Tohoku Math. J.
62 (2010), 75-115

SHESTAKOV-UMIRBAEYV REDUCTIONS AND NAGATA’S CONJECTURE
ON A POLYNOMIAL AUTOMORPHISM

Dedicated to the memory of Professor Masayoshi Nagata
SHIGERU KURODA

(Received October 9, 2008, revised October 13, 2009)

Abstract. In 2003, Shestakov-Umirbaev solved Nagata’s conjecture on an automor-
phism of a polynomial ring. In the present paper, we reconstruct their theory by using the
“generalized Shestakov-Umirbaev inequality”, which was recently given by the author. As a
consequence, we obtain a more precise tameness criterion for polynomial automorphisms. In
particular, we deduce that no tame automorphism of a polynomial ring admits a reduction of
type IV.

1. Introduction. Let k be a field, n a natural number, and k[x] = k[xq, ..., x,] the
polynomial ring in n variables over k. In the present paper, we discuss the structure of the
automorphism group Auty k[x] of k[x] over k. Let F : k[x] — k[x] be an endomorphism
of k[x] over k. We identify F with the n-tuple (fi, ..., f,) of elements of k[x], where f; =
F(x;) for each i. Then, F is an automorphism of k[x] if and only if the k-algebra k[x] is
generated by fi, ..., f,. Note that the sum deg F := ), deg f; of the total degrees of
f1, ..., fu is at least n whenever F is an automorphism. An automorphism F is said to be
affine if deg F' = n, in which case there exist (a;, ;); j € GL, (k) and (b;); € k" suchthat f; =
27:1 a;,jxj + b; for each i. We say that F' is elementary if there exist/ € {1,...,n}and ¢ €
klx1,...,XI—1, Xi+1, ..., Xp] such that f; = x; + ¢ and f; = x; for each i # [. The subgroup
Tk k[x] of Auty k[x] generated by affine automorphisms and elementary automorphisms is
called the tame subgroup, and elements of Ty k[x] are called tame automorphisms.

Itis a fundamental question in polynomial ring theory whether Ty k[x] = Auty k[x] holds
for each n. The equality is obvious if n = 1. It also holds true if n = 2, which was shown by
Jung [4] in 1942 when £ is a field of characteristic zero, and by van der Kulk [5] in 1953 when
k is an arbitrary field. This is a consequence of the result that every automorphism but an affine
automorphism of k[x] admits an elementary reduction if n = 2. Here, we say that F' admits
an elementary reduction if deg F o E < deg F for some elementary automorphism E, that
is, there exist/ € {1,...,n}and ¢ € k[ f1,..., fi—1, fi+1, ..., fu] such that deg(f; + @) <
deg f;. In the case of n = 2, it follows from the result that, for each F € Auty k[x] with
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deg F > 2, there exist elementary automorphisms E1, ..., E, for some r € N such that
degF >degFoFE;>:-->degFoEjo---0E,=2.

This implies that F' is tame.
When n = 3, the structure of Auty k[x] becomes far more difficult. In 1972, Nagata [8]
conjectured that the automorphism

(1.1 F = (x1 = 2(x1x3 + xD)x2 — (x1x3 + xD)%x3, 22 + (0133 + x3)x3, x3)

is not tame. This famous conjecture was finally solved in the affirmative by Shestakov-
Umirbaev [10] in 2003 for a field k of characteristic zero. Therefore, Ty k[x] is not equal
to Aut k[x] if n = 3. We note that the question remains open for n > 4.

Shestakov-Umirbaev [10] showed that, if deg F > 3 for F € Ty k[x], then F admits
an elementary reduction, or there exists a sequence of elementary automorphisms Ejq, ..., E;,
such thatdeg F o Ej o --- 0 E, < deg F, where r € {2, 3, 4}. In the latter case, F satisfies
some special conditions, and is said to admit a reduction of type I, 11, III or IV according to
the conditions. Nagata’s automorphism is not affine, and does not admit neither an elementary
reduction nor any one of the four types of reductions. Therefore, Shestakov-Umirbaev con-
cluded that Nagata’s automorphism is not tame. We note that there exist tame automorphisms
which admit reductions of type I (see [1], [7] and [10]). However, it is not known whether
there exist automorphisms admitting reductions of the other types.

To prove the criterion above, Shestakov-Umirbaev [9, Theorem 3] showed an inequality
concerning the total degrees of polynomials, which was used as a crucial tool. This inequality
was recently generalized by the author [6]. The purpose of this paper is to reconstruct the
Shestakov-Umirbaev theory using the generalized inequality. As a consequence, we obtain a
more precise tameness criterion for polynomial automorphisms. In particular, we deduce that
no tame automorphism of k[x] admits a reduction of type IV (Theorem 7.1).

