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LP BOUNDEDNESS OF CARLESON TYPE MAXIMAL OPERATORS
WITH NONSMOOTH KERNELS
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Abstract. In this paper, the authors give the Lp boundedness of a class of the Carleson
type maximal operators with rough kernel, which improves some known results.

1. Introduction. For f ∈ L2([−π, π]) and x ∈ [−π, π], the Carleson operator C∗ is
defined by

C∗f (x) = sup
λ∈R

∣∣∣∣
∫ π

−π
e−iλtf (t)
x − t

dt

∣∣∣∣ .(1.1)

In 1966, using the weak type (2,2) of C∗, Carleson [1] proved his celebrated theorem on almost
everywhere convergence of Fourier series of L2 functions on [−π, π]. Following that, Hunt
[8] modified Carleson’s proof and extended Carleson’s theorem to Lp functions on [−π, π]
for 1 < p < ∞.

In 1970, Sjölin [11] studied several variables analogue of the Carleson operator C∗. Sup-
pose that K is an appropriate Calderón-Zygmund kernel in Rn, then the Carleson type maxi-
mal operator S∗ on Rn is defined by

S∗(f )(x) = sup
λ∈Rn

∣∣∣∣
∫

Rn
e−iλ·yK(x − y)f (y)dy

∣∣∣∣,(1.2)

where λ = (λ1, . . . , λn) ∈ Rn.

THEOREM A (Sjölin, [11]). Let K satisfy the following conditions:
(a) K(tx) = t−nK(x), for t > 0;
(b)

∫
Sn−1 K(x

′)dσ(x ′) = 0;
(c) K ∈ Cn+1(Rn \ {0}).

Then ‖S∗(f )‖Lp ≤ Cp‖f ‖Lp for 1 < p < ∞.

In 2001, Stein and Wainger [13] considered to extend Theorem A to a broader context.
More precisely, the authors of [13] replaced the linear phase λ · y in the definition of S∗
by more general polynomial phase with a fixed degree. Let Pλ(x) = ∑

2≤|α|≤d λαxα be a
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polynomial in Rn with real coefficients λ := (λα)2≤|α|≤d , where α = (α1, . . . , αn) ∈ Zn+ and
|α| = ∑n

j=1 αj . Define

Tλ(f )(x) =
∫

Rn
eiPλ(y)K(y)f (x − y)dy .

Then the Carleson type maximal operator T ∗ is defined by

T ∗f (x) = sup
λ

|Tλ(f )(x)| ,(1.3)

where the supremum is taken over all the real coefficients λ of Pλ. Stein and Wainger proved
the following result:

THEOREM B (Stein-Wainger, [13]). Suppose that Pλ(x) = ∑
2≤|α|≤d λαxα and K

satisfies the following conditions:
(a) K is a tempered distribution and agrees with a C1 functionK(x) for x �= 0;
(b) K̂ ∈ L∞;
(c) |∂γx K(x)| ≤ A|x|−n−|γ | for 0 ≤ |γ | ≤ 1.

Then the Carleson type maximal operator T ∗ defined in (1.3) is bounded on Lp for 1 < p <
∞.

In 2000, Prestini and Sjölin [9] gave the weighted analogue of Theorem A. Recently, we
gave also a weighted variant of Theorem B under weaker conditions [4].

In this paper, we will study the Lp boundedness of the Carleson type maximal operators
with rough kernels. Before giving our result, let us recall some definitions. Suppose thatΩ is
a measurable function on Rn \ {0} and satisfying the following conditions:

Ω(tx) = Ω(x) for any x ∈ Rn \ {0} and t > 0 ;(1.4)

Ω ∈ L1(Sn−1) ,(1.5)

where Sn−1 denotes the unit sphere in Rn (n ≥ 2) with area measure dσ ;∫
Sn−1

Ω(x ′)dσ(x ′) = 0 .(1.6)

Let Qλ(r) = ∑
2≤k≤d λkrk be a real-valued polynomial on R and λ = (λ2, . . . , λd) ∈ Rd−1.

