# A TRANSFORMATION FORMULA FOR APPELL'S HYPERGEOMETRIC FUNCTION $F_{1}$ AND COMMON LIMITS OF TRIPLE SEQUENCES BY MEAN ITERATIONS 

Keisi Matsumoto

(Received June 19, 2009, revised January 25, 2010)


#### Abstract

In this paper, we give a transformation formula for Appell's hypergeometric function $F_{1}$. As applications of this formula, we show that some common limits of triple sequences given by mean iterations of 3-terms can be expressed by $F_{1}$.


Introduction. It is known that the hypergeometric function

$$
F(\alpha, \beta, \gamma ; z)=\sum_{n=0}^{\infty} \frac{(\alpha, n)(\beta, n)}{(\gamma, n)(1, n)} z^{n}
$$

satisfies the Gauss quadratic transformation formula:

$$
(1+z)^{2 \alpha} F\left(\alpha, \alpha-\beta+\frac{1}{2}, \beta+\frac{1}{2} ; z^{2}\right)=F\left(\alpha, \beta, 2 \beta ; \frac{4 z}{(1+z)^{2}}\right) .
$$

By substituting $b / a=(1-z) /(1+z), \alpha=\beta=1 / 2$ into this equality, we have

$$
\frac{(a+b) / 2}{F\left(1 / 2,1 / 2,1 ; 1-(2 \sqrt{a b} /(a+b))^{2}\right)}=\frac{a}{F\left(1 / 2,1 / 2,1 ; 1-b^{2} / a^{2}\right)},
$$

which means that $a / F\left(1 / 2,1 / 2,1 ; 1-b^{2} / a^{2}\right)$ is invariant under $(a, b) \mapsto((a+b) / 2, \sqrt{a b})$. This invariance implies that $a / F\left(1 / 2,1 / 2,1 ; 1-b^{2} / a^{2}\right)$ coincides with the arithmeticgeometric mean of $a$ and $b$. By using Goursat's list of transformation formulas in [3], we give a table of double sequences by mean iterations and expressions of their common limits by the hypergeometric function in [4]. It is shown in [7], [8] and [6] that transformation formulas of hypergeometric functions of multi variables imply expressions of common limits of multiple sequences by mean iterations. And these transformation formulas are extended to ones with a parameter in [9].

In this paper, we give a transformation formula for Appell's hypergeometric function $F_{1}\left(\alpha, \beta_{1}, \beta_{2}, \gamma ; z_{1}, z_{2}\right)$ of two variables $z_{1}, z_{2}$ in Theorem 1.1. As applications of Theorem 1.1, we show that some common limits of triple sequences given by mean iterations of 3-terms

[^0]can be expressed by $F_{1}$. Let $\left(a_{n}, b_{n}, c_{n}\right)$ be a triple sequence with initial $(a, b, c)$ given by the mean iteration of 3-terms:
$$
\left(a_{n+1}, b_{n+1}, c_{n+1}\right)=\left(\frac{\sqrt{a_{n}}\left(\sqrt{b_{n}}+\sqrt{c_{n}}\right)}{2}, \frac{\sqrt{b_{n}}\left(\sqrt{c_{n}}+\sqrt{a_{n}}\right)}{2}, \frac{\sqrt{c_{n}}\left(\sqrt{a_{n}}+\sqrt{b_{n}}\right)}{2}\right)
$$

Theorem 2.2 states that its common limit can be expressed as

$$
\frac{a}{F_{1}(1,1 / 2,1 / 2,3 / 2 ; 1-b / a, 1-c / a)} .
$$

For the case $b=c$, the triple sequence $\left(a_{n}, b_{n}, c_{n}\right)$ reduces to a double sequence with initial $(a, b)$ given as

$$
\left(a_{n+1}, b_{n+1}\right)=\left(\sqrt{a_{n} b_{n}}, \frac{\sqrt{b_{n}}\left(\sqrt{a_{n}}+\sqrt{b_{n}}\right)}{2}\right)
$$

It is studied in [1], [2] and [4] that its common limit can be expressed as $a / F(1,1,3 / 2 ; 1-$ $b / a)$.

We also express common limits of modified triple sequences $\left(a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}\right)$ in Theorem 2.4.

