, there exists an snc-pair pY 1, E1q over k,
a morphism of pairs pY 1, E1q Ñ pX,Dq and a proper X-morphism Y 1 Ñ Y

inducing an isomorphism Y 1 ´ E1 „Ñ U .
Then, there exists an snc-pair pX1,D1q over k and a proper morphism of snc-pairs

f : pX1,D1q Ñ pX,Dq inducing an isomorphism X1 ´ D1 „Ñ U such that if we denote
by R1 the conductor of V {U relatively to X1, the ramification of V {U alongD1 is bounded by
R1`.

By 2.22, there exists a U -admissible blow-up Y Ñ X such that if we denote by Y 1
the normalization of Y , V {U has the property (NpS) at every geometric point of Y 1. By
assumption (RS), there exists an snc-pair pX1,D1q over k, a morphism of pairs pX1,D1q Ñ
pX,Dq and a proper X-morphism X1 Ñ Y inducing an isomorphism X1 ´ D1 „Ñ U . Then
V {U has the property (NpS) at every geometric point of X1 (2.15). Let R1 the conductor of
V {U relatively to X1. It follows from 7.19 that the ramification of V {U along D1 is bounded
by R1`.

8. Ramification of �-adic sheaves.

8.1. In this section, we fix an snc-pair pX,Dq over k, and put U “ X ´D. We denote
by j : U Ñ X the canonical injection, by X ˚k X the framed self-product of pX,Dq and by
δ : X Ñ X˚k X the framed diagonal map (5.21). We will no longer consider the logarithmic
structure of X ˚k X; only the underlying scheme will be of interest for us. We consider
X ˚k X as an X-scheme by the second projection. For any effective rational divisor R on X
with support in D, we denote by pX ˚k XqpRq the dilatation of X˚k X along δ of thickening
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R (5.31), by

δpRq : X Ñ pX ˚k XqpRq(8.1.1)

the canonical lifting of δ, and by

j pRq : U ˆk U Ñ pX ˚k XqpRq(8.1.2)

the canonical open immersion. Then we have the following Cartesian diagram.

U
δU ��

j

��

U ˆk U

jpRq
��

X
δpRq

�� pX ˚k XqpRq

(8.1.3)

PROPOSITION 8.2. Let F be a locally constant constructible sheaf of Λ-modules on
U , R an effective rational divisor on X with support in D, x P X, x a geometric point of X
above x, and H pF q the sheaf on U ˆk U defined in (2.6.1). Then the base change morphism

α : δpRq˚j pRq
˚ pH pF qq Ñ j˚δŮ pH pF qq “ j˚pEndpF qq(8.2.1)

relatively to the Cartesian diagram (8.1.3) is injective. Furthermore, the following three con-
ditions are equivalent:

(i) The stalk

αx : pδpRq˚j pRq
˚ pH pF qqqx Ñ j˚pEndpF qqqx(8.2.2)

of the morphism α at x is an isomorphism.
(ii) The image of the identity endomorphism of F in j˚pEndpF qqqx is contained in

the image of αx (8.2.2).
(iii) There exists a Galois torsor V over U trivializing F such that the ramification of

V {U at x is bounded by R`.
Assume moreover that there exists a Galois torsor V0 over U of group G0 satisfying the

following condition:
p˚q There exists a Λ-module M equipped with a faithful representation ρ of G0 and an

isomorphism of sheaves pwith Galois descent dataq F |V0 » MV0 , where MV0 is the constant
sheaf on V0 of valueM equipped with the descent datum defined by ρ.

Then conditions (i), (ii) and (iii) are equivalent to the following condition:
(iv) The ramification of V0{U at x is bounded by R`.

It follows from 2.25 that α is injective. For the second proposition, we may assume that
X and hence U are connected; in particular, we may assume that there exists a Galois torsor
V0 over U of group G0 satisfying condition p˚q. We clearly have (i)ñ(ii) and (iv)ñ(iii).

Let V be a Galois torsor over U of group G trivializing F and let Y be the integral
closure of X in V . We denote by ∆ : G Ñ G ˆ G the diagonal homomorphism, by W
the quotient of V ˆk V by ∆pGq, by Z (resp.Σ) the integral closure of pX ˚k XqpRq in W
(resp.V ˆk V ) and by jW : W Ñ Z the canonical injection (cf. 7.2). The diagonal morphism
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δV : V Ñ V ˆk V induces a morphism εU : U Ñ W above the diagonal morphism δU : U Ñ
UˆkU . Let ε : X Ñ Z and σ : Y Ñ Σ be the morphisms induced by εU and δV , respectively.
Then the following diagram is commutative.

V
δV ��

��

V ˆk V

��

�� Σ

��

Y
σ��

��
U ��

δU ��














W
jW ��

��

Z

��

X
ε��

δpRq
������������

U ˆk U
jpRq

�� pX ˚k XqpRq

(8.2.3)

Each canonical projection V ˆk V Ñ V induces a morphismΣ Ñ Y for which σ is a section.
Let y be a geometric point of Y above x, Iy Ă GˆG the inertia group of σ pyq, and Jy Ă G

the inertia group of y. Since σ is a closed immersion, we have Jy “ ∆´1pIyq. Hence the
following conditions are equivalent:

(a) The ramification of V {U at x is bounded by R`.
(b) We have Iy Ă ∆pGq.
(c) We have Iy “ ∆pJyq.
Let Y 1 be the connected component of Y containing y and let V 1 “ VXY 1. The stabilizer

G1 Ă G of V 1 acts on N “ Γ pV 1,F q. We have Iy Ă G1, and the morphism αx (8.2.2) is
canonically identified with the injective morphism

pEndpNqqIy Ñ pEndpNqq∆pJy q.(8.2.4)

Hence, by the equivalence (a)ô(c) above, we deduce the implication (iii)ñ(i).
It remains to prove that (ii)ñ(iv). We keep the previous notation and assume moreover

that V “ V0 and G “ G0. Consider the following commutative diagram with Cartesian
squares.

