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A TRANSFORMATION FORMULA
FOR APPELL’S HYPERGEOMETRIC FUNCTION F1

AND COMMON LIMITS OF TRIPLE SEQUENCES
BY MEAN ITERATIONS
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Abstract. In this paper, we give a transformation formula for Appell’s hypergeometric
function F1. As applications of this formula, we show that some common limits of triple
sequences given by mean iterations of 3-terms can be expressed by F1.

Introduction. It is known that the hypergeometric function

F(α, β, γ ; z) =
∞∑

n=0

(α, n)(β, n)

(γ, n)(1, n)
zn

satisfies the Gauss quadratic transformation formula:

(1 + z)2αF

(
α, α − β + 1

2
, β + 1

2
; z2

)
= F

(
α, β, 2β; 4z

(1 + z)2

)
.

By substituting b/a = (1 − z)/(1 + z), α = β = 1/2 into this equality, we have

(a + b)/2

F(1/2, 1/2, 1; 1 − (2
√

ab/(a + b))2)
= a

F(1/2, 1/2, 1; 1 − b2/a2)
,

which means that a/F(1/2, 1/2, 1; 1−b2/a2) is invariant under (a, b) �→ ((a +b)/2,
√

ab).
This invariance implies that a/F(1/2, 1/2, 1; 1 − b2/a2) coincides with the arithmetic-
geometric mean of a and b. By using Goursat’s list of transformation formulas in [3], we
give a table of double sequences by mean iterations and expressions of their common limits
by the hypergeometric function in [4]. It is shown in [7], [8] and [6] that transformation for-
mulas of hypergeometric functions of multi variables imply expressions of common limits of
multiple sequences by mean iterations. And these transformation formulas are extended to
ones with a parameter in [9].

In this paper, we give a transformation formula for Appell’s hypergeometric function
F1(α, β1, β2, γ ; z1, z2) of two variables z1, z2 in Theorem 1.1. As applications of Theorem
1.1, we show that some common limits of triple sequences given by mean iterations of 3-terms
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can be expressed by F1. Let (an, bn, cn) be a triple sequence with initial (a, b, c) given by the
mean iteration of 3-terms:

(an+1, bn+1, cn+1) =
(√

an(
√

bn+√
cn)

2
,

√
bn(

√
cn+√

an)

2
,

√
cn(

√
an+√

bn)

2

)
.

Theorem 2.2 states that its common limit can be expressed as
a

F1(1, 1/2, 1/2, 3/2; 1 − b/a, 1 − c/a)
.

For the case b = c, the triple sequence (an, bn, cn) reduces to a double sequence with initial
(a, b) given as

(an+1, bn+1) =
(√

anbn,

√
bn(

√
an + √

bn)

2

)
.

It is studied in [1], [2] and [4] that its common limit can be expressed as a/F(1, 1, 3/2; 1 −
b/a).

We also express common limits of modified triple sequences (a′
n, b

′
n, c

′
n) in Theorem 2.4.

1. Transformation formula. Appell’s hypergeometric function F1 of 2-variables
z1, z2 with parameters α, β1, β2, γ is defined as

F1(α, β1, β2, γ ; z) =
∞∑

n1,n2=0

(α, n1 + n2)(β1, n1)(β2, n2)

(γ, n1 + n2)(1, n1)(1, n2)
z
n1
1 z

n2
2 ,

where z = (z1, z2) satisfies |zj | < 1 (j = 1, 2), γ �= 0,−1,−2, . . . and (α, n) = α(α +
1) · · · (α +n−1) = Γ (α +n)/Γ (α). This function admits an integral representation of Euler
type:

F1(α, β1, β2, γ ; z)

= Γ (γ )

Γ (α)Γ (γ − α)

∫ 1

0
tα(1 − t)γ−α(1 − z1t)

−β1(1 − z2t)
−β2

dt

t (1 − t)
.

(1)

For properties of Appell’s hypergeometric function F1, refer to [5] and [10].

THEOREM 1.1. We have a transformation formula for F1:

(z1z2)
(1−p)/2

(
z1 + z2

2

)p

F1

(
3 + p

4
,

1 + p

4
,

1 + p

4
,

3 + 3p

4
; 1 − z2

1, 1 − z2
2

)

= F1

(
p,

1 + p

4
,

1 + p

4
,

3 + 3p

4
; 1 − z1(1 + z2)

z1 + z2
, 1 − z2(1 + z1)

z1 + z2

)
,

(2)

where (z1, z2) is in a small neighbourhood of (1, 1) and the values of (z1z2)
(1−p)/2 and

((z1 + z2)/2)p at (z1, z2) = (1, 1) are 1.

