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AHMED ABBES AND TAKESHI SAITO

(Received July 22, 2010, revised July 14, 2011)

Abstract. This article is devoted to studying the ramification of Galois torsors and of
£-adic sheaves in characteristic p > 0 (with £ # p). Let k be a perfect field of characteristic
p > 0, X a smooth, separated and quasi-compact k-scheme, D a simple normal crossing
divisoron X, U = X — D, A a finite local Zy-algebra and .% a locally constant constructible
sheaf of A-modules on U. We introduce a boundedness condition on the ramification of .%
along D, and study its main properties, in particular, some specialization properties that lead
to the fundamental notion of cleanliness and to the definition of the characteristic cycle of .%.
The cleanliness condition extends the one introduced by Kato for rank 1 sheaves. Roughly
speaking, it means that the ramification of .# along D is controlled by its ramification at
the generic points of D. Under this condition, we propose a conjectural Riemann-Roch type
formula for .%. Some cases of this formula have been previously proved by Kato and by the
second author (T. S.).

1. Introduction.

1.1. The purpose of this article is to study the ramification of Galois torsors and of
£-adic sheaves in characteristic p > 0 (with £ # p), developing the project started in [2, 3,
4, 5, 21]. More precisely, this work is a sequel to [21], though it can be read independently.
The leitmotiv of our approach, in particular in this work, is to eliminate the ramification by
blow-ups.

1.2. Let k be a perfect field of characteristic p > 0, X a smooth, separated and quasi-
compact k-scheme, D a simple normal crossing divisor on X and U = X — D; we say for
short that (X, D) is an snc-pair over k. We fix a prime number £ different from p and a finite
local Z-algebra A. Let .% be a locally constant constructible sheaf of A-modules on U. The
main problems in ramification theory are the following:

(A) to describe the ramification of .% along D;

(B) to give a Riemann-Roch type formula for .7, that is, to compute the Euler-Poincaré

characteristic with compact support of .% on U in terms of its invariants of ramifi-
cation (provided by (A)).
In [4], we gave cohomological answers to both problems that rely on the notion of character-
istic class of % . In this article, we develop a more geometric approach to problem (A) and
give a conjectural formula for (B), based on the finer notion of characteristic cycle of .% . For
this purpose, we start by studying the ramification of Galois torsors over U, that is, torsors
over U for the étale topology, under finite constant groups.
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1.3. Our approach is based on a geometric construction introduced in [4, 5, 21]. Let
Dy, ..., Dy, be the irreducible components of D and let (X xj X)’ be the blow-up of X x; X
along D; x; D; forall 1 < i < m. We define the framed self-product X % X of (X, D) over k
as the open subscheme of (X x X)’ obtained by removing the strict transforms of D x4 X and
X Xy D (called the logarithmic self-product in [21]). We give in 5.20 an equivalent definition
using logarithmic geometry, that extends to more general situations. The diagonal morphism
dx: X — X Xy X lifts uniquely to a morphism §: X — X sx; X, called the framed diagonal
of (X, D) (and the logarithmic diagonal in [21]). We consider X sz X as an X-scheme by the
second projection.

Let R be an effective rational divisor on X with support in D (i.e., a sum of non-negative
rational multiples of the irreducible components of D). We define in 5.26 the dilatation
(X k% X)B) of X skx X along 8 of thickening R. Tt is an affine scheme over X s X that fits
into a canonical Cartesian diagram

(13.1) U—Y Ux, U

jt l/“”
§(R)

X —— (X s X)(®)

where j (R) is a canonical open immersion, §(R) is the unique morphism lifting 8, j is the
canonical injection and 8y is the diagonal morphism. If R has integral coefficients, then
(X ki X )(R) is a dilatation in the sense of Raynaud. More precisely, (X sk X )(R) is the
maximal open subscheme of the blow-up of X sk X along §(R), where the exceptional divisor
is equal to the pull-back of R by the second projection to X (cf. 4.1).

1.4. Let V be a Galois torsor over U of group G and let R be an effective rational
divisor on X with support in D. We introduce a fundamental boundedness property of the
ramification of V /U along D. We consider V xj V as a Galois torsor over U x; U of group
G x G, and denote by W the quotient of V xj V by A(G), where A: G — G x G is the
diagonal homomorphism. The diagonal morphism dy: V. — V x; V induces a morphism
ey: U — W lifting the diagonal morphism éy: U — U Xy U. Note that W represents
the sheaf of isomorphisms of G-torsors from U x; V to V x; U over U x U, and that ey
corresponds to the identity isomorphism of V (identified with the pull-backs of U x4 V and
V xx U by 8y). We denote by Z the integral closure of (X sz X)®) in W, by 7: Z —
(X k¢ X )(R) the canonical morphism and by ¢: X — Z the morphism induced by eyy: U —
W. We have 7 o & = §(R).

8 l (R)
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Let x € X. We say that the ramification of V /U at x is bounded by R+ if the morphism 7 is
étale at &(x), and that the ramification of V /U along D is bounded by R+ if 7 is étale over an
open neighborhood of £ (X). We establish several properties of this notion. First, we prove that
it satisfies descent for faithfully flat and log-smooth morphisms (7.7). The second property
plays a key role in this article: if R has integral coefficients, we prove that the ramification of
V /U along D is bounded by R+ if and only if there exists an open neighborhood Zy of £(X)
in Z which is étale over (X s X)(®) and such that 7 (Z) contains (X s X)(®) x x R (7.13).
Third, we relate this notion to its analogue for finite separable extensions of local fields (with
possibly imperfect residue fields) defined in [2, 3]: let £ be a generic point of D, £ a geometric
point of X above &, S the strict localization of X at E, K the fraction field of I'(S, Oy) and r
the multiplicity of R at &. We put V x Spec(K ) = Spec(L), where L = [[7_, L; is a finite
product of finite separable extensions of K. We prove in 7.18 that the ramification of V /U at
& is bounded by R+ if and only if, for every 1 < i < n, the logarithmic ramification of L; /K
is bounded by r+ in the sense of [2, 3].

1.5. Let V be a Galois torsor over U of group G, Y the integral closure of X in V, and
R an effective rational divisor on X with support in D. Assume that the following conditions
are satisfied:

(1) for every geometric point y of Y, the inertia group I < G of y has a normal
p-Sylow subgroup;

(ii) for every generic point & of D, the ramification of V /U at & is bounded by R+.
Then we prove that the ramification of V /U along D is bounded by R+ (7.19). This result is
an analogue of the Zariski-Nagata purity theorem ([11] X 3.4).

1.6. Let V be a Galois torsor over U of group G. We define the conductor of V /U
relatively to X to be the minimum effective rational divisor R on X with support in D such
that for every generic point & of D, the ramification of V/U at & is bounded by R+. This
terminology may be slightly misleading as the ramification of V /U along D may not be
bounded by R+ in general. However, we prove in 7.22, as a consequence of 1.5, that under a
strong form of resolution of singularities, there exists an snc-pair (X', D’) over k and a proper
morphism f: X’ — X inducing an isomorphism X’ — D’ = U, such that if we denote by R’
the conductor of V /U relatively to X', the ramification of V /U along D’ is bounded by R’ +.

1.7. Let.% be alocally constant constructible sheaf of A-modules on U, R an effective
rational divisor on X with supportin D, x € X and X a geometric point of X above x. Recall
that A is a finite local Z,-algebra (1.2). We denote by pry, pry: U xx U — U the canonical
projections and put

(1.7.1) H(F) = Hom(prs F,pri F).
We prove in 8.2 that the base change morphism

(1.72) a: 60 [R () - jub5 (H(F)) = ju(End(F))
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relatively to the Cartesian diagram (1.3.1) is injective. Furthermore, the following conditions
are equivalent:

(i) The stalk a5 of the morphism « at X is an isomorphism.

(ii) There exists a Galois torsor V over U trivializing .% such the ramification of V /U

at x is bounded by R+.

We give also other useful equivalent conditions. We say that the ramification of F at X is
bounded by R+ if F satisfies these equivalent conditions. We say that the ramification of
Z along D is bounded by R+ if the ramification of .# at x is bounded by R+ for every
geometric point X of X. We establish several properties of this notion similar to those for
Galois torsors. In particular, we relate it to the analogue notion for Galois representations of
local fields (with possibly imperfect residue fields) (8.8).

1.8. Let.Z be alocally constant constructible sheaf of A-modules on U. We define the
conductor of ¥ relatively to X to be the minimum of the set of effective rational divisors R
on X with support in D such that for every geometric point € of X above a generic point of D,
the ramification of .% at  is bounded by R+. As for Galois torsors, this terminology may be
slightly misleading as the ramification of .% along D may not be bounded by R+ in general.
However, we prove that under a strong form of resolution of singularities, there exists an snc-
pair (X', D') over k and a proper morphism f: X’ — X inducing an isomorphism X’ — D’ =
U, such that if we denote by R’ the conductor of % relatively to X ! the ramification of .%
along D’ is bounded by R+ (8.11).

1.9. The last part of this article is devoted to studying important specialization proper-
ties that lead to the fundamental notion of cleanliness and to the definition of the characteristic
cycle. Let R be an effective divisor on X with support in D." We prove (4.6) that (X sk; X )(R)
is smooth over X and that

(1.9.1) E®R) — (X ki X)(R) %y R
is canonically isomorphic to the twisted logarithmic tangent bundle

V(.Q)l(/k(log D) ®g, Ox(R)) xx R

over R (cf. 2.2 for the convention on vector bundles). We denote by E®) the dual vector
bundle. Consider the following commutative diagram with Cartesian squares.

jB®

(1.9.2) ER) —— (X k¢ X)(R) U xx U
N
R X U

IWe consider rational divisors on X with support in D and integral coefficients as Cartier divisors on X.
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Let ¢ be a sheaf of A-modules on U x; U. We call R-specialization of ¢ and denote by
vr(¥, X), the sheaf on E(R) defined by

(1.9.3) wr(@, X) = i (@) ER

Let .7 be a locally constant constructible sheaf of A-modules on U such that its ramifi-
cation along D is bounded by R+ and let .7 (.%) be the sheaf on U x U defined in (1.7.1).
We prove in 8.15 that vg (7 (%), X) is additive, which means that its restrictions to the fibers
of E(R) over R are invariant by translation (cf. 3.1). This important property was first proved
in ([21] 2.25); we give a new proof in 8.15.

We fix a non-trivial additive character ¥ : F, — A* and denote by S E(®) the
support of the Fourier-Deligne transform of vg (7 (%), X) relatively to v (cf. 3.4 and 3.5).

The additivity of vg (#(.Z), X) is equivalent to the fact that, for every x € R, the set SN E )ER)
is finite (3.6). We call S the Fourier dual support of vg(2 (%), X). We prove in fact that
S is the underlying space of a closed subscheme of E(®) which is finite over R (8.18). Note
that S is a priori a constructible subset of E(R) and that it is not obvious that it is closed in
E(R) We say that vg (' (.F), X) is non-degenerate if S does not meet the zero section of
E®) over R.

1.10. We need in the following to recall a few facts from the ramification theory of
local fields with imperfect residue fields developed in [2], [3] and [21]. We refer to §6 for a
more detailed review. Let K be a discrete valuation field, Ok the valuation ring of K, F the
residue field of Ok, K a separable closure of K and & the Galois group of K /K. We assume
that Ok is henselian and that F has characteristic p. In ([2] 3.12), we defined a decreasing
filtration 4, (r € Q=0) of 4 by closed normal subgroups, called the logarithmic ramification
filtration. For a rational number r > 0, we put

+ o
G = | g
s>r
Grlrog (%) = %lgg/gl};); :

This filtration satisfies the following properties, among others:
(i) The group & = glgg is the wild inertia subgroup of ¢, i.e., the p-Sylow subgroup
of the inertia subgroup %lgg ([2] 3.15).
(i) For every rational number r > 0, the group Grfog(% ) is abelian and is contained in
the centre of the pro-p-group & /glg; ([3] Theorem 1).
Further properties are stated below.
For any finite discrete A-representation M of ¢, we have a canonical slope decomposi-
tion

(1.10.1) M= @ M"

re@;o
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characterised by the following properties (cf. 6.4): M ) = M? and for every r > 0,
r r+
(1.10.2) (M)%oe =0 and (M) %0e = y ),

The values r > 0 for which M (") # 0 are called the slopes of M. We say that M is isoclinic if
it has only one slope. If M is isoclinic of slope » > 0, we have a canonical central character
decomposition

(1.10.3) M=PM,,
X

where the sum runs over finite characters y : Grj,,% — A} such that A, is a finite étale
A-algebra (cf. 6.7).

We assume moreover that K has characteristic p and that F is of finite type over k.
Let .Q}ﬁk (log) be the Ok -module of logarithmic 1-differential forms of Ok and £2}.(log) =
'Qék (log) ®¢, F (cf. 6.11). We have a canonical exact sequence 0 — 2} — £2.(log) —

F — 0. We denote by &% the integral closure of Ok in K, by F the residue field of 0% by

ord the valuation of K normalized by ord(K *) = Z and, for any rational number r, by mZ

(resp. m;(_"’ ) the O-module of elements x € K such that ord(x) > r (resp.ord(x) > r).

The additivity property presented in 1.9 is the geometric incarnation of an important
property of the logarithmic ramification filtration proved in ([21] 1.24), namely, for any ratio-
nal number r > 0, the group Grfog% is an IF,-vector space, and we have a canonical injective
homomorphism

(1.10.4) rsw: Homgz (Gr{,,%, F,) — Homf(m%/m%r, 21 (log) ®F F),
called the refined Swan conductor (cf. 6.13).

1.11. Let.Z be a locally constant constructible sheaf of A-modules on U, & a generic
point of D, X ) the henselization of X at £, n; the generic point of X ), 77; a geometric
generic point of X ;) and @ the Galois group of 7z over 1. We say that 7 is isoclinic at
if the representation %7, of ¢ is isoclinic, and that .% is isoclinic along D if it is isoclinic at
all generic points of D.

Assume first that .% is isoclinic along D, and let R be its conductor relatively to X. We
say (8.23) that .% is clean along D if the following conditions are satisfied:

(1) the ramification of .% along D is bounded by R+;

(ii) there exists a log-smooth morphism of snc-pairs f: (X', D') — (X, D) over k
such that the morphism X’ — X is faithfully flat, that R = f*(R) has integral co-
efficients, and if we put U’ = X’ — D' and .Z' = .Z|U’, that the R’-specialization
Vi, (H(F'), X') of #(F") in the sense of (1.9.3) relatively to (X', D’), is addi-
tive and non-degenerate.

Note that we may replace (ii) by the stronger condition that it holds for any morphism f
satisfying the same assumptions (cf. 8.24).

This notion can be extended to general sheaves as follows. Let X be a geometric point of

X. We say that .7 is clean at X if there exists an étale neighborhood X’ of X in X such that,
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if we put U’ = U xx X’ and denote by D’ the pull-back of D over X’, there exists a finite
decomposition

(1.11.1) FIU'= @ F

I<i<n
of Z|U’ into a direct sum of locally constant constructible sheaves of A-modules ﬁ’il (1<
i < n)on U’ which are isoclinic and clean along D’ in the previous sense. We say that .%
is clean along D if it is clean at all geometric points of X (cf. 8.25). Note that for isoclinic
sheaves, the two definitions are equivalent (8.27).

The notion of cleanliness was first introduced by Kato for rank 1 sheaves in [13]. Our
definition extends his. It was extended to isoclinic sheaves by the second author (T. S.) in
([21] §3.2).

Roughly speaking, if .% is clean along D, then its ramification along D is controlled
by its ramification at the generic points of D. This is the main idea behind the following
definition of the characteristic cycle of F.

1.12. We assume that X is connected and denote by d the dimension of X, by
T%(log D) = V(.Q)l(/k (log D)) the logarithmic cotangent bundle of X and by &1, ..., &, the
generic points of D. For each 1 < i < n, we denote by F; the residue field of X at &;, by
Si = Spec(Ok; ) the henselization of X at & and by ; = Spec(K;) the generic point of ;.
We fix a separable closure K; of K; and denote by ¥%; the Galois group of K; /K.

Let .% be a locally constant constructible sheaf of free A-modules on U which is clean
along D. We denote by M; the A[¥;]-module corresponding to . |n;. Let

(1.12.1) M= @ m"

re@;o

be its slope decomposition and, for each rational number r > 0,

(1.12.2) M? = Pu”)

i X
X

the central character decomposition of Ml.(r). Note that Ml.(rx) is a free A-module of finite type

for all » > 0 and all x. By enlarging A, we may assume that for all rational numbers r > 0

and all central characters y of M i(r) (i.e., all characters yx : Grfog%j — A ;(( that appear in the
decomposition (1.12.2)), we have A, = A. Since Grl’og% is abelian and killed by p (6.13), x

factors uniquely as Grfog% -, LAY , where v is the non-trivial additive character fixed
in 1.9. We denote also by x : Gr{og% — [, the induced character and by
(1.12.3) rsw(x): m%i/m% — 2} (log) ® F;

its refined Swan conductor (1.10.4) (where the notation are defined as in 1.10 with K = K;).
Let F, be the field of definition of rsw(x ), which is a finite extension of F; contained in F;.
The refined Swan conductor rsw( ) defines a line L, in T%(log D) ®x Fy. Let L, be the
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closure of the image of L, in T% (log D). For each 1 <i < n, we put

(r)
(1.12.4) CCi(F)= ), Zr tka (M, )[LX],
reQ=o X
which is a d-cycle on T% (log D) xx D;. It follows from the proof of ([21] 1.26) that the
coefficient of [L, ] is an element of Z[1/p], and hence gives an element of A.
Let o: X — T%(log D) be the zero-section of T% (log D) over X. We define the char-
acteristic cycle of .7 and denote by CC(.7), the d-cycle on T% (log D) defined by

(1.12.5) CC(F) =tka(F)[o] = >, CCi(F
I1<i<n
Recall ([4] 2.1.1) that we associated to j,.% a characteristic class, denoted by C(j)%),
which is a section of HO(X, #x), where #x = f'A and f: X — Spec(k) is the structural
morphism.

CONJECTURE 1.13.  Under the assumptions of (1.12), we have in HY(X, #x)
(1.13.1) C(iF) = (CC(F).[0]).
where the right hand side is the intersection pairing relatively to T% (log D).

Kato defined the characteristic cycle of a clean sheaf of rank 1 in [15]. The second
author (T. S.) extended the definition to isoclinic and clean sheaves in ([21] 3.6) and proved
conjecture 1.13 for these sheaves in (loc. cit. 3.7).

1.14. 'We may optimistically expect that for any locally constant constructible sheaf .#
of A-modules on U, there exists an snc-pair (X', D") over k and a proper morphism of snc-
pairs (X’, D') — (X, D) inducing an isomorphism X’ — D’ = U such that .% is clean along
D’. Kato proved this property for rank 1 sheaves on surfaces ([15] 4.1).

1.15. We introduce in §2 the general notation and conventions for this article and prove
some preliminary results. Section 3 is devoted to studying additive sheaves on vector bundles.
We recall in §4 the classical notion of dilatation. The first part of Section 5 contains a de-
tailed review of the notion of frame in logarithmic geometry and some representability results
following [16]. Its second part is devoted to the study of snc-pairs over k; we introduce the
framed products and extend the notion of dilatation to rational divisors. Section 6 is a review
of ramification theory of local fields with imperfect residue fields. The last two sections, §7
and §8, are the heart of this article. The former is devoted to studying the ramification of
galois torsors and the latter to studying the ramification of £-adic sheaves.
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2. Notation and preliminaries.

2.1. In this article, we fix a prime number p, a perfect field k of characteristic p and
an algebraic closure k of k. All k-schemes are assumed to be separated of finite type over k.
We fix also a prime number ¢ different from p, a finite local Z,-algebra A and a non-trivial
additive character v : IF, — A*.

2.2. Let X be a scheme and & a locally free Ox-module of finite type. We call the
spectrum of the quasi-coherent Ox-algebra Sym, (&) the vector bundle over X defined by
& and denote it by V(&).

2.3. Let X be a locally noetherian scheme. In this article, a Galois torsor over X of
group G stands for a torsor over X for the étale topology under a finite constant group G, that
is, a principal covering of X of Galois group G in the sense of ([10] V 2.8).

2.4. Let X be a normal and locally noetherian scheme, U a dense open subscheme of
X, V a Galois torsor over U of group G, and Y the integral closure of X in V. Then G acts
on Y and we have X = Y/G. Let y be a point of ¥ and y a geometric point of ¥ above y.
Recall that the inertia group I, of y is the subgroup of elements o € G such that g(y) = y
and that g acts trivially on « (y). It is convenient to denote /, also by /5 and to call it also the
inertia group of y. Assume that X is universally Japanese, which means that every point of X
has an affine open neighborhood whose ring is universally Japanese ([12] 0.23.1.1). Let X be
the image of y in X. Then we have a canonical isomorphism

(2.4.1) Xz xx V =~ |_| Y xy V.
EEY@XK(Y)

where Y(z) is the strict localization of ¥ at z. Since Y is normal, Y(z) xy V is integral.
Therefore, I5 is the stabilizer of Y, ) XY VinG.

2.5. Recall that a scheme locally of finite type over a universally Japanese scheme is
universally Japanese, and that the ring Z (resp. any field) is universally Japanese ([12] 7.7.4).

2.6. Let X be a k-scheme. We denote by pry, pr,: X xx X — X the canonical pro-
jections. If ¥ is an X-scheme and Z is an (X X X)-scheme, we denote by ¥ xx Z (resp.
Z x x Y) the fibered product of Y and Z over X, where Z is considered as an X-scheme by pr;
(resp. prp). In particular, in Z x x Z, the first factor is considered as an X-scheme by pr, while
the second factor is considered as an X-scheme by pr;. Let .% be an étale sheaf of A-modules
on X. We denote by 77 (%) the sheaf on X x4 X defined by

(2.6.1) H(F) = Hom(pry F,pri F).

If f: Y — X is a morphism of schemes, we denote (abusively) the pull-back f* (%) also by
F|Y.
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LEMMA 2.7. Consider a commutative diagram of finite morphisms of locally noether-
ian schemes

(2.7.1) 7y

Y —=Y

12

X —X

and let Xo be a dense open subscheme of X, 7' € Z', y' =i'(Z'), x' = f'(y'), z = h(Z),
y =i(z) = ¢'(y))and x = f(y) = g(x'). We denote by the index ¢ the base change of
schemes or morphisms by the canonical injection Xo — X. Assume that X, X', Y and Y' are
normal, that Yy is dense in Y , that fy is étale, that Y ~ Yo x x X', that Y}, is dense in Y’ and
that f oi and f' oi’ are closed immersions.
(i) If f is étale at v, then f' is étale at y'.
(ii) Assume moreover that the irreducible component of X' containing x' dominates
the irreducible component of X containing x, that Zj ~ Zo x x X' and that Z{ is
schematically dense in Z'. Then f is étale at y if and only if f' is étale at y'.

(i) We denote by V (resp. V’) the maximal open subscheme of Y (resp.Y’) where f
(resp. f7) is étale. Since V x x X' is étale over X', it is normal. But ¥ is the integral closure
of ¥ xx X' in Y. Therefore, V x x X’ is isomorphic to ¢ ~1(V),and ¢'~1(V) = V/, which
implies the proposition.