U
j ��

εU

��

X

ε

��
δpRq

��

W
jW ��

��

Z

��
U ˆk U

jpRq
�� pX ˚k XqpRq

(8.2.5)

By ([1] 1.2.4(i)), the base change morphism α (8.2.1) is composed of

δpRq˚pj pRq
˚ pH pF qqqq ε˚β �� ε˚pjW˚pH pF q|Wqq γ �� j˚pEndpF qq ,(8.2.6)

where β : j pRq
˚ pH pF qq|Z Ñ jW˚pH pF q|Wq and γ are the base change morphisms rela-

tively to the lower and the upper squares of (8.2.5) respectively.
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If we equip EndpMq with the canonical action of G ˆ G, we deduce from the isomor-
phism F |V » MV an isomorphism (of sheaves with Galois descent data) H pF q|pVˆkV q »
EndpMqpVˆkV q. Since the action ofG onM is faithful,∆pGq is the stabilizer of id P EndpMq
in GˆG. In particular, we may consider id as a section of Γ pZ, jW˚pH pF q|Wqq. Since γ
is injective by 2.25, condition (ii) is equivalent to the following condition:

(ii1) The image of id in jW˚pH pF q|Wqεpxq is contained in the image of βεpxq.
The latter is equivalent to the fact that the ramification of V {U at x is bounded by R`

by 2.26.

DEFINITION 8.3. Let F be a locally constant constructible sheaf of Λ-modules on
U , R an effective rational divisor on X with support in D, x P X and x a geometric point
of X above x. We say that the ramification of F at x is bounded by R` if F satisfies the
equivalent conditions of (8.2), and that the ramification of F along D is bounded by R` if
the ramification of F at x is bounded by R` for every geometric point x of X.

PROPOSITION 8.4. Let F be a locally constant constructible sheaf of freeΛ-modules
of rank one on U and let R be an effective rational divisor on X with support in D. Then the

ramification of F alongD is bounded by R` if and only if j
pRq
˚ pH pF qq is locally constant

constructible over an open neighborhood of δpRqpXq in pX ˚k XqpRq.

We may assume that X and hence U are connected. Let V be a Galois torsor over U
with abelian group G and let χ : G Ñ Λˆ be an injective homomorphism such that we have
an isomorphism (of sheaves with Galois descent data) F |V » ΛpχqV , where ΛpχqV is the
constant sheaf on V of value Λ with the descent datum defined by χ . We keep the same
notation as in the proof of 8.2. Then W is an abelian Galois torsor over U ˆk U trivializing
H pF q. Assume first that the ramification of F along D is bounded by R`; so π : Z Ñ
pX ˚k XqpRq is étale over an open neighborhood of εpXq in Z by 8.2. It follows that π
is étale over an open neighborhood P of of δpRqpXq in pX ˚k XqpRq. Therefore, H pF q
extends to a locally constant constructible sheaf on P , and hence j

pRq
˚ pH pF qq is locally

constant constructible over P ([6] IX 2.14.1). Conversely, if j
pRq
˚ pH pF qq is locally constant

constructible over an open neighborhood of δpRqpXq in pX ˚k XqpRq, then the base change
morphism

α : δpRq˚j pRq
˚ pH pF qq Ñ j˚pEndpF qq “ j˚pΛq “ Λ(8.4.1)

is an isomorphism since its restriction to U is an isomorphism ([6] IX 2.14.1).

LEMMA 8.5. Let F be a locally constant constructible sheaf of Λ-modules on U , x
a geometric point of X and R and R1 be rational divisors on X with support in D such that
R1 ě R. If the ramification of F at x presp. along Dq is bounded by R`, then it is also
bounded by R1`.

It follows from 7.5 and 8.2.
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PROPOSITION 8.6. Let F be a locally constant constructible sheaf of Λ-modules on
U , R an effective rational divisor onX with support inD, f : pX1,D1q Ñ pX,Dq a morphism
of snc-pairs over k, U 1 “ f´1pUq, F 1 “ F |U 1, R1 “ f ˚pRq, x1 P X1, x1 a geometric point
of X1 above x1 and x “ f px1q.

(i) If the ramification of F at x presp. along Dq is bounded by R`, then the ramifi-
cation of F 1 at x1 presp. along D1q is bounded by R1`.

(ii) Assume that the morphism X1 Ñ X is étale at x1 and that the divisors D1 and
f ˚pDq are equal on an open neighborhood of x1 in X1. Then the ramification of F at x is
bounded by R` if and only if the ramification of F 1 at x1 is bounded by R1`.

(iii) Assume that the morphism X1 Ñ X is étale and surjective and thatD1 “ f ˚pDq.
Then the ramification of F along D is bounded by R` if and only if the ramification of F 1
alongD1 is bounded by R1`.

(i) It follows from 7.7(i) and 8.2.
(ii) By (i), it is enough to prove that if the ramification of F 1 at x1 is bounded by R1`,

then the ramification of F at x is bounded by R`. Also by (i), we may assume that X1 Ñ X

is étale and thatD1 “ f ˚pDq. The morphism f induces morphisms (5.32.1)

X1 ˚k X
1 f1 �� X ˚k X

1 f2 �� X ˚k X ,(8.6.1)

from which we obtain the morphisms (5.32.2)

pX1 ˚k X
1qpR1q f

pR1q
1 �� pX ˚k X

1qpR1q f
pRq
2 �� pX ˚k XqpRq .(8.6.2)

We put rf “ f2 ˝ f1 and rf pRq “ f
pRq
2 ˝ f pR1q

1 . Since X ˚k X
1 » pX ˚k Xq ˆX X

1, f pRq
2

is smooth by 5.29. On the other hand, f
pR1q
1 is étale by 5.33(i). Therefore, rf pRq is smooth.