PROOF. Consider the following vector-valued functions

t
(

F0,
∂F0

∂z1
,
∂F0

∂z2

)
,

t
(

G0,
∂G0

∂z1
,
∂G0

∂z2

)
,
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where F0(z1, z2) and G0(z1, z2) are the left- and right-hand sides of (2), respectively. Each
of them takes the value t (1,−p/6,−p/6) at (z1, z2) = (1, 1) and satisfies an integrable
Pfaffian system

dF(z) = (Ω1dz1 + Ω2dz2)F (z) ,

where Ω1 and Ω2 are


0 1 0

p(1+p)z2(1+z1z2)

2z1(1−z2
1)(z1+z2)2

(1+p)((2z2
1−1)(2z2

1−z2
2)−z2

1z
2
2)

2z1(1−z2
1)(z

2
1−z2

2)
+ 2p

z1+z2

(1+p)z2(1−z2
2)

2(1−z2
1)(z

2
1−z2

2)

−p(1+p)

2(z1+z2)2

z1((1−p)z1+2pz2)

2z2(z
2
1−z2

2)

−z2((1−p)z2+2pz1)

2z1(z
2
1−z2

2)




and


0 0 1

−p(1+p)

2(z1+z2)2

z1((1−p)z1+2pz2)

2z2(z
2
1−z2

2)

−z2((1−p)z2+2pz1)

2z1(z
2
1−z2

2)

p(1+p)z1(1+z1z2)

2z2(1−z2
2)(z1+z2)2

−(1+p)z1(1−z2
1)

2(1−z2
2)(z

2
1−z2

2)

−(1+p)((2z2
2−1)(2z2

2−z2
1)−z2

1z
2
2)

2z2(1−z2
2)(z

2
1−z2

2)
+ 2p

z1+z2




,

respectively. Thus we have F0(z1, z2) = G0(z1, z2). For a way to get the connection matrix
Ω1dz1 + Ω2dz2, refer to the proof of Proposition 1 in [6] and Section 4 in [9]. �

By putting p = 1 for the equality (2) in Theorem 1.1, we have the following.

COROLLARY 1.2. For (z1, z2) in a small neighbourhood of (1, 1), we have

z1 + z2

2
F1

(
1,

1

2
,

1

2
,

3

2
; 1 − z2

1, 1 − z2
2

)

= F1

(
1,

1

2
,

1

2
,

3

2
; 1 − z1(1 + z2)

z1 + z2
, 1 − z2(1 + z1)

z1 + z2

)
.

2. Common limits of triple sequences. Let R∗+ be the multiplicative group of posi-
tive real numbers. We define a map m : (R∗+)3 → (R∗+)3 by

m(x1, x2, x3) = (m1(x1, x2, x3),m2(x1, x2, x3),m3(x1, x2, x3))

=
(√

x1(
√

x2+√
x3)

2
,

√
x2(

√
x3+√

x1)

2
,

√
x3(

√
x1+√

x2)

2

)
.

A triple sequence (an, bn, cn) is given by (a0, b0, c0) = (a, b, c), a ≥ b ≥ c ≥ 0,

(an+1, bn+1, cn+1) = m(an, bn, cn) .(3)
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LEMMA 2.1. The sequences {an}, {bn} and {cn} converge and satisfy

lim
n→∞ an = lim

n→∞ bn = lim
n→∞ cn .

PROOF. If an ≥ bn ≥ cn then

an − an+1 =
√

an(
√

an − √
bn + √

an − √
cn)

2
≥ 0 ,

an+1 − bn+1 =
√

cn(
√

an − √
bn)

2
≥ 0 , bn+1 − cn+1 =

√
bn(

√
an − √

bn)

2
≥ 0 ,

cn+1 − cn =
√

cn(
√

an − √
cn + √

bn − √
cn)

2
≥ 0 .

Thus we have

a ≥ an ≥ an+1 ≥ bn+1 ≥ cn+1 ≥ cn ≥ c .

Since the sequences {an} and {cn} are bounded and monotonous, they converge. By

an+1 − cn+1 =
√

bn(
√

an − √
cn)

2
=

√
bn√

an + √
cn

an − cn

2
≤ 1

2
(an − cn) ,

we have limn→∞(an − cn) = 0. Since an ≥ bn ≥ cn for any n ∈ N , {an}, {bn} and {cn} have
a common limit. �

This common limit of the sequences {an}, {bn} and {cn} is denoted by µ(a, b, c).

THEOREM 2.2. The common limit µ(a, b, c) of the triple sequence (3) can be ex-
pressed as

µ(a, b, c) = a

F1(1, 1/2, 1/2, 3/2; 1 − b/a, 1 − c/a)
.

PROOF. By putting (z1, z2) = (
√

bn/an,
√

cn/an) for Corollary 1.2, we have√
bn + √

cn

2
√

an

F

(
bn

an

,
cn

an

)
= F

(√
bn(

√
an + √

cn)√
an(

√
bn + √

cn)
,

√
cn(

√
an + √

bn)√
an(

√
bn + √

cn)

)

where F(z1, z2) denotes F1(1, 1/2, 1/2, 3/2, 1 − z1, 1 − z2). This equality implies
an

F (bn/an, cn/an)
= · · · = a1

F (b1/a1, c1/a1)
= a0

F(b0/a0, c0/a0)
.