(ii) Observe first that i and i’ are closed immersions. By (i), it is enough to prove that
if f/is étale at y’, then f is étale at y. We may replace X (resp. X’) by its strict henselization
at a geometric point above x (resp. x’) and Y and Z (resp. Y’ and Z’) by their pull-back; so we
may assume X, X, Z and Z' strictly local. Then we may replace Y by its localization Y y and
Y’ by ¢! (¥y). Let YT be a connected component of ¥’. By assumption YJ is dense in Y.
Since the restriction Y(;r — X{, of f”is finite and étale, it is surjective; hence f’ (YT) = X'
If F is a reduced closed subscheme of Y such that f(F) = X, then F = Y. We deduce that
¢'(YT) = Y. Since Z is dense in Z, itis notempty. Then ¢’ (¢/(Z})) n YT = Z{ YT # 0,
and hence Z’ < Y. Therefore Y’ is connected and £ is an isomorphism (as it is étale). Let &
(resp. n) be the generic point of X (resp. Y). It follows that f induces an isomorphism n ~ &.
Since Y is the integral closure of X in n, f is an isomorphism.

PROPOSITION 2.8. Let X be a regular, locally noetherian and universally Japanese
scheme, U an open dense subscheme of X, V a finite étale covering of U, Y the integral
closure of X in V, V' the maximal open subscheme of Y which is étale over X, and T a
closed subscheme of Y. Assume the following conditions satisfied:

(i) All codimension one points of T are contained in V',
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(ii) There exists a Galois torsor W over U, with nilpotent group G, and a subgroup H
of G, such that V is U-isomorphic to the quotient of W by H.
ThenT < V'

Let Z be the integral closure of X in W. For every geometric point 7 of Z, we denote
by Iz < G the inertia group of zZ. By condition (i), if 7 is above a codimension one point
of T, then Iz = H. We proceed by induction on [G : H|. Letn > 1. We assume that the
proposition holds true if [G: H] < n and prove it if [G: H]| = n. The proposition is obvious
if G = H; so we may assume thatn > 1. There exists a normal subgroup G’ of G containing
H and different from G such that G/ G’ is abelian ([8] I §6.3 prop. 8). Observe that G’ is
nilpotent. We denote by U’ the quotient of W by G’, and by X’ the integral closure of X in
U’'. We denote by h: ¥ — X’ and g: X’ — X the canonical morphisms, and put f = g o k.
Let N be the maximal open subscheme of X over which g is étale (observe that g is finite). It
follows from the assumption that g is étale at all points h(¢) € X’, where ¢ is a codimension
one point of T. Since g is Galois, we conclude that for any codimension one point ¢ of T,
f(t) € N. Let S be the reduced closed subscheme of X with support X — N. By the Zariski-
Nagata purity theorem ([11] X 3.4), S is a Cartier divisor on X. If f(T) n S # (), then there
exists a codimension one point ¢ of T such that f(¢) € S, which is a contradiction. Hence
f(T) = N. We may replace X by N and U, V and W by their pull-backs. Then X' is étale
above X; in particular, it is regular. The induction assumption implies that 4 is étale over an
open neighbourhood of T in Y. Then T < V’.

REMARK 2.9. Under the assumptions of (2.8), if moreover V is connected, then con-
dition (ii) is equivalent to the following condition:

(ii’) V is dominated by a connected finite étale Galois covering W of U with nilpotent
Galois group G (i.e., there exists a dominating U-morphism W — V).

LEMMA 2.10. Let A be a strictly henselian valuation ring, with fraction field K and
residue field of characteristic p, K a separable closure of K and G the Galois group of K
over K. Then G has a normal p-Sylow subgroup P, and the quotient I' = G/P is abelian.
In particular, G is solvable.

Let L be a finite Galois extension of K and G, the Galois group of L/K. The integral
closure B of A in L is a strictly henselian valuation ring ([20] Theorem 9). Let P be the
large valuation group of B defined in ([24] VI §12 page 75), which is a normal subgroup of
Gpr. Then P is a p-group (loc. cit., Theorem 24 page 77). The quotient I} = G /PL is
abelian (by construction), and its order is prime to p (loc. cit., (23) page 76). Hence Py is
a normal p-Sylow subgroup of G;. The lemma follows by passing to the limit over finite
Galois extensions of K contained in K.

PROPOSITION 2.11. Let A be a local ring of maximal ideal wm, p a prime ideal of A,
Kk (p) the residue field of A at p, and v: A — Ay the canonical homomorphism. Assume that
pAp < v(A), and consider the following conditions:
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(i) A is henselian.
(i) Ap and A/p are henselian.
Then we have (1)=(ii). If moreover v is injective, the two conditions are equivalent.

Observe first that we may assume that v is injective.

()=(ii). We need only to prove that A is henselian. Let B’ be a finite free A p-algebra.
We need to prove that B’ is decomposed. By ([12] 8.8.2 and 8.10.5), there exists f € A—p and
a finite A y-algebra of finite presentation B” such that B’ ~ B"” ®4, Ap. Then by Zariski’s
main theorem ([12] 8.12.6), there exists a finite A-algebra B that fits into a commutative
digram

Spec(B") —— Spec(B)

-

Spec(A y) —— Spec(A)

where j is an open immersion. The induced morphism Spec(B”) — Spec(By) being an open
and closed immersion, we may replace B’ by By. Replacing B by its canonical image in By,
we may assume that B ¢ Bj,. We have isomorphisms of A-modules

Bp/B ~ B®a (Ap/A) ~ B ®a (x(p)/(A/p)).

where the second follows from the assumption pA, < A < Ay,. We deduce that pB, < B.
We put C = B ®y k(p) = Bp/pByp. Since C is an artinian ring, we have

c=~]]cq.
qeQ
where Q is the set of prime ideals of B above p. For each q € Q, we denote by 5q the
canonical image of B in Cq. We put C = qu 0 C q and denote by B its inverse image by the
canonical morphism B, — By /pBp = C. We have an exact sequence of A-modules

(2.11.1) 0— B/pB, > C — B/B—0.

We deduce that B is finite over A and that By ~ §p. On the other hand, since pA, < A < Ay,
we have p = ker(A — «(p)) = pAp, and hence pB = pAyB = pBp. Therefore, the

canonical morphism B /p§ — C is an isomorphism.
Consider the following commutative diagram

idemp(By) —— idemp(C)

! |

idemp(B) —— idemp(C)

T b

idemp(B/mB)
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where idemp(—) denotes the set of idempotents. Since A is henselian, 8 and y are bijective;
then so is v. For each ¢ € Q, since Cy is an artinian ring, 5q is a local ring and « is a
bijection. We deduce that u is surjective and hence that By, is decomposed. Note that u is
always injective.

(il)=(i) Let B be a finite free A-algebra. We need to prove that B is decomposed. Con-
sider the following commutative diagram.

idemp(B) —~— idemp(B/pB) —=—> idemp(B/mB)

| l

idemp(By) —— idemp(By /pBy)

By assumption, v and w are bijections. On the other hand, it follows from the assumption
pAp € A © A, that the canonical diagram

B——> B/pB

|

By —— By/pBy

is cartesian with injective vertical arrows. We deduce that u is surjective and hence that B is
decomposed.

DEFINITION 2.12. Let X be a locally noetherian and normal scheme, U a dense open
subscheme of X, V a Galois torsor over U of group G, Y the integral closure of X in V,
and X a geometric point of X. We say that V/U has the property (NpS) at X if for every
geometric point y of ¥ above X, the inertia group I of y has a normal p-Sylow subgroup (or
equivalently, /5 is a semi-direct product of a group of order prime to p by a p-group ([23]
theorem 4.10)).

LEMMA 2.13. Let Xbe anormal, locally noetherian and universally Japanese scheme,
U a dense open subscheme of X, V a Galois torsor over U of group G, Y the integral closure
of X inV,y and ' geometric points of Y, and Iy and Iy the inertia groups of y and ¥,
respectively. If y is a specialization of ', then Iy < L.

Let Y(3) and D) be the strict localizations of ¥ at y and y’, respectively, and let
v: Y5y — Y be a specialization map. Let X and X’ be the images of y and ¥’ in X,
respectively, and let X (5) and X ) be the corresponding strict localizations of X. There
exists a specialization map u: X &) — X@ such that the diagram

v

(2.13.1) Y5y —— Y3

-

Xy ——= X
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where the vertical arrows are the canonical morphisms, is commutative ([6] VIII 7.4). The
morphism

(2.13.2) wzuxxV:X(f/) XXvHX(f) xx V

is G-equivariant. If we identify Y(5) xy V with a connected component of X 5) xx V and
Y(y/) xy V with a connected component of X(fr) xx V (2.4), then we have w(Y(yr) xyV)c

Y(y) xy V. We deduce that Iy/ c I (24).

COROLLARY 2.14. Let X be a normal, locally noetherian and universally Japanese
scheme, U a dense open subscheme of X, V a Galois torsor over U of group G, and X a
geometric point of X. Assume that V /U has the property (NpS) at x. Then, there exists an
open neighborhood X of x in X such that V /U has the property (NpS) at every geometric
point of Xo.

This follows from 2.13, ([6] VIII 7.5) and the fact that if a finite group has a normal
p-Sylow subgroup, then so is any subgroup ([8] I §6.6 cor. 3 of theo. 3).

LEMMA 2.15. Let X, X' be normal, locally noetherian and universally Japanese
schemes, U a dense open subscheme of X, V a Galois torsor over U of group G, Y the
integral closure of X in V, f: X' — X a morphism, U' = f~Y(U), V' = U’ xy V, Y’ the
integral closure of X' in V', g: Y' — Y the canonical morphism,y' a geometric point of Y',
y = g(3), X’ the image of ¥ in X', X = f(X'), and I5 and L5y the inertia groups of y and Y,
respectively. Then Iy < Iy. In particular, if V /U has the property (NpS) atx, V' /U’ has the
property (NpS) at .

Replacing X’ by the schematic closure of U’ in X/, we may assume that U’ is dense
in X'. Let Yy (resp. Y (Iy’)) be the strict localization of ¥ at y (resp. Y’ at j') and let X )
(resp. X Ef')) be the strict localization of X at X (resp. X’ at X’). The morphism

(2.15.1) h=fxx V:XEE,) xx V= Xz xx V

is G-equivariant. If we identify Y(5) xy V with a connected component of X 5) xx V and
Y(/y’) Xy V' with a connected component of XEY,) x x' V' (2.4), then we have h (Y(/y’) xy V') <
Y 7) XY V. We deduce that Iy/ c Iy (2.4). The second assertion follows immediately from
the first one.

PROPOSITION 2.16. Let A bearing,t € A, X = Spec(A), U = Spec(A;), B a finite
sub-A-algebra of A; and Y = Spec(B). Assume that t is not a zero divisor in A. Then the
canonical morphism Y — X is a U-admissible blow-up.

We refer to ([18] §5.1 and [1] §1.13) for generalities on admissible blow-ups. Let f;
(1 < i < n) be generators of the A-algebra B, a; (1 < i < n) elements of A, and r an integer
> lsuchthata; = t"f; € A;. Weputag =t", I = (ap,a1,...,a,) and let ¢: X’ — X be
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the blow-up of I in X. For 0 <i < n, we put

A(:A[a_o a_"]

i
ai ai

A=Al

where J; is the ideal of g;-torsion in A; (i.e., the ideal of x € Al'. such that a]"x = 0 for some
m > 1). We see easily that the Spec(A;)’s (0 < i < n) form an open covering of X'; for every
0 < i < n, Spec(A;) is the maximal open subscheme of X’ where ¢*(a;) generates the ideal
10 (cf. [1] 3.1.6 and 3.1.7). It is clear that B = Ag; so Y is canonically identified with an
open subscheme of X’. Since Y is finite over X, the open immersion ¥ — X' is also closed.
On the other hand, as U is schematically dense in X ([1] 1.8.30.2), gz)’l (U) is schematically
dense in X’ ([1] 1.13.3(i)). But o~ '(U) = Y,s0 ¥ = X'.

COROLLARY 2.17. Let X be a quasi-compact and quasi-separated scheme, D an ef-
fective Cartier divisor on X, U = X — D and f:Y — X a finite morphism inducing an
isomorphism above U such that f~'(U) is schematically dense in Y. Then, there exists a
U-admissible blow-up ¢: X' — X and an X-morphism g: X' — Y.

Let X; = Spec(A;) (1 <i < n) be a finite affine open covering of X such that, for each
i, D is defined over X; by one equation in A;. Foreach 1 <i <n,weputt; = X; xx Y
and let f;: Y; — X; be the restriction of f. By 2.16, each f; is a (U n X;)-admissible
blow-up. By ([18] 5.3.1), there exists a U-admissible blow-up ¢;: X! — X extending f;.
Assume that ¢; is the blow-up of an ideal of finite type <% of O such that «%|U = Ox|U.
Let 9: X' — X be the blow-up of [ [_, <%. By the universal property of blow-ups, for each
1 <i < n, there exists an X-morphism h;: X" — X!. Its restriction above X; is a morphism
gi: X' xx X; — Y;. Foreach 1 < i, j < n, the restrictions of g; and gj above X; n X are
canonically identified. By gluing the g;’s, we get an X-morphism g: X’ — Y.

2.18. Let X be a coherent scheme (i.e., a quasi-compact and quasi-separated scheme)
and U an open subscheme of X. We denote by Sch/y the category of X-schemes and by
2 the full subcategory of Sch/y of objects (X', ¢), where ¢: X’ — X is a U-admissible
blow-up (cf. [18] §5.1 and [1] §1.13). The Zariski-Riemann space of the pair (X, U) is the
topological space defined by

(2.18.1) Xzg = lim |X'],

(X! ,0)eB
where | X’| denotes the topological space underlying to X’. For every & € Xzg, we put

(2.18.2) Oxpme = lim  Oyrg

(X',9)eB°

where &, is the image of & in X’. By ([24] VI §17), Xzg is quasi-compact. If U is schemati-
cally dense in X, then the canonical map Xzr — |X]| is surjective.
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2.19. Let X be a coherent scheme, D an effective Cartier divisoron X and U = X — D.
We keep the notation of (2.18) and denote by % the full subcategory of Sch /x of objects

(X", ), where ¥ is composed of two morphisms X” % X’ % X satisfying the following
conditions:

(a) ¢ isa U-admissible blow-up;

(b) p is a finite morphism inducing an isomorphism above U;;

() ¥~ '(U) is schematically dense in X"

Then every object of Z is an object of ¢ ([1] 1.13.3(i)). We denote by

(2.19.1) B> C

the canonical injection functor. Then ¢° is cofinal (cf. [6] I 8.1.1) and ¥ is cofiltered. Indeed,
since Z is cofiltered, it is enough to prove that ° satisfies conditions F1) and F2) of ([6] I
8.1.3). Condition F1) follows from 2.17 and ([18] 5.1.4), and condition F2) is an immediate
consequence of condition (c) above. We deduce that the canonical morphism

(2.19.2) lim |X"| - lim |X'| = Xz
(X" y)e€ (X',9)eB

is an isomorphism. For every £ € Xzr, we have a canonical isomorphism

(2.19.3) Oxpe — lim  Oxn

(X”,l//)&cgo

Sy

where &y is the image of & in X” by the map Xzr — |X”| induced by (2.19.2). Note that for
any object (X", ) of ¢, the map Xzr — |X”| is surjective (cf. 2.17 and 2.18).

LEMMA 2.20. Let X be a coherent scheme, D a closed subscheme of finite presenta-
tion of X, U = X — D, x € D, & a point of Xzr above x, and J the ideal of Ox . defined
by D. Assume that U is schematically dense in X, and put O = Ox, ¢ andp = (), J" 0.
Then:

(i) Ot equipped with the J-adic topology, is a prevaluative ring, which means that
it is local and that every open ideal of finite type is invertible ([1] 1.9.1). Let t € 0% be a
generator of J U.

(i) O¢[1/t] is a local ring.

(i)  O¢/p is a valuation ring with fraction field the residue field of O¢[1/t). In particu-
lar, O%[1/t] is the localization of O at p.

(iv) The ideal pO¢[1/t] is contained in the image of the canonical homomorphism
O — O¢[1/t].

Since the transition homomorphisms of the inductive limit (2.18.2) are local, the ring J¢
is local and J is contained in the maximal ideal of J¢. Replacing X by its blow-up along
D, we may assume that J is invertible, generated by ¢ € O .. For every object (X, ¢) of
A (2.18), (pfl(U) is schematically dense in X’ ([1] 1.13.3(i)). It follows that ¢ is not a zero
divisor in 0. Let I be an open ideal of finite type of 0¢. Then [ is induced by an ideal of
finite type .# of O for an object (X', ¢) of % such that .#|U = 0. By blowing-up .# in
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X', we obtain an object (X1, ¢) of # ([18] 5.1.4) such that & O, is invertible. Therefore,
the ideal / is monogenic. Since / is open and since ¢ is not a zero divisor in &%, I is invertible,
which proves the proposition (i).

Propositions (ii) and (iii) follow from ([1] 1.9.4). Proposition (iv) is obvious.

LEMMA 2.21. Let Xbe anormal, locally noetherian and universally Japanese scheme,
D an effective Cartier divisor on X, U = X — D and V a Galois torsor over U of group G.
Then with the notation of (2.18) and (2.19), for every & € XyzR, there exists an object (X", )
of € satisfying the following properties:

(i) X" is normal.

(i) If wy: Xzr — |X"| is the morphism induced by the isomorphism (2.19.2) and
&y = my (€), then V /U has property (NpS) at every geometric point EI,, of X" above &y.

We put 0 = Ox e and S = Spec(0¢). Let 5 be a geometric closed point of S and
S = Spec(A) the corresponding strictly local scheme. For each object (X”, 1) of €, we
denote by 7y : Xzr — |X”| the morphism induced by the isomorphism (2.19.2), and put
&y = my(§), Oy, = Oxng, and Sy = Spec(0%,). We have a canonical isomorphism
(2.19.3)

(2.21.1) S5 lim Sy,

(X" y)ee

Let (X " ¥) be an object of €. Since the canonical homomorphism ﬁsw — Og is local, 5
determines a geometric closed point of Sy, (also denoted by 5). We denote by &, the geometric
point of X” above &y, corresponding to 5, and by EI/, the strict localization of Sy, at 5. Then
the canonical morphisms § — Sy, induce an isomorphism

(2.21.2) S lim Sy

(X" y)ee

Indeed, the projective limit above is a strictly local scheme, with the same residue field as S.
We may assume that x = &g € D. Let J be the ideal of Ox , defined by D. We put
p = (), J"O:. It follows from 2.20 that the ideal J 0 is invertible, generated by 1 € O,
that O /p is a valuation ring and that 0 [1/t] is the localization of ¢ at p. The scheme
T = Spec(A/pA) is the strict localization of T = Spec(&% /p) at 5. Since S has only one
point above p € S ([6] VIII 7.6), namely pA, we have Aps = A ®g, (0¢)p = A[1/t]. Then
it follows from 2.20(iv) that pAy 4 is contained in the image of the canonical homomorphism
A — Apa. Therefore, A[1/1] is a henselian local ring by 2.11, and hence the canonical map

(2.21.3) 7o(T xx V) — mo(S xx V)

is bijective.

Since 0% /p is a valuation ring, A/pA is a strictly henselian valuation ring. This follows
from ([7] §2.4, prop. 11) and ([20] Fundamental lemma on the extensions of valuations, page
50). Let K be the fraction field of A/pA, K a separable closure of K and ¢ the Galois group
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of K over K. By (2.21.2), (2.21.3) and ([12] 8.4.1), there exists an object (X", v) of € such
that the canonical map

(2.21.4) 70(T xx V) — mo(Sy xx V)

is injective. We may assume that X” is normal. Since the map (2.21.4) is G-equivariant
and since G acts transitively on the source and on the target, it is bijective. Let Y” be the
normalization of X" in V. The set o(Sy x x V) is isomorphic to Y” ®x» k (&) (cf. (2.4.1)).

Fory” e Y"®xnk (Ew), we denote by /57 < G the inertia group of y". As I3 is the stabilizer
in G of the connected component of EW x x V corresponding to 3" (2.4), it follows from the

bijection (2.21.4) that Iy~ is isomorphic to a quotient of . Therefore, by 2.10, V /U has
property (NpS) at §¢.

PROPOSITION 2.22. Let X be a normal, locally noetherian and universally Japanese
scheme, U a dense open subscheme, and V a Galois torsor over U. Then there exists a U -

admissible blow-up ¢: X' — X, such that if we denote by X" the normalization of X', V /U
has the property (NpS) at every geometric point of X”.

Replacing X by a U-admissible blow-up, we may assume that there exists an effective
Cartier divisor D on X such that U = X — D; we take again the notation of (2.18) and (2.19).
Let 2 be the full subcategory of ¢ of objects (X", v/) such that X” is normal. It follows
from ([6] I 8.1.3(c)) that 2° is cofinal in €°. For each object (X", 1) of 2, we denote by
7y : Xzr — |X”| the morphism induced by (2.19.2), and by X, the maximal open subscheme
of X” such that V /U has the property (NpS) at every geometric point of X(/)’ (2.14). By 2.21,
we have

(2.22.1) XzR = U n@l(xg).
(X" A )eD

Since Xzgr is quasi-compact (2.18), there exists an object (X " ¥) of & such that Xzr =
Ty ! (X 6’ ). As my is surjective, we deduce that V /U has the property (NpS) at every geometric
point of X”.

LEMMA 2.23. Let G, G’ be smooth connected group schemes overk, and let f: G —
G’ be an étale morphism of k-group schemes. Then:

(1) f is finite and surjective.

(ii) IfG' is commutative, then so is G; if G' is isomorphic to A%for some integern = 1,
then so is G and the kernel of f is a finite dimensional F ,-vector space.

(i) The proposition follows from ([9] VI 1.3.2 and 1.4.1).

(i) Assume first that G’ is commutative. Then the derived group (G, G) is contained
in the kernel of f and hence is the unit group. Therefore G is commutative. Assume next
that G/ ~ A%. Any maximal torus of G is contained in the kernel of f, and hence is the unit
group. Therefore, G is unipotent ([9] XVII 4.1.1). Since pG is contained in the kernel of f
and G is connected, we deduce that pG = 0. Therefore, G is isomorphic to A%.
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2.24. Let f: X — Y be amorphism of schemes, .-# alocally constant and constructible
sheaf of A-modules on Y, and ¢ a sheaf of A-modules on Y. Then the canonical morphism

(2.24.1) f¥(Hom(F,9)) — Hom(f*(F), f*(94))

is an isomorphism. Indeed, the statement is obviously true if f is étale (even if % is not
locally constant and constructible). Hence, by replacing Y by an étale covering Y’ and X by
X xy Y/, we may assume that .% is constant on Y of value a finite A-module M. Since A
is noetherian, we have an exact sequence A" — A" — M — 0. We deduce the following
commutative diagram with exact lines.

(2.24.2) 0 —— f*(Hom(F,9)) G —— f*(9™)

l“ B ly
0 —— Hom(f*(F), f*(¥)) — [*(&)" — [ (G)"

Since B and y are clearly isomorphisms, « is an isomorphism.

PROPOSITION 2.25. Let X be a normal scheme, U a dense open subscheme of X, F
a locally constant and constructible sheaf of A-modules on U, and f: Y — X a morphism.
We put V. = f_l(U) and denote byi: U — X and j: V — Y the canonical injections. We
assume that V is schematically dense in Y. Then the base change morphism

(2.25.1) a: ix(F)Y — ju(Z|V)
relatively to f is injective.