1. Transformation formula. Appell's hypergeometric function $F_{1}$ of 2-variables $z_{1}, z_{2}$ with parameters $\alpha, \beta_{1}, \beta_{2}, \gamma$ is defined as

$$
F_{1}\left(\alpha, \beta_{1}, \beta_{2}, \gamma ; z\right)=\sum_{n_{1}, n_{2}=0}^{\infty} \frac{\left(\alpha, n_{1}+n_{2}\right)\left(\beta_{1}, n_{1}\right)\left(\beta_{2}, n_{2}\right)}{\left(\gamma, n_{1}+n_{2}\right)\left(1, n_{1}\right)\left(1, n_{2}\right)} z_{1}^{n_{1}} z_{2}^{n_{2}},
$$

where $z=\left(z_{1}, z_{2}\right)$ satisfies $\left|z_{j}\right|<1(j=1,2), \gamma \neq 0,-1,-2, \ldots$ and $(\alpha, n)=\alpha(\alpha+$ 1) $\cdots(\alpha+n-1)=\Gamma(\alpha+n) / \Gamma(\alpha)$. This function admits an integral representation of Euler type:

$$
F_{1}\left(\alpha, \beta_{1}, \beta_{2}, \gamma ; z\right)
$$

$$
\begin{equation*}
=\frac{\Gamma(\gamma)}{\Gamma(\alpha) \Gamma(\gamma-\alpha)} \int_{0}^{1} t^{\alpha}(1-t)^{\gamma-\alpha}\left(1-z_{1} t\right)^{-\beta_{1}}\left(1-z_{2} t\right)^{-\beta_{2}} \frac{d t}{t(1-t)} . \tag{1}
\end{equation*}
$$

For properties of Appell's hypergeometric function $F_{1}$, refer to [5] and [10].
THEOREM 1.1. We have a transformation formula for $F_{1}$ :

$$
\begin{align*}
& \left(z_{1} z_{2}\right)^{(1-p) / 2}\left(\frac{z_{1}+z_{2}}{2}\right)^{p} F_{1}\left(\frac{3+p}{4}, \frac{1+p}{4}, \frac{1+p}{4}, \frac{3+3 p}{4} ; 1-z_{1}^{2}, 1-z_{2}^{2}\right) \\
= & F_{1}\left(p, \frac{1+p}{4}, \frac{1+p}{4}, \frac{3+3 p}{4} ; 1-\frac{z_{1}\left(1+z_{2}\right)}{z_{1}+z_{2}}, 1-\frac{z_{2}\left(1+z_{1}\right)}{z_{1}+z_{2}}\right), \tag{2}
\end{align*}
$$

where $\left(z_{1}, z_{2}\right)$ is in a small neighbourhood of $(1,1)$ and the values of $\left(z_{1} z_{2}\right)^{(1-p) / 2}$ and $\left(\left(z_{1}+z_{2}\right) / 2\right)^{p}$ at $\left(z_{1}, z_{2}\right)=(1,1)$ are 1 .

Proof. Consider the following vector-valued functions

$$
{ }^{t}\left(F_{0}, \frac{\partial F_{0}}{\partial z_{1}}, \frac{\partial F_{0}}{\partial z_{2}}\right), \quad{ }^{t}\left(G_{0}, \frac{\partial G_{0}}{\partial z_{1}}, \frac{\partial G_{0}}{\partial z_{2}}\right),
$$

where $F_{0}\left(z_{1}, z_{2}\right)$ and $G_{0}\left(z_{1}, z_{2}\right)$ are the left- and right-hand sides of (2), respectively. Each of them takes the value ${ }^{t}(1,-p / 6,-p / 6)$ at $\left(z_{1}, z_{2}\right)=(1,1)$ and satisfies an integrable Pfaffian system

$$
d F(z)=\left(\Omega_{1} d z_{1}+\Omega_{2} d z_{2}\right) F(z)
$$

where $\Omega_{1}$ and $\Omega_{2}$ are

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{p(1+p) z_{2}\left(1+z_{1} z_{2}\right)}{2 z_{1}\left(1-z_{1}^{2}\right)\left(z_{1}+z_{2}\right)^{2}} & \frac{(1+p)\left(\left(2 z_{1}^{2}-1\right)\left(2 z_{1}^{2}-z_{2}^{2}\right)-z_{1}^{2} z_{2}^{2}\right)}{2 z_{1}\left(1-z_{1}^{2}\right)\left(z_{1}^{2}-z_{2}^{2}\right)}+\frac{2 p}{z_{1}+z_{2}} & \frac{(1+p) z_{2}\left(1-z_{2}^{2}\right)}{2\left(1-z_{1}^{2}\right)\left(z_{1}^{2}-z_{2}^{2}\right)} \\
\frac{-p(1+p)}{2\left(z_{1}+z_{2}\right)^{2}} & \frac{z_{1}\left((1-p) z_{1}+2 p z_{2}\right)}{2 z_{2}\left(z_{1}^{2}-z_{2}^{2}\right)} & \frac{-z_{2}\left((1-p) z_{2}+2 p z_{1}\right)}{2 z_{1}\left(z_{1}^{2}-z_{2}^{2}\right)}
\end{array}\right)
$$