Consider the commutative diagram

X1

f

��

δpR1q �������������

��������1

U 1j 1
��

δU1�����������

fU

��

��������4

pX1 ˚k X
1qpR1q

rf pRq
��

��������2

U 1 ˆk U
1j 1pR1q

��

��
pX ˚k XqpRq U ˆk U

jpRq
��

X

δpRq �������������

��������5

U

δU

������������
j��

��������3

(8.6.3)

where the square ��������4 is the analogue of the square ��������5 for pX1,D1, R1q. We denote by ��������6 the
face given by the exterior square. Then all squares are cartesian except ��������1 and ��������3 . Observe
that H pF q|pU 1 ˆk U

1q » H pF 1q and EndpF q|U 1 » EndpF 1q. It follows from ([1]
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1.2.4(i)) that we have a commutative diagram

f ˚δpRq˚j pRq
˚ pH pF qq

f˚pαq �� f ˚j˚δŮ pH pF qq
γ 1
��

f ˚j˚pEndpF qq

γ

��

δpR1q˚ rf pRq˚j pRq
˚ pH pF qq

β

��

j 1̊ fŮ δŮ pH pF qq

δpR1q˚j 1pR1q
˚ pH pF 1qq α1

�� j 1̊ δ
Ů 1pH pF 1qq j 1̊ pEndpF 1qq

(8.6.4)

where α : δpRq˚j pRq
˚ pH pF qq Ñ j˚δŮ pH pF qq, α1, β, γ and γ 1 are the base change mor-

phisms. Since f and rf pRq are smooth, β and γ are isomorphisms. Hence, we can identify the
stalks αx and α1

x1 of α at x and α1 at x1 respectively, which implies the required assertion.
(iii) It follows from (ii).

PROPOSITION 8.7. Let F be a locally constant constructible sheaf of Λ-modules on
U , R an effective rational divisor onX with support inD and x a geometric point ofX. Then
the following conditions are equivalent:

(i) The ramification of F at x is bounded by R`.
(ii) There exists an étale neighborhood f : X1 Ñ X of x such that if we put U 1 “

f´1pUq, D1 “ f ˚pDq and R1 “ f ˚pRq, then the ramification of F |U 1 alongD1 is bounded
by R1`.

(iii) Condition (ii) holds for f an open immersion.

Indeed, (i)ñ(iii) follows from 7.4 and 8.2, (iii)ñ(ii) is obvious and (ii)ñ(i) is a conse-
quence of 8.6.

PROPOSITION 8.8. Let F be a locally constant constructible sheaf of Λ-modules on
U , R an effective rational divisor on X with support in D, ξ a generic point of D, ξ a
geometric point of X above ξ , Xpξq the corresponding strictly local scheme, η its generic
point and r the multiplicity of R at ξ . Then the following conditions are equivalent:

(i) The ramification of F at ξ is bounded by R`.
(ii) The ramification of F |η is bounded by r` in the sense of ([21] 1.28).

(iii) The sheaf F |η is trivialized by a finite étale connected covering η1 of η such that
the logarithmic ramification of η1{η is bounded by r` (6.2).

Indeed, (ii)ô(iii) is the definition and (i)ñ(iii) follows from 7.18 and 8.2. We prove
(iii)ñ(i). We may assume that η1 is Galois over η. By 2.27, there exists an étale morphism
f : X1 Ñ X, a geometric point ξ

1
of X1 above ξ and a Galois torsor V 1 over U 1 “ f´1pUq

trivializing F |U 1 such that if we identify the strictly local schemesX1pξ 1q andXpξq by f , there

exists an η-isomorphism V 1 ˆU 1 η » η1. It follows from 7.18 and 8.2 that the ramification of
F |U 1 at ξ

1
is bounded by R1`. Then the ramification of F at ξ is bounded by R` by 8.6(ii).
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PROPOSITION 8.9. Let F be a locally constant constructible sheaf of Λ-modules on
U and R an effective rational divisor on X with support in D. Assume that the following
conditions are satisfied:

(i) For every geometric point x of X, if we denote by Xpxq the corresponding strictly
local scheme and put U1 “ Xpxq ˆX U , the sheaf F |U1 is trivialized by a Galois torsor over
U1 whose group has a normal p-Sylow subgroup.

(ii) For every geometric point ξ of X above a generic point of D, the ramification of
F at ξ is bounded by R`.

Then the ramification of F alongD is bounded by R`.

Let x be a geometric point of X and let V1 be a Galois torsor over U1 “ Xpxq ˆX U

trivializing F |U1 whose group G has a normal p-Sylow subgroup. It is enough to prove that
the ramification of F at x is bounded by R`. By 2.27 and 8.6(ii), we may assume that there
exists a Galois torsor over U of group G trivializing F . Hence, there is a minimal Galois
torsor V over U trivializing F whose group has a normal p-Sylow subgroup. Then it follows
from 8.2 and 7.19 that the ramification of F alongD is bounded by R`.

DEFINITION 8.10. Let F be a locally constant constructible sheaf of Λ-modules on
U .

(i) Let ξ be a generic point of D, ξ a geometric point of X above ξ , Xpξq the corre-
sponding strictly local scheme and η the generic point of Xpξq. We define the conductor of
F at ξ to be the minimum of the set of rational numbers r ě 0 such that the ramification of
F |η is bounded by r` in the sense of ([21] 1.28), that is, F |η is trivialized by a finite étale
connected covering η1 of η such that the logarithmic ramification of η1{η is bounded by r`
(6.2).