With the notations above, the Carleson type maximal operator T ∗ associated to polynomial
Q is defined by

T ∗(f )(x) = sup
λ

|Tλ(f )(x)| ,(1.7)

where

Tλ(f )(x) =
∫

Rn
eiQλ(|y|)K(y)f (x − y)dy(1.8)

and Ω satisfies (1.4) through (1.6). Our main result is following:
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THEOREM 1.1. Let T ∗ be given as in (1.7). If Ω ∈ H 1(Sn−1), the Hardy space on
Sn−1 (see Section 2 for the definition of H 1(Sn−1)), then for 1 < p < ∞, there exists a
constant C > 0 such that

‖T ∗(f )‖Lp ≤ C‖f ‖Lp .(1.9)

Now we want to give two remarks on our main theorem.

REMARK 1. There are the following containing relationship among the function
spaces on Sn−1:

C1(Sn−1) � L∞(Sn−1) � Lq(Sn−1) (1 < q < ∞) � H 1(Sn−1) � L1(Sn−1).

Hence, in the sense of removing the smoothness assumption on the kernel function K , Theo-
rem 1.1 improves Theorem B.

REMARK 2. We should point out that the study of a singular integral with oscillating
factor eiQλ(|y|) has an important motivation. In fact, the operator Tλ defined in (1.8) is a
generalization of the stronger singular convolution operator, which was first studied by C.
Fefferman in [6].

The proof of Theorem 1.1 is based on an idea of linearizing maximal operators and
Stein-Wainger’s T T ∗ method presented in [13]. However, because the kernel of our objec-
tive operator lacks smoothness on the unit sphere, we need some new ideas to overcome the
roughness of the kernel. Namely we use Calderón-Zygmund’s rotation method.

2. Notations and Lemmas. Let us begin with recalling the definition of the Hardy
space H 1(Sn−1).

H 1(Sn−1)

=
{
Ω ∈ L1(Sn−1) ; ‖Ω‖H 1(Sn−1)=

∥∥∥∥ sup
0<r<1

∣∣∣∣
∫
Sn−1

Ω(y ′)Pr(·)(y ′)dσ(y ′)
∣∣∣∣
∥∥∥∥
L1(Sn−1)

<∞
}
,

where Prx ′(y ′) denotes the Possion kernel on Sn−1 defined by

Prx ′(y ′) = 1 − r2

|rx ′ − y ′|n , 0 ≤ r < 1 and x ′, y ′ ∈ Sn−1 .

See [2], [5] or [7] for the properties of H 1(Sn−1).
In the proof of Theorem 1.1, we will apply the 1-dimensional variant of Stein-Wainger’s

results. For a real polynomial P(t) = ∑
1≤k≤d λktk on R with real coefficients

λ := (λ1, λ2, . . . , λd ), we denote

|λ| =
∑

1≤k≤d
|λk| .(2.1)

LEMMA 2.1 ([13, Proposition 2.1]). Assume that ϕ is a C1 function defined in the unit
interval I = (−1, 1), V is any subinterval of I and P(t) = ∑

1≤k≤d λktk is a polynomial on
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R of degree d . Then∣∣∣∣
∫
V

eiP (t)ϕ(t)dt

∣∣∣∣ ≤ C|λ|−1/d sup
t∈I
(|ϕ(t)| + |ϕ′(t)|) .

The constant C depends on the degree d , but not on P, ϕ or V .

LEMMA 2.2 ([13, Proposition 2.2]). With the same notation as above in Lemma 2.1,

|{t ∈ I ; |P(t)| ≤ ε}| ≤ Cd ε
1/d |λ|−1/d for any ε > 0 .

The constant Cd does not depend on the coefficients of P , but on the degree d .

We also need the following Lp boundedness for a variant of the Hardy-Littlewood max-
imal operator.