Let y be a geometric point of Y and X = f(¥). It is enough to prove that the stalk a5 of
a at'y is injective. We may replace X and Y by their strict henselizations at X and y. Since V
is dense in Y, it is not empty. Let 77 be a geometric point of V, 7 — y a specialization map
and & = £ (7). Then we have a commutative diagram

(2.25.2) (ix(F))y —— F¢

l l

((FIV))y —= (ZIV )y

where u and v are the specialization homomorphisms. Since oz is an isomorphism, it is
enough to prove that u is injective. Since X is normal and strictly local, U is connected and
we have (ix(F))x = ['(X,ix(F)) = I'(U, F). There exists a connected Galois torsor U’
over U that trivializes .. Then u is identified with the canonical morphism I"(U, .%) —
' (U’, ), which is obviously injective. This concludes the proof.

LEMMA 2.26. Let X be a normal, locally noetherian and universally Japanese
scheme, U a dense open subscheme of X, j: U — X the canonical injection, V a Galois
torsor over U of group G, and M a A[G]|-module. The constant étale sheaf My on V de-
fines by Galois descent a locally constant and constructible sheaf F of A-modules on U. Let
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s € M, H the stabilizer of s in G, U’ the quotient of V by H, X' the integral closure of X in
U',and j': U — X' the canonical injection.

!

(2.26.1) U — x

L

U——X

We put F' = F|U' and consider s as a section of jL(F')(X') = F'(U') = F(U') =
F (V). Let X' be a geometric point of X' and X its image in X. Then the base change
morphism

(2.26.2) a: ju(F)X — ji(F)
relatively to the Cartesian diagram (2.26.1) is injective. Moreover, the following conditions

are equivalent:
(i) The stalk

(2.26.3) oz (juF )z — (joF e

X

of the morphism o at X' is an isomorphism.
(i) The image of s in (j,-F')s is in the image of the morphism (2.26.3).
(iii) The morphism X' — X is étale at X'

Observe first that the implications (iii)=>(i)=>(ii) are obvious. Let Y be the integral clo-
sure of X in V, ¥ — X’ the canonical morphism, y a geometric point of ¥ above X', and
I < G the inertia group of y. Then the morphism (2.26.3) can be canonically identified with
the canonical injection

(2.26.4) M- mINH

which proves the first assertion. It follows from (2.26.4) that condition (ii) is equivalent to
I < H, which is also equivalent to each of the conditions (i) and (iii).

LEMMA 2.27. Let X be a scheme, U an open subscheme of X, % a locally constant
constructible sheaf of A-modules on X, X a geometric point of X, X x) the corresponding
strictly local scheme, and Vi a Galois torsor over Uy = X (x) XX U trivializing 7 |Uy. Then,
there exists an étale morphism f: X' — X, a geometric point X' above X and a Galois torsor
V' over U' = f~Y(U) trivializing .F|U’ such that if we identify the strictly local schemes
X Ef') and X (z) by f, there exists a Uy-isomorphism V' x xr X zf') ~ V.

It follows from ([12] 8.8.2 and 10.8.5) (cf. [5] 6.2).
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3. Additive sheaves on vector bundles.

DEFINITION 3.1. Let X be a scheme with residual characteristics different from ¢,
m: E — X avector bundle, and .%# a constructible sheaf of A-modules on E. We say that
Z is additive if for every geometric point £ of X and for every e € E (&), denoting by 7, the
translation by e on E¢ = E X x &, t)f(.F|E¢) is isomorphic to .7 |Eg.

We can make the following remarks:
(i) We may restrict to the geometric points £ of X with algebraically closed residue
fields.
(i) If .Z is additive, then for any X-scheme X', denoting by E’ the vector bundle
E xx X' over X', Z|E’ is additive.
(ili) .# is additive if and only if for every geometric point & of X with algebraically
closed residue field, .7 | E¢ is additive.

PROPOSITION 3.2. Let X be a scheme with residue characteristics different from ¢,
f: E' — E a morphism of vector bundles over X, and F (resp. F') a constructible sheaf of
A-modules on E (resp. E'). Then:
() If F is additive, f*(F) is additive.
(i) If F' is additive and if f surjective, R" fi(.F") is additive for all n > 0.
(iil) Assume f surjective. Then F is additive if and only if f*(.F) is additive.

Propositions (i) and (ii) follow immediately from the definition (3.1). To prove (iii), it
remains to show that if f*(.%) is additive then so is .%. The problem being local on X, we
may assume that there exists a section o : E — E’ of f. Then the required property follows
from (i).

3.3. Let.Zy be the Artin-Schreier sheaf of A-modules of rank 1 over the additive group
Aﬁ;p over IF,, associated to the character ¥ fixed in (2.1) ([19] 1.1.3). Then %y is additive.

Indeed, if w: AIIF,, XF, AIIFP — AIIF,, denotes the addition, we have an isomorphism
(3.3.1) w* Ly ~pri Ly @pr; Ly .
We will show that to a certain extent, all additive sheaves in characteristic p come from .,2”1/,.

Iff:X— AIIFP is a morphism of schemes, we put 2 (f) = f*.Zy.

3.4. Let X be ak-scheme, 7: E — X a vector bundle of constant rank ¢, and 7 : E—
X the dual vector bundle. We denote by {, »: E xx E — A%Fp the canonical pairing, by

pry: E xx E — E and pry: E xx E — E the canonical projections and by
(3.4.1) Sy :DLE, A) > DLE, A)

the Fourier-Deligne transform defined by

(342) §y(K) = Rpry (prf K © 24/ ((. ).

We recall some properties of this transform that will be used later.
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Let 7°: E’ — X be the bidual vector bundle of 7: E — X,a: ES E’ the anti-
canonical isomorphism defined by a(x) = —(x, ), and § the Fourier-Deligne transform for

7: E — X. For every object K ofo.(E, A), we have a canonical isomorphism ([19] 1.2.2.1)
(3.4.3) 3y 0By (K) ~a*(K)(—d)[-2d].
Let 7’: E' — X be a vector bundle of constant rank d’, %f// its Fourier-Deligne trans-

form, f: E — E’ a morphism of vector bundles, and f : E' — E its dual. For every object
K of DX(E, A), we have canonical isomorphisms

(3.4.4) 3 oRA(K) S f*oFy(K).

(3.4.5) Y oRA(K)(d)[2d'] 5 0§y (K)(d)[2d].
and for every object K’ of Df. (E’, A), we have canonical isomorphisms
(3.4.6) Rf 0§y (K)(d)[2d'] 5 Fy o f*(K')(d)[2d],
(3.4.7) Rfi 0§y (K") > Fy o f1(K').

Indeed, isomorphism (3.4.4) is proved in ([19] 1.2.2.4). It implies isomorphism (3.4.6) by
(3.4.3), and isomorphism (3.4.5) by duality and (3.4.3). Finally, isomorphism (3.4.7) is ob-
tained from (3.4.5) by (3.4.3).

For any section e € E(X) and any object K of D?(E, A), if we denote by 7,: E > E
the translation by e, we have a canonical isomorphism ([19] 1.2.3.2)

(3.4.8) Ty (texK) = Fy(K) ® Ly ((e, )).

3.5. Let X be a scheme and K an object of D2(X, A). The support of K is the sub-
set of points of X where the stalks of the cohomology sheaves of K are not all zero. It is
constructible in X. This definition is in general different from the one introduced in ([6] IV
8.5.2).

PROPOSITION 3.6. Let X be ak-scheme,w: E — X avector bundle of constant rank,
71 E — X the dual vector bundle, F a constructible sheaf of A-modules on E, and S < E
the support of §y (F). Then F is additive if and only if for every x € X, the set S N E, is
finite.

By the proper base change theorem, we may assume X = Spec(k) and k algebraically
closed. Then we are reduced to the following:

PROPOSITION 3.7. Assume k is algebraically closed and let E be a vector bundle over
k,7t: E — X the dual vector bundle and F a constructible sheaf of A-modules over E. The
following conditions are equivalent:

(1) Z is additive.
(i) The support of §y (F) is finite.

(iii) F is isomorphic to a finite direct sum of sheaves of the form M @ 2y (f), where
M is a A-module of finite type and f: E — A,i is a linear form.
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(iv) F is locally constant and all its Jordan-Holder subquotients are of the form

ZLy(f) @4 A, where A is the residue field of A and f: E — A} is a linear form.
(v) 7 islocally constant and all its Jordan-Holder subquotients are additive.

First we prove (i)=>(ii). For every point e € E(k), we have (3.4.8)
(3.7.1) Sy (F) =Ty (F) @ Ly (e, )).
If ¢ is a cohomology sheaf of §y (%), wehave ¥ ~ 9 ®.%y ({e, )) for every pointe € E (k).
Let U be an integral locally closed subscheme of E such that & |U is locally constant and not
zero. It is enough to prove that U is a closed point of E. We may assume that A is a field.
Let 7: V — U be a finite étale connected covering such that 7*(¥4|U) is constant. Then
for every point e € E(k), the sheaf 7*(.Z ({e, ))|U) is constant; equivalently, for every
linear form f: E — A!, the sheaf Zy(f)|V is constant. So the equation 7”7 — T = f hasa
solution in the function field (V) of V. If U is not a closed point of E, there exists a linear
form f: E — A} such that f|U: U — A] = Spec(k[t]) is dominant. For all ¢ € k*, the
equation 7?7 — T = ct has a solution in k(V). We obtain infinitely many linearly disjoint
extensions of degree p of k(¢) contained in k(V), which is not possible. So U is a closed
point.

Next we prove (ii)=(iii). By (3.4.3), we may assume that the support of Fy (%) is a

point i : Spec(k) — E; then it is enough to observe that for any A-module of finite type M,
we have

(3.7.2) By (ixM) =~ M ® 2y (f).
which follows from (3.4.8) and (3.4.4).

It is clear that we have (iii)=>(i), (iii)=(iv)=>(ii) and (vi)=>(v). Finally, since conditions
(i) and (ii) are equivalent and that the latter is stable by extensions, we have (v)=>(i).

DEFINITION 3.8. Let X be a k-scheme, 7w : E — X a vector bundle of constant rank,
7#: E — X the dual vector bundle, and .% an additive constructible sheaf of A-modules on
E. We call the Fourier dual support of .# the support of Fy (F) in E. We say that .Z is
non-degenerate if the closure of its Fourier dual support does not meet the zero section of E.

We can make the following remarks:

(1) If we replace ¥ by as for an element a € F ¢, then the Fourier dual support of .%
will be replaced by its inverse image by the multiplication by a on E.In particular, the notion
of being non-degenerate does not depend on .

(ii)) Let X’ be an X-scheme and E’ the vector bundle E xx X’ over X’. Then the
Fourier dual support of .#|E’ is the inverse image of the Fourier dual support of .# ([19]
1.2.2.9).

(iii) Letf: E — Ak be a linear form,i: X — E the associated section, M a non zero
A-module of finite type, and d the rank of E. Then the Fourier dual support of M ® 2y (— f)
is i(X). Indeed, by (3.4.3), (3.4.4) and (3.4.8), we have

(3.8.1) Sy (M ® Ly(— 1)) ~ ixM(—d)[~2d].
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(iv) Assume X = Spec(k) and k algebraically closed. Then % is locally constant,
and its Fourier dual support is the union of the Fourier dual supports of its Jordan-Holder
subquotients (3.7).

LEMMA 3.9. Let f: X' — X be a finite morphism of k-schemes, = : E — X a vector
bundle of constant rank, E' = E xx X', n': E' — X' and fg: E' — E the canonical
projections, and F' an additive constructible sheaf of A-modules on E’. Then fg«(F') is
additive and its Fourier dual support is the image of the Fourier dual support of F'.

By the proper base change theorem, we may assume X = Spec(k) and k is algebraically
closed. Then we may reduce the proof to the case where X’ is a finite disjoint sum of copies
of X, where the assertion is obvious.

LEMMA 3.10. Let X be a k-scheme, m: E — X a vector bundle of constant rank,
and F an additive constructible sheaf of A-modules on E. If ¥ is non-degenerate then
Rrny.7 =Rm.% = 0.

It follows from (3.4.3), (3.4.6) and (3.4.7) (applied to f the zero section of the dual
vector bundle E of E and K’ = Ty (F)).

LEMMA 3.11. Let X be a k-scheme, w: E — X a vector bundle of constant rank, 9
an additive constructible sheaf of A-modules on E, F a constructible sheaf of A-modules on
E,andu: 9 — F a surjective morphism (resp. v: .F — 9 an injective morphism). Assume
that .F is locally constant on all geometric fibers of w. Then ¥ is additive and its Fourier
dual support is contained in the Fourier dual support of 4.

We may assume X = Spec(k) and k algebraically closed. Then ¥ is locally constant
(3.7), and the assertion follows from 3.7 and 3.8(iv).

LEMMA 3.12. Let X be a k-scheme, w: E — X a vector bundle of constant rank, G
a group scheme over X, p: G — E an étale surjective morphism of group schemes over X,
and ¥ a constructible sheaf of A-modules on E. Assume that for every geometric point X of
X, p*(F)|Gx is constant; then F is additive.

We prove first that p(p™.%) is additive. Let X be a geometric point of X and a € E(X).
There exists g € G(X) such that p(g) = a. If we denote by 7, (resp. 74) the translation by a
on E (resp. g on G), then

t; (0« (p* F))|Ex) =~ pu (17 ((0* F)|Gx)) = (0x(p*F))|Ex -
On the one hand, the adjunction morphism % — p4(p*.%) is injective and .Z is locally

constant on the geometric fibers of 7. So . is additive by 3.11.

LEMMA 3.13 ([21]2.7). Let X be a normal k-scheme, w: E — X a vector bundle
of constant rank, 7 : E — X the dual vector bundle, U a dense open subscheme of X, 7 a
constructible sheaf of A-modules on E, and S < E the support of Fy (F). We put Ey =
7Y U), Ey =%~ (U), Su = S n Ey, and denote by j: Ey — E the canonical injection.
Assume that the following conditions are satisfied:
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(1) The adjunction morphismu: F — jj*(F) is injective.
(i) j*(F) is locally constant and additive.
(iii) Z is locally constant on all fibers of .
Then .7 is additive and its Fourier dual support S is contained in the Zariski closure Sy
of Sy in E. Moreover, if F is locally constant, then S = Sy.

It is enough to prove that for every x € X, the set Sy = S n E, is finite and is contained
in Sy (3.7), moreover, if .Z is locally constant then Sy = Sy N Ex. We may shrink U.
The assertion is obvious for the generic points of X; so we assume that x is not a generic
point of X. Let f: X’ — X be a proper surjective morphism such that X’ is normal and
U = f~Y(U)isdense in X'. Let E' = E xx X', E' = E xx X, fg: E/ - E and
fg: E' — E the canonical projections, .Z’ = fE(F),and §' E' the support of 3/ (F".
We put £y, = f; ' (Ev), Eyy = f; ' (Ev), S;; = S’ n Ef; and denote by j': Ej, — E’ the
canonical injection. We have S’ = f;l(S) S = fz(8) and fp (g) = Sy. On the other

hand, the adjunction morphism u’: #’ — j! j"*(%") is composed of
ri(
(3.13.1) y'E—>fEJ*J (F) —— jLj"™(F")

where v is the base change morphism relatively to fg. Since v is injective by 2.25, u’ is
injective. Hence, it is enough to prove the assertions after replacing X by X’ and x by a point
x’ of X" above it. Taking for X’ the normalization of the blow-up of X along the Zariski
closure of x in X, we are reduced to the case where Oy  is a discrete valuation ring.

We may assume X integral. Let 5 be the generic point of X and K = k(n) the residue
field of 5. Replacing X by its normalization in a finite extension of K, we may assume that
Sp=8n E » 1s a finite set of K -rational points. After shrinking U, we may assume that every
f € S, extends to a linear form on Ey. Then there exist constant sheaves (%f)fe s, on Ey
such that j*(F) = @ ses, Ly (f) ® 9y by 3.7 and (6] IX 2.14.1). Let Sy x < S, be the

subset of elements f € S, which are regular at x. For f € S, «, we denote by T e Eyits
reduction. We claim that

(3.13.2) (L () @Y Ex = {%(7)@)% if feS,..

0 if fé&S)x.

Indeed, let f € S,, f be a geometric generic point of E,. It follows from ([21] 2.8) that
2Ly (f) is ramified at 7 if and only if f ¢ S, . If f € S, «, then j« (LY (f) @ 9f)|Ex =
Ly (f)® 9y by ([6] IX 2.14.1). On the other hand, for every geometric point y of E, and
for every specialization map r — 7y, the specialization homomorphism j« (% (f) ® 9r)y
Jx(ZLy (f) ® 9r)sr is injective (cf. the proof of 2.25). Hence j«(ZLy (f) ® 9¢)|Ex = 0 if
f ¢ Sn,x-

Since .7 |Ey is locally constant and the adjunction morphism u: % — j.j*(F) is
injective, we deduce from (3.13.2) that the Jordan-Holder subquotients of .7 |Ey are of the
form f,p (f) ® 9y, for some f € S, .. Hence, F|E, is additive and Sy < {f; f € Sy} =
Su ~ Ex by 3.7 and 3.8(iv). Assume that .# is locally constant. Then u is an isomorphism
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([6] IX 2.14.1), and S, x = Sy as the rank of the stalks of j.j*(.#) is constant. Therefore
Sc={f:fe Sn.x }» which conclude the proof of the required assertion.

COROLLARY 3.14. Let X beak-scheme,n: E — X avector bundle of constant rank,
71 E — X the dual vector bundle, and F a locally constant, constructible and additive sheaf
of A-modules on E. Then the Fourier dual support S of % is the underlying space of a closed
subscheme of E which is finite over X.

Let f: X' — X be a proper surjective morphism, E/ = E xx X', E' = E xx X/,
fer E' — E and fz: E' — E the canonical projections, and S’ the Fourier dual support of
f*(F). Wehave 8" = f;'(S) and S = fz(S"). First, we take for X’ the normalization of

E

X. Since §' is closed in E’ by 3.13, S is closed in E. We denote also by S the reduced closed
subscheme of E with support S. We prove that S is finite over X. We may assume that X
is normal and integral. Let 5 be the generic point of X and K = k(n). Replacing X by its
normalization in a finite extension of K, we may assume that S;, = S N En is a finite set of
K -rational points.

We know (3.6) that S is quasi-finite over X. It is enough to prove that it is proper over
X. Let R be a discrete valuation ring, ¥ = Spec(R), and y (resp. k) the closed (resp. generic)
point of Y. Consider a commutative diagram

(3.14.1) PR

||

Y —X

where p is the canonical injection. It is enough to prove that there exists an X-morphism
y:Y — Ssuchthat 8 = y o p. We may replace X by any normal scheme X’ such that

factors as ¥ — X' L x , where f is proper and surjective. Replacing X successively by
the normalization of the blow-up of X along the Zariski closure of x = «(y) in X, we may
assume that Oy  is a discrete valuation ring. Then the assertion follows from the proof of
3.13. Indeed, with the notation of loc. cit., we have S, , = S, because u: .F — j.j*(F)is
an isomorphism.

4. Dilatations.

4.1. Let X be a scheme, u: P — X a morphism, Y a closed subscheme of P defined
by a quasi-coherent ideal .y of p, R a closed subscheme of X defined by a quasi-coherent
ideal 7 of Ox and Ry = R xx Y.

Ry —Y——1P

AN

R——X

Let .# be the ideal of Op associated to the closed immersion Ry — P; we have .¥ =
Fy + Z Op. We denote by X’ the blow-up of X along R and by P’ the blow-up of P
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along Ry. We call the maximal open subscheme W of P’ where we have ¢ Oy = . Oy the
dilatation of P along Y of thickening R and denote it by P(R) (also called the dilatation of Ry
in P relatively to R in [5] 2.4; see loc. cit. 2.8). There is a unique X-morphism PR x/.

p(R) ——=p/ —— P

| 5

X' X
LEMMA 4.2. We keep the assumptions of (4.1) and assume moreover that R is a
Cartier divisor on X and that fy is of finite type. We put U = X — R and denote by
jp: Py — P the canonical injection. Then PR) s affine over P and it corresponds to the

quasi-coherent sub-Op-algebra of jps«(Op,) generated by the image of the canonical mor-
phismu*(Ox(R)) ®p, Sy — jp+(Opy).

We may assume that X = Spec(A) and P = Spec(B) are affine, that R is defined in X
by an equation # € A and that Y is defined by an ideal of finite type Jy of B. Let I be the
ideal of B generated by Jy and ¢, and let P’ be the blow-up of P along I. Then P®) is the
maximal open subscheme of P’ where the exceptional divisor I &p: is generated by ¢. Let
ai,...,a, € B be generators of Jy. We put

N anl Bl&1, ..., &)
¢ _B[T""’T] (a1 —tE, .. an —1E,)

c=C'/c/

t-tor °

where C/_,, is the ideal of C’ of elements annihilated by a power of 7. Then we have PR —

Spec(C), which implies the assertion.

4.3. Let X be a scheme, u: P — X and g: Q — P morphisms, i: ¥ — P and
j: Z — Q closed immersions and #: Z — Y a morphism such that g o j = i o h; so the
diagram

J
R

i
- s

"U<Tf0

z
|
Y

is commutative. Let R be a closed subscheme of X and let P(R) (resp. Q(R )) be the dilatation
of P (resp. Q) along Y (resp. Z) of thickening R. By the functorial property of dilatations ([5]
2.6), there is a canonical morphism

lifting g.
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LEMMA 4.4. We keep the assumptions of (4.3) and assume moreover that Z ~
Y xp Q. Weput Ry = R xx Y and R; = R xx Z and denote by P’ (resp. Q') the
blow-up of P along Ry (resp. Q along Rz). Then:
(i) There exists a unique morphism g': Q' — P lifting g; we have Q®) = ¢/=1(P(R))
and g(R) is the restriction of g'.
(ii) If g is flat, the morphism Q(R) — PR) xp Q induced by g(R) is an isomorphism.

Since Rz ~ Ry xp Q, there exists a unique morphism ¢’: Q' — P’ lifting g. We
know ([5] 2.6) that ¢’ (Q(®)) = P(R) and that ¢(R) is the restriction of ¢’. On the other hand,
g1 (P®)Y c (R by ([5] 2.7). Therefore, Q(R) = ¢'~1(P(R)), which proves assertion (i).
Assertion (ii) is an immediate consequence of (i).

4.5. Let X be a scheme, u: P — X a separated morphism, o: X — P a section of
u, R an effective Cartier divisoron X, U = X — R and P(R) the dilatation of P along o of
thickening R. Then we have a canonical isomorphism

4.5.1) PR xyU~Py.

By the universal property of dilatations ([5] 2.7), there exists a unique X-morphism
(4.5.2) B . x 5 p(R)

lifting o.

LEMMA 4.6. We keep the assumptions of (4.5) and assume moreover that X is locally
noetherian and that u is smooth. Then P®) is smooth over X, and we have a canonical
R-isomorphism

(4.6.1) PR xyx RS V(o™ (2}/x) ®oy Ox(R)) xx R.

The isomorphism (4.6.1) follows from ([5] 3.5). Since R is a Cartier divisor on X, the
isomorphisms (4.5.1) and (4.6.1) imply that P(R) is flat over X ([1] 1.12.9). Since all fibers
of P(R) gver X are smooth, P(R) is smooth over X.