(ii) We define the conductor of F relatively to X to be the effective rational divisor on
X with support in D whose multiplicity at any generic point ξ of D is the conductor of F at
ξ . By 8.8, it is also the minimum of the set of effective rational divisors R on X with support
in D such that for every geometric point ξ of X above a generic point of D, the ramification
of F at ξ is bounded by R`.

The terminology in (ii) may be slightly misleading as the ramification of F alongD may
not be bounded by R` in general. However, we have the following:

PROPOSITION 8.11. Let F be a locally constant constructible sheaf ofΛ-modules on
U . Assume that the strong form of resolution of singularities (RS) in 7.22 holds. Then, there
exists an snc-pair pX1,D1q over k and a proper morphism of snc-pairs f : pX1,D1q Ñ pX,Dq
inducing an isomorphism X1 ´ D1 „Ñ U such that if we denote by R1 the conductor of F

relatively to X1, the ramification of F along D1 is bounded by R1`.

This follows from 7.22 and 8.2.

LEMMA 8.12 ([21] 2.21). Let F be a locally constant constructible sheaf ofΛ-modu-
les on U . Then the following conditions are equivalent:
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(i) F is tamely ramified along D.
(ii) The conductor of F vanishes.

(iii) The ramification of F alongD is bounded by 0`.

8.13. Let R be an effective divisor on X with support in D. We know (4.6) that
pX ˚k XqpRq is smooth over X and that

EpRq “ pX ˚k XqpRq ˆX R(8.13.1)

is canonically isomorphic to the vector bundle VpΩ1
X{kplogDq bOX OXpRqq ˆX R over R

(5.31.4). We denote by ĚpRq the dual vector bundle.
Let Y be an X-scheme separated of finite type over X. We put V “ Y ˆX U , RY “

R ˆX Y , E
pRq
Y “ EpRq ˆX Y and Ě

pRq
Y “ ĚpRq ˆX Y , and denote by jY : V Ñ Y and

j
pRq
Y : U ˆk V Ñ pX ˚k XqpRq ˆX Y

the canonical injections. Consider the following commutative diagram with Cartesian squares.

E
pRq
Y

��

��

pX ˚k XqpRq ˆX Y

pr2

��

U ˆk V

��

j
pRq
Y��

RY �� Y V��

(8.13.2)

Let G be a sheaf of Λ-modules on U ˆk V . We call the sheaf over E
pRq
Y defined by

νRpG , Y q “ j
pRq
Y˚ pG q|EpRq

Y(8.13.3)

the R-specialization of G and denote it by νRpG , Y q.
Let f : Z Ñ Y be a separated morphism of finite type and W “ f´1pV q. We denote by

f pRq : pX ˚k XqpRq ˆX Z Ñ pX ˚k XqpRq ˆX Y(8.13.4)

f
pRq
E : EpRq

Z ÑE
pRq
Y(8.13.5)

the morphisms induced by f . Then we have a base change morphism

f pRq˚j pRq
Y˚ pG q Ñ j

pRq
Z˚ pG |pU ˆk Wqq ,(8.13.6)

from which we get the morphism

f
pRq˚
E pνRpG , Y qq Ñ νRpG |pU ˆk Wq, Zq .(8.13.7)

PROPOSITION 8.14. Let F be a locally constant constructible sheaf ofΛ-modules on
U , R an effective divisor on X with support in D, f : Y Ñ X a separated morphism of finite
type and V “ f´1pUq. Assume that the ramification of F alongD is bounded by R`. Then
with the notation of (8.13):

(i) The sheaves j
pRq
Y˚ pΛU b pF |V qq and pr2̊ pjY˚pF |V qq are isomorphic over

pX ˚k XqpRq ˆX Y .
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(ii) There exists an étale morphism Z0 Ñ pX ˚k XqpRq whose image contains EpRq,

such that the pull-backs over Z0 ˆX Y of the sheaves j
pRq
Y˚ pF bΛV q and j

pRq
Y˚ pΛU b pF |V qq

are isomorphic.
(iii) There exists a canonical surjective morphism

f
pRq˚
E pνRpH pF q,Xqq b νRpΛU b pF |V q, Y q Ñ νRpF bΛV , Y q.(8.14.1)

(iv) Assume moreover that Y is normal, that V is dense in Y and that F |V is constant.
Then νRpF b ΛV , Y q is locally constant and additive (3.1); in particular, its Fourier dual

support is the underlying space of a closed subscheme of Ě
pRq
Y which is finite over RY (3.8).

Note that statement (iv) will be extended and reinforced in 8.19.
(i) It follows from the smooth base change theorem as pr2 : pX ˚k XqpRq Ñ X is

smooth.
(ii) Let rV be a Galois torsor overU of groupG trivializing F such that the ramification

of rV {U is bounded byR` (8.2). We denote by∆ : G Ñ GˆG the diagonal homomorphism,
by W the quotient of rV ˆk

rV by ∆pGq, by Z the integral closure of pX ˚k XqpRq in W and
by π : Z Ñ pX ˚k XqpRq the canonical morphism. Let Z0 be the maximal open subscheme
of Z which is étale over pX ˚k XqpRq. We know by 7.12(i) that Z0 ˆX R is a group scheme
and that π ˆX R : Z0 ˆX R Ñ EpRq is a surjective étale morphism of group schemes over R.
Let j 1 : W Ñ Z0 be the canonical injection; so we have the following Cartesian diagram.