LEMMA 2.3 ([13, Proposition 3.1]). Let I2 = (−2, 2), E is the measurable subset of
I2 and χE denotes the characteristic function of E. For ε > 0, the maximal operator Mε is
defined by

Mε(f )(t) = sup
a>0|E|≤ε

|f | ∗ (χE)a(t) ,(2.2)

where (χE)a(t) = a−1χE(t/a) for a > 0, and the supremum is taken over all subsets E in I2
of measure less than ε. Then for 1 < p < ∞, there exists a constant c > 0, independent of ε,
such that

‖Mε(f )‖Lp(R) ≤ Cε1−1/p‖f ‖Lp(R) .(2.3)

3. The proof of main result. We now turn to the proof of the main result in this
paper. It is obvious that

T ∗(f )(x) = sup
λ

|Tλ(f )(x)| ≤ sup
λ �=0

|Tλ(f )(x)| + |TΩ(f )(x)| ,(3.1)

where TΩ denotes the singular integral operator, which is defined by

TΩ(f )(x) = p.v.
∫

Rn

Ω(y)

|y|n f (x − y)dy .

Since Ω ∈ H 1(Sn−1), by the Lp boundedness of TΩ (see [3] and [10]), we may assume that
the first supremum in (3.1) is taken over all the nonzero vectors λ = (λ2, . . . , λd).

Let ψ ∈ C∞
0 (R+) be a nonnegative function such that supp(ψ) ⊆ {1/4 < t < 1} and

∞∑
j=−∞

ψj (t) = 1 for t > 0 ,

where ψj (t) = ψ(2−j t). DenoteK(y) = Ω(y)|y|−n and decompose the kernel K by

K(y) =
∞∑

j=−∞
Kj(y) ,
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where Kj (y) = ψj(|y|)K(y). For λ ∈ Rd−1 \ {0}, let j0 ∈ Z such that 2j0 ≤ 1/N(λ) <
2j0+1, where N(λ) is given by

N(λ) =
∑

2≤k≤d
|λk|1/k .

Thus, we may write

Tλf (x) = T −
λ f (x)+ T +

λ f (x) ,(3.2)

where

T −
λ f (x) =

∑
j≤j0

∫
Rn
eiQλ(|y|)Kj (y)f (x − y)dy and T +

λ f (x) = Tλf (x)− T −
λ f (x) .

(3.3)

We first give the estimate of ‖ supλ |T −
λ (f )|‖Lp . Note that

∑
j≤j0

Kj (y) = K(y) for |y| ≤
2j0−1 and ψ(|y|) ∈ C∞

0 (R
n). Thus

|T −
λ (f )(x)| ≤

∣∣∣∣
∫

|y|≤2j0−1
eiQλ(|y|)K(y)f (x − y)dy

∣∣∣∣
+

∫
2j0−1≤|y|≤2j0

|Ω(y)|
|y|n |f (x − y)|dy

=: I + II .

(3.4)

It is easy to see that

II ≤ CMΩf (x) ,

where C = C(n) and MΩ is the maximal operator with homogeneous kernel defined by

MΩf (x) = sup
t>0

1

tn

∫
|y|≤t

|Ω(y)||f (x − y)|dy .

Now we consider the term I. Note that

|eiQλ(|y|) − 1| ≤ C
∑

2≤k≤d
|λk||y|k ≤ C

∑
2≤k≤d

N(λ)k |y|k ≤ CN(λ)|y| ,

since |λk| ≤ N(λ)k and N(λ)|y| < 1 for |y| ≤ 2j0−1. Then, the term I can be dominated by∣∣∣∣
∫

|y|≤2j0−1

Ω(y)

|y|n f (x − y)dy

∣∣∣∣ +
∣∣∣∣
∫

|y|≤2j0−1
(eiQλ(|y|) − 1)