The main theorem (Theorem 2.1) is formulated in Section 2 using the notion of
the weighted degree of a differential form. In Section 3, we derive some consequences of
the generalized Shestakov-Umirbaev inequality. In Section 4, we investigate properties of
“Shestakov-Umirbaev reductions”, which is roughly speaking a generalization and refinement
of the notions of reductions of types I, I and III. In Section 5, we prove some technical propo-
sitions which form the core of the proof of the main theorem. The main theorem is proved in
Section 6 with the aid of the results in Sections 3, 4 and 5. In Section 7, we discuss relations
with the original theory of Shestakov-Umirbaev. We conclude this paper with some remarks
and an appendix.

2. Main result. In what follows, we assume that the field k is of characteristic zero.
Let I" be a finitely generated totally ordered Z-module, and w = (wy, ..., w,) an n-tuple of
elements of I" with w; > 0 fori = 1, ..., n. Since a finitely generated totally ordered Z-
module is necessarily free, we sometimes regard I" as a Z-submodule of Q ®z I". We define
the w-weighted grading k[x] = @ye r k[x], by setting k[x], to be the k-vector subspace
of k[x] generated by monomials x(l“ cooxp" with Y ajw; = y foreach y € I'. For
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f € k[x] \ {0}, we define the w-degree deg,, f of f to be the maximum among y € I" with
fy # 0, where f, € k[x], for each y such that f = Zye]" fy. We define f¥ = f5, where
8 = degy, f. Incase f = 0, we set deg,, f = —o0, i.e., a symbol which is less than any
element of I'. For example, if ' = Z and w; = 1 fori = 1,...,n, then the w-degree is
the same as the total degree. For each k-vector subspace V of k[x], we define V¥ to be the
k-vector subspace of k[x] generated by { fV; f € V \ {0}}. For each [-tuple F = (f1, ..., fi)
of elements of k[x] for [ € N, we define deg,, F' = Zf-:l deg,, f;. Foreach o € G,, we
define Fo = (f5(1), - .-, foq)), where &; is the symmetric group of {1, ...,[}. The identity
permutation is denoted by id. For distinct iy, ..., i, € {1, ..., [}, the cyclic permutation with
i1 > i2,ip > i3,...,1i — i1 is denoted by (i1, ..., ir).

The w-degree of a differential form was defined by the author [6]. Let £2xj/«x be the
module of differentials of k[x] over k, and /\l $2kx)/k the [-th exterior power of the k[x]-
module £2;[xj/« for [ € N. Then, we may uniquely express each w € /\l $2k[x]/k as

w= Z Jiroirdxiy A- - Ny

I<ij<--<ij<n

where f;, i € k[x] for each iy, ...,i;. Here, df denotes the differential of f for each
f € k[x]. We define the w-degree of w by
deg,, @ = max{deg,, fi,,..i%i, -~ X3 L <ip < <ip <n}.
By the assumption that w; > O fori =1, ..., n, it follows that
2.1) deg, w > minfw;; +---+w;;1 <ijp <---<ip <n}>0
if w # 0. For each f € k[x] \ k, we have
2.2) deg,, df = max{degy, fy,x;;i=1,...,n} =degy f,

since df = Y ;_, fxdxi. Here, f,, denotes the partial derivative of f in x; for each f €
k[x] and i € {1,...,n}. We remark that df] A --- Adf; # 0 if and only if f1,..., fi
are algebraically independent over k for fi,..., fi € k[x] (cf. [3, Proposition 1.2.9]). By
definition, it follows that

! !
(2.3) degydfi A+ Adfi <Y degydfi = ) deg, fi .
i=1 i=l1
In (2.3), the equality holds if and only if f",..., f;" are algebraically independent over k.
Actually, we can write df] A --- Adfi =df" A--- AdfY +n, where ) € /\l Q2 1x1/k with
degy 1 < Zi:l degy, dfi,and deg, df" A---AdfY = Zf-:l degy, dfi ifdf" A---ndf}" # 0.
Therefore, if f1, ..., fu € k[X] are algebraically independent over k, then

n n n
(2.4) D degy fi = Y degydf; > degydfi Ao Adfy =D wi =t |w|
i=1 i=1 i=1
by (2.1), (2.2) and (2.3). As will be shown in Lemma 6.1(i), F is tame if deg,, F = |w| for
F € Auty k[x].
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Now, assume that n > 3, and let 7 be the set of triples ' = (f1, f2, f3) of elements of
k[x] such that f1, f» and f3 are algebraically independent over k. We identify each F € T
with the injective homomorphism F : k[y] — k[x] of k-algebras defined by F(y;) = f; for
i =1, 2,3, where k[y] = k[y1, y2, y3] is the polynomial ring in three variables over k. In the
case where n = 3, we identify k[y] with k[x] by the identification y; = x; for eachi. Let &;
denote the set of elementary automorphisms E of k[y] such that E(y;) = y; for each j # i
fori € {1,2,3}, and set £ = Ui3:1 &i. We say that F' € T admits an elementary reduction
for the weight w if deg,, F o E < deg,, F for some E € &, and call F' o E an elementary
reduction of F for the weight w.