LEMMA 4.7. Let X be alocally noetherian scheme, R a Cartier divisoron X,u: P —
X andv: Q — X separated morphisms of finite typeando : X — P andt: X — Q sections
of u and v, respectively. We denote by P®) (resp. Q(R), resp. (P xx Q)(R)) the dilatation of
P (resp. Q, resp. P xx Q) along o (resp. t, resp. (0, T)) of thickening R. If P or Q is smooth
over X, then the canonical morphism

4.7.1) w: (P xx Q)R = p(R) »y o(R)
is an isomorphism.

We denote by _Zp (resp. Zp, resp. _#pxy o) the ideal of Op (resp. O, resp. Opx o)
defined by o (resp. 7, resp. (0, 7)). Since _Zpxy0 = FrOpxy0 + F00Px 0, it follows
from 4.2 that the canonical morphism w (4.7.1) is a closed immersion. By construction, Py
(resp. Qu, resp. Py xy Qu) is schematically dense in p(R) (resp. Q(R), resp. (P xx Q)(R)).
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Since P(R) or Q(R) is smooth over X (4.6), Py xy Qu is schematically dense in
P(R) xy Q(R). Therefore w is an isomorphism.

4.8. Consider a commutative diagram of morphisms of finite type of locally noetherian

schemes
Y
|
(o2

X ——

T
-

v
-

o Y
P, b
P——>X

(4.8.1)

such that # and v are smooth and separated, u o 0 = idy and vo t = idy. Let R be a
Cartier divisor on X such that Ry = R xx Y is a Cartier divisor on Y. We denote by p(R)
(resp. Q(R)) the dilatation of P (resp. Q) along o (resp. t) of thickening R and by

(4.8.2) g B 9B _, p(&)

the morphism induced by g (4.3.1). Note that Q(R) is also the dilatation of ¥ in Q of thick-
ening Ry. Let A% /p and Ny /o be the conormal bundles of X in P and Y in Q, respectively.

Then the morphism ¢(®) x y R: Q(®) x x R — P(R) x x R can be identified with the morphism
(4.8.3) V(A0 ®6y Oy(Ry)) xy Ry = V(M /p oy Ox(R)) xx R

induced by the canonical morphism f*(Ay/p) — Ay, ([5]3.4).

LEMMA 4.9. We keep the assumptions of (4.8), and assume moreover that g is smooth
and that f is an isomorphism. Then g(R): Q(R) — P®) s smooth.

Observe first that P(R) and Q(R) are smooth over X (4.6). We put U = X — D. Then
g(R) xx U = gy, which is smooth by assumption. On the other hand, g(R) xx R is the
morphism of vector bundles over R induced by the canonical morphism Ay /p — Ax/o

(4.8.3). Since the latter is locally left invertible, g(R) x x R is smooth. Then the assertion
follows from ([12] 17.8.2).

5. Frames and strict normal crossing pairs.

5.1. In this article, a monoid stands for a commutative monoid. If M is a monoid, we
denote by MEP the associated group, by M * the group of units in M and by M the orbit space
M /M* (which is also the quotient of M by M* in the category of monoids). We say that
a monoid M is integral if the canonical homomorphism M — ME#P is injective, that M is
fine if it is finitely generated and integral and that M is saturated if it is integral and equal
to its saturation in MP (i.e., equal to {m € M&P; m" € M for some n > 1}). If a monoid
M is integral, M is integral. We say that a homomorphism of monoids u: M — N is strict
if the induced morphism #: M — N is an isomorphism. We denote by Mon the category
of monoids and by Mong; the full subcategory of fine and saturated monoids (usually called
fs-monoids for short).
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5.2. A pre-logarithmic structure on a scheme X is a pair (.#, «) where .# is a sheaf of
abelian monoids on the étale site of X and « is a homomorphism from .# to the multiplicative
monoid O . A pre-logarithmic structure (.#, «) is called a logarithmic structure if & induces
an isomorphism o ! (ﬁ;) = ﬁ;. Pre-logarithmic structures on X form naturally a category,
containing the full subcategory of logarithmic structures on X. The canonical injection from
the category of logarithmic structures on X to the category of pre-logarithmic structures on X
has a left adjoint. It associates to a pre-logarithmic structure (£, 8) the logarithmic structure
(A, @), where A is defined by the following co-cartesian diagram.

(5.2.1) pl (o) —=2
M
We say that (., ) is the logarithmic structure associated to (22, B).
If f: X — Y is a morphism of schemes and (., «) is a pre-logarithmic structure on
Y, the sheaf of monoids f~!(.#) equipped with the composed homomorphism f~!(.#) —

f~Y(Oy) — O is a pre-logarithmic structure on X called the inverse image of (., &) and
denoted by f~! (A, ).

5.3. Alogarithmic scheme is atriple (X,.#x ,ax ), usually simply denoted by (X,.#x)
or even by X, consisting of a scheme X and a logarithmic structure (.#x, ax) on X. Log-
arithmic schemes form a category; we refer to [14] for more details. If (X, #x, ax) is a
logarithmic scheme, we denote by .# ; the sheaf of units in .#x, by .4 )%P the sheaf asso-
ciated to the presheaf U — I'(U, .#x)% and by .#x the sheaf associated to the presheaf
U — I'(U,.#x)/T (U, #x)* (which is the quotient of .#x by .#y in the category of
sheaves of monoids). Observe that ay identifies .4y with Oy .

We say that a morphism of logarithmic schemes f: (X, #x,ax) — (Y, Ay, ay) is
strict if (#x, ax) is the logarithmic structure associated to the pre-logarithmic structure
f~ Yy, ay) on X, or equivalently if the canonical morphism f~'(.#y) — .#x is an
isomorphism.

We say that a logarithmic scheme (X, #x, ax) is integral (resp. fine, resp. saturated) if
for every x € X, there exists an étale neighbourhood U of x in X such that (.#x|U, ax|U)
is associated to a pre-logarithmic structure (Py, ) on U, where Py is a constant sheaf of
monoids on U of value an integral (resp. a fine, resp. a saturated) monoid P. If
(X, #x, ax) is integral (resp. saturated), the monoid I" (X, .#x) is integral (resp. saturated).
If (X, #x, ax) is integral (resp. fine), for every geometric point X of X, the monoid M x.x 18
integral (resp. fine).

5.4. Let M be amonoid and X a logarithmic scheme. We denote by B[M] the scheme
Spec(Z[M]) equipped with the logarithmic structure induced by the pre-logarithmic structure
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M — Z[M] (denoted by S[M] in [16] §4.1), and by Mx the constant sheaf of monoids on X
of value M. Then the following data are equivalent (and will be identified in what follows):
(1) A homomorphism M — I'(X, .#x);
(i) A homomorphism My — #x;
(iii) A morphism of logarithmic schemes X — B[M].
Moreover, the following conditions are equivalent:
(a) Yy is associated to the pre-logarithmic structure induced on M.
(b) The morphism X — B[M] is strict.
We say then that M is a chart for X.

5.5. We denote by LS the category of fine and saturated logarithmic schemes (usually
called fs-logarithmic schemes for short) and by LS the category of presheaves of sets over
LS. Since the canonical functor LS — LS is fully faithful, we will identify the objects of
LS with their canonical images in LS. Fibred products are representable in the category LS.
For morphisms X — S and Y — § of LS, we will denote by X x?g Y the fibered product
in the category LS and reserve the notation X x g Y for the fibered product of the underlying
schemes. To avoid any risk of confusion, we will usually use the same notation for fibered
products in LS (but not for products as there is no risk of confusion).

5.6. We have a functor
(5.6.1) Monfs — LS, M~ B[M].

Letg: N > M and g': N — M’ be two morphisms of Mong,. We denote by M&P @z M'eP
the cokernel of the homomorphism g&° — ¢'¢P: N& — M @ M’ and by M @' M’ the
saturation of the image of the canonical homomorphism M x M’ — M&P @y M'SP (MDY M’
is the amalgamated sum of g and g’ in Mong). Then we have a canonical isomorphism in LS

(5.6.2) B[M & M'] > B[M] xll;)‘FN] B[M'].

Consider a commutative diagram of LS

(5.6.3)

B

where the vertical arrows are strict and the lower horizontal morphisms are induced by g and
¢'. Then we have a canonical isomorphism of the underlying schemes

(564 X <2 X5 (X oy X') aparcar) BIM &R M)

and X ><1}?g X' is strict over B[M @' M'].
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5.7. Following ([16] 4.1.1), we denote by
(5.7.1) Mong, -~ LS, M [M],
the functor defined, for a fine and saturated monoid M and X € Ob(LS), by
(5.7.2) [M](X) = Hom(M, I'(X, #x)).

We denote by MLS the following category. Objects of MLS are triples (X, M, u), where
X € Ob(LS), M is a fine and saturated monoid and u: X — [M] is a morphism of LS. Let
(X, M,u) and (Y, N, v) be two objects of MLS. A morphism from (X, M, u) to (Y, N, v)
is a pair (f, g) made of a morphism f: X — Y of LS and a homomorphism of monoids
g: N — M such that the diagram

(5.7.3) X —“~[M]

Jl l[g]

Yy ——[N]

is commutative. An object (X, M, u) of MLS is called a framed logarithmic scheme (and
(M, u) is called a frame on X) if for every geometric point X of X, there exists an étale
neighbourhood U of X in X such that the morphism U — [M] induced by u factors as
U % B[M] 5 [M], where v is a strict morphism and w is the canonical morphism ([16]
4.1.2); we say also that u is strict.

PROPOSITION 5.8 ([16]4.2.1). Let g: N — M be a morphism of Mongs such that
g&P: N8 — MEP is surjective. Then:

(i) The morphism [g]: [M] — [N] is representable, log étale and affine, i.e., for every
X € Ob(LS) and every morphismu: X — [N, the fibre product X xl[(])f] [M] is representable
by an object of LS which is log-étale and affine over X.

(i) Let M be the inverse image of M by g% : N8 — MEP. Then the canonical mor-

phism [M| — [M] is an isomorphism, and for every morphism u: X — B[N], the canonical
morphism

lo o lo 7
(5.8.1) X xB‘FN] B[M] — X x[ﬁ] [M]

is an isomorphism.

5.9. Let X, Y, S be objects of LS, M a finitely generated and saturated monoid and
X > Sx[M]and Y — S x [M] two morphisms of LS. We will denote such a diagram
by X,Y 3 § x [M] and its projective limit by X x?i[M] Y.Let u: M x M — M be the
multiplication and i1, i2: M — M x M the homomorphisms defined by ij(m) = (m, 1) and
iz(m) = (1, m). Since the diagram
(5.9.1) M—=MxM—">ny

)
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is co-exact in the category of monoids (i.e., i is the cokernel of the pair of morphisms i; and
i2), the diagram

lo
Si[M] Y —— [M]

l \[u]

X x\8y s [M x M]

(5.9.2) X x

where u x v is induced by u and v, is cartesian in LS.

COROLLARY 5.10 ([16]4.2.3). For every diagram X,Y = S x [M] of Ijg,
X xls()i [M] Y is representable by an object of LS, which is log-étale and affine over X ><1SOg Y.
PROPOSITION 5.11 ([16]4.2.5). Let g: N — M be a homomorphism of finitely gen-

erated and saturated monoids, X, Y and S objects of LS and

.11.1) X S Y
[Alf] SUR [le] S [if]

a commutative diagram. Assume that X — [M] and S — [N] are strict. Then the canonical
o log . .
projection X X S [M] Y — Y is strict.
COROLLARY 5.12. Under the assumptions of (5.11), if moreover X — S is log-

smooth, then the canonical projection X x?i [M] Y — Y is strict and smooth.

Y — Y is composed of X x'¢ ¥ —

It follows from 5.10 and 5.11 as X xlg)i s [M]

XXy >y,

(M]

5.13. Let (X, M, u) be an object of MLS and ¥ — X — S two morphisms of LS.
Then we can form a diagram X, Y 3 § x [M], and the canonical morphism

(5.13.1) Xxls()i[M]Ya(X xfﬁw] X) x ¢y
is an isomorphism. In particular, if the morphism X — S can be extended to a morphism
of framed logarithmic schemes (X, M, u) — (S, N, v), then the canonical morphism of the
underlying schemes
1 1

(5.13.2) X x;)i[M]YH(X xs"iw] X)xxY
log
Sx[M]

5.14. Let (X, M,u) and (Y, N, v) be two objects of MLS, X — Sand Y — S two
morphisms of LS and g: M — N a homomorphism; so we can form a diagram X, Y =3

is an isomorphism, and X x Y is strict over Y (5.11).
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S x [M]. We denote by 6: M x N — N the homomorphism defined by 0 (m, n) = g(m) - n.
Since the diagram

(5.14.1) MxM—Lt>Mm
ingl lg
MxN—2sn

is co-cartesian in the category of monoids, the diagram

(5.14.2) X x?i[M] Y —% ~ [N]

l \[e]

uxv

X x By ———[M x N]

where w is the composed morphism X X?)g( [M] Y -Y 5 [N], is cartesian in LS.

5.15. Let (f,g): (Y,N,v) — (X, M,u) be a morphism of MLS and #: X — S a
morphism of LS; so we have the following commutative diagram.

v

(5.15.1) Yy — [N]

Then the canonical projection pry: X ><1S°§ [M] Y — Y induces an isomorphism

log log ~ log
(5.15.2) Y XX [V] (X X [M] Y)> Y X $x[N] Y.
Indeed, the commutative diagram
log log
(5.15.3) Y XSX[N] Yy —= X xSX[M] Y

Pflt lidxv
fxv

defines the inverse.

5.16. Let X be a regular noetherian scheme, D a normal crossing divisor on X, U =
X — D and j: U — X the canonical injection. There is a canonical fine and saturated
logarithmic structure (.#p, ap) on X _deﬁned by Mp = Ox %, (6y) Jj#(0]). We denote
(X, #p,ap) by Xiog p. The sheaf .#p is canonically isomorphic to the sheaf ED(@iv}')
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of effective Cartier divisors on X with support in D. Assume that D has simple normal
crossings, and let D1, ..., D, be the irreducible components of D. We denote by Mp the
free abelian monoid generated by D1, ..., Dy,. Then the canonical morphism up: Xiogp —
[Mp] defines a frame on X.

5.17. A strict normal crossing pair over k (or an snc-pair over k for short) stands for
a pair (X, D) where X is a smooth k-scheme and D is a simple normal crossing divisor on
X. Let (X, D) and (Y, E) be two snc-pairs over k. A morphism f: (Y, E) — (X, D) is a
k-morphism f: Y — X such that the support of f~!(D) is contained in E. We denote by
SNCP;, the category of snc-pairs over k. We have a canonical functor

(5.17.1) SNCP;, — MLS, (X, D) — (XlogDa Mp, MD)

where X1og p, Mp and u p are defined in (5.16). We say that a morphism f: (Y, E) — (X, D)
of snc-pairs over k is log-smooth (resp. log-étale) if the associated morphism Yiog £ — Xlog D
is log-smooth (resp. log-étale).

LEMMA 5.18. Let f: (X', D") — (X, D) be a log-smooth morphism of snc-pairs
over k such that the morphism of the underlying schemes X' — X is flat, x € f(X') < X
and Dy, ..., Dy the irreducible components of D containing x. Then there exists x'e X
contained in exactly n irreducible components D}, . .., D), of D" such that f (x") = x and D]
dominates D; forall 1 <i < n.

We may shrink X, so we may assume that the irreducible components of D are Dy, ...,
Dy. Let y’ € X’ such that f(y’) = x. Since f is flat, for each 1 < i < n, there exists an
irreducible component D of D’ containing y” and dominating D;. We put ¥ = ()<, Di
and Y = [,<;<, D} and denote by g: Y’ — Y the restriction of f. We equip ¥’ with
the strictly normal crossing divisor E’ defined by the irreducible components of D’ different
from D’l, ..., D/. We have the following canonical commutative diagram of ¢’y;-modules
with exact lines.

%
(5.18.1) 0 ——= 9" (2 ) — 9" (2 (log D) ®¢, O) ) Oy —=0

| | \

0 — 2y, (log E') —— 2, , (log D) ®¢,, Oy —= 0}, 0

Therefore, the morphism g*(.Qll, /k) — .Q;, Ik (log E’) is injective and its cokernel is locally
free. Then the morphism of snc-pairs (Y’, E’) — (Y, () induced by g is log-smooth ([14]
3.12), which implies that g is smooth (in the usual sense) and that E’ is a strict normal crossing
divisor on Y’ relatively to Y ([14] 3.5). In particular, Y} is smooth over k(x) and E, is a divisor

on Y!. Hence, there exists x’ € Y] — E’.

LEMMA 5.19. Let f: (XT,DT) — (X, D) and g: (X', D') — (X, D) be two mor-
phisms of snc-pairs over k and xT e XT. Assume that g is log-smooth, that the morphism
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X' — X is flat and that f(x) € g(X'). Then there exists a commutative diagram of snc-
pairs over k

(5.19.1) (x*, DY) L, (X', D"

q ]

(x'. oty —L—(x, D)

such that gJr is log-smooth, that the morphism Xt — XTis flat and that xT € gT(Xi). More-
over, if f is log-smooth, then we can choose (Xi, Di) such that f' is log-smooth.

We denote by .4, .#" and .4 T the sheaves of monoids over X , X and X T defined by the
divisors D, D' and DT respectively; Let % bea geometric point of X Tabove xT, ¥ = f (YT)
and X’ a geometric point of X’ above X. We put M = ./, M' = ///;/, and MT = ///;LT. By
5.18, we may assume that the following condition is satisfied:

(C1) The canonical homomorphism u: M — M’ induces an isomorphism

M ®;Q > M ®;Q

and M is the inverse image of M’ by the morphism u%P: M&P — M'eP,

Replacing X’ by an étale neighborhood of X', we may assume that the following condi-
tion is satisfied:

(Cp) The divisors D’ and g* (D) have the same support.

Let N be an integer annihilating the cokernel of u2. We put Q = (M1)& x MT and
denote by g: M T — Q the morphism defined by ¢ — (¢, ¢"). Replacing xT by an étale
neighborhood of xT, we may assume that there exists a chart X [ B[M T]. We put X| =

log
X g

is faithfully flat. Hence, by replacing X f by X1, we may further assume that the following
condition is satisfied:

(C3) The canonical homomorphism ut: M — MT factorsas M 5 M’ 5 M7,

Under assumptions (Cp), (Cz) and (Cz), we put xt = xt Xl)(()g X'. The saturation
Mt @5 M’ of the amalgamated sum of M Tand M’ over M, is equal to M (5.6). Hence, the
canonical projection gt x¥ — XTis strict. Since ¢ is log-smooth, the underlying morphism
of schemes is smooth. Let D¥ be the inverse image of DY by g'. Then the logarithmic struc-
ture on X ¥ is induced by D¥. On the other hand, X ¥ is the normalization of X T x x X'. Hence
Xt xTxx X'is surjective. The first assertion is proved, and the second one is obvious
from the definition of X*.

B[Q]. Then X; — X Tis log-smooth and the underlying morphism of schemes

5.20. Let (X, D) and (Y, E) be two snc-pairs over k and g: Mp — Mp a homomor-
phism of monoids (5.17); so we can form the diagram Xiog p, Yiog £ =3 Spec(k) x [Mp]. We
call the g-framed product of (X, D) and (Y, E) over k and denote by X k4 Y the logarithmic
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scheme
log
(5.20.1) X kg Y = Xiogp XSpec(k)X[MD] Yioe E -

We know that the canonical morphism X 4 Y — Xjogp X}COg Yiog E is log-étale (5.10)
and that the second projection X sk 4 ¥ — Y is strict and smooth (5.12). Observe that
Xlog D X}{Og Yo £ is the logarithmic scheme associated to the snc-pair (X x¢ Y, pr’l"(D) +

pr5 (E)).

5.21. Let f: (Y, E) — (X, D) be a morphism of snc-pairs over k. Then f induces
a homomorphism of monoids g: Mp — Mg. We call the f-framed product of (X, D) and
(Y, E) over k and denote by X sk ¢ Y the logarithmic scheme X s 4 Y (5.20.1); we omit f
from the terminology and the notation if there is no risk of confusion. In particular, we call
X kg id X the framed self-product of (X, D) over k and denote it simply by X sk; X.

There is a canonical morphism

(5.21.1) Vi Yioge — X g p ¥

called the framed graph of f. The framed graph of the identity 6 : X — X s X is called the
framed diagonal of (X, D).
The formation of X % Y is functorial in f. In particular, we have canonical morphisms

(5.21.2) Yo ¥ 5 X s v 2 X e X

We put f = f2 o f1. By (5.13.2), the canonical morphism of the underlying schemes
(5.21.3) XY - (X ke X) xx Y
is an isomorphism.

PROPOSITION 5.22. Let (X, D) be an snc-pair overk and Dy, . . ., Dy, the irreducible
components of D. For 1 < i < m, let .9; be the ideal of the closed subscheme D; xj D; of
X xi X, and let (X xi X)" be the blow-up of X x; X along the ideal [li<i<cm Fi- Then
X sy X is canonically isomorphic to the open subscheme Z of (X xy X)' complementary to
the strict transforms of D x; X and X Xy D.

Let V = Spec(A) and W = Spec(B) be affine open subschemes of X such that for all
1 <i < m, D;|V (resp. D;|W) is defined by an equation #; € A (resp.s; € B). The inverse
image of V x; W in Z is the affine scheme of the ring

A B[ulil, couil]
(@1 —u - 1®s; (1<i<m))’
Hence, Z equipped with the exceptional divisor E is an snc-pair over k. By construction, for
all 1 <i <m,theideals prj (Ox(—D;))0z and pr5 (Ox(—D;)) 07 are equal and invertible.
Therefore, the canonical morphism Z — X xj X lifts to a morphism Z — X % X, which is
an isomorphism as it can be easily checked from the local description (5.22.1).

(5.22.1)

REMARKS 5.23. We keep the assumptions of (5.22).
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(i) The universal property of X *; X can be restated without logarithmic geometry
as follows. Let ¢: ¥ — X xj X be a morphism such that for all 1 < i < m, the ideals
pri(Ox(—D;))Oy and pri (Ox (—D;)) Oy are equal and invertible. Then there exists a unique
morphism : ¥ — X sk X lifting ¢.

(ii)) Let U = X — D. Then, with the conventions of 2.6, we have canonical isomor-
phisms

(5.23.1) Uxx (X X)~Uxr U~ (X% X) xxU.

(iii) The canonical projections X skx X — X will be denoted also by pr; and pry;
they are smooth. The framed diagonal 6: X — X s X is a regular closed immersion with
conormal bundle canonically isomorphic to the sheaf of logarithmic differentials £2 )1( (log D)
([16] 4.2.8).

PROPOSITION 5.24. Let f: (Y, E) — (X, D) be a log-smooth (resp. log-étale) mor-
phism of snc-pairs over k. Then the canonical morphism'Y % Y — X % Y is smooth (resp.
étale).

By (5.15.2), the canonical morphism

log

(5.24.1) VY = Yiogr Xyt

] (X %+ Y)

is an isomorphism. Therefore Y sk Y is log-étale over Yoo £ xl;()ign (X sk Y) (5.10). Hence
Y %Y — X %k Y is log-smooth (resp. log-étale). Since the second projections ¥ %, ¥ — Y
and X k; Y — Y are strict, Y %k ¥ — X %k Y is smooth (resp. étale).