W ˆU V
j 1
Y ��

��

Z0 ˆX Y

��
U ˆk V

j
pRq
Y �� pX ˚k XqpRq ˆX Y

(8.14.2)

By the smooth base change theorem, the pull-back overZ0ˆXY of the sheaves j
pRq
Y˚ pF bΛV q

and j
pRq
Y˚ pΛU b pF |V qq are isomorphic to j 1

Y˚ppF b ΛU q|pW ˆU V qq and
j 1
Y˚ppΛU b F q|pW ˆU V qq respectively. On the other hand, we have an isomorphism

pΛrV b pF | rV qq „Ñ ppF | rV q bΛrV q. We deduce by Galois descent an isomorphism

s : pΛU b F q|W „Ñ pF bΛU q|W,(8.14.3)

and hence an isomorphism

j 1
Y˚ppΛU b F q|pW ˆU V qq „Ñ j 1

Y˚ppF bΛU q|pW ˆU V qq .(8.14.4)

Note that the isomorphism s can also be obtained by Galois descent from the universal iso-
morphism of G-torsors over W (7.2)

pU ˆk V q ˆUˆkU W
„Ñ pV ˆk Uq ˆUˆkU W .(8.14.5)

(iii) We have a morphism on pX ˚k XqpRq ˆX Y

j
pRq
Y˚ pH pF q|pU ˆk V qq b j

pRq
Y˚ pΛU b pF |V qq Ñ j

pRq
Y˚ pF bΛV q(8.14.6)
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deduced by adjunction from the natural morphism on U ˆk V

pH pF q|pU ˆk V qq b pΛU b pF |V qq Ñ F bΛV .(8.14.7)

We get from (8.14.6) by pull-back to EY a morphism

νRpH pF q|pU ˆk V q, Y q b νRpΛU b pF |V q, Y q Ñ νRpF bΛV , Y q .(8.14.8)

On the other hand, we have a canonical morphism (8.13.7)

f
pRq˚
E pνRpH pF q,Xqq Ñ νRpH pF q|pU ˆk V q, Y q .(8.14.9)

We take for (8.14.1) the morphism induced by (8.14.8) and (8.14.9). We will prove that it is
surjective. By the smooth base change theorem, the pull-back of the morphism (8.14.6) over
Z0 ˆX Y is the morphism

j 1
Y˚pH pF q|pW ˆU V qq b j 1

Y˚ppΛU b F q|pW ˆU V qq Ñ j 1
Y˚ppF bΛU q|pW ˆU V qq

(8.14.10)

obtained by adjunction from the pull-back of the morphism (8.14.7) over W ˆU V . We also
have a canonical isomorphism

Γ pZ0, j
pRq
˚ pH pF qqq » Γ pW,H |Wq .(8.14.11)

So we may consider the isomorphism s (8.14.3) as a section in Γ pZ0, j
pRq
˚ pH pF qqq. It is

clear that the pairing (8.14.10) evaluated at the image of f pRq˚psq in

Γ pZ0 ˆX Y, j
1
Y˚pH pF q|pW ˆU V qqq

induces the isomorphism (8.14.4). Since EpRq Ă πpZ0q, we conclude that (8.14.1) is surjec-
tive.

(iv) Since jY˚pF |V q is constant ([6] IX 2.14.1), the pull-back of νRpF bΛV , Y q over
Z0 ˆX RY is constant by (i) and (ii). Hence νRpF b ΛV , Y q is locally constant. For every
geometric point x of R, if we denote by Gx the neutral connected component of Z0 ˆX x,

then the morphism Gx Ñ E
pRq
x induced by π , is a finite étale surjective morphism of group

schemes over x by 7.12(ii). Therefore, νRpF bΛV , Y q is additive by 3.12. The last assertion
follows from 3.14.

COROLLARY 8.15 ([21] 2.25). Let F be a locally constant constructible sheaf of Λ-
modules on U and let R be an effective divisor on X with support in D such that the ramifi-
cation of F alongD is bounded by R`. Then νRpH pF q,Xq is additive.

Let V be a finite Galois torsor over U trivializing F such that the ramification of V {U
along D is bounded by R` (8.2). We denote by Y the integral closure of X in V and by
f : Y Ñ X the canonical morphism. In the following we take again the notation of 8.14 and
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its proof (with rV “ V ). Consider the following commutative diagram with Cartesian squares.

W
j 1

��

��

Z0

π

��
U ˆk U

jpRq
��

��

pX ˚k XqpRq

pr2

��
U

j �� X

(8.15.1)

By 2.24, the isomorphism s (8.14.3) induces isomorphisms

H pF q|W „Ñ EndppΛU b F q|Wq „Ñ pEndpF qq|W .(8.15.2)

Since π and pr2 are smooth, by the smooth base change theorem relatively to (8.15.1), we get
an isomorphism

π˚pj pRq
˚ pH pF qqq „Ñ π˚ppr2̊ pj˚pEndpF qqqq .(8.15.3)

It follows that νXpH pF q,Xq is locally constant on the geometric fibers of EpRq Ñ R. Since
πpZ0q contains EpRq, we conclude that νRpH pF q,Xq is locally constant on all geometric
fibers of the vector bundle EpRq Ñ R.

On the other hand, the open immersion j
pRq
Y is schematically dense. Hence the morphism

(8.14.9) is injective by 2.25. We fix a surjective morphism Λn Ñ F |V , from which we
deduce an injective morphism H pF q|pU ˆk V q Ñ F b ΛnV (2.24). The latter induces an
injective morphism

νRpH pF q|pU ˆk V q, Y q Ñ νRpF bΛnV , Y q .(8.15.4)

Composing with (8.14.9), we obtain an injective morphism

f
pRq˚
E pνRpH pF q,Xqq Ñ νRpF bΛnV , Y q.(8.15.5)

Then f
pRq˚
E pνRpH pF q,Xqq is additive by 3.11. Since f is surjective, νRpH pF q,Xq is

additive.