Ω(y)

|y|n f (x − y)dy

∣∣∣∣
≤

∣∣∣∣
∫

Rn

Ω(y)

|y|n f (x − y)dy

∣∣∣∣ + sup
ε>0

∣∣∣∣
∫

|y|≥ε
Ω(y)

|y|n f (x − y)dy

∣∣∣∣
+ CN(λ)

∫
|y|≤ 1

2N(λ)

|Ω(y)|
|y|n−1 |f (x − y)|dy

≤ |TΩ(f )(x)| + T ∗
Ω(f )(x)+ CMΩ(f )(x) ,
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where the constant C is independent on λ and T ∗
Ω denotes the truncated singular integral

maximal operator with homogeneous kernel, which is defined by

T ∗
Ω(f )(x) = sup

ε>0

∣∣∣∣
∫

|y|≥ε
Ω(y)

|y|n f (x − y)dy

∣∣∣∣ .
Hence,

|T −
λ (f )(x)| ≤ |TΩ(f )(x)| + T ∗

Ω(f )(x)+ CMΩ(f )(x) .(3.5)

Thus, by the Lp boundedness of TΩ, T ∗
Ω andMΩ (see [3], [5] or [7]), we have∥∥∥ sup

λ

|T −
λ (f )|

∥∥∥
Lp

≤ C‖f ‖Lp ,(3.6)

where the constant C is independent of λ.
Following that, we will estimate ‖ supλ |T +

λ (f )|‖Lp . For δ > 0 and λ = (λ2, . . . , λd),
we denote

δ ◦ λ =
∑

2≤k≤d
δkλk .

Noticing that j0 depends on λ and N(2j ◦ λ) = 2jN(λ), we have

sup
λ

|T +
λ f (x)| = sup

λ

∣∣∣∣ ∑
j>j0

N(2j ◦ λ)−δ0N(2j ◦ λ)δ0T
j
λ f (x)

∣∣∣∣
≤ sup

λ

(
sup
j>j0

|N(2j ◦ λ)δ0T
j
λ f (x)|

) ∞∑
j=j0+1

N(2j ◦ λ)−δ0

≤ C sup
λ

sup
2j>1/N(λ)

|N(2j ◦ λ)δ0T
j
λ f (x)|

= C sup
j

sup
N(2j ◦λ)>1

|N(2j ◦ λ)δ0T
j
λ f (x)| ,

(3.7)

where δ0 is a positive number which will be chosen later. It is trivial that, for j ∈ Z,

Qλ(|y|) =
∑

2≤k≤d
λk|y|k =

∑
2≤k≤d

2jkλk |2−jy|k = Q2j ◦λ(|2−jy|)

and

T
j
λ f (x) =

∫
Rn
eiQλ(|y|)ψj (|y|)Ω(y)|y|n f (x − y)dy

=
∫

Rn
eiQ2j ◦λ(|2−j y|)ψ(2−j |y|)Ω(y)|y|n f (x − y)dy .

(3.8)
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There exists a constant C0 > 0, such that N(λ) ≤ C0|λ| for any vector λ satisfying N(λ) ≥ 1
(see [13, p. 797]). Then, by (3.8),

sup
j

sup
N(2j ◦λ)>1

N(2j ◦ λ)δ0 |T jλ f (x)|

≤ sup
a>0

sup
N(λ)>1

N(λ)δ0

∣∣∣∣
∫

Rn
eiQλ(|ay|)ψ(a|y|)Ω(y)|y|n f (x − y)dy

∣∣∣∣
≤ C

∞∑
l=0

2lδ0 sup
N(λ)≥2l
a>0

∣∣∣∣
∫

Rn
eiQλ(|ay|)ψ(a|y|)Ω(y)|y|n f (x − y)dy

∣∣∣∣
≤ C

∞∑
l=0

2lδ0 sup
|λ|≥2l/C0
a>0

∣∣∣∣
∫

Rn
eiQλ(|ay|)ψ(a|y|)Ω(y)|y|n f (x − y)dy

∣∣∣∣ .