5.25. Let (X, D) be an snc-pair over k and Dy, ..., Dy, the irreducible components
of D. A rational divisor on X with support in D is an element R = > /", r; D; of the Q-
vector space generated by Dy, ..., D,,. We say that R is effective if r; = 0 for all i, and that
R has integral coefficients if r; is integral for all i. We call generic points of R the generic
points of the D;’s such that r; # 0. For every integer n > 0, we denote by |nR| the divisor
>/t |nri) Di on X, where |nr;] is the integral part of nr;. If R and R’ are two rational divisors
on X with support in D, we say that R’ is bigger than R and use the notation R’ > R if R’ — R
is effective. If f: (Y, E) — (X, D) is a morphism of snc-pairs over k and R is an effective
rational divisor on X with support in D, we can define the pull-back f*(R) as a rational
divisor on Y with support in E.

5.26. Let (X, D) be an snc-pair over k, R an effective rational divisor on X with support
in D, u: P — X a smooth separated morphism of finite type and s: X — P a section of u.
Weput U = X — D, and denote by j: U — X and jp: Py — P the canonical injections
and by .#y the ideal of X in P. We call dilatation of P along s of thickening R and denote by
P(R) the affine scheme over P defined by the quasi-coherent sub- & p-algebra of jps«(Op, )

(5.26.1) >, u*(Ox(|nR))) - %

n=0
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This notion extends the one introduced in 4.1 if R has integral coefficients (cf. 4.2). We have
a canonical isomorphism

(5.26.2) PR v U~ Py.

The image of the algebra (5.26.1) by the surjective homomorphism jps«(Op,) — s4jx(Ov)
is canonically isomorphic to s« (O ). Hence we have a canonical section

lifting s.

Let R’ be another rational divisor on X with support in D such that R’ > R. Then for
every n > 0, there is a canonical injection Ox (|[nR|) — Ox(|nR’|). We deduce a canonical
P-morphism

(5.26.4) pR) _, p(R)
that fits into the following commutative diagram.
(5.26.5) p(R")

SV l \
X $(R)

P(R) PU

PROPOSITION 5.27. We keep the assumptions of (5.26), moreover, let A be an integer
> 1 such that AR has integral coefficients, X *) the Ar-th infinitesimal neighbourhood of
s: X — P, and PT the dilatation of P along x®) of thickening AR in the sense of (4.1).
Then P(R) s canonically isomorphic to the integral closure of Pl in Py.

Recall (4.2) that PT is the affine scheme over P defined by the quasi-coherent sub-&p-
algebra of jp«(Op,) generated by the image of the canonical morphism u* (Ox (AR))- 75 —
Jjp+(Op,). Therefore, there is a canonical integral P-morphism p(R) _, pt extending the
identity of Py. To prove the proposition, it is enough to show that P(®) is normal. We put
R’ = AR. The canonical morphism p: P(R) — Pisan isomorphism above u ' (X — R'),
and p(P(R) xx R") < s(R"). Then P(®) is normal at all points above P — s(R’). Hence, it
is enough to prove that P(®) is normal at s(x) for x € R’.

By the Jacobian criterion of smoothness, there exists an open neighborhood V of s(x)
in P and sections gi,..., gn € I'(V, #x) such that g1, ..., gn generate Lx at s(x) and
dgi,...,dg, generate .Q}J/X at s(x). Let g: V. — A% be the X-morphism defined by
gis---, gm- Then g is étale at s(x) by ([12] 17.11.1). After shrinking V, we may assume
that s(X) n V coincides with the inverse image by g of the zero section of A’Y. Hence, we
are reduced to the case where P = Ay and s is the zero section. By shrinking X, we may
further assume that there exists a smooth morphism X — Az such that D is the pull-back of
the union of the coordinates hyperplanes of Az. Hence, we are further reduced to the case
where X = Az and D is the union of the coordinates hyperplanes.
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We denote by M the free monoid N9 with basis T1, . . ., Ty, and by N the free monoid
N™ with basis Tg+1, - - . , Ty+m. We identify X with Spec(k[M]) and let f = H?:l Ti“i be an
equation defining the divisor AR on X. Let H be the submonoid of M8 x N generated by T;
for1 <i <dand Tj)‘/f ford + 1 < j < d + m. We denote by H%* the saturation of H and

by o: N — N the homomorphism sending T+ 1, . . ., Ty+m to 1. Then H%" is the submonoid
of M8 x N of elements («, 8) such that if we write ¢ = (@1, ..., aq) € 74 = M, we have
forall1 <i <d,
(5.27.1) ra; +aio(B) =0.
Therefore, we have
(5.27.2) H* = [ [{(e. B) e M® x N ; « > |nR] and o (B) = n},

n=0

where R is considered as an element of M&P ®z Q. Hence, we have a canonical isomorphism
P(R) ~ Spec(k[H*"]), and P(R) is normal as H*" is saturated.

5.28. Let f: (Y,E) — (X, D) be a morphism of snc-pairs over k, U = X — D,
V = Y — E, R arational effective divisor on X with support in D and Ry = f*(R). Let
u: P — X and v: Q — Y be smooth separated morphisms of finite type, s: X — P a
sectionof u,t: ¥ — Q asection of vand g: Q — P a morphism such that the diagram

(5.28.1) y —=0—svy

I T

X—=p—>X
is commutative. We denote by p(R) (resp. Q(RY )) the dilatation of P (resp. Q) along s (resp. t)
of thickening R (resp. Ry) and by s®) . x — p(R) (resp.t(RY): Y — Q(RY)) the canonical
lifting of s (resp. t). Let .#x be the ideal of X in P, #y the ideal of Y in Q and jp: Py — P
and jo: Qv — Q the canonical injections. The morphism g induces a homomorphism of
0 g-algebras
(5.28.2) 9% jp«(Opy) — jox(Ogy).
We have ¢*(#x )09 < Fy and f*(|nR]) < |nRy| for every n > 0. Therefore, (5.28.2)
induces a homomorphism of &g-algebras g*(0p(x)) — O y(ry), and hence a morphism
lifting g. We clearly have
(5.28.4) B o (Ry) — s(B) o ¢
If R has integral coefficients, g(R ) is the morphism defined in (4.8.2).

PROPOSITION 5.29. We keep the assumptions of (5.28) and assume moreover that
Q = P xx Y and g and v are the canonical projections. Then Q(RY) is the integral closure

of P(R) xp Qin Qv.
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Let n be an integer > 1 such that n R has integral coefficients, x( (resp y( ) the n-th
infinitesimal ne1ghb0urh00d of s (resp.t), and 4l (resp. 0") the dilatation of P along X ()
(resp. Q along y( ) of thickening nR in the sense of (4.1). We denote by F (resp. G) the
inverse image of n R in X (resp. y( ) and by P’ (resp. Q') the blow-up of P (resp. Q) along
F (resp. G). Since Y ~ x() xp 0, g liftsto a morphlsm g: 0 — P’ and we have QT =
g~ 1(PY) 44). Let gT: 0F — PT be the restriction of ¢’. By 5.27, P(®) (resp. 0(R)) is
the integral closure of pt (resp. QT) in Py (resp. Qvy). Itis clear that the canonical morphism
g®) ;. o) _, p(R) (5283)is induced by g'. The morphism Q" — P’ x p Q induced by
g’ is a closed immersion ([5] 2.5). Therefore, the morphism 0" — P xp O induced by gT
is a closed immersion, and the integral closures in Qy of QJr and PT x p Q are isomorphic.
The proposition follows because the integral closures in Qy of PR xp Q and Pl xp Q are
isomorphic.

PROPOSITION 5.30. We keep the assumptions of (5.28) and assume moreover that g
is étale and that f is an isomorphism. Then g(R) : Q(R) — PP s érale.

Let n be an integer > 1 such that nR has integral coefficients, X () (resp. Y () ) the
n-th infinitesimal ne1ghborhood of s (resp.t), and 4l (resp. 0") be the dilatation of P along
x () (resp. Q along y( ) of thickening nR in the sense of (4.1). We prove first that the
morphism gT. 0" — PT induced by g is étale (4.3.1). Since g is étale, Y™ is an open and
closed subscheme of Z = X() x p Q. Let Qi be the dilatation of Q along Z of thickening
nR. Then the canonical morphism 0" — Otisan open immersion. Since the morphism
g¥: 0% - PT induced by g is étale by 4.4(ii), g is étale. On the other hand, by 5.27, P(R)
(resp. Q(R)) is the integral closure of PTin Py (resp. 0% in Qy), and g(R) is induced by gT.
We deduce that the morphism Q(R) — PR pt 0" induced by g(R) is an isomorphism,
which implies that ¢(®) s étale.

5.31. Let (X, D) be an snc-pair over k, U = X — D and R an effective rational divisor
on X with support in D. We consider X *; X as an X-scheme by pr,, and denote by §: X —
X s X the framed diagonal of (X, D) and by (X s X)(®) the dilatation of X s, X along 8
of thickening R (5.26). We can make the following remarks:

(1) If we consider X sk; X as an X-scheme by pr instead of pr,, then the dilatation
of X % X along § of thickening R is equal to (X sk; X )(R). In particular, the automorphism
of X *k; X switching the factors induces an isomorphism

(5.31.1) o (X 5 X)B) S (X 5, x) B,
(i) There is a canonical morphism

(5.31.2) 5B X — (X sy X)B)

lifting 8, and a canonical open immersion

(5.31.3) F® U < U — (X 5 X)B,
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(iii) If R has integral coefficients, then the canonical projections (X skx X )(R) - X
are smooth (4.6) and we have canonical R-isomorphisms (4.6.1)

(5.31.4)

R xx (X 3 X)) S v(2L, (log D) ®, Ox(R)) xx R (X 1 X)®) xx R.

1

X /k
5.32. Let f: (Y,E) — (X, D) be a morphism of snc-pairs over k, U = X — D,

V =Y — E, R arational effective divisor on X with supportin D and Ry = f*(R). We have

a commutative diagram

I

Y*kYLX*kYLX*kX

where f1 and f> are the morphisms defined in (5.21.2), §x and §y are the framed diagonals
and y ¢ is the framed graph of f. We put f = fo0 f1. We consider Y *; Y and X % Y as Y-
schemes and X 4 X as an X-scheme by the second projections. We denote by (¥ s Y )(RY )
(resp. (X *x Y)(RY)) the dilatation of ¥ sk Y (resp. X % Y) along 8y (resp. yy) of thickening
Ry, and by (X k¢ X)(R) the dilatation of X k4 X along §x of thickening R. Then we have
canonical morphisms

(5.32.2) % y— 1 . x
(Ry) (Ry) (R)
§ y $
Y l (Ry) l 4 (R) X

(Y sy ¥)BY) s (X s, ¥)(RY) s (X 34 X)(R)

where fl(RY ) and fZ(R) are defined in (5.28.3) and the vertical morphisms are the canonical
liftings of the vertical morphisms in (5.32.1); we have f(R) = fz(R) o fl(RY) .
Since the canonical morphism X sk; ¥ — (X k4 X) xx Y is an isomorphism (5.21.3),
the morphism fz(R) is described by the proposition 5.29.
PROPOSITION 5.33. We keep the assumptions of (5.32).
(1) If f is log-étale, then the morphism

(5.33.1) FRY (v s ¥) R s (X s v)(RY)

is étale.
(i) If f is log-smooth and if Ry = f*(R) has integral coefficients, then the morphism

Ry) .
f r) is smooth.

(i) Indeed, f, is étale by 5.24, and hence £, is étale by 5.30.
(i) Indeed, fi is smooth by 5.24, and hence fl(RY ) is smooth by 4.9.
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5.34. Let (X, D) be an snc-pair over k. We put
_ log log
(5.34.1) X stk X 3k X = Xiog D X g [a1p] X108 D X ] XloED

We denote by pr;: X k¢ X sk X — X (1 <i < 3) andprl-j: Xk Xk X > X ¥ X
(I <i < j < 3) the canonical projections, by A: X — X k4 X k4 X the unique morphism
such that pr; o A = idy forall 1 <i <3 andby §: X — X 4 X the framed diagonal of
(X, D). It follows immediately from the definition that the diagram

P13

(5.34.2) Xk Xk X ——= X ¥, X

Pflzl lpfl
pry

Xk X ——X

is cartesian. The projection pr,5 is strict and smooth by 5.12. Then so is pr;; by symmetry.

Let R be an effective divisor on X with support in D. We consider X skx X k; X
(resp. X k4 X) as an X-scheme by prs (resp. pr,) and denote by (X skx X ki X)(R) (resp.
(X k¢ X)(R)) the dilatation of X sk; X sk X (resp. X ski X) along A (resp. §) of thickening
R. Observe that if we consider X *; X s X as an X-scheme by any of the projections pr;
(I < i < 3), the dilatation of X k4 X skx X along A of thickening R does not change. We
deduce by 4.7 that we have a canonical isomorphism

(5.34.3) (X stx X s X) B S (X s X)B) iy (X s X)R)
By the universal property of dilatations (4.3), pr; induces a morphism
(5.34.4) e (X s X)B) xx (X s X)B) S (X s X))

that fits into the following commutative diagram.

(5345) (X s X)®) sy (X 5 X)) 8 (X st X)(B)

PROPOSITION 5.35 ([21] 2.24). Under the assumptions of (5.34), u is smooth and
WU Xx R is the addition of the vector bundle E = (X X)(R) xx R over R (5.31.4).

Since pr3 is smooth, u is smooth (4.9). The closed subscheme R x x (X ki X)(R) of
(X s X)(®) is equal to E, and the canonical projections (X s; X)(®) = X induce the
same morphism £ — R. On the other hand, « = @ xx R is a linear morphism of vector
bundles E xp E — E (4.8). Letiy,ip: E 3 E xp E be the homomorphisms defined by
i1(x) = (x,0) and i2(x) = (0, x). To prove that « is the addition of E, it is enough to prove
that @ o iy = & o0 iy = idg. Consider the morphism 1 = id xx §(®): (X % X)(®) —
(X kg X kg X)(R), Wehaveiy =ty xx R: E - E xg E. Since po = id(X*kX)(R),then
o oi1 = idg. The same argument shows that o o0 i = idg.
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6. Review of ramification theory of local fields with imperfect residue fields.

6.1. In this section, K denotes a discrete valuation field, Ok the valuation ring of K,
mg the maximal ideal of Ok, F the residue field of Ok, K a separable closure of K, ¢ the
Galois group of K/K and ord the valuation of K normalized by ord(K *) = Z. We assume
that Ok is henselian and that F has characteristic p. In ([2] 3.12), we defined a decreasing
filtration ¥, o (r € Q>0) of 4 by closed normal subgroups, called the logarithmic ramification

filtration. Unlike the convention in loc. cit., it is more convenient to extend it by letting {412 o
be the inertia subgroup of ¢. For a rational number r > 0, we put

©6.1.1) Gog = | Goe
sS>r
6.1.2) Griog(9) = Giog/%rog -

Then & = %lgg is the wild inertia subgroup of ¢, i.e., the p-Sylow subgroup of %lgg ([2]
3.15).

6.2. Let L be a finite separable extension of K and r a rational number > 0. Then ¢
acts on Homg (L, K ) via its action on K. We say that the ramification of L/K is bounded by
r (resp. by r+) if glf)g (resp. S?lg;r) acts trivially on Homg (L, K). We define the conductor
¢ of L/K as the infimum of rational numbers r > 0 such that the ramification of L/K is
bounded by r. Then c is a rational number, and the ramification of L/K is bounded by ¢+

([2]19.5). If ¢ > 0, the ramification of L/K is not bounded by c.

THEOREM 6.3 ([3] Theorem 1). For every rational numberr > 0, the group Gr}

log ({f)

is abelian and is contained in the center of the pro-p-group & /%lf);r

LEMMA 6.4 ([17] 1.1). Let M be a Z[1/p]-module on which & acts through a finite
discrete quotient, say by p: & — Autz(M). Then,
(i) M has a unique direct sum decomposition

(6.4.1) M= @ M®

re@;o

into &2-stable submodules M(’), such that M©) = M7 and for every r > 0,

(6.42) (MY — 0 and (M) %es — M),
(i) Ifr > 0, then M) = 0 for all but the finitely many values of r for which p(%gg) 2
P(Grog)-

(iii) For variable M but fixed r, the functor M — M) is exact.
(iv) For M, N as above, we have Homg)_mod(M(r), N(rl)) =0ifr #r.
DEFINITION 6.5. The decomposition M = ®r€Q>0 M) of lemma 6.4 is called the

slope decomposition of M. The values r > 0 for which M (r) % 0 are called the slopes of M.
We say that M is isoclinic if it has only one slope.
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These notions apply in particular to the case where M is a Z[1/p]-module on which ¢
acts through a finite discrete quotient.

LEMMA 6.6 ([17]1.4). If A is a Z[1/p]-algebra and M is a left A-module on which
P acts A-linearly through a finite discrete quotient, then in the slope decomposition M =
P, M) each M) is a sub-A-module of M. For any A-algebra B, the slope decomposition
of B®a M is given by B@a M = @, (B4 M),

LEMMA 6.7. Let M be a A-module on which &2 acts A-linearly through a finite dis-
crete quotient, which is isoclinic of slope r > 0; so the subgroup %lg;r acts trivially on M.

(i) Let X(r) be the set of isomorphism classes of finite characters x : %K)g /glz;r —
A ; such that Ay is a finite étale A-algebra, generated by the image of x, and having a

connected spectrum. Then M has a unique direct sum decomposition

(6.7.1) M= P M,
x€X(r)

into P-stable sub- A-modules My, such that A[glgg] acts on M, through A, for every x.
(i) There are finitely many characters x € X (r) for which M, # 0.
(iii) For variable M but fixed yx , the functor M — M, is exact.
(iv) For M, N as above, we have Hom 4[4 (My,N,)=0if x # x'.

Let P be a finite discrete quotient of & /glg;r through which & acts on M and let C be
the image of %l’(;g /%lg;' in P. We know by 6.3 that C is contained in the center of P. The
connected components of Spec(A[C]) correspond to the isomorphism classes of characters
x: C — A*, where A is a finite étale A-algebra, generated by the image of x, and having a
connected spectrum. We obtain a set of orthogonal idempotents e, of A[C], indexed by such
characters, whose sum is 1, and are clearly central in A[P]. The lemma follows.

REMARK 6.8. If p"C = 0 and A contains a primitive p"-th root of unity, then A, =
A for every yx such that M, # 0.

DEFINITION 6.9. The decomposition M = @X M, of lemma 6.7 is called the central
character decomposition of M. The characters x : %gg/%lg; — A for which My # 0 are
called the central characters of M.

LEMMA 6.10. If A is a A-algebra, and M is a left A-module on which & acts A-
linearly through a finite discrete quotient, which is isoclinic, then in the central character
decomposition M = (—BX M, , each My is a sub-A-module of M. For any A-algebra B, the
central character decomposition of B®a M is given by B&s M = @, (B ®a My).

This is clear from the proof of 6.7.

6.11. For the rest of this section, we assume that K has characteristic p and that F' is
of finite type over k. We denote by .QlﬁK (log) the Ok -module of logarithmic 1-differential
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forms

(6.11.1) 24, (log) = (24 @ (0 R2K*))/S,

where & is the sub-Og-module of 2 }91( ® (Ok ®yz K*) generated by elements of the form
(da,0)—(0,a®a), fora € Ox —{0}. Foreverya € K *, we denote by d log(a) € .QlﬁK (log)
the class of (0, 1®a). Let 7 be a uniformizer of Ok . The morphism .Q}ﬁk @O — .Q}ﬁk (log)

that maps (w, a) to w +ad log(r) is surjective, and its kernel is generated by (dm, 0) — (0, 7).
We put 2} (log) = .Q}ﬁK (log) ®¢, F and denote by d log[r] the class of d log(r). It is

easy to see that .Q}V (log) is canonically isomorphic to the quotient of £2 }, @ (F®z K*) by
the sub- F-module generated by elements of the form (da, 0) — (0,a®a), fora € Ok — {0},
where a is the residue class of a in F. Then we have an exact sequence

res

(6.11.2) 0— 2} — 2}(log) = F —0,

where res((0,a ® b)) = a - ord(b) fora € F and b € K*. In particular, £21.(log) is an
F-vector space of finite dimension.

6.12. Let O be the integral closure of Ok in K and F its residue field. For a rational
number r, we put mz. = {x e K ; ord(x) =r}, m;(_"’ = {x e K ; ord(x) > r} and
6.12.1) OY) = Homp (2} (log), mly/m-F).
(r)

F
group-scheme. Let nflg(@g)) be the quotient of the abelianized fundamental group

which is an F-vector space of finite dimension. We consider @~ as a smooth additive F-

nf‘b(@g )) of @(F’ ) classifying étale isogenies; it is an abelian profinite group killed by p.
Recall that Lang’s isogeny Alf — Alf, defined by x — x? — x (where x is the canonical
parameter of Alf), is a basis of the F-vector space Homg, (7| e (Alf), IF,,). Therefore, we have

a canonical isomorphism
(6.12.2) Homg({"8(6)), F ) > Hom(mly/m-F . 2} (log) ®r F).

THEOREM 6.13 ([21] 1.24). For every rational number v > 0, there exists a canoni-
cal surjective homomorphism

(6.13.1) 78 (OY) - Gif, 9.

Consequently, the group Grfog% is killed by p, and we have a canonical injective homomor-
phism

(6.13.2) rsw: Homg (Grj,%, F),) — Homg(m’ m%r, 2} (log) ®F F).

The homomorphism (6.13.2) is called the refined Swan conductor. This theorem has
been recently extended to the unequal characteristic case by one of the authors (T. S.) [22].
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7. Ramification of Galois torsors.

7.1. In this section, we fix an snc-pair (X, D) over k, and put U = X — D. We denote
by j: U — X the canonical injection, by X *; X the framed self-product of (X, D) and
by 6: X — X sk X the framed diagonal (5.21). We will no longer consider the logarithmic
structure of X *j; X; only the underlying scheme will be of interest for us. We consider
X sk X as an X-scheme by the second projection. For any effective rational divisor R on X
with support in D, we denote by (X sk X )(R) the dilatation of X sk X along § of thickening
R (5.31), by

(7.1.1) 8B X — (X 4 X)B)
the canonical lifting of 8, and by
(7.12) JR U x U = (X s X)R)

the canonical open immersion. Then we have the following Cartesian diagram.

$
(7.1.3) U—Y U x U

jl l/“”
§(R)

X — (X s X)(®)

7.2. Let V be a Galois torsor over U of group G and R an effective rational divisor on
X with support in D. We consider V x; V as a Galois torsor over U x4 U of group G x G, and
denote by W the quotient of V x; V by the group A(G), where A: G — G X G is the diagonal
homomorphism. The diagonal morphism dy: V. — V x; V induces a morphism eyy: U —
W above the diagonal morphism éy: U — U xi U. Note that W represents the sheaf of
isomorphisms of G-torsors from U x; V to V x; U over U x} U, and that ey corresponds
to the identity isomorphism of V (identified with the pull-backs of U x; V and V x; U by
8u). We denote by Z the integral closure of (X sx X)(®) in W, by 7: Z — (X x; X)(R)
the canonical morphism and by ¢: X — Z the morphism induced by eiy: U — W. We have
roe=258R),

(7.2.1) f w VA R
8 l l §(R)

U—">U 5 U—> (X % X)®) <—— X

DEFINITION 7.3. We keep the assumptions of (7.2) and let x € X. We say that the
ramification of V /U at x is bounded by R+ if the morphism 77 : Z — (X ¢ X)(R) is étale at
¢(x), and that the ramification of V /U along D is bounded by R+ if m is étale over an open
neighborhood of &(X).