and

$$
\left(\begin{array}{ccc}
0 & 0 & 1 \\
\frac{-p(1+p)}{2\left(z_{1}+z_{2}\right)^{2}} & \frac{z_{1}\left((1-p) z_{1}+2 p z_{2}\right)}{2 z_{2}\left(z_{1}^{2}-z_{2}^{2}\right)} & \frac{-z_{2}\left((1-p) z_{2}+2 p z_{1}\right)}{2 z_{1}\left(z_{1}^{2}-z_{2}^{2}\right)} \\
\frac{p(1+p) z_{1}\left(1+z_{1} z_{2}\right)}{2 z_{2}\left(1-z_{2}^{2}\right)\left(z_{1}+z_{2}\right)^{2}} & \frac{-(1+p) z_{1}\left(1-z_{1}^{2}\right)}{2\left(1-z_{2}^{2}\right)\left(z_{1}^{2}-z_{2}^{2}\right)} & \frac{-(1+p)\left(\left(2 z_{2}^{2}-1\right)\left(2 z_{2}^{2}-z_{1}^{2}\right)-z_{1}^{2} z_{2}^{2}\right)}{2 z_{2}\left(1-z_{2}^{2}\right)\left(z_{1}^{2}-z_{2}^{2}\right)}+\frac{2 p}{z_{1}+z_{2}}
\end{array}\right)
$$

respectively. Thus we have $F_{0}\left(z_{1}, z_{2}\right)=G_{0}\left(z_{1}, z_{2}\right)$. For a way to get the connection matrix $\Omega_{1} d z_{1}+\Omega_{2} d z_{2}$, refer to the proof of Proposition 1 in [6] and Section 4 in [9].

By putting $p=1$ for the equality (2) in Theorem 1.1, we have the following.
Corollary 1.2. For $\left(z_{1}, z_{2}\right)$ in a small neighbourhood of $(1,1)$, we have

$$
\begin{aligned}
& \frac{z_{1}+z_{2}}{2} F_{1}\left(1, \frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; 1-z_{1}^{2}, 1-z_{2}^{2}\right) \\
= & F_{1}\left(1, \frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; 1-\frac{z_{1}\left(1+z_{2}\right)}{z_{1}+z_{2}}, 1-\frac{z_{2}\left(1+z_{1}\right)}{z_{1}+z_{2}}\right) .
\end{aligned}
$$

2. Common limits of triple sequences. Let $\boldsymbol{R}_{+}^{*}$ be the multiplicative group of positive real numbers. We define a map $m:\left(\boldsymbol{R}_{+}^{*}\right)^{3} \rightarrow\left(\boldsymbol{R}_{+}^{*}\right)^{3}$ by

$$
\begin{aligned}
m\left(x_{1}, x_{2}, x_{3}\right) & =\left(m_{1}\left(x_{1}, x_{2}, x_{3}\right), m_{2}\left(x_{1}, x_{2}, x_{3}\right), m_{3}\left(x_{1}, x_{2}, x_{3}\right)\right) \\
& =\left(\frac{\sqrt{x_{1}}\left(\sqrt{x_{2}}+\sqrt{x_{3}}\right)}{2}, \frac{\sqrt{x_{2}}\left(\sqrt{x_{3}}+\sqrt{x_{1}}\right)}{2}, \frac{\sqrt{x_{3}}\left(\sqrt{x_{1}}+\sqrt{x_{2}}\right)}{2}\right) .
\end{aligned}
$$

A triple sequence $\left(a_{n}, b_{n}, c_{n}\right)$ is given by $\left(a_{0}, b_{0}, c_{0}\right)=(a, b, c), a \geq b \geq c \geq 0$,

$$
\begin{equation*}
\left(a_{n+1}, b_{n+1}, c_{n+1}\right)=m\left(a_{n}, b_{n}, c_{n}\right) \tag{3}
\end{equation*}
$$