Let F = (f1, f2, f3) and G = (g1, g2, 93) be elements of 7. We say that the pair (F, G)
satisfies the Shestakov-Umirbaev condition for the weight w if the following conditions hold:
SUl) g1 = fi +af32 +cf3 and g = fo» + bfz for some a, b, c € k, and g3 — f3 belongs to
klg1, g1,

(SU2) deg,, f1 <deg, g1 and deg,, f>» = deg, g2,

(SU3) (gf")2 ~ (gy')* for some odd number s > 3,

(SU4) degy, f3 < degy g1, and f3" does not belong to k[g;", g5'1,
(SU5) degw B < degw f3’

(SU6) degy g3 < deg,, g1 — degy, g» + deg,, dg1 Adg.

Here, h1 = hy (resp. hy % h») denotes that &1 and h; are linearly dependent (resp.
linearly independent) over k for i1, hy € k[x] \ {0}. We say that F' € T admits a Shestakov-
Umirbaev reduction for the weight w if there exist G € 7 and 0 € &3 such that (Fy, G4)
satisfies the Shestakov-Umirbaev condition, and call this G a Shestakov-Umirbaev reduction
of F for the weight w. As will be discussed in Section 4, F and G have various properties
when (F, G) satisfies the Shestakov-Umirbaev condition. For example, it follows from (SU1)
through (SU6) that deg,, G < deg,, F (Property (P6)).

Here is the main theorem.

THEOREM 2.1. Assume thatn = 3, and w = (w1, wp, w3) is a triple of elements of
I withw; > Ofori =1,2,3. Ifdegy, F > |w| for a tame automorphism F of k[X], then F
admits an elementary reduction for the weight w or a Shestakov-Umirbaev reduction for the
weight w.

In the case where n = 3 and I = Z, the condition that ' admits a Shestakov-Umirbaev
reduction for the weight w = (1, 1, 1) implies that F admits an elementary reduction or a
reduction of one of the types I, II and III (Proposition 7.2). In view of this, the reader who
is familiar with the theory of Shestakov-Umirbaev may notice that no tame automorphism of
k[x] admits a reduction of type IV (Theorem 7.1). In fact, if F admits a reduction of type IV,
then there exists an elementary automorphism E such that F o E admits a reduction of type
IV, but does not admit an elementary reduction nor any of the reductions of types I, IT and III
(cf. Appendix). In Section 7, however, we prove this result more directly.

We remark that F admits an elementary reduction for the weight w if and only if £
belongs to k[ f;, fi]% forsome i € {1, 2, 3}, where j, [ € {1,2,3}\ {i} with j < [. Inthe case
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where deg,, f1, deg,, f> and deg,, f3 are pairwise linearly independent over Z, this condition
implies that deg,, f; belongs to the subsemigroup of I" generated by deg,, f; and deg,, fi.
Indeed, each ¢ € k[ f;, fi]\ {0} is a linear combination of fjp flq for (p, q) € (Z>0)? overk,

in which deg,, fjpflq # deg,, fjp/ flq, if and only if (p, q) # (p', q’). Here, Z( denotes the
set of nonnegative integers. Hence, deg,, ¢ = deg,, f jp flq = pdeg,, fi + q deg,, f; for some
P.q € Z>o.

Note that § := (1/2) deg,, f> = (1/2)deg,, g belongs to I" by (SU2) and (SU3). As
will be shown in Section 4, (SU1) through (SU6) imply that 6 < deg,, fi < s§ for each
i € {1,2,3} (Property (P7)). Since § > O, it follows that deg,, fi < sdeg,, f; for each
i,j € {1,2,3}. Therefore, if F admits a Shestakov-Umirbaev reduction for the weight w,
then F satisfies the following conditions:

(i) Oneof (1/2) degy, f1, (1/2) deg,, f> and (1/2) deg,, f3 belongsto I'.
(i) Foreachi, j € {1, 2, 3}, there exists [ € N such that deg,, f; < [deg,, f;.