LEMMA 7.4. Let V be a Galois torsor over U, R an effective rational divisor on X
with support in D and x € X. The ramification of V /U at x is bounded by R+ if and only
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if there exists an open neighborhood X' of x in X such that if we put U' = U xx X' and
V! =V xx X' and if we denote by D' and R’ the pull-backs of D and R over X', then the
ramification of V' /U’ along D' is bounded by R’ +.

Only the necessity of the condition requires a proof. Assume that the ramification of
V /U at x is bounded by R+. Then with the notation of (7.2), there exists an open neighbor-
hood X’ of x in X such that the morphism 7 : Z — (X sk4 X)(R) is étale at each point &(x’)
for x’ € X’. It is clear that X’ satisfies the required property.

LEMMA 7.5. LetV be a Galois torsor over U, x € X and R and R’ effective rational
divisors on X with supports in D such that R' > R. Then if the ramification of V /U at x
(resp. along D) is bounded by R+, it is also bounded by R’ +.

We use the notation of (7.2) both for R and R’; we equip objects relative to R’ with a
prime. There is a canonical morphism u: (X g X)(R/) — (X kg X)(R) (5.26.4) that fits into
the following commutative diagram.

7.5.1) (X s X)®)
)
X §(R) (X N X)(R) Ux, U

It induces a canonical morphism v: Z’ — Z that fits into the following commutative diagram.

(7.5.2) 7/ — (X #; X)(R)

X ——=>7Z — (X % X)®)

Moreover, Z' is the integral closure of u*(Z) in W. Let Z (resp. Z') be the maximal open
subscheme of Z (resp. Z’) which is étale over (X i X)(R) (resp. (X kg X)(Rl)). Since
(X s X)®) is normal (5.27), u*(Z) is normal. Therefore, we can identify u*(Z) with
v~ (Z) < 7', and we have v=!(Z) = Z', which implies the proposition.

PROPOSITION 7.6. Let V be a Galois torsor over U of group G, x € X, H a normal
subgroup of G and V' the quotient of V by H. Then if the ramification of V /U at x (resp.
along D) is bounded by R+, the ramification of V' /U at x (resp. along D) is bounded by
R+.

It is enough to prove the proposition relative to x. We use the notation of (7.2) for the
Galois torsor V over U. We put G’ = G/H and denote by A’: G’ — G’ x G’ the diagonal
homomorphism, by W’ the quotient of V' x4 V' by A’(G’) and by Z’ the integral closure of
(X s X)(®) in W'. Let H' be the subgroup of G x G of elements (g, ¢') such that ¢'g~! € H
(i.e., the inverse image of A’(G’) in G x G). Then W’ is the quotient of V x; V by H’. Since
A(G) < H', there exists a canonical (V xi V)-morphism W — W/, which induces an
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(X k¢ X )(R)-morphism p: Z — Z'. By assumption, there exists an open neighborhood Z
of e(x) in Z, which is étale over (X X)(R). Then Z is unramifed over Z’, and by ([12]
18.10.1), Zy is étale over Z’; in particular, Z is flat over Z' and p(Zp) is an open subscheme
of Z'. We conclude by ([12] 17.7.7) that p(Zy) is étale over (X skx X)®), which implies that
the ramification of V//U at x is bounded by R+.

PROPOSITION 7.7. Let V be a Galois torsor over U, R an effective rational divisor
on X with support in D, f: (X', D') — (X, D) a morphism of snc-pairs, U' = X' — D/,
V=V xyU',R = f*(R),x" € X' andx = f(x'). Then:

(1) Ifthe ramification of V /U at x (resp. along D) is bounded by R+, the ramification
of V!/U" at x' (resp. along D') is bounded by R’ +.

(ii) Assume that f is log-smooth (5.17) and that the morphism X' — X is flat at x’.
Then the ramification of V /U at x is bounded by R+ if and only if the ramification of V' /U’
at x" is bounded by R'+.

(iii) Assume that f is log-smooth and that the morphism X' — X is faithfully flat.
Then the ramification of V /U along D is bounded by R+ if and only if the ramification of
V'/U" along D' is bounded by R’ +.

Let G be the Galois group of V/U. We denote by W (resp. W) the quotient of V x; V
(resp. V' x V') by A(G) (cf. 7.2). We have a commutative diagram (5.32.1)

J bk

X’*kX’LX*kX/LX*kX
where f1 and f> are the morphisms defined in (5.21.2), §x and 8+ are the framed diagonals
and yy is the framed graph of f. We put f = fro fi. Let Uy = f~1(U) and let Uy s Uy
be the framed self-product of (Uy, D’|U}). Then we have
Uy % U = (X/ Kk X/) X (X! % X') (Ur xx Uy).

We put Wi = W X,y (U xx Ur) and W=w X (uxu) (Ut %k Ur). We have the
following commutative diagram (cf. 7.2).

(7.7.2) v —— U ——=U —U
w’ W |41 w
l O O O
U x U ——=U; % U ——=U x3; U ——=U x U
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We denote by (X’ sk X')(B) (resp. (X s X’)(R)) the dilatation of X sz X' (resp. X skx X')
along 8y (resp.ys) of thickening R’. Let Z (resp. Z, resp. Z') be the integral closure of
(X s X)B) in W (resp. (X skx X')®) in Wy, resp. (X’ s, X')®) in W’). Since W' is a
dense open subscheme of W and since the latter is regular, Z' is identified with the integral
closure of (X’ sy X’ )(R/) in W. Then we have the following commutative diagram (5.32.2).

(7.1.3) X! y—"r %
s’l €ll ls
VA d VA i Z
ﬂ’l sl T
f(R’) l (R) l
(X" s XY R —— (X s X')(R) = (X 34 X))

We put f(B) = fz(R’) o fl(R) and f = f3 0 f{. Let Z (resp. Z’, resp. Z,) be the maximal
open subscheme of Z (resp. Z’, resp. Z) where 7 (resp. 7/, resp. 7r1) is étale.

(i) It is enough to prove the local proposition. We denote by VAl (resp. Z") the base
change of Z (resp. Z) by f(R). Since (X' sk X’)(R/) is normal (5.27), ZT is normal. Therefore,
we can identify ZT with f/~1(Z) < Z’, and we have f~(Z) < Z'. We have ¢(x) € Z by
assumption; then &’(x’) € Z’.

(i) By (i), there is only one implication to prove: we assume that 7/ is étale at &’ (x”)
and prove that 7 is étale at (x). We proceed in three steps.

(A) Assume first that the morphism f: X’ — X is smooth (in the usual sense) and
that R’ has integral coefficients. Since f is log-smooth, the first condition is satisfied if for
instance the morphism Xlog o — Xiogp is strict (5.17). By 5.33(ii), the morphism fl(R’) is
smooth. Then the diagram

A
(7.7.4) z' Zy

(R')

!
(X" sk X' )R) —— (X %, X')(R)

is cartesian, and hence 7y is étale at sl(x/ ). On the other hand, f> induces an isomorphism
(5.21.3)

(7.7.5) X e X' 5 (X ki X) xx X
It follows from 5.29 that the diagram

f(R)
(1.7.6) (X s XY R Zs (X 4 X)(R)

L

X ——X
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is cartesian. Then fz(R) is smooth and the diagram
h

(7.7.7) A
y B
(X sk XR) —— (X 54 X)(B)

is cartesian. Hence 7 is étale at &(x).
(B) Assume next that the following conditions are satisfied:

(a) Theirreducible components Dy, ..., Dy, of D are defined by equations t1, ..., t, €
rx, ox).
(b) There exists integers ay, . . ., ay = 1 such that
, X[S, U 1< <m)
(7.7.8) X = r - ,
(UiS;" —ti;1 <i <m)

and that the divisor D’ is defined by the equation [ [, S;. Observe that (X', D’) is an snc-
pair over k, that (X', D) — (X, D) is log-smooth and that X" — X is faithfully flat.

(c) R’ has integral coefficients.

It follows from the first half of the proof of case (A) that 7 is étale at £ (x”). Consider
the X-scheme

(7.7.9) X" =

and denote by h: X” — X the structural morphism (which is smooth). Let g: X’ — X" be
the finite X-morphism defined by 7; — S;* (1 <i < m) and let x” = g(x). The morphism
J> factors as

(7.7.10) Xowe X2 X X2 X oy X

We put R” = h*(R), Uy = k= (U), W2 = W X,y (U xx Ua), and denote by
(X sx X”)(R") the dilatation of X sk X” along the framed graph of A of thickening R”,
and by Z, the integral closure of (X s X”)(®") in W,. We have the following commutative
diagram.

(7.7.11) X/ X" X
&1 &2 £
g n?
Z1 2 Z> 2 YA
T ) T
k") AP
(X sk X)) R) —— (X s X")(B") —— (X 3 X)(B)
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By 5.29, each irreducible component of (X sk X ’)(R’) dominates an irreducible component
of (X s X”)(R"). Then it follows from 2.7 that 7 is étale at £5(x”). Since & is smooth, we
deduce, as in the second half of the proof of case (A), that 7 is étale at &(x).

(C) We consider finally the general case. We may assume that the morphism X’ — X is
flat and that the ramification of V’/U’ along D’ is bounded by R’+ (7.4). Let Dy, ..., Dy be
the irreducible components of D containing x. By 5.18, we may assume that x’ is contained
in exactly n irreducible components D’l, R D,’l of D’ such that Dl( dominates D; for all
1 < i < n. Moreover, we may assume that D = ( J,;, Di and D' = Ui<i<n Dl(, and
that for each 1 < i < n, D; is defined by an equation #; € I' (X, Ox) and Dl( is defined by a
section s; € I' (X', Ox/). We write R = > ', r;D; and f*(D;) = ¢;D! (1 <i < n);so we
have #; = u;s;', where u; € I'(X, 0y ). Foreach 1 < i < n, let b; be an integer > 1 such
that b;r; is an integer. We put a; = bje; (1 <i < n) and

X[Si, U1

<i<n
(7.7.12) y= 207 : I
(U;S" — 151 <i<n)

that we equip with the simple normal crossing divisor E defined by [ [[_, S;. Consider the
logarithmic scheme (5.17)

’r log /
(7.7.13) Y' =Yg £ *x,, pp Xiog ' -

Since ¢; divides a; forall 1 < i < n, the morphism ¥/ — Yiog E 18 strict, and since it is log-
smooth, the morphism of the underlying schemes ¥/ — Y is smooth. Hence, if E’ denotes
the pull-back of E on Y’, (Y’, E’) is an snc-pair over k, and the logarithmic structure on Y’
is defined by E’. On the other hand, Y’ — X’ xx Y is finite and dominant. Since ¥ — X
is faithfully flat, there exists a point y’ € Y’ above x’. We have the following commutative
diagram of SNCP;.

(7.7.14) (Y E") ——= (Y, E)

I

(X', D") — (X, D)

By applying first (i) to the morphism y at the point y’, then (ii) case (A) to the morphism « at
the point y’, and finally (ii) case (B) to the morphism B at the point (y’), we conclude that
the ramification of V /U at x is bounded by R+.

(iii) It follows from (ii).

COROLLARY 7.8. Let V be a Galois torsor over U of group G, I a subgroup of G
and R an effective rational divisor on X with support in D. We denote by U’ the quotient
of V by I, by X' the integral closure of X in U’, by f: X' — X the structural morphism.
Let X|, be an open subscheme of X' which is étale over X, x' € X{, and x = f(x'). We put
U(’) =U' xy X6, Vo=V xyr U(’) and denote by D(’) and R(’) the pull-backs of D and R over
X{; so (X, D}) is an snc-pair over k. Then the ramification of V /U at x is bounded by R+
if and only if the ramification of Vo/U(’) at x' is bounded by R6+.
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By 7.7(i), we may replace X(’) by the maximal open subscheme of X’ which is étale over
X. So we may assume that Uj = U’ < X{,and Vo = V. We put V/ = V xy U’ and consider
it as a G torsor over U’. We have a U’-isomorphism

(7.8.1) ]_[ vy,

G

The action of G on V' induces an action on | | NG V defined, for g, ¢’ € Gand x € V, by

(7.8.2) g(xlg’) = (g(x))lg’g*1 :

Let A: G — G x G be the diagonal homomorphism, W the quotient of V x; V by A(G),
W) the quotient of V x V by A(I) and W’ the quotient of V' x; V/ by A(G). We denote by
w: V x; V — W, the canonical morphism andby e: U — W, e;: U' — Wyand&': U’ —
W/’ the sections induced by the diagonal morphisms V — V x; Vand V! — V/ x; V',

The isomorphism (7.8.1) induces an isomorphism

(7.8.3) ]_[ Vi VSV s v,
I\G xI\G

We denotealsoby A: I\G — I\G xI\G the diagonal map. Then [ [ 5,y V xxV is anopen
subscheme of V/ x V' stable under the action of A(G). Moreover, the diagonal morphism
V! — V' x; V' is induced by the disjoint sum over A(I\G) of the diagonal morphisms
V — V xi V. On the other hand, the morphism

(7.8.4) ]_[ Vi VoW
A(I\G)

sending ((x, y)r¢) to @ ((g(x), g(y))) makes I_[A(I\G) V xx V as a G-torsor over Wp. It
follows that Wy is an open and closed subscheme of W’ and that &’ is induced by &. Therefore,
the ramification of V//U” at x” is bounded by R{+ if and only if the ramification of V /U” at x’
is bounded by R(’)+. On the other hand, by 7.7(ii), the ramification of V /U at x is bounded by
R+ if and only if the ramification of V//U" at x” is bounded by R{,+, hence the proposition.

REMARK 7.9. Let R be an effective rational divisor on X with support in D. Then
there exists a log-smooth morphism of snc-pairs f: (X', D’) — (X, D) such that the under-
lying morphism of schemes X’ — X is faithfully flat and that f*(R) has integral coefficients.
Indeed, let x € X, Dy, ..., D, be the irreducible components of D containing x. The ques-
tion being local on X, we may assume that D = | J;<;<,, D; and that for each 1 <i < n, D;
is defined by an equation #; € I' (X, Ox). We write R = >}/, r; D;. Foreach 1 <i < n, let
a; be an integer > 1 such that g;7; is an integer. Then

NN

(7.9.1) X =

equipped with the normal crossing divisor D’ defined by [[/_, S; answers the question.
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7.10. Let V be a Galois torsor over U of group G and let A: G — G x G be the
diagonal homomorphism. We denote by W the quotient of V X V by the group A(G). The
diagonal morphism 8y : V. — V x; V induces a morphism gy : U — W above the diagonal
morphism dy: U — U x; U.

We claim that the quotient of V' x; V x; V by the diagonal action of G is canonically
isomorphic to W x yy W. Indeed, the quotient of V x; V x; V by A(G) x G (resp. G x A(G))
is W xy U (resp. U xy W).

Vxr ViV

W xx U Uxi W

\/

UxrUxp U

Since (A(G) x G)n (G x A(G)) is the image of the diagonal homomorphism G — G x G x G,
we deduce that the quotient of V x; V xj V by the diagonal action of G is canonically
isomorphic to (W xx U) X (yx,ux,u) (U Xk W), and hence to W xy W.

The morphism w3: V Xz V x;x V — V X V defined by @3(x1, x2, x3) = (x1, x3)
is equivariant for the diagonal actions of G on both sides. Taking quotients, we obtain a
morphism

(7.10.1) WxyW-—->W

that fits into the commutative diagram

(7.10.2) W xy W w
(U xx U) XU(UXkU):UXkUXkUﬁ)UXkU

where the morphism pr,5 is defined by prj3(x1, x2, x3) = (x1, x3). If we consider W as the
G-torsor of isomorphisms of G-torsors from U x; V to V x; U over U x; U, then the
morphism (7.10.1) is the composition of isomorphisms.

Let R be an effective divisor on X with supportin D. We denote by Z the integral closure
of (X s X)®) in W, by 7: Z — (X 4 X)®) the canonical morphism, by £: X — Z
the morphism induced by ey (cf. 7.2) and (abusively) by pry, pr,: Z =3 X the morphisms
induced by the canonical projections pr; and pr, of (X s X )(R). We put

X = (X s X)) sy (X s X))

and denote by Y be the integral closure of X in W xy W. Recall (5.34.4) that there is a
canonical morphism p: X — (X kg X)(R) extending pr;5. Then diagram (7.10.2) induces a
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morphism v: Y — Z that fits into the following commutative diagram.
Y z
X—

(X g X
Let Zy be the maximal open subscheme of Z which is étale over (X ; X )(R ). Observe
that Y is the integral closure of Z xx Z in W xy W. The canonical projections pry, pr, :
(X k¢ X )(R) — X are smooth. Then X is smooth over X, and hence regular. Since Zy x x Zg
is étale over X, it is regular. Therefore, we can identify Zy x x Zo with an open subscheme of
Y. We claim that

(7.10.3)

%

(7.10.4) Zo xx Zo < v '(Zo).

We denote by u*(Z) (resp. u*(Zp)) the base change of Z (resp. Zg) by w. Then v induces
a finite X-morphism Y — p*(Z). Since u is smooth (5.35), u*(Zp) is the maximal open
subscheme of ©*(Z) which is étale over X. Since Zy x x Zj is étale over X, it is unramified
over u*(Z). Then by ([12] 18.10.1), Zy xx Zo is étale over u*(Z); in particular, it is flat
over u*(Z). Hence the inclusion (7.10.4) follows from ([12] 17.7.7). By (7.10.4), v induces
a morphism that we denote also by

(7.10.5) v: Zo xx Zo — Zo.

The automorphism i of V x; V switching the factors is equivariant for the diagonal action
of G. Taking quotients, we obtain an automorphism ¢y of W that lifts the automorphism of
U x U switching the factors. Then ¢y extends to an automorphism ¢ of Z that fits into the
commutative diagram

(7.10.6)

Z——-—>7Z
(X sk X)B) —> (X s, X)(B)

where o is the automorphism (5.31.1). It is clear that ((Zy) = Zp; we denote also by ¢ the
automorphism of Zj induced by ¢. Let

(7.10.7) o:ZoxXx Zo— Zo Xx Zo



830 A. ABBES AND T. SAITO

be the morphism defined by a(x, y) = (¢(y), t(x)). Itis well defined because of the following
commutative diagram.

(7.10.8) Zo xx Zo —2> 7o ——> Zo

| lprl
I

pry
o ————>X pry

| L\

Zy X

LEMMA 7.11. We keep the assumptions of (7.10).
(i) The diagrams

idxv

(7.11.1) ZoXx ZoxXx Zo———> 7o Xx Zo
uxidl lv
Zo Xx Zo ! Zo

(7.11.2) Zo Xx Zo—a>Zo Xx Zo

Zo———> 7
are commutative.

(il) Assume moreover that the ramification of V /U along D is bounded by R+; so
we have ¢(X) < Zo. We denote also by ¢: X — Z the morphism induced by e. Then the

diagrams

(7.11.3) Zo—F 70 %xx Zo
sxidl 1d\ lu
Zo Xx Zo - v = Zy

(7.11.4) Zo— s x <2 7,

idle ls lzxid

Zo XXZ()—V>Z()<V—Z()><XZ()

are commutative.
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(i) The diagram

(7.11.5) Ve Ve Ve V-l Vs Vs V

w134l lwlii

VXkVXkVL)VXkV

where @1;4(x1, X2, x3, x4) = (x1, x;, x4) for i € {2, 3}, is commutative and equivariant for
the diagonal actions of G. It induces by taking quotients the following commutative diagram.

id
(7.11.6) WxyWxyW—"""" o WxyW
UUXidl ll)u
W xy W v w

Indeed, if we denoteby A: G — G x Gand V: G — G x G x G the diagonal homomor-
phisms, then the quotient of V x; V xx V x; V by A(G) x G x G (resp. by G x V(G)) is
W xx U x; U (resp. U xx W xy W).

(7.11.7) Vxr VxpVxpV
A(G)xG %G GxV(G)

W xr U xx U UxpWxyW

\/

UxrUxpUxpU

Since (A(G) x G x G) n (G x V(G)) is the image of the diagonal homomorphism G —
G x G x G x G, it follows that @24 induces by quotient by the diagonal actions of G the
morphism

dxvyg: WxyWxgW—->WxyW.

By switching the second and the third factors, we prove that @34 induces by quotient by the
diagonal actions of G the morphism vy x id: W xy W xy W — W xy W. Therefore, the
diagram (7.11.6) is commutative, and hence so is the diagram (7.11.1).

The diagram

(7.11.8) VXkVXkV—ﬂ>V><kV><kV

ml}l lww

ViV v v
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where 8(x,y,2) = (z,y,x) and i(x,y) = (y,x), is commutative and equivariant for the
diagonal actions of G. It induces by taking quotients the following commutative diagram.

(7.11.9) Wxy W—sWxy W

w

W-—--—-7Ww

The latter proves that the diagram (7.11.2) is commutative.
(ii)) The diagram

idxdy

(7.11.10) VX V—e——=V x;  Vx; V

Sy xidl [N

id\ lwm

kakaVLkaV

is commutative and equivariant for the diagonal actions of G. It induces by taking quotients
the following commutative diagram.

id
(7.11.11) W—"U _wxyW
ey Xidl \id l vy

vy
WxyW—7>">—7—-W

The latter proves that the diagram (7.11.3) is commutative.
The diagram

(7.11.12) Vv v—" Ly

Ik
w13
VX Vg V—e=sV x; V

where a(x, y) = (x,y, x) is commutative and equivariant for the diagonal actions of G. It
induces by taking quotients the following commutative diagram.

(7.11.13) w—" oy

idxzyl lﬂ/

Wxy W—Lsw

The latter proves that the left square in the diagram (7.11.4) is commutative. The same argu-
ment shows that the right square is also commutative.

PROPOSITION 7.12. We keep the assumptions of (7.10) (so R has integral coefficients)
and assume moreover that the ramification of V /U along D is bounded by R+. We put
F=Zyxx Rand E = (X %y X)(R) x x R, which is a vector bundle over R (5.31.4). Then:
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(i) F is a group scheme over R, and the morphism wg: F — E induced by 7 is a
surjective étale morphism of group schemes over R.

(i) For every geometric point X of R, the neutral connected component F of Fx is
isomorphic to a product of additive groups over X, the morphism nx: F2 — Ex is finite étale
and surjective and its kernel is an I ,-vector space of finite dimension.

(i) The closed subscheme R xx (X sk X)(®) of (X s X)(®) is equal to E, and
the canonical projections pry, pry: (X skx X )(R) =3 X induce the same morphism E — R.
Hence, the closed subscheme R xx Zy of Zj is equal to F, and the canonical morphisms
pry, pry: Zo =3 X induce the same morphism F — R. Then it follows from 7.11 that F is a
group scheme over R. We deduce from 5.35 and the commutative diagram

Y

(7.12.1) Zo xx Zo Zo

(X s X)) sy (X s X)(B) — (X s X)(B)

that g is a morphism of group schemes over R. By the definition of Z, wg is étale, and it
follows from (ii) that it is surjective.
(ii) It follows from 2.23.