(3.9)

If we can show that there is a δp > 0 such that

( ∫
Rn

sup
|λ|≥2l /C0
a>0

∣∣∣∣
∫

Rn
eiQλ(|ay|)ψ(a|y|)anK(ay)f (x − y)dy

∣∣∣∣pdx
)1/p

≤ C2−lδp‖f ‖Lp ,
(3.10)

then taking δ0 = δp/2 and by (3.7) and (3.9), we have

∥∥∥ sup
λ

|T +
λ (f )|

∥∥∥
Lp

≤ C‖f ‖Lp .

Thus, to complete the proof of Theorem 1.1, we just need to show inequality (3.10). It is easy
to see that, to get (3.10), we need only to show for t ≥ 1/C0,

∥∥∥∥ sup
|λ|≥t
a>0

∣∣∣∣
∫

Rn
eiQλ(|ay|)ψ(a|y|)Ω(y)|y|n f (· − y)dy

∣∣∣∣
∥∥∥∥
Lp

≤ Ct−δp‖f ‖Lp .(3.11)

By a polar coordinate transformation, we have

sup
|λ|≥t
a>0

∣∣∣∣
∫

Rn
eiQλ(|ay|)ψ(a|y|)Ω(y)|y|n f (x − y)dy

∣∣∣∣
≤

∫
Sn−1

|Ω(y ′)| sup
|λ|≥t
a>0

∣∣∣∣
∫ ∞

0
eiQλ(ar)ψ(ar)

1

r
f (x − ry ′)dr

∣∣∣∣dσ(y ′) .
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By the above inequality and Minkowski’s inequality, we have

( ∫
Rn

sup
|λ|≥t
a>0

∣∣∣∣
∫

Rn
eiQλ(|ay|)ψ(a|y|)Ω(y)|y|n f (x − y)dy

∣∣∣∣pdx
)1/p

≤
[∫

Rn

(∫
Sn−1

|Ω(y ′)| sup
|λ|≥t
a>0

∣∣∣∣
∫ ∞

0
eiQλ(ar)ψ(ar)

1

r
f (x − ry ′)dr

∣∣∣∣dσ(y ′)
)p
dx

]1/p

≤
∫
Sn−1

|Ω(y ′)|
(∫

Rn
sup
|λ|≥t
a>0

∣∣∣∣
∫ ∞

0
eiQλ(ar)ψ(ar)

1

r
f (x − ry ′)dr

∣∣∣∣pdx
)1/p

dσ(y ′)

=
∫
Sn−1

|Ω(y ′)|
(∫

L⊥
y′

∫
R

sup
|λ|≥t
a>0

∣∣∣∣
∫ ∞

0
eiQλ(ar)ψ(ar)

× 1

r
f (z+ (s − r)y ′)dr

∣∣∣∣pdsdz
)1/p

dσ(y ′) ,

(3.12)

where for fixed y ′ ∈ Sn−1, Ly ′ denotes the line through the origin containing y ′. Thus for
x ∈ Rn, there are s ∈ R and z ∈ L⊥

y ′ such that x = sy ′ + z and this decomposition is unique.

Moreover, for fixed y ′ and z ∈ L⊥
y ′ , denote f (z + sy ′) by fy ′,z(s). It is obvious that

∫
R

sup
|λ|≥t
a>0

∣∣∣∣
∫ ∞

0
eiQλ(ar)ψ(ar)

1

r
f (z + (s − r)y ′)dr

∣∣∣∣pds

≤
∞∑
k=0

∫
R

sup
2k+1t≥|λ|≥2kt

a>0

∣∣∣∣
∫ ∞

0
eiQλ(ar)ψ(ar)

1

r
fy ′,z(s − r)dr

∣∣∣∣pds .