Since

lim
n→∞ an = µ(a, b, c) , lim

n→∞

(
bn

an

,
cn

an

)
= (1, 1) , F (1, 1) = 1 ,

the sequence an/F (bn/an, cn/an) converges to µ(a, b, c) as n → ∞. �

REMARK 2.3. It is known that the arithmetic-geometric mean of a and b can be ex-
pressed by an elliptic integral. The common limit µ(a, b, c) of the triple sequence (3) can be
expressed by an incomplete elliptic integral, since we have

F1

(
1,

1

2
,

1

2
,

3

2
; z1, z2

)
= 1

2

∫ 1

0

dt√
(1 − t)(1 − z1t)(1 − z2t)

.
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Let m(r) be a map from (R∗+)3 to (R∗+)3 given by

m(r)(x1, x2, x3) = (m
(r)
1 (x1, x2, x3),m

(r)
2 (x1, x2, x3),m

(r)
3 (x1, x2, x3)) ,

where r ∈ R∗+ and

m
(r)
i (x1, x2, x3) = r

√
mi(x

r
1, x

r
2, x

r
3), i=1,2,3 .

We give a triple sequence (a′
n, b

′
n, c

′
n) by (a′

0, b
′
0, c

′
0) = (a, b, c), a ≥ b ≥ c ≥ 0,

(a′
n+1, b

′
n+1, c

′
n+1) = m(r)(a′

n, b
′
n, c

′
n) .(4)

Note that the triple sequence (a′
n, b

′
n, c

′
n) for r = 1 is equal to (an, bn, cn) in (3) and that

(a′
n, b

′
n, c

′
n) for r = 2 is given as

(a′
n+1, b

′
n+1, c

′
n+1) =

(√
a′
n(b

′
n+c′

n)

2
,

√
b′
n(c

′
n+a′

n)

2
,

√
c′
n(a

′
n+b′

n)

2

)
.

THEOREM 2.4. The triple sequence (a′
n, b

′
n, c

′
n) has a common limit. This value

µ(r)(a, b, c) can be expressed as

µ(r)(a, b, c) = a

r
√

F1(1, 1/2, 1/2, 3/2; 1 − br/ar, 1 − cr/ar )
.

In particular, µ(r)(a, b, c) for r = 2 is given as

µ(2)(a, b, c) = a√
F1(1, 1/2, 1/2, 3/2; 1 − b2/a2, 1 − c2/a2)

.

PROOF. By argument similar to the proof of Lemma 2.1, we can easily show that
(a′

n, b
′
n, c

′
n) has a common limit. By putting (z1, z2) = ((b′

n/a
′
n)

r/2, (c′
n/a

′
n)

r/2) for Corol-
lary 1.2, we have

a′
n

r
√

F((b′
n/a

′
n)

r , (c′
n/a

′
n)

r)
= · · · = a′

1

r

√
F((b′

1/a
′
1)

r , (c′
1/a

′
1)

r )

= a′
0

r

√
F((b′

0/a
′
0)

r , (c′
0/a

′
0)

r )

.

For these equalities, consider the limit as n → ∞. �

COROLLARY 2.5. We have an infinite product expression:

F1

(
1,

1

2
,

1

2
,

3

2
; 1 − zr

1, 1 − zr
2

)
=

∞∏
n=0

(
a′
n

a′
n+1

)r

,

where 0 < z2 ≤ z1 ≤ 1, r ∈ R∗+, and the triple sequence (a′
n, b

′
n, c

′
n) is given in (4) with

initial (a, b, c) = (1, z1, z2).

PROOF. The infinite product
∏∞

n=0(a
′
n/a

′
n+1) converges to a/µ(r)(a, b, c). Theorem

2.4 implies this corollary. �

For the case b = c, the triple sequences (an, bn, cn) and (a′
n, b

′
n, c

′
n) for r = 2 reduce to

the double sequences with initial (a, b) given as

(an+1, bn+1)=
(√

anbn,

√
bn(

√
an + √

bn)

2

)
, (a′

n+1, b
′
n+1)=

(√
a′
nb

′
n,

√
b′
n(a

′
n + b′

n)

2

)
,
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respectively. It is shown in [4] that their common limits µ(a, b) and µ(2)(a, b) can be ex-
pressed as a/F(1, 1, 3/2; 1 − b/a) and a/

√
F(1, 1, 3/2; 1 − b2/a2), respectively. Refer also

to [1] and [2]. Note that these expression can be obtained by Theorems 2.2 and 2.4 together
with the integral representation (1).
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