COROLLARY 7.13. We keep the assumptions of (7.2) and assume moreover that R has
integral coefficients. Then the following conditions are equivalent:
(1) The ramification of V /U along D is bounded by R+.
(ii) There exists an open neighbourhood Zy of €(X) in Z which is étale over
(X ki X)(R) and such that 7w (Zy) contains E = (X %k X)(R) xx R.

REMARK 7.14. We can deduce 7.13 from (7.10.4) by a shorter argument using only
5.35.

7.15. Let R be an effective divisor on X with support in D, £ a generic point of D, & a
geometric point of X above &, S the strict localization of X at £, n the generic point of S, n’
an integral finite étale extension of 1 and S’ the integral closure of S in ’. We put

(7.15.1) (X 1 SR = (X s, X)B) 5y 87

(This notation could be justified by 5.29). The morphism 8(R) induces a section nge) 08—
(X 34 §")®) of the canonical projection (X s 8')(8) — &’

Let V be a Galois torsor over U of group G, Y the integral closureof XinV, f: ¥ — X
the canonical morphism, A: G — G X G the diagonal homomorphism and W the quotient of
V xi V by the group A(G). The diagonal morphism §y: V. — V x; V induces a morphism
ey: U — W above the diagonal morphism §yy: U — U x; U. We denote by Z the integral
closure of (X sk X)®) in W, by 7: Z — (X x4 X)(®) the canonical morphism and by
&: X — Z the morphism induced by epy: U — W. We have m o ¢ = §(R) (ctf. (7.2.1)).
Let Z s/ be the normalization of Zgs = Z xx S’, or equivalently, the integral closure of
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(X s §)®) in W xy . The morphism ¢ induces a section eg/: S’ — Zg of the canonical

morphism ZS/ — §’, that lifts 89). Observe that ZS =Zs.

We denote by Qg the normalization of ¥ x x (X sk S’ )(R ), or equivalently, the integral
closure of (X3 8")(®) in V x;n’. If the canonical morphism §’ — X factorsas S’ — Y I, x,
then we have canonical isomorphisms

(7.15.2) Vxpn ~(VxpV)xyn ~(WxyV)xyn ~Wxyn'.
Hence, we obtain an isomorphism
(7.15.3) 0y > Zgr.

LEMMA 7.16. We keep the assumptions of (7.15) and let o: S' — Qg be a section
of the canonical morphism Qg — S’ lifting the section 8§$): S — (X s SR, If the
canonical morphism Qg — (X k4 S/)(R) is étale on an open neighborhood of o, then it is
étale everywhere.

Observe first that (X sy S’ )(R) is regular since it is smooth over S’. The group G acts
on Qg , and the quotient of Q¢ by G is (X s §')(®). Therefore, the morphism Qg —
(X 4 8')®) is étale above an open neighborhood of (Sg{e)(S’ ). Then the assertion follows

from Zariski-Nagata’s purity theorem ([11] X 3.4).

LEMMA 7.17. Under the assumptions of (7.15), the following conditions are equiva-
lent:

(1) The canonical morphism Zs — (X ki S)(R) is étale on an open neighborhood of
es(S). R
(ii) For any integral finite étale extension n' of n, the canonical morphism Zg —
(X 4 8")R) is étale on an open neighborhood of €5/(S").

(iii) There exists an integral finite étale extension n' of n such that the canonical mor-
phism Zgr — (X 1 §')®) is étale on an open neighborhood of £5/(S').

(iv) For any connected component T of Y xx S, the canonical morphism Qr —
(X 34 T)B) s érale.

(v) There exists an integral finite étale extension ' of n such that the canonical mor-
phism Qg1 — (X sk 8')R) is étale.

Conditions (i), (ii) and (iii) are equivalent by 2.7. We have (ii)=(iv) by (7.15.3) and 7.16.
It is clear that we have (iv)=>(v). If the condition (v) holds true, then it holds under the extra

assumption that the canonical morphism §’ — X factors as ' — Y J, X. Then we have
(v)=(iii) by (7.15.3).

PROPOSITION 7.18. Let V be a Galois torsor over U, R a rational divisor on X
with support in D, & a generic point of D, & a generic point of X above &, S the strict
localization of X at &, K the fraction field of I'(S, Os) and r the multiplicity of R at &. We
put V xy Spec(K) = Spec(L), where L = [['_, L; is a finite product of finite separable
extensions of K. Then the following conditions are equivalent:
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(1) The ramification of V /U at & is bounded by R+.
(ii) Forevery 1 <i < n, the logarithmic ramification of L; /K is bounded by r+ (6.2).

By 7.7(ii), 7.9 and ([3] 5.2), we may assume that R has integral coefficients. We take
again the notation of 7.15. Condition (i) is equivalent to condition 7.17(i). Condition (ii)
is equivalent to condition 7.17(v) by ([21] 1.13 and the remark after its proof). Hence, the
proposition follows from 7.17.

PROPOSITION 7.19. Let V be a Galois torsor over U of group G, Y the integral clo-
sure of X in V and R an effective rational divisor on X with support in D. Assume that the
following conditions are satisfied:

(1) V/U has the property (NpS) at every geometric point of X (2.12), that is, for every
geometric pointy of Y, the inertia group Iz < G of y has a normal p-Sylow subgroup;

(ii) for every generic point & of D, the ramification of V /U at & is bounded by R+.
Then the ramification of V /U along D is bounded by R+.

It is enough to prove that for every x € X, the ramification of V/U at x is bounded
by R+. Let ¥ be a geometric point of Y localized at a point y € ¥ above x. We denote by
U’ the quotient of V by the inertia group Iy of y, by X’ the integral closure of X in U’, by
f: X' — X the structural morphism, by X{, the maximal open subscheme of X’ which is
étale over X and by D{ and R( the pull-backs of D and R over X|); so (X{), D})) is an snc-pair
over k and U’ — X{. Since x € f(X]), it is enough to prove that the ramification of V /U’
along D), is bounded by R{+ (7.8). Replacing V /U and (X, D) by V /U’ and (X{, D) ([2]
3.15) (cf. 7.20), we may assume that G has a normal p-Sylow subgroup. By 7.7, 7.9, 7.18
and ([2] 3.15), we may also assume that R has integral coefficients.

Assume next that G has a normal p-Sylow subgroup H and that R has integral coeffi-
cients. It is enough to prove that for every x € X, the ramification of V /U at x is bounded
by R+. Let U; be the quotient of V by H; so U is a Galois torsor over U which is tamely
ramified along D. By Abhyankar’s lemma ([10] XTIII 5.2 and 5.4), there exists a morphism of
snc-pairs h: (X', D) — (X, D) satisfying the following properties:

(P) The morphism 4 is log-smooth, the morphism X’ — X is flat and x € h(X").

(Q WeputU’' =X"—D'and U] = U; xy U’, and denote by X/ the integral closure
of X’ in U] ; then X/ is étale over X'.

We put V/ = V xy U’ and denote by D} and R/ the pull-backs of D and R over X/. By
7.7 and 7.8, it is enough to prove that the ramification of V' /U] along D/ is bounded by R].
Hence, we are reduced to the case where G is nilpotent and R has integral coefficients ([2]
3.15) (cf. 7.20).

Assume finally that G is nilpotent and that R has integral coefficients. Let A: G —
G x G be the diagonal homomorphism, W the quotientof V x; V by A(G) andey: U — W
the morphism induced by the diagonal morphism §y: V. — V x; V. We denote by Z the
integral closure of (X sk; X )(R) in W and by ¢: X — Z the morphism induced by &y. Since
(X sk X )(R) is smooth over X, it is regular (4.6). Then the proposition follows from 2.8



836 A. ABBES AND T. SAITO

applied to the open subscheme U xj U of (X sk X )(R), to the finite étale covering W of
U xy U and to the closed subscheme &(X) of Z.

REMARK 7.20. We keep the assumptions of 7.19 and consider the following condi-
tions

(i) G has anormal p-Sylow subgroup.

(i") G is nilpotent.

Then we have (i”)=(i")=(i). Indeed, the first implication follows from ([8] chap. I §6.7
theo. 4) and the second is a consequence of ([8] chap. I §6.6 cor. 3 of theo. 3).

DEFINITION 7.21. LetV be a Galois torsor over U of group G. We define the conduc-
tor of V /U relatively to X to be the minimum effective rational divisor R on X with support
in D such that for every generic point & of D, the ramification of V /U at £ is bounded by
R+.

This terminology may be slightly misleading as the ramification of V /U along D may
not be bounded by R+ in general. However, we have the following:

PROPOSITION 7.22. Let V be a Galois torsor over U of group G. Assume that the
following strong form of resolution of singularities holds:

(RS)  For any U-admissible blow-up Y of X, there exists an snc-pair (Y', E') over k,

a morphism of pairs (Y', E') — (X, D) and a proper X-morphism Y' — Y
inducing an isomorphismY' — E' = U.

Then, there exists an snc-pair (X', D') over k and a proper morphism of snc-pairs
f: (X',D") — (X, D) inducing an isomorphism X' — D' = U such that if we denote
by R’ the conductor of V /U relatively to X', the ramification of V /U along D' is bounded by
R'+.

By 2.22, there exists a U-admissible blow-up ¥ — X such that if we denote by Y’
the normalization of ¥, V /U has the property (NpS) at every geometric point of Y’. By
assumption (RS), there exists an snc-pair (X', D’) over k, a morphism of pairs (X', D) —
(X, D) and a proper X-morphism X’ — Y inducing an isomorphism X’ — D’ = U. Then
V /U has the property (NpS) at every geometric point of X’ (2.15). Let R’ the conductor of
V /U relatively to X’. It follows from 7.19 that the ramification of V /U along D’ is bounded
by R'+.

8. Ramification of Z-adic sheaves.

8.1. In this section, we fix an snc-pair (X, D) over k, and put U = X — D. We denote
by j: U — X the canonical injection, by X skx X the framed self-product of (X, D) and by
8: X — X ¢ X the framed diagonal map (5.21). We will no longer consider the logarithmic
structure of X *; X; only the underlying scheme will be of interest for us. We consider
X sk X as an X-scheme by the second projection. For any effective rational divisor R on X
with support in D, we denote by (X sk X )(R) the dilatation of X sk X along § of thickening
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R (5.31), by

8.1.1) 8 X — (X sy X))
the canonical lifting of 8, and by

(8.1.2) FR U x U = (X 5 X)B)

the canonical open immersion. Then we have the following Cartesian diagram.

(8.1.3) U—" U, U

jt l/“”
Ky R

)
x 2 (X ¢ X)B)

PROPOSITION 8.2. Let .% be a locally constant constructible sheaf of A-modules on
U, R an effective rational divisor on X with support in D, x € X, X a geometric point of X
above x, and 7 (F) the sheaf on U x U defined in (2.6.1). Then the base change morphism

(82.1) a: 80 R  (F)) = ju5 (H(F)) = ju(End(F))

relatively to the Cartesian diagram (8.1.3) is injective. Furthermore, the following three con-
ditions are equivalent:
(i) The stalk

(8.2.2) ar: (R j (A (F)))x — ju(End(F)))x

of the morphism o at X is an isomorphism.
(ii) The image of the identity endomorphism of & in j«(End(F)))x is contained in
the image of ax (8.2.2).

(iii) There exists a Galois torsor V over U trivializing ¥ such that the ramification of
V /U at x is bounded by R+.

Assume moreover that there exists a Galois torsor Vy over U of group G satisfying the
following condition:

(sk) There exists a A-module M equipped with a faithful representation p of Gy and an
isomorphism of sheaves (with Galois descent data) F|Vy ~ My,, where My, is the constant
sheaf on Vo of value M equipped with the descent datum defined by p.

Then conditions (i), (i) and (iii) are equivalent to the following condition:

(iv)  The ramification of Vo/U at x is bounded by R+.

It follows from 2.25 that « is injective. For the second proposition, we may assume that
X and hence U are connected; in particular, we may assume that there exists a Galois torsor
Vo over U of group Gy satisfying condition (k). We clearly have (i)=>(ii) and (iv)=>(iii).

Let V be a Galois torsor over U of group G trivializing .% and let Y be the integral
closure of X in V. We denote by A: G — G x G the diagonal homomorphism, by W
the quotient of V xj V by A(G), by Z (resp. X) the integral closure of (X s X)®) in W
(resp. V xi V) and by jw: W — Z the canonical injection (cf. 7.2). The diagonal morphism
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dy: V — V x; V induces a morphism ey : U — W above the diagonal morphism éy: U —
UxyU.Lete: X - Zando: Y — X be the morphisms induced by ey and 8y, respectively.
Then the following diagram is commutative.

(8.2.3) v v v ) 7 Y
N
U w z X
kt ® l%
J

UxyU——>( X>x<kx

Each canonical projection V x; V — V induces a morphism ¥ — Y for which o is a section.
Let y be a geometric point of ¥ above X, Iy G x G the inertia group of o (y), and /5 < G
the inertia group of y. Since o is a closed immersion, we have J5 = A_I(I ). Hence the
following conditions are equivalent:

(a) The ramification of V /U at x is bounded by R+.

(b) Wehave Iy < A(G).

() Wehave Iy = A(J5).

Let Y’ be the connected component of ¥ containing ¥ and let V/ = V Y. The stabilizer
G' < Gof Viactson N = I'(V/, .Z). We have Iy < G’, and the morphism ax (8.2.2) is
canonically identified with the injective morphism

(8.2.4) (End(N))" — (End(N))2U%),

Hence, by the equivalence (a)<(c) above, we deduce the implication (iii)=(i).

It remains to prove that (ii)=(iv). We keep the previous notation and assume moreover
that V = Vp and G = Gy. Consider the following commutative diagram with Cartesian
squares.

(8.2.5)

By ([1] 1.2.4(i)), the base change morphism « (8.2.1) is composed of

e*p

826)  s®(iB) p( 7)) —= * (jws (H(F)|W)) —— ju(End(F)) ,

where : j,&R) (H(FNZ — jws(H(F)|W) and y are the base change morphisms rela-
tively to the lower and the upper squares of (8.2.5) respectively.
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If we equip End(M) with the canonical action of G x G, we deduce from the isomor-
phism .#|V ~ My an isomorphism (of sheaves with Galois descent data) .72 (.%)|(V x; V) ~
End(M)y x,v)- Since the action of G on M is faithful, A(G) is the stabilizer of id € End(M
in G x G. In particular, we may consider id as a section of I'(Z, jw« (¢ (% )|W)). Since y
is injective by 2.25, condition (ii) is equivalent to the following condition:

(i) The image of id in jw« (/' (F)|W),(x) is contained in the image of B, ().

The latter is equivalent to the fact that the ramification of V /U at x is bounded by R+
by 2.26.

DEFINITION 8.3. Let .% be a locally constant constructible sheaf of A-modules on
U, R an effective rational divisor on X with support in D, x € X and X a geometric point
of X above x. We say that the ramification of % at X is bounded by R+ if . satisfies the
equivalent conditions of (8.2), and that the ramification of . along D is bounded by R+ if
the ramification of .% at X is bounded by R+ for every geometric point X of X.

PROPOSITION 8.4. Let F be a locally constant constructible sheaf of free A-modules
of rank one on U and let R be an effective rational divisor on X with support in D. Then the

ramification of .% along D is bounded by R+ if and only ifj,,Em (A (F)) is locally constant
constructible over an open neighborhood of §®) (X) in (X s, X)(®).

We may assume that X and hence U are connected. Let V be a Galois torsor over U
with abelian group G and let x : G — A be an injective homomorphism such that we have
an isomorphism (of sheaves with Galois descent data) .|V ~ A(x)v, where A(x)y is the
constant sheaf on V of value A with the descent datum defined by x. We keep the same
notation as in the proof of 8.2. Then W is an abelian Galois torsor over U X U trivializing
H(F). Assume first that the ramification of .% along D is bounded by R+; so n: Z —
(X s X)(®) is étale over an open neighborhood of &(X) in Z by 8.2. It follows that 7
is étale over an open neighborhood P of of 8(R)(X) in (X sk X)(®). Therefore, #(.F)

extends to a locally constant constructible sheaf on P, and hence jiR)(%ﬂ (F)) is locally

constant constructible over P ([6] IX 2.14.1). Conversely, if jiR) (A (F)) is locally constant
constructible over an open neighborhood of s(R) (X)in (X ke X )(R), then the base change
morphism

8.4.1) a: SRR () > ju(End(F)) = ju(4) = A

is an isomorphism since its restriction to U is an isomorphism ([6] IX 2.14.1).

LEMMA 8.5. Let ¥ be a locally constant constructible sheaf of A-modules on U, X
a geometric point of X and R and R’ be rational divisors on X with support in D such that
R' > R. If the ramification of . at X (resp. along D) is bounded by R+, then it is also
bounded by R'+.

It follows from 7.5 and 8.2.
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PROPOSITION 8.6. Let . be a locally constant constructible sheaf of A-modules on
U, R an effective rational divisor on X with supportin D, f: (X', D') — (X, D) a morphism
of snc-pairs over k, U' = f~1(U), F' = Z|U', R' = f*(R), x' € X', X" a geometric point
of X" above x" andx = f(x’).

(1) If the ramification of F at X (resp. along D) is bounded by R+, then the ramifi-
cation of F' atx' (resp. along D') is bounded by R'+.

(ii) Assume that the morphism X' — X is étale at x' and that the divisors D' and
f*(D) are equal on an open neighborhood of x" in X'. Then the ramification of F at X is
bounded by R+ if and only if the ramification of F' at X' is bounded by R’ +.

(ili) Assume that the morphism X' — X is étale and surjective and that D' = f*(D).
Then the ramification of % along D is bounded by R+ if and only if the ramification of F'
along D' is bounded by R'+.

(i) It follows from 7.7(i) and 8.2.

(i) By (i), it is enough to prove that if the ramification of .#’ at X’ is bounded by R’ +,
then the ramification of .% at X is bounded by R+. Also by (i), we may assume that X’ — X
is étale and that D’ = f*(D). The morphism f induces morphisms (5.32.1)

(8.6.1) X % X/LX*/( X’LX*,QX ,
from which we obtain the morphisms (5.32.2)

(R") (R)
n S NS
(8.6.2) (X/ o8 X/)(R)l_>(X N X/)(R) 2—>(X o X)(R) )
Weput f = fro fi and f(B) = fz(R) o fl(R/). Since X skp X' ~ (X sk X) xx X/, f2(R)
is smooth by 5.29. On the other hand, £* is étale by 5.33(i). Therefore, f(k) is smooth.
Consider the commutative diagram

MX’)\ @-/(R') bur

(X s X)) L— U 5, U

1oom e L ® |n
i(R)
(X s X)(B) <1— Y Uuxu

2 TN
X d U

where the square (4) is the analogue of the square (5) for (X', D’, R"). We denote by (6) the
face given by the exterior square. Then all squares are cartesian except (1) and (3). Observe
that 2 (F)|(U' xx U') ~ A (F') and End(F)|U' ~ End(F'). 1t follows from ([1]

(8.6.3) X!
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1.2.4(1)) that we have a commutative diagram

(64 a0 p(F)) e £ a8 (H(F)) —— f* ju(End(F))
| |

s(R)* F(R)x (R () I8 (A (F)) v

[

S(R/)*j;(R/)(jf(y/)) L o ;8;},(%(3‘\/))

Ji(End(F"))

where «: 8(R)*j,£R) (H(F)) — jubd3 (A (F)), o', B,y and y’ are the base change mor-

phisms. Since f and f (R) are smooth, B and y are isomorphisms. Hence, we can identify the

stalks o5 and oz)’c_, of  at X and o’ at X’ respectively, which implies the required assertion.
(iii) It follows from (ii).

PROPOSITION 8.7. Let .% be a locally constant constructible sheaf of A-modules on
U, R an effective rational divisor on X with support in D and X a geometric point of X. Then
the following conditions are equivalent:

(i) The ramification of .% at X is bounded by R+.

(ii) There exists an étale neighborhood f: X' — X of X such that if we put U’ =
f~YU), D" = f*(D) and R' = f*(R), then the ramification of Z|U' along D' is bounded
by R'+.

(iii) Condition (ii) holds for f an open immersion.

Indeed, (i)=(iii) follows from 7.4 and 8.2, (iii)=>(ii) is obvious and (ii)=>(i) is a conse-
quence of 8.6.

PROPOSITION 8.8. Let .% be a locally constant constructible sheaf of A-modules on
U, R an effective rational divisor on X with support in D, & a generic point of D, & a
geometric point of X above &, X @ the corresponding strictly local scheme, 1 its generic
point and r the multiplicity of R at &. Then the following conditions are equivalent:
(i) The ramification of F at & is bounded by R+.
(il) The ramification of ¥ |n is bounded by r+ in the sense of ([21] 1.28).
(ili) The sheaf F|n is trivialized by a finite étale connected covering n' of n such that
the logarithmic ramification of n' /n is bounded by r+ (6.2).

Indeed, (ii)<(iii) is the definition and (i)=>(iii) follows from 7.18 and 8.2. We prove
(iii)=(i). We may assume that 1’ is Galois over 1. By 2.27, there exists an étale morphism
f: X' — X, a geometric point £ of X’ above £ and a Galois torsor V/ over U’ = f~1(U)
trivializing .%|U’ such that if we identify the strictly local schemes X 25') and X G) by f, there
exists an n-isomorphism V'’ x ;7 n ~ n’. It follows from 7.18 and 8.2 that the ramification of
F|U" at E’ is bounded by R’+. Then the ramification of .% at & is bounded by R+ by 8.6(ii).
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PROPOSITION 8.9. Let . be a locally constant constructible sheaf of A-modules on
U and R an effective rational divisor on X with support in D. Assume that the following
conditions are satisfied:

(i)  For every geometric point X of X, if we denote by X 3y the corresponding strictly
local scheme and put Uy = X(;) x x U, the sheaf F|U, is trivialized by a Galois torsor over
U1 whose group has a normal p-Sylow subgroup.

(ii) For every geometric point & of X above a generic point of D, the ramification of
Z at & is bounded by R+.
Then the ramification of % along D is bounded by R+.

Let X be a geometric point of X and let V; be a Galois torsor over Uy = X(3) xx U
trivializing % |U; whose group G has a normal p-Sylow subgroup. It is enough to prove that
the ramification of .% at X is bounded by R+. By 2.27 and 8.6(ii), we may assume that there
exists a Galois torsor over U of group G trivializing .%. Hence, there is a minimal Galois
torsor V over U trivializing .# whose group has a normal p-Sylow subgroup. Then it follows
from 8.2 and 7.19 that the ramification of .% along D is bounded by R+.

DEFINITION 8.10. Let .# be a locally constant constructible sheaf of A-modules on
U.

(i) Let £ be a generic point of D, £ a geometric point of X above &, X @ the corre-
sponding strictly local scheme and n the generic point of X @) We define the conductor of
& at & to be the minimum of the set of rational numbers > 0 such that the ramification of
Z|n is bounded by r+ in the sense of ([21] 1.28), that is, .7 is trivialized by a finite étale
connected covering ' of 1 such that the logarithmic ramification of »’/n is bounded by r+
(6.2).

(ii) We define the conductor of F relatively to X to be the effective rational divisor on
X with support in D whose multiplicity at any generic point & of D is the conductor of .% at
&. By 8.8, it is also the minimum of the set of effective rational divisors R on X with support
in D such that for every geometric point £ of X above a generic point of D, the ramification
of .7 at & is bounded by R+.