Now, for t ≥ 1/C0, we define a maximal operator Rt by

Rt (g)(s) = sup
2t≥|λ|≥t
a>0

∣∣∣∣
∫ ∞

0
eiQλ(ar)ψ(ar)

1

r
g(s − r)dr

∣∣∣∣ .

If we can show that there exists a C > 0 such that, for t ≥ 1/C0 and g ∈ Lp(R) (1 < p <

∞),

‖Rt (g)‖Lp(R) ≤ Ct−δp‖g‖Lp(R) ,(3.13)
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then by (3.12),( ∫
Rn

sup
|λ|≥t
a>0

∣∣∣∣
∫

Rn
eiQλ(|ay|)ψ(a|y|)Ω(y)|y|n f (x − y)dy

∣∣∣∣pdx
)1/p

≤
∫
Sn−1

|Ω(y ′)|
(∫

L⊥
y′

∞∑
k=0

‖R2kt (fy ′,z(·))‖pLp(R)dz
)1/p

dσ(y ′)

≤ Ct−δp
∫
Sn−1

|Ω(y ′)|
( ∫

L⊥
y′

∞∑
k=0

2−kpδp
∫

R

|fy ′,z(s)|pdsdz
)1/p

dσ(y ′)

≤ Ct−δp‖Ω‖L1(Sn−1)‖f ‖Lp(Rn) .
Hence, to get (3.11), it suffices to prove (3.13). Note that ψ is a smooth function supported
on (1/4, 1). It is trivial that∣∣∣∣

∫ ∞

0
eiQλ(ar)ψ(ar)

1

r
g(s − r)dr

∣∣∣∣ ≤ 4a
∫ 1/a

1/4a
|g(s − r)|dr ≤ CM(g)(s) ,

where M denotes the Hardy-Littlewood maximal operator on R. Thus, for 1 < p < ∞,

‖Rt (g)‖Lp(R) ≤ C‖g‖Lp(R) ,(3.14)

where C is independent of t . If we can prove that, for some δ2 > 0,

‖Rt (g)‖L2(R) ≤ Ct−δ2‖g‖L2(R)(3.15)

with C is independent of t , then (3.13) follows by using Marcinkiewicz interpolation theorem
between (3.14) and (3.15) with δp = min{2/p, 2/p′}θδ2, where 0 < θ < p/(2p − 1).

We devote ourselves to the proof of (3.15) in the following. By the definition of Rt , for
fixed s ∈ R, there are a nonzero vector λ(s) in Rd−1 satisfying t ≤ |λ(s)| ≤ 2t and a positive
number a(s) such that∣∣∣∣

∫ ∞

0
eiQλ(s)(a(s)r)ψ(a(s)r)

1

r
g(s − r)dr

∣∣∣∣ ≥ 1

2
Rt (g)(s) .(3.16)

For fixed vector valued function λ(·) and positive real valued function a(·), we define

Lλ,a(g)(s) =
∫

R

eiQλ(s)(a(s)r)ψ(a(s)r)
1

r
g(s − r)dr .

Thus, by (3.16), to get (3.15) we just need to estimate the L2 norm of Lλ,a(g). That is, we
have to prove

‖Lλ,a(g)‖L2(R) ≤ Ct−δ2‖g‖L2(R) ,(3.17)

where C is independent of t and the choices of λ(·) and a(·).
For fixed λ(·) and a(·), L∗

λ,a denote the adjoint operator of Lλ,a . Thus, L∗
λ,a can be

represented as

L∗
λ,a(h)(r) =

∫
R

e−iQλ(s)(a(s)(s−r))ψ(a(s)(s − r))
1

s − r
h(s)ds .
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We consider the L2 norm of Lλ,aL∗
λ,a(g). It is easy to verify that

Lλ,aL∗
λ,a(g)(s) =

∫
R

K(s, u)g(u)du ,

where

K(s, u)=
∫

R

eiQλ(s)(a(s)r)e−iQλ(u)(a(u)(u−s+r))ψ(a(s)r)1

r
ψ(a(u)(u− s + r))

1

u− s + r
dr

=
(
eiQλ(s)(a(s)·)ψ(a(s)·)1

·
)

∗
(
e−iQλ(u)(−a(u)·)ψ(−a(u)·) 1

(−·)
)
(s − u).