COROLLARY 8.16. Let F be a locally constant constructible sheaf of Λ-modules on
U , R an effective divisor on X with support in D, f : Y Ñ X a separated morphism of finite
type and V “ f´1pUq. Assume that the ramification of F alongD is bounded by R`. Then
νRpF bΛV , Y q is additive, and its Fourier dual support is contained in the inverse image by

the canonical projection Ě
pRq
Y Ñ ĚpRq of the Fourier dual support of νRpH pF q,Xq.

It follows from 8.14(i) that νRpΛU b pF |V q, Y q is constant on the fibers of the vector

bundle E
pRq
Y Ñ RY . Hence by 8.14(ii), νRpF bΛV , Y q is locally constant on the geometric

fibers of E
pRq
Y Ñ RY . Then the proposition follows from 3.11, 8.14(iii) and 8.15.
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COROLLARY 8.17. We keep the assumptions of (8.16) and assume moreover that Y
is normal, that V is dense in Y and that F |V is constant. Then the Fourier dual support of

νRpF bΛV , Y q is the inverse image by the canonical projection Ě
pRq
Y Ñ ĚpRq of the Fourier

dual support of νRpH pF q,Xq.

By 8.16, it is enough to prove that the inverse image of the Fourier dual support of

νRpH pF q,Xq by the canonical projection Ě
pRq
Y Ñ ĚpRq is contained in the Fourier dual

support of νRpF bΛV , Y q. This follows from the second part of the proof of 8.15. Indeed,
since the sheaves νRpH pF q,Xq and νRpF bΛnV , Y q are additive by 8.15 and 8.14(iv), the
required assertion follows from the injective morphism (8.15.5) by 3.11.

COROLLARY 8.18. Let F be a locally constant constructible sheaf of Λ-modules on
U and let R be an effective divisor on X with support in D such that the ramification of F

alongD is bounded byR`. Then the Fourier dual support of νRpH pF q,Xq is the underlying
space of a closed subscheme of ĚpRq which is finite over R.

Let V be a Galois torsor over U trivializing F and Y the integral closure of X in V .
It follows from 8.17 that the Fourier dual support of νRpH pF q,Xq is the image by the

canonical projection Ě
pRq
Y Ñ ĚpRq of the Fourier dual support of νRpF b ΛV , Y q. Hence,

the assertion follows from 8.14(iv).

PROPOSITION 8.19. Let F be a locally constant constructible sheaf ofΛ-modules on
U , R an effective divisor on X with support in D, f : Y Ñ X a separated morphism of finite
type and V “ f´1pUq. Assume that the ramification of F alongD is bounded by R`. Then:

(i) νRpH pF q,Xq is additive and its Fourier dual support is the underlying space of
a closed subscheme of ĚpRq which is finite over R.

(ii) νRpF b ΛV , Y q is additive, and its Fourier dual support is contained in the

inverse image by the canonical projection Ě
pRq
Y Ñ ĚpRq of the Fourier dual support of

νRpH pF q,Xq.

(iii) Assume moreover that Y is normal, that V is dense in Y and that F |V is con-
stant. Then νRpF bΛV , Y q is locally constant and additive, and its Fourier dual support is

the inverse image by the canonical projection Ě
pRq
Y Ñ ĚpRq of the Fourier dual support of

νRpH pF q,Xq.

This is a summary of results proved in 8.14, 8.15, 8.16, 8.17 and 8.18.

8.20. Let f : pX1,D1q Ñ pX,Dq be a log-smooth morphism of snc-pairs over k, R an
effective divisor on X with support in D, U1 “ X1 ´ D1, U 1 “ f´1pUq and R1 “ f ˚pRq.
The morphism f induces morphisms (5.32.1)

X1 ˚k X
1 f1 �� X ˚k X

1 f2 �� X ˚k X ,(8.20.1)
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from which we obtain the morphisms (5.32.2)

pX1 ˚k X
1qpR1q f

pR1q
1 �� pX ˚k X

1qpR1q f
pRq
2 �� pX ˚k XqpRq .(8.20.2)

We put

EpRq “ pX ˚k XqpRq ˆX R ,(8.20.3)

E1pR1q “ pX1 ˚k X
1qpR1q ˆX1 R1 .(8.20.4)

We denote by ĚpRq and Ě1pR1q the dual vector bundles. For a sheaf ofΛ-modules G (resp. G 1)
on U ˆk U (resp.U 1 ˆk U

1), we denote by νRpG ,Xq (resp. ν1
R1pG 1,X1q) its R-specialization

(resp.R1-specialization) in the sense of (8.13.3) relatively to the snc-pair pX,Dq (resp.
pX1,D1q).

The morphism f induces an exact sequence

0 Ñ f ˚pΩ1
X{kplogDqq Ñ Ω1

X1{kplogD1q Ñ Ω1
pX1,D1q{pX,Dq Ñ 0 ,(8.20.5)

which is locally split. Hence, we have a surjective morphism of vector bundles over R1

φ : E1pR1q Ñ E
pRq
X1 .(8.20.6)

We denote by φ̌ : ĚpRq
X1 Ñ Ě1pR1q the dual morphism of φ, which is a closed immersion.

PROPOSITION 8.21. We keep the notation of (8.20) and let F be a locally constant
constructible sheaf of Λ-modules on U , F1 “ F |U1 and F 1 “ F |U 1. Assume that the
ramification of F along D is bounded by R` and that f is log-smooth. Then the Fourier
dual support of ν1

R1pH pF1q,X1q is the image by φ̌ of the inverse image of the Fourier dual

support of νRpH pF q,Xq by the canonical projection Ě
pRq
X1 Ñ ĚpRq.