Lemma 2.1. The sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ converge and satisfy

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n} .
$$

Proof. If $a_{n} \geq b_{n} \geq c_{n}$ then

$$
\begin{aligned}
a_{n}-a_{n+1} & =\frac{\sqrt{a_{n}}\left(\sqrt{a_{n}}-\sqrt{b_{n}}+\sqrt{a_{n}}-\sqrt{c_{n}}\right)}{2} \geq 0, \\
a_{n+1}-b_{n+1} & =\frac{\sqrt{c_{n}}\left(\sqrt{a_{n}}-\sqrt{b_{n}}\right)}{2} \geq 0, \quad b_{n+1}-c_{n+1}=\frac{\sqrt{b_{n}}\left(\sqrt{a_{n}}-\sqrt{b_{n}}\right)}{2} \geq 0, \\
c_{n+1}-c_{n} & =\frac{\sqrt{c_{n}}\left(\sqrt{a_{n}}-\sqrt{c_{n}}+\sqrt{b_{n}}-\sqrt{c_{n}}\right)}{2} \geq 0 .
\end{aligned}
$$

Thus we have

$$
a \geq a_{n} \geq a_{n+1} \geq b_{n+1} \geq c_{n+1} \geq c_{n} \geq c
$$

Since the sequences $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ are bounded and monotonous, they converge. By

$$
a_{n+1}-c_{n+1}=\frac{\sqrt{b_{n}}\left(\sqrt{a_{n}}-\sqrt{c_{n}}\right)}{2}=\frac{\sqrt{b_{n}}}{\sqrt{a_{n}}+\sqrt{c_{n}}} \frac{a_{n}-c_{n}}{2} \leq \frac{1}{2}\left(a_{n}-c_{n}\right),
$$

we have $\lim _{n \rightarrow \infty}\left(a_{n}-c_{n}\right)=0$. Since $a_{n} \geq b_{n} \geq c_{n}$ for any $n \in N,\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ have a common limit.

This common limit of the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ is denoted by $\mu(a, b, c)$.
THEOREM 2.2. The common limit $\mu(a, b, c)$ of the triple sequence (3) can be expressed as

$$
\mu(a, b, c)=\frac{a}{F_{1}(1,1 / 2,1 / 2,3 / 2 ; 1-b / a, 1-c / a)}
$$

PROOF. By putting $\left(z_{1}, z_{2}\right)=\left(\sqrt{b_{n} / a_{n}}, \sqrt{c_{n} / a_{n}}\right)$ for Corollary 1.2, we have

$$
\frac{\sqrt{b_{n}}+\sqrt{c_{n}}}{2 \sqrt{a_{n}}} F\left(\frac{b_{n}}{a_{n}}, \frac{c_{n}}{a_{n}}\right)=F\left(\frac{\sqrt{b_{n}}\left(\sqrt{a_{n}}+\sqrt{c_{n}}\right)}{\sqrt{a_{n}}\left(\sqrt{b_{n}}+\sqrt{c_{n}}\right)}, \frac{\sqrt{c_{n}}\left(\sqrt{a_{n}}+\sqrt{b_{n}}\right)}{\sqrt{a_{n}}\left(\sqrt{b_{n}}+\sqrt{c_{n}}\right)}\right)
$$

where $F\left(z_{1}, z_{2}\right)$ denotes $F_{1}\left(1,1 / 2,1 / 2,3 / 2,1-z_{1}, 1-z_{2}\right)$. This equality implies

$$
\frac{a_{n}}{F\left(b_{n} / a_{n}, c_{n} / a_{n}\right)}=\cdots=\frac{a_{1}}{F\left(b_{1} / a_{1}, c_{1} / a_{1}\right)}=\frac{a_{0}}{F\left(b_{0} / a_{0}, c_{0} / a_{0}\right)} .
$$

Since

$$
\lim _{n \rightarrow \infty} a_{n}=\mu(a, b, c), \quad \lim _{n \rightarrow \infty}\left(\frac{b_{n}}{a_{n}}, \frac{c_{n}}{a_{n}}\right)=(1,1), \quad F(1,1)=1,
$$

the sequence $a_{n} / F\left(b_{n} / a_{n}, c_{n} / a_{n}\right)$ converges to $\mu(a, b, c)$ as $n \rightarrow \infty$.
REmARK 2.3. It is known that the arithmetic-geometric mean of $a$ and $b$ can be expressed by an elliptic integral. The common limit $\mu(a, b, c)$ of the triple sequence (3) can be expressed by an incomplete elliptic integral, since we have

$$
F_{1}\left(1, \frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; z_{1}, z_{2}\right)=\frac{1}{2} \int_{0}^{1} \frac{d t}{\sqrt{(1-t)\left(1-z_{1} t\right)\left(1-z_{2} t\right)}}
$$