We claim that

|K(s, u)| ≤ C
{
t−2δ2a(s)χI2(a(s)(s − u))+ a(s)χEλ(s) (a(s)(s − u))

+ t−2δ2a(u)χI2(a(u)(s − u))+ a(u)χEλ(u)(a(u)(s − u))
}
,

(3.18)

where Eλ(s) and Eλ(u) are subsets of I2 := (−2, 2) satisfying |Eλ(s)|, |Eλ(u)| ≤ t−4δ2 for
δ2 = (6d)−1. Once we verify (3.18), then (3.17) can be deduced from (3.18). In fact,

|〈Lλ,aL∗
λ,a(g), �〉| ≤

∫
R

∫
R

|K(s, u)||g(u)||�(s)|duds

≤ Ct−2δ2

∫
R

|�(s)|a(s)
∫
|s−u|≤2/a(s)

|g(u)|duds

+ C

∫
R

|�(s)|a(s)
∫

R

χEλ(s)
(
a(s)(s − u)

)|g(u)|duds
+ Ct−2δ2

∫
R

|g(u)|a(u)
∫
|s−u|≤2/a(u)

|�(s)|dsdu

+ C

∫
R

|g(u)|a(u)
∫

R

χEλ(u)
(
a(u)(s − u)

)|�(s)|dsdu
≤ Ct−2δ2

∫
R

|�(s)|M(g)(s)ds + C

∫
R

|�(s)|Mε(g)(s)ds

+ Ct−2δ2

∫
R

|g(u)|M(�)(u)du+ C

∫
R

|g(u)|Mε(�)(u)du ,

where ε = t−4δ2 . Using Hölder’s inequality, the L2 boundedness ofM (see [12]) and Lemma
2.3, we get

|〈Lλ,aL∗
λ,ag, �〉| ≤ Ct−2δ2‖g‖L2(R)‖�‖L2(R) ,(3.19)

and (3.17) follows from (3.19). Thus, in order to finish the proof of Theorem 1.1, it remains
to verify the claim (3.18).

For fixed s, u and function a(·), λ(·), let w = s − u, µ = λ(u), ν = λ(s), a1 = a(u),
a2 = a(s). Then, for fixed s, u, K(s, u) can be represented as

K(s, u) =
∫

R

eiQν(a2r)e−iQµ(a1(r−w))ψ(a2r)
1

r
ψ(a1(r −w))

1

r −w
dr .
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First we assume that a2 ≥ a1. Thus, h = a1/a2 ≤ 1. By rescaling by a1, we obtain

K(s, u) =
∫

R

eiQν(r/h)e−iQµ(r−a1w)ψ(r/h)
1

r
ψ(r − a1w)

a1

r − a1w
dr .

Hence, if we denote

Fµ,ν
h (w)=

∫
R

eiQν(r/h)e−iQµ(r−w)ψ(r/h)1

r
ψ(r −w)

1

r − w
dr

=
∫

R

eiQν(r)e−iQµ(hr−w)ψ(r)
1

r
ψ(hr − w)

1

hr −w
dr ,

then we have

K(s, u) = a1Fµ,ν
h (a1w) .

Assume that, for t ≤ |µ|, |ν| ≤ 2t and 0 < h ≤ 1, there is a measurable set Eµ in I2 with
|Eµ| ≤ t−4δ2 such that

|Fµ,ν
h (w)| ≤ C(t−2δ2χI2(w)+ χEµ(w)) .(3.20)

Then when a(s) ≥ a(u),

|K(s, u)| ≤ C(t−2δ2a1χI2(a1w)+ a1χEµ(a1w))

=C[t−2δ2a(u)χI2(a(u)(s − u))+ a(u)χEλ(u)(a(u)(s − u))] .
By the symmetry of u and s, we can get similar inequality as above when a(s) ≤ a(u). Thus,
(3.18) is proved under this assumption.