Let V 1 be a Galois torsor over U 1 trivializing F 1, V1 “ V 1 ˆU 1 U1 and Y 1 the integral
closure of X1 in V 1. We denote by νRpF b ΛV 1, Y 1q the R-specialization of F b ΛV 1 over

E
pRq
Y 1 in the sense of (8.13.3). It is an additive sheaf by 8.14(iv), and its Fourier dual support

is the inverse image of the Fourier dual support of νRpH pF q,Xq by the canonical projection

Ě
pRq
Y 1 Ñ ĚpRq (8.17). On the other hand, the ramification of F1 along D1 is bounded by

R1` by 8.6(i). We denote by ν1
R1pF1 b ΛV1, Y

1q the R1-specialization of F1 b ΛV1 over

E
1pR1q
Y 1 in the sense of (8.13.3) relatively to the snc-pairs pX1,D1q. It is an additive sheaf and

its Fourier dual support is the inverse image of the Fourier dual support of ν1
R1pH pF1q,X1q

by the canonical projection Ě
1pR1q
Y 1 Ñ Ě1pR1q. Since the canonical morphism Y 1 Ñ X1 is

surjective, it is enough to prove that the Fourier dual support of ν1
R1pF1 b ΛV1, Y

1q is the

image by φ̌Y 1 of the Fourier dual support of νRpF bΛV 1, Y 1q.

On the one hand, f
pR1q
1 is smooth by 5.33(ii). On the other hand, since the canonical

morphism X ˚k X
1 Ñ pX ˚k Xq ˆX X

1 is an isomorphism (5.21.3), the morphism

pX ˚k X
1qpR1q Ñ pX ˚k XqpRq ˆX X

1(8.21.1)
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induced by f
pRq
2 is an isomorphism by 5.29. We denote by U 1 ˚k U

1 the framed self-product
of pU 1,D1|U 1q; so U 1 ˚k U

1 “ pX1 ˚k X
1q ˆpX1ˆkX

1q pU 1 ˆk U
1q. We have a commutative

diagram

E
1pR1q
Y 1 ��

φY 1
��

pX1 ˚k X
1qpR1q ˆX1 Y 1

f
pR1q
1 ˆX1Y 1

��

pU 1 ˚k U
1q ˆU 1 V 1��

��

U1 ˆk V1
u��

��														

j
1pR1q
Y 1

��

E
pRq
Y 1 �� pX ˚k X

1qpR1q ˆX1 Y 1 U ˆk V
1j

pRq
Y 1��

(8.21.2)

with Cartesian squares, where u, j
pRq
Y 1 and j

1pR1q
Y 1 are the canonical injections.

Since U 1 ˚k U
1 is smooth over U 1, pU 1 ˚k U

1q ˆU 1 V 1 is normal and u is dominant.
Therefore, the adjunction morphism

pF bΛV 1q|ppU 1 ˚k U
1q ˆU 1 V 1q Ñ u˚pF1 bΛV1q(8.21.3)

is an isomorphism by ([6] IX 2.14.1). Then by the smooth base change theorem relatively to
the Cartesian right square in (8.21.2), we have an isomorphism

φY̊ 1pνR1pF bΛV 1, Y 1qq „Ñ ν1
R1pF1 bΛV1, Y

1q .(8.21.4)

Since φ̌ is a closed immersion, the required assertion follows from (8.21.4) and (3.4.6).

DEFINITION 8.22. Let F be a locally constant constructible sheaf of Λ-modules on
U .

(i) Let ξ be a generic point ofD, Xpξq the henselization ofX at ξ , ηξ the generic point
of Xpξq, ηξ a geometric generic point of Xpξq and Gξ the Galois group of ηξ over ηξ . We say
that F is isoclinic at ξ if the representation Fηξ of Gξ is isoclinic (6.5).

(ii) We say that F is isoclinic along D if it is isoclinic at all generic points of D.

DEFINITION 8.23. Let F be a locally constant constructible sheaf of Λ-modules on
U which is isoclinic along D and let R be the conductor of F relatively to X (8.10). We say
that F is clean alongD if the following conditions are satisfied:

(i) the ramification of F along D is bounded by R`;
(ii) there exists a log-smooth morphism of snc-pairs f : pX1,D1q Ñ pX,Dq over k

such that the morphism X1 Ñ X is faithfully flat, that R1 “ f ˚pRq has integral co-
efficients, and if we put U 1 “ X1 ´D1 and F 1 “ F |U 1, that the R1-specialization
ν1
R1pH pF 1q,X1q of H pF 1q in the sense of (8.13.3) relatively to pX1,D1q, is ad-

ditive and non-degenerate (3.8).

Note that condition (i) implies that the ramification of F 1 along D1 is bounded by R1`
by 8.6(i). Therefore, ν1

R1pH pF 1q,X1q is additive by 8.15, and its Fourier dual support is the

underlying space of a closed subscheme S1 of Ě1pR1q “ pX1 ˚k X
1qpR1q ˆX1 R1, which is finite
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over R1 by 8.18. Hence, the condition (ii) is equivalent to the fact that S1 does not meet the
zero-section of Ě1pR1q.

PROPOSITION 8.24. Let F be a locally constant constructible sheaf ofΛ-modules on
U , R the conductor of F relatively to X, f : pX:,D:q Ñ pX,Dq a log-smooth morphism
of snc-pairs over k, U: “ X: ´ D:, F : “ F |U: and R: “ f ˚pRq. Assume that F is
isoclinic and clean alongD and that R: has integral coefficients. Then the R:-specialization

ν
:
R: pH pF :q,X:q of H pF :q in the sense of (8.13.3) relatively to pX:,D:q, is additive and

non-degenerate.