Let $m^{(r)}$ be a map from $\left(\boldsymbol{R}_{+}^{*}\right)^{3}$ to $\left(\boldsymbol{R}_{+}^{*}\right)^{3}$ given by

$$
m^{(r)}\left(x_{1}, x_{2}, x_{3}\right)=\left(m_{1}^{(r)}\left(x_{1}, x_{2}, x_{3}\right), m_{2}^{(r)}\left(x_{1}, x_{2}, x_{3}\right), m_{3}^{(r)}\left(x_{1}, x_{2}, x_{3}\right)\right),
$$

where $r \in \boldsymbol{R}_{+}^{*}$ and

$$
m_{i}^{(r)}\left(x_{1}, x_{2}, x_{3}\right)=\sqrt[r]{m_{i}\left(x_{1}^{r}, x_{2}^{r}, x_{3}^{r}\right)}, \quad i=1,2,3
$$

We give a triple sequence $\left(a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}\right)$ by $\left(a_{0}^{\prime}, b_{0}^{\prime}, c_{0}^{\prime}\right)=(a, b, c), a \geq b \geq c \geq 0$,

$$
\begin{equation*}
\left(a_{n+1}^{\prime}, b_{n+1}^{\prime}, c_{n+1}^{\prime}\right)=m^{(r)}\left(a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}\right) \tag{4}
\end{equation*}
$$

Note that the triple sequence $\left(a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}\right)$ for $r=1$ is equal to $\left(a_{n}, b_{n}, c_{n}\right)$ in (3) and that $\left(a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}\right)$ for $r=2$ is given as

$$
\left(a_{n+1}^{\prime}, b_{n+1}^{\prime}, c_{n+1}^{\prime}\right)=\left(\sqrt{\frac{a_{n}^{\prime}\left(b_{n}^{\prime}+c_{n}^{\prime}\right)}{2}}, \sqrt{\frac{b_{n}^{\prime}\left(c_{n}^{\prime}+a_{n}^{\prime}\right)}{2}}, \sqrt{\frac{c_{n}^{\prime}\left(a_{n}^{\prime}+b_{n}^{\prime}\right)}{2}}\right) .
$$

THEOREM 2.4. The triple sequence $\left(a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}\right)$ has a common limit. This value $\mu^{(r)}(a, b, c)$ can be expressed as

$$
\mu^{(r)}(a, b, c)=\frac{a}{\sqrt[r]{F_{1}\left(1,1 / 2,1 / 2,3 / 2 ; 1-b^{r} / a^{r}, 1-c^{r} / a^{r}\right)}}
$$

In particular, $\mu^{(r)}(a, b, c)$ for $r=2$ is given as

$$
\mu^{(2)}(a, b, c)=\frac{a}{\sqrt{F_{1}\left(1,1 / 2,1 / 2,3 / 2 ; 1-b^{2} / a^{2}, 1-c^{2} / a^{2}\right)}}
$$

Proof. By argument similar to the proof of Lemma 2.1, we can easily show that $\left(a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}\right)$ has a common limit. By putting $\left(z_{1}, z_{2}\right)=\left(\left(b_{n}^{\prime} / a_{n}^{\prime}\right)^{r / 2},\left(c_{n}^{\prime} / a_{n}^{\prime}\right)^{r / 2}\right)$ for Corollary 1.2 , we have

$$
\frac{a_{n}^{\prime}}{\sqrt[r]{F\left(\left(b_{n}^{\prime} / a_{n}^{\prime}\right)^{r},\left(c_{n}^{\prime} / a_{n}^{\prime}\right)^{r}\right)}}=\cdots=\frac{a_{1}^{\prime}}{\sqrt[r]{F\left(\left(b_{1}^{\prime} / a_{1}^{\prime}\right)^{r},\left(c_{1}^{\prime} / a_{1}^{\prime}\right)^{r}\right)}}=\frac{a_{0}^{\prime}}{\sqrt[r]{F\left(\left(b_{0}^{\prime} / a_{0}^{\prime}\right)^{r},\left(c_{0}^{\prime} / a_{0}^{\prime} r^{r}\right)\right.}} .
$$