Following that, we just need to verify the existence of Eµ with the inequality (3.20). The
discussion will be divided into two cases: h is near the origin and away from the origin.

CASE 1. 0 < h ≤ η � 1, where η will be chosen later. If we denote ν1 = 0,(
k
j

) = k · (k − 1) · · · (k − j + 1)/j ! and
(
k
j

) = 0 if k < j , by a trivial calculation we have

Qν(r)−Qµ(hr −w) =
d∑
j=2

νj r
j −

[
Qµ(−w)+

d∑
j=1

hj rj
d∑
k=2

(
k

j

)
µk(−w)k−j

]

=
d∑
j=1

rj
(
νj − hj

d∑
k=2

(
k

j

)
µk(−w)k−j

)
−Qµ(−w) .

(3.21)

If r and hr−w are in supp(ψ) ⊆ {1/4 < r ≤ 1}, then we have |w| ≤ |hr−w|+hr ≤ 1+h ≤ 2
and

d∑
j=1

∣∣∣∣νj − hj
d∑
k=2

(
k

j

)
µk(−w)k−j

∣∣∣∣ ≥
d∑
j=2

|νj | −
d∑
j=1

hj
d∑
k=2

(
k

j

)
|µk||w|k−j

≥
d∑
j=2

|νj | − Ch

d∑
k=2

|µk| .
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If η is chosen small enough, since t ≤ |µ|, |ν| ≤ 2t , we get
d∑
j=1

∣∣∣∣νj − hj
d∑
k=2

(
k

j

)
µk(−w)k−j

∣∣∣∣ ≥
d∑
j=2

|νj | − Cη

d∑
k=2

|µk| ≥ C

d∑
j=2

|νj | ≥ Ct .

By Lemma 2.1, we have ∣∣Fµ,ν
h (w)

∣∣ ≤ Ct−1/dχI2(w) .(3.22)

CASE 2. η < h ≤ 1 and η is fixed now. We consider the term of degree 1 in r in the
phase Qν(r) − Qµ(hr − w). Since there is no first order term in r in Qν(r), by (3.21), the
first order term of the above is

−rh
d∑
k=2

kµk(−w)k−1 .

Since h > η, by Lemma 2.1, we get

|Fµ,ν
h (w)| ≤ C

∣∣∣∣
d∑
k=2

kµk(−w)k−1
∣∣∣∣−1/d

χI2(w) .

We define

Eµ =
{
w ∈ I2 ;

∣∣∣∣
d∑
k=2

kµk(−w)k−1
∣∣∣∣ ≤ ρ

}
,

and ρ will be chosen later. For w ∈ (Eµ)c, it is obvious that

|Fµ,ν
h (w)| ≤ Cρ−1/dχI2(w) .(3.23)

By Lemma 2.2, we obtain

|Eµ| ≤ C

( d∑
k=2

k|µk|
)−1/d

ρ1/d .

Note that
d∑
k=2

k|µk| ≥
d∑
k=2

|µk| = |µ| ≥ t .

Thus for w ∈ Eµ, we have

|Fµ,ν
h (w)| ≤ CχEµ(w) ,(3.24)

with |Eµ| ≤ C(ρ/t)1/d .

Specially, we take ρ = c̄t1/3 with c̄ appropriately small. Since t ≥ 1/C0 > 0 and
δ2 = 1/6d, it follows from (3.22), (3.23) and (3.24) that

|Fµ,ν
h (w)| ≤ C(t−2δ2χI2(w)+ χEµ(w))

with |Eµ| ≤ t−4δ2 , that is, the estimate (3.20) is satisfied for Eµ.
Thus, we complete the proof of Theorem 1.1.
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