By 5.19, there exists a commutative diagram of log-smooth morphisms of snc-pairs over
k

pX;,D;q f 1
��

g:
��

pX1,D1q
g

��
pX:,D:q f �� pX,Dq

(8.24.1)

such that X1 Ñ X and X; Ñ X: are faithfully flat and if we put U 1 “ X1 ´D1, F 1 “ F |U 1
and R1 “ g˚pRq, that the R1-specialization ν1

R1pH pF 1q,X1q of H pF 1q in the sense of
(8.13.3) relatively to pX1,D1q, is additive and non-degenerate. We put U; “ X; ´ D;,

F ; “ F |U; and R; “ f 1˚pR1q, and denote by ν;
R;pH pF ;q,X;q the R;-specialization of

H pF ;q in the sense of (8.13.3) relatively to pX;,D;q. We put

E1pR1q “ pX1 ˚k X
1qpR1q ˆX1 R1 ,(8.24.2)

E:pR:q “ pX: ˚k X
:qpR:q ˆX: R: ,(8.24.3)

E;pR;q “ pX; ˚k X
;qpR;q ˆX; R; ,(8.24.4)

and denote by Ě1pR1q, Ě:pR:q and Ě;pR;q the dual vector bundles. Let S1 (resp.S:, resp.S;)

be the Fourier dual support of ν1
R1 pH pF 1q,X1q (resp. ν:

R; pH pF :q,X;q, resp. ν;
R;pH pF ;q,

X;q) in Ě1pR1q (resp. Ě:pR:q, resp. Ě;pR;q). The morphisms f 1 and g: induce, as in (8.20.6),
surjective morphisms of vector bundles

φ : E;pR;q ÑE
1pR1q
X; ,(8.24.5)

ψ : E;pR;q ÑE
:pR1q
X; .(8.24.6)

Consider the diagram

E
1pR1q
X;

φ̌ ��

π 1
��

E;pR;q E
:pR:q
X;

ψ̌��

π:
��

E1pR1q E:pR:q

(8.24.7)
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where π 1 and π: are the canonical projections, and φ̌ and ψ̌ are the morphisms dual to φ and
ψ respectively. Note that φ̌ and ψ̌ are closed immersions. Then by 8.21, we have

φ̌pπ 1´1pS1qq “ S; “ ψ̌pπ:´1pS:qq .(8.24.8)

By assumption S1 does not meet the zero-section of Ě1pR1q. Hence, π:´1pS:q does not meet

the zero-section of Ě
:pR:q
X; . Since X; Ñ X: is surjective, we deduce that S: does not meet

the zero section of E:pR:q, which implies the required assertion.

DEFINITION 8.25. Let F be a locally constant constructible sheaf ofΛ-modules onU
and x a geometric point ofX. We say that F is clean at x if there exists an étale neighborhood
X1 of x in X such that, if we put U 1 “ U ˆX X

1 and denote byD1 the pull-back ofD over X,
there exists a finite decomposition

F |U 1 “ à
1ďiďn

F 1
i(8.25.1)

of F |U 1 into a direct sum of locally constant constructible sheaves of Λ-modules F 1
i p1 ď

i ď nq on U 1 which are isoclinic and clean along D1 in the sense of (8.23). We say that F is
clean alongD if it is clean at all geometric points of X.

We will prove in 8.27 that for isoclinic sheaves, definitions 8.23 and 8.25 are equivalent.

LEMMA 8.26. Let F be a locally constant constructible sheaf ofΛ-modules on U , R
the conductor of F relatively to X and x a geometric point of X. If F is clean at x, then
the ramification of F at x is bounded by R`. In particular, if F is clean along D then the
ramification of F along D is bounded by R`.

By assumption, there exists an étale neighborhood X1 of x in X such that, if we put
U 1 “ UˆXX

1 and denote byD1 the pull-back ofD overX, there exists a finite decomposition
F |U 1 “ À

1ďiďnF 1
i of F |U 1 into a direct sum of locally constant constructible sheaves

of Λ-modules F 1
i p1 ď i ď nq on U 1 which are isoclinic and clean along D1. For each

1 ď i ď n, let R1
i be the conductor of F 1

i relatively to X1. The conductor f ˚pRq of F |U 1
relatively to X1 is the maximum of the R1

i p1 ď i ď nq. Therefore, the ramification of F |U 1
along D1 is bounded by f ˚pRq. Then by 8.6(ii), the ramification of F at x is bounded by
R`.

PROPOSITION 8.27. Let F be a locally constant constructible sheaf ofΛ-modules on
U which is isoclinic alongD. Then F is clean alongD in the sense of (8.23) if and only if it
is clean alongD in the sense of (8.25).

We only need to prove that if F is clean along D in the sense of (8.25), then it is clean
along D in the sense of (8.23). Let R be the conductor of F relatively to X. We know by
8.26 that the ramification of F along D is bounded by R`. For every geometric point x of
X, there exists an étale neighborhood X1 of x in X such that, if we put U 1 “ U ˆX X

1 and



852 A. ABBES AND T. SAITO

denote by D1 the pull-back of D over X, there exists a finite decomposition

F |U 1 “ à
1ďiďn

F 1
i(8.27.1)

of F |U 1 into a direct sum of locally constant constructible sheaves of Λ-modules F 1
i p1 ď

i ď nq on U 1 which are isoclinic and clean along D1 in the sense of (8.23). Since F is
isoclinic along D, F |U 1 is isoclinic along D1. Hence, for each 1 ď i ď n, the conductor of
F 1
i is equal to the pull-back R1 of R overX1. Then it follows from 8.24 that F is clean in the

sense of (8.23).
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