For these equalities, consider the limit as $n \rightarrow \infty$.
COROLLARY 2.5. We have an infinite product expression:

$$
F_{1}\left(1, \frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; 1-z_{1}^{r}, 1-z_{2}^{r}\right)=\prod_{n=0}^{\infty}\left(\frac{a_{n}^{\prime}}{a_{n+1}^{\prime}}\right)^{r}
$$

where $0<z_{2} \leq z_{1} \leq 1, r \in \boldsymbol{R}_{+}^{*}$, and the triple sequence ( $a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}$ ) is given in (4) with initial $(a, b, c)=\left(1, z_{1}, z_{2}\right)$.

Proof. The infinite product $\prod_{n=0}^{\infty}\left(a_{n}^{\prime} / a_{n+1}^{\prime}\right)$ converges to $a / \mu^{(r)}(a, b, c)$. Theorem 2.4 implies this corollary.

For the case $b=c$, the triple sequences $\left(a_{n}, b_{n}, c_{n}\right)$ and $\left(a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}\right)$ for $r=2$ reduce to the double sequences with initial $(a, b)$ given as

$$
\left(a_{n+1}, b_{n+1}\right)=\left(\sqrt{a_{n} b_{n}}, \frac{\sqrt{b_{n}}\left(\sqrt{a_{n}}+\sqrt{b_{n}}\right)}{2}\right),\left(a_{n+1}^{\prime}, b_{n+1}^{\prime}\right)=\left(\sqrt{a_{n}^{\prime} b_{n}^{\prime}}, \sqrt{\frac{b_{n}^{\prime}\left(a_{n}^{\prime}+b_{n}^{\prime}\right)}{2}}\right)
$$

respectively. It is shown in [4] that their common limits $\mu(a, b)$ and $\mu^{(2)}(a, b)$ can be expressed as $a / F(1,1,3 / 2 ; 1-b / a)$ and $a / \sqrt{F\left(1,1,3 / 2 ; 1-b^{2} / a^{2}\right)}$, respectively. Refer also to [1] and [2]. Note that these expression can be obtained by Theorems 2.2 and 2.4 together with the integral representation (1).

## References

[1] J. M. Borwein and P. B. Borwein, Pi and the AGM, Canad. Math. Soc. Ser. Monogr. Adv. Texts 4, A Wiley-Interscience Publication, Jhon Wiley \& Sons, Inc., New York, 1998.
[2] B. C. Carlson, Algorithms involving arithmetic and geometric means, Amer. Math. Monthly 78 (1971), 496-505.
[3] E. M. Goursat, Sur l'équation différentielle linéaire qui admet pour intégrale la série hypergéométrique, Ann. Sci. École Norm. Sup. (2) 10 (1881), 3-142.
[ 4 ] R. Hattori, T. Kato and K. Matsumoto, Mean iterations derived from transformation formulas for the hypergeometric function, Hokkaido Math. J. 38 (2009), 563-586.
[5] K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Aspects Math. E16, Friedr, Vieweg \& Sohn, Braunschweig, Wiesbaden, 1991.
[6] T. Kato and K. Matsumoto, A quadruple sequence and the hypergeometric function $F_{D}$ of three variables, Nagoya Math. J. 195 (2009), 113-124.
[7] K. Koike and H. Shiga, Isogeny formulas for the Picard modular form and a three terms arithmetic geometric mean, J. Number Theory 124 (2007), 123-141.
[8] K. Koike and H. Shiga, Extended Gauss AGM and corresponding Picard modular forms, J. Number Theory 128 (2008), 2097-2126.
[9] K. Matsumoto and K. Ohara, Some transformation formulas for Lauricella's hypergeometric functions $F_{D}$, Funkcial. Ekvac. 52 (2009), 203-212.
[10] M. Yoshida, Fuchsian differential equations, Aspects Math. E11, Friedr, Vieweg \& Sohn, Braunschweig, Wiesbaden, 1987.

Department of Mathematics
Hokkaido University
SAPPORO 060-0810
JAPAN
E-mail address: matsu@math.sci.hokudai.ac.jp


[^0]:    2000 Mathematics Subject Classification. Primary 26A18; Secondary 33C65.
    Key words and phrases. Hypergeometric function, arithmetic-geometric mean, mean iteration.
    Partly supported by the Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science.