The terminology in (ii) may be slightly misleading as the ramification of .# along D may
not be bounded by R+ in general. However, we have the following:

PROPOSITION 8.11. Let.% be alocally constant constructible sheaf of A-modules on
U. Assume that the strong form of resolution of singularities (RS) in 7.22 holds. Then, there
exists an snc-pair (X', D') over k and a proper morphism of snc-pairs f: (X', D') — (X, D)
inducing an isomorphism X' — D' 5 U such that if we denote by R’ the conductor of F
relatively to X', the ramification of & along D' is bounded by R'+.

This follows from 7.22 and 8.2.

LEMMA 8.12 ([21]2.21). Let.F be alocally constant constructible sheaf of A-modu-
les on U. Then the following conditions are equivalent:
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(1) F is tamely ramified along D.
(ii) The conductor of ¥ vanishes.
(iii) The ramification of F along D is bounded by 0+.

8.13. Let R be an effective divisor on X with support in D. We know (4.6) that
(X sk X)®) is smooth over X and that

(8.13.1) E® = (X 5, X)® xx R
is canonically isomorphic to the vector bundle V(.Q)l( /k(log D) ®¢, Ox(R)) xx R over R

(5.31.4). We denote by E(R) the dual vector bundle.
Let Y be an X-scheme separated of finite type over X. Weput V. =Y xx U, Ry =

R xxY, EI(,R) = E®) xy Y and E,(,R) = E(®) xy Y, and denote by jy: V — Y and
WU v o (X ) ® xyy

the canonical injections. Consider the following commutative diagram with Cartesian squares.

(R)

(8.13.2) ER —— (X s X)®) sy ¥ < U xp V
l Lpfz L
Ry Y Vv

Let ¢ be a sheaf of A-modules on U x; V. We call the sheaf over E ;R) defined by

(8.13.3) VR(9,Y) = jé’?(%mé’”

the R-specialization of ¢4 and denote it by vg(¥,Y).
Let f: Z — Y be a separated morphism of finite type and W = f~!(V). We denote by

(8.13.4) FR (X )P xx 2> (X 3 X)B) xx v
(8.13.5) R g, gR

the morphisms induced by f. Then we have a base change morphism
(8.13.6) FR* iR gy i) W),
from which we get the morphism

(8.13.7) £ (p (@, 7)) = vr(Z|(U i W). Z).

PROPOSITION 8.14. Let F be a locally constant constructible sheaf of A-modules on
U, R an effective divisor on X with supportin D, f: Y — X a separated morphism of finite
type and V. = f~Y(U). Assume that the ramification of F along D is bounded by R+. Then
with the notation of (8.13):
(1) The sheaves jl(/i)(AU (Z1V)) and pr5(jy«(F|V)) are isomorphic over
(X 3, X)B) sy v
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(ii) There exists an étale morphism Zy — (X g X)(R) whose image contains E(R),
such that the pull-backs over Zy x x Y of the sheaves jéi) (F X Ay) and j}(,i) (AuRI(F|V))
are isomorphic.

(iii)) There exists a canonical surjective morphism
R
@141 R ((F). X)) @ vr(Ay B (F|V). ¥) = vr(F R Ay, Y).
(iv) Assume moreover that Y is normal, that V is dense in Y and that F |V is constant.

Then vg(F Xl Ay, Y) is locally constant and additive (3.1); in particular, its Fourier dual
support is the underlying space of a closed subscheme of E )(,R) which is finite over Ry (3.8).

Note that statement (iv) will be extended and reinforced in 8.19.

(i) Tt follows from the smooth base change theorem as pry: (X i X )(R) — X is
smooth.

(ii) Let V be a Galois torsor over U of group G trivializing .% such that the ramification
of V /U is bounded by R+ (8.2). We denote by A: G — G x G the diagonal homomorphism,
by W the quotient of V x; V by A(G), by Z the integral closure of (X s X)®) in W and
bym:Z — (X % X )(R) the canonical morphism. Let Zo be the maximal open subscheme
of Z which is étale over (X sk X)(R). We know by 7.12(i) that Zp x x R is a group scheme
and thatw xx R: Zgxx R — E(®) isa surjective étale morphism of group schemes over R.
Let j': W — Z; be the canonical injection; so we have the following Cartesian diagram.

/

(8.14.2) WxyV—2 o Zoxx Y

| e

UXkVL>(X>l<kX)(R) Xx Y

By the smooth base change theorem, the pull-back over Z x x Y of the sheaves jl(,i) (FRAy)

and j}(,i)(AU (Z|V)) are isomorphic to j, ((F Ap)|(W xy V)) and

Jy«((Ay B F)|(W xy V)) respectively. On the other hand, we have an isomorphism
(Ay (Z|V)) > ((Z|V) Ay ). We deduce by Galois descent an isomorphism

(8.14.3) s: (AyRF)|W S (F X Ay)|W,
and hence an isomorphism
(8.14.4) Jrs(Au B F)NW xu V) = jya(F R AW xu V).

Note that the isomorphism s can also be obtained by Galois descent from the universal iso-
morphism of G-torsors over W (7.2)

(8.14.5) (U xk V) xuxu W= (Vg U) xusu W
(iii) We have a morphism on (X sk X)(®) xx v
®146) PPN V)@ AR (Ar R (Z|V) - iR (F @ av)
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deduced by adjunction from the natural morphism on U xj V
(8.14.7) (AT % V) ® (Ay B (F|V)) > F R Ay .
We get from (8.14.6) by pull-back to Ey a morphism
(8.14.8) VR(A(F)(U %k V), Y)@vr(Au X (F|V),Y) > vr(F K Ay, Y).
On the other hand, we have a canonical morphism (8.13.7)
(8.14.9) (R (A(F), X)) = vr(A(F)|(U x V). V).

We take for (8.14.1) the morphism induced by (8.14.8) and (8.14.9). We will prove that it is
surjective. By the smooth base change theorem, the pull-back of the morphism (8.14.6) over
Zy x x Y is the morphism

(8.14.10)
Jys(E(F)NW xu V) ® jyy(Au IF)(W xu V) = jpy((F K Ap)|(W xy V))

obtained by adjunction from the pull-back of the morphism (8.14.7) over W xy V. We also
have a canonical isomorphism

(8.14.11) F(Zo,jiR)(%”(ﬁ))) ~ (W, |W).

So we may consider the isomorphism s (8.14.3) as a section in I"(Z, j,,(‘R)(z%”(ﬂ))). It is
clear that the pairing (8.14.10) evaluated at the image of f(®)*(s) in

I(Zo xx Y. jys(H(F)|(W xu V)

induces the isomorphism (8.14.4). Since ER) = 7(Zy), we conclude that (8.14.1) is surjec-
tive.

(iv) Since jy«(.Z|V) is constant ([6] IX 2.14.1), the pull-back of vg (F XAy, Y) over
Zo xx Ry is constant by (i) and (ii). Hence vg (% [X] Ay, Y) is locally constant. For every
geometric point X of R, if we denote by G5 the neutral connected component of Zy x x X,
then the morphism Gy — EéR) induced by r, is a finite étale surjective morphism of group
schemes over X by 7.12(ii). Therefore, vg (% [X] Ay, Y) is additive by 3.12. The last assertion
follows from 3.14.

COROLLARY 8.15 ([21]2.25). Let F be a locally constant constructible sheaf of A-
modules on U and let R be an effective divisor on X with support in D such that the ramifi-
cation of F along D is bounded by R+. Then vg (' (F), X) is additive.

Let V be a finite Galois torsor over U trivializing .# such that the ramification of V /U
along D is bounded by R+ (8.2). We denote by Y the integral closure of X in V and by
f:Y — X the canonical morphism. In the following we take again the notation of 8.14 and



846 A. ABBES AND T. SAITO

its proof (with V= V). Consider the following commutative diagram with Cartesian squares.

-/

(8.15.1) w—2>= 7

| b

U x; U~ (X 55 X)®)

Lk

U X

By 2.24, the isomorphism s (8.14.3) induces isomorphisms
(8.15.2) H(F)W S End((Ay X F)|W) S (End(F))|W.

Since 7 and pr, are smooth, by the smooth base change theorem relatively to (8.15.1), we get
an isomorphism

(8.15.3) w* (G (A (F)) S (pr (ju(End (F)))).

It follows that vx (% (.%), X) is locally constant on the geometric fibers of E(R) — R. Since
7(Zo) contains ER), we conclude that vg (5 (%), X) is locally constant on all geometric
fibers of the vector bundle E(R) — R.

On the other hand, the open immersion jl(,R) is schematically dense. Hence the morphism
(8.14.9) is injective by 2.25. We fix a surjective morphism A" — %#|V, from which we
deduce an injective morphism (.7 )|(U xx V) — Z [x] A}, (2.24). The latter induces an
injective morphism

(8.15.4) VR(H(F)|(U %k V), Y) = vp(F KA}, Y).

Composing with (8.14.9), we obtain an injective morphism

(8.15.5) FEB* (g (H(F). X)) > vp(F R AL, Y).

Then f\%* (vg(H#(F). X)) is additive by 3.11. Since f is surjective, vg(J(F), X) is
additive.

COROLLARY 8.16. Let % be a locally constant constructible sheaf of A-modules on
U, R an effective divisor on X with supportin D, f: Y — X a separated morphism of finite
type and V = f~Y(U). Assume that the ramification of F along D is bounded by R+. Then
Vvr(F K Ay, Y) is additive, and its Fourier dual support is contained in the inverse image by

the canonical projection EI(,R) — E®) of the Fourier dual support of vg (€ (F), X).

It follows from 8.14(i) that vg(Ay XI (Z#|V), Y) is constant on the fibers of the vector
bundle £ g,R) — Ry. Hence by 8.14(ii), vg (¥ X Ay, Y) is locally constant on the geometric
fibers of E g,R) — Ry. Then the proposition follows from 3.11, 8.14(iii) and 8.15.
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COROLLARY 8.17. We keep the assumptions of (8.16) and assume moreover that Y
is normal, that V is dense in Y and that F|V is constant. Then the Fourier dual support of
Vr(F KAy, Y) is the inverse image by the canonical projection EI(,R) — E(R) of the Fourier
dual support of vg((F), X).

By 8.16, it is enough to prove that the inverse image of the Fourier dual support of
vr(H(F), X) by the canonical projection E}(,R) — E®) is contained in the Fourier dual
support of vg(F [X] Ay, Y). This follows from the second part of the proof of 8.15. Indeed,
since the sheaves vg (7 (.%), X) and vg(.Z [X] A}, Y) are additive by 8.15 and 8.14(iv), the
required assertion follows from the injective morphism (8.15.5) by 3.11.

COROLLARY 8.18. Let % be a locally constant constructible sheaf of A-modules on
U and let R be an effective divisor on X with support in D such that the ramification of F
along D is bounded by R+. Then the Fourier dual support of vg (7 (F ), X) is the underlying
space of a closed subscheme of EW®) which is finite over R.

Let V be a Galois torsor over U trivializing .% and Y the integral closure of X in V.
It follows from 8.17 that the Fourier dual support of vg(J7(.%), X) is the image by the
canonical projection E 1(/R) — ER) of the Fourier dual support of vg(# Xl Ay, Y). Hence,
the assertion follows from 8.14(iv).

PROPOSITION 8.19. Letr.% be a locally constant constructible sheaf of A-modules on
U, R an effective divisor on X with supportin D, f: Y — X a separated morphism of finite
typeandV = ! (U). Assume that the ramification of & along D is bounded by R+. Then:

1) vr(H(F), X) is additive and its Fourier dual support is the underlying space of
a closed subscheme of EW®) ywhich is finite over R.

(ii)) vr(F X Avy,Y) is additive, and its Fourier dual support is contained in the

)

inverse image by the canonical projection EI(/R — E®) of the Fourier dual support of

vr(H(F), X).

(ili) Assume moreover that Y is normal, that V is dense in Y and that F|V is con-
stant. Then vg (F X Ay, Y) is locally constant and additive, and its Fourier dual support is
the inverse image by the canonical projection E gR) — E®) of the Fourier dual support of
vr(H(F), X).

This is a summary of results proved in 8.14, 8.15, 8.16, 8.17 and 8.18.

8.20. Let f: (X', D’) — (X, D) be a log-smooth morphism of snc-pairs over k, R an
effective divisor on X with support in D, U; = X' — D', U’ = f~!(U) and R' = f*(R).
The morphism f induces morphisms (5.32.1)

(8.20.1) X % X L>X ki X' i>X ki X,
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from which we obtain the morphisms (5.32.2)

(R") -(R)

(8202) (X s X)F) L (X s XD L (s )0
We put

(8.20.3) E® = (X 5, X)®) xx R,

(8.20.4) E'R) = (X" s, X)) x v/ R

We denote by E®) and E'(®) the dual vector bundles. For a sheaf of A-modules ¢ (resp.¥4")
on U x; U (resp. U’ x; U’), we denote by vg(¥, X) (resp. vy, (4', X')) its R-specialization
(resp. R’-specialization) in the sense of (8.13.3) relatively to the snc-pair (X, D) (resp.

(X', D")).
The morphism f induces an exact sequence
1 1
(8.20.5) 0— f*(2 X/k(log D)) — X,/k(log D) — ‘Q(X’,D’)/(X,D) -0,

which is locally split. Hence, we have a surjective morphism of vector bundles over R’
(8.20.6) ¢: E'®) - gD

We denote by qvbz E ;I,e) — E'(R') the dual morphism of ¢, which is a closed immersion.

PROPOSITION 8.21. We keep the notation of (8.20) and let F be a locally constant
constructible sheaf of A-modules on U, #, = Z|U; and F' = F|U’'. Assume that the
ramification of % along D is bounded by R+ and that f is log-smooth. Then the Fourier
dual support of v}e,(%ﬂ (Z1), X') is the image by & of the inverse image of the Fourier dual

support of vg (A (F), X) by the canonical projection Eg(lf) — E®),

Let V'’ be a Galois torsor over U’ trivializing %/, Vi = V' xy Uy and Y’ the integral
closure of X" in V. We denote by vg(Z [X] Ay, Y') the R-specialization of .# [x] Ay over

E 1(/1,{) in the sense of (8.13.3). It is an additive sheaf by 8.14(iv), and its Fourier dual support

is the inverse image of the Fourier dual support of vg (7 (.%), X) by the canonical projection
EI(/R) — E(®) (8.17). On the other hand, the ramification of .%; along D' is bounded by
R’+ by 8.6(i). We denote by v, (F1 X Ay, Y') the R’-specialization of .71 [X] Ay, over

E Y(,R )i in the sense of (8.13.3) relatively to the snc-pairs (X', D). It is an additive sheaf and
its Fourier dual support is the inverse image of the Fourier dual support of v, (5 (F1), X')
by the canonical projection E;,(,R )
surjective, it is enough to prove that the Fourier dual support of vﬁe,(ﬁﬁ Ay, Y') is the

— E'®)_ Since the canonical morphism ¥’ — X’ is

image by ¢y of the Founer dual support of vg (F Xl Ay, Y').
On the one hand, f1 R is smooth by 5.33(ii). On the other hand, since the canonical
morphism X skx X' — (X sk X) xx X’ is an isomorphism (5.21.3), the morphism

(821.1) (X e X)ED) S (X s X)B) <y X
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induced by fz(R) is an isomorphism by 5.29. We denote by U’ s U’ the framed self-product
of (U, D'|U"); 50 U" 5y U" = (X" ki X') X (xrx,x) (U" x4 U'). We have a commutative
diagram
(8.21.2)

(R
i

E;(,RI) —— (X" 3 X)B) iy Y ~—— (U s U') x 0 V=== U1 xx Vi

¢yll fl(Rl)XX’Y’l
i
E;I,Q) —— (X % X’)(R') 1 Y~ U xx V'

(R) o (R')

with Cartesian squares, where u, jy, and jy, are the canonical injections.
Since U’ sk U’ is smooth over U’, (U’ s U’) xy V' is normal and u is dominant.
Therefore, the adjunction morphism

(8.21.3) (FRAV)|((U s U') xpgr V') = us(F1 K Ayy)

is an isomorphism by ([6] IX 2.14.1). Then by the smooth base change theorem relatively to
the Cartesian right square in (8.21.2), we have an isomorphism

(8.21.4) ¢y (vr/ (FE Ay, Y')) = Vi (F1E Ay, V).
Since qvﬁ is a closed immersion, the required assertion follows from (8.21.4) and (3.4.6).

DEFINITION 8.22. Let .# be a locally constant constructible sheaf of A-modules on
U.

(i) Let& be a generic point of D, X ;) the henselization of X at £, n; the generic point
of X (¢), ¢ a geometric generic point of X ¢ and @ the Galois group of 7 over ng. We say
that .7 is isoclinic at & if the representation ﬂﬁg of % is isoclinic (6.5).

(ii) We say that .# is isoclinic along D if it is isoclinic at all generic points of D.

DEFINITION 8.23. Let.%# be a locally constant constructible sheaf of A-modules on
U which is isoclinic along D and let R be the conductor of . relatively to X (8.10). We say
that .% is clean along D if the following conditions are satisfied:

(1) the ramification of .% along D is bounded by R+;

(ii) there exists a log-smooth morphism of snc-pairs f: (X', D') — (X, D) over k
such that the morphism X’ — X is faithfully flat, that R = f*(R) has integral co-
efficients, and if we put U’ = X’ — D' and .Z' = .Z|U’, that the R’-specialization
Vi, (H(F'), X') of A (F') in the sense of (8.13.3) relatively to (X', D), is ad-
ditive and non-degenerate (3.8).

Note that condition (i) implies that the ramification of .#’ along D’ is bounded by R’+
by 8.6(i). Therefore, v%, (' (F'), X’) is additive by 8.15, and its Fourier dual support is the
underlying space of a closed subscheme 8" of E/(R) = (X’ s, X')(®) x v, R’, which is finite
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over R’ by 8.18. Hence, the condition (ii) is equivalent to the fact that S’ does not meet the
zero-section of E/(R'),

PROPOSITION 8.24. Let F be a locally constant constructible sheaf of A-modules on
U, R the conductor of F relatively to X, f: (X7, DT) — (X, D) a log-smooth morphism
of snc-pairs over k, UT = XT — DT, ZT = Z|UT and RT = f*(R). Assume that F is
isoclinic and clean along D and that RT has integral coefficients. Then the RT-specialization
l);T (A(FT), XT) of H(FT) in the sense of (8.13.3) relatively to (X', DY), is additive and
non-degenerate.

By 5.19, there exists a commutative diagram of log-smooth morphisms of snc-pairs over

k

(8.24.1) (x}, pt) —L= (x’, D)
gfl lg
(x1, pT) —— (X, D)

such that X’ — X and X} — XT are faithfully flat and if we put U’ = X’ — D', %' = .Z|U’
and R" = ¢*(R), that the R’-specialization v}, (7 (#'), X") of s (.#') in the sense of
(8.13.3) relatively to (X', D’), is additive and non-degenerate. We put vt = xt — pi,
Ft = Z|UY and R* = f"*(R’), and denote by vii(%ﬂ(ﬂi), X*) the R¥-specialization of
A (F1) in the sense of (8.13.3) relatively to (X¥, D¥). We put

(8.24.2) E'®) = (X" s, X)) </ R,
(8.24.3) ETERD = (xT s xHED o RT
(8.24.4) EHRD) — (xt g xH R o RE

and denote by E'(R), EYR") and E#(R") the dual vector bundles. Let ' (resp. st, resp. st
be the Fourier dual support of v} (%(ﬁ”) X') (resp. vJr L((F), XH), resp. v;t (I (FH),
Xi)) in E'(R") (resp. ETRY) , Tesp. EHR ) The morphisms f/ and gT induce, as in (8.20.6),
surjective morphisms of vector bundles

. RE 1(R")
(8.24.5) b EHRY) Ey .
. (R T(R)
(8.24.6) y: EXRD o gl
Consider the diagram
/(R ) ¢V5 12 1 Rt
(8.24.7) EN) —— pirh) <— gIF)

E/(R) EHRY)
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where 7/ and 7 T are the canonical projections, and qvﬁ and v are the morphisms dual to ¢ and
Y respectively. Note that dv> and 1} are closed immersions. Then by 8.21, we have

(8.24.8) d' (S = §T = g (nT1(sT)).

By assumption S’ does not meet the zero-section of E'®) Hence, x1~! (ST) does not meet

(RT)
xi

the zero section of E T(RT), which implies the required assertion.

the zero-section of E . Since Xt — x%is surjective, we deduce that ST does not meet

DEFINITION 8.25. Let.% be alocally constant constructible sheaf of A-modules on U
and X a geometric point of X. We say that .% is clean at X if there exists an étale neighborhood
X' of ¥ in X such that, if we put U’ = U x x X’ and denote by D’ the pull-back of D over X,
there exists a finite decomposition

(8.25.1) FIU'= @ F

l
1<i<n

of Z|U' into a direct sum of locally constant constructible sheaves of A-modules .Z (1 <
i < n) on U’ which are isoclinic and clean along D’ in the sense of (8.23). We say that .% is
clean along D if it is clean at all geometric points of X.

We will prove in 8.27 that for isoclinic sheaves, definitions 8.23 and 8.25 are equivalent.

LEMMA 8.26. Let.% be a locally constant constructible sheaf of A-modules on U, R
the conductor of F relatively to X and X a geometric point of X. If .F is clean at X, then
the ramification of % at X is bounded by R+. In particular, if F is clean along D then the
ramification of % along D is bounded by R+.

By assumption, there exists an étale neighborhood X’ of X in X such that, if we put
U’ = U x x X’ and denote by D’ the pull-back of D over X, there exists a finite decomposition
FIU" = @<ij<p F/ of FIU' into a direct sum of locally constant constructible sheaves
of A-modules .#/ (1 < i < n) on U’ which are isoclinic and clean along D’. For each
1 <i < n, let R be the conductor of .#/ relatively to X’. The conductor f*(R) of Z|U’
relatively to X’ is the maximum of the R/ (1 < i < n). Therefore, the ramification of .7 |U’
along D’ is bounded by f*(R). Then by 8.6(ii), the ramification of .% at X is bounded by
R+.

PROPOSITION 8.27. Let.% be alocally constant constructible sheaf of A-modules on
U which is isoclinic along D. Then .7 is clean along D in the sense of (8.23) if and only if it
is clean along D in the sense of (8.25).

We only need to prove that if .% is clean along D in the sense of (8.25), then it is clean
along D in the sense of (8.23). Let R be the conductor of .# relatively to X. We know by
8.26 that the ramification of .% along D is bounded by R+. For every geometric point X of
X, there exists an étale neighborhood X’ of X in X such that, if we put U’ = U xx X’ and
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denote by D’ the pull-back of D over X, there exists a finite decomposition

(8.27.1) FIU'= @ F

l
1<i<n

of .Z|U’ into a direct sum of locally constant constructible sheaves of A-modules .Z/ (1 <
i < n) on U’ which are isoclinic and clean along D’ in the sense of (8.23). Since .Z is
isoclinic along D, % |U " is isoclinic along D’. Hence, for each 1 < i < n, the conductor of
Z! is equal to the pull-back R" of R over X’. Then it follows from 8.24 that .% is clean in the
sense of (8.23).
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