Now, we deduce that Nagata’s automorphism is not tame by means of Theorem 2.1.
Let I' = Z3 equipped with the lexicographic order, i.e., the ordering defined by a < b for
a,be Z3 if the first nonzero component of b — a is positive, and let w = (e, e;, e3), where
e; is the i-th standard unit vector of R 3 for each i. Then, we have

degy f1 =(2,0,3), degy f2=(1,0,2), deg, f3=1(0,0,1).

Hence, degy, F = (3,0,6) > (1,1, 1) = |w]|. The three vectors above are pairwise linearly
independent over Z, while any one of them is not contained in the subsemigroup of Z3 gen-
erated by the other two vectors. Hence, F' does not admit an elementary reduction for the
weight w. Since (1/2) deg,, fi does not belong to Z3 for each i € {1,2,3}, we know that
F does not admit a Shestakov-Umirbaev reduction for the weight w. By the definition of the
lexicographic order, /deg,, f3 = (0,0,/) is less than deg,, f; fori = 1,2 forany !/ € N,
which also implies that F' does not admit a Shestakov-Umirbaev reduction for the weight w.
Therefore, we have the following corollary to Theorem 2.1.

COROLLARY 2.2. Nagata’s automorphism defined in (1.1) is not tame.

We define the rank of w as the rank of the Z-submodule of I" generated by wy, ..., w,.
If rank w = n, then the dimension of the k-vector space k[x], is at most one for each y.
Consequently, deg,, f = deg,, ¢ if and only if f¥ ~ g% for each f, g € k[x]\ {0}. In such
a case, the assertion of Theorem 2.1 can be proved more easily than the general case. In fact,
a few steps can be skipped in the proof. We note that w = (e, e;, e3) has the maximal rank
three, and therefore it suffices to prove the assertion of Theorem 2.1 in this special case to
conclude that Nagata’s automorphism is not tame.

3. Inequalities. In this section, we derive some consequences from the generalized
Shestakov-Umirbaev inequality [6, Theorem 2.1]. In what follows, we denote “deg," by
“deg" for the sake of simplicity. Let g be a nonzero element of k[x], and & = ), iy a
nonzero polynomial in a variable y over k[x], where ¢; € k[x] for eachi € Z~(. We define
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degd, @ to be the maximum among deg ¢; g’ for i € Z=¢. Then, degy @ is not less than the
w-degree of @(g) := D, #ig' in general. On the other hand, deg§ @) = deg @")(g) holds
for sufficiently large i, where @) denotes the i-th order derivative of @ in y. We define
my(P) to be the minimal i € Z - such that deggv o) = deg @ (9)-

In the notation above, the generalized Shestakov-Umirbaev inequality is stated as fol-
lows. This inequality plays an important role in our theory, yet the proof is quite simple and
short.

THEOREM 3.1 ([6, Theorem 2.1]). Assume that fi,..., fr € k[x] are algebraically
independent over k, where 1 <r < n. Then,

deg @ (g) > deggv D+ mgv(qﬁ)(degw ANdg —degw — deg g)
holds for each @ € k[ f1, ..., f+1[y]1\ {0} and g € k[x] \ {0}, where = df1 A --- Adf.

Here is a remark (see [6, Section 3] for detail). Define @9 = Y, ¢¥y' for each
@ € k[x][y], where I is the set of i € Z~( such that deg ¢; ¢’ = degy ®. Then, (®)"'9 =
(®%9)® holds for each i. Moreover, degl, @ = deg @(g) if and only if ®%-9(g%) # 0.
Hence, m$ (®) is equal to the minimal i € Z¢ such that (@%:9)®) (g™) # 0. Since k is of
characteristic zero, this implies that g% is a multiple roof of ®%-9 of order m¥(®).

Now, let S = {f, g} be a subset of k[x] such that f and ¢ are algebraically independent
over k, and ¢ a nonzero element of k[S]. We can uniquely express ¢ = Zi’j Ci,j figl, where
¢i,j € kforeachi,j € Z-o. We define deg® ¢ to be the maximum among deg f’g/ for
i,j € Zxp with ¢; ; # 0. We will frequently use the fact that, if ¢% does not belong to
k[f¥, g%, orif deg¢p < deg f and ¢ does not belong to k[g], then deg¢ < deg’ ¢.

The following lemma is a consequence of Theorem 3.1. The statement (i) is an analogue
of Shestakov-Umirbaev [10, Corollary 1], while the statement (ii) is essentially new.

LEMMA 3.2. Let S = {f, g} be as above, and ¢ a nonzero element of k[S] such that
deg¢ < deg® ¢. Then, there exist p,q € N with gcd(p, q) = 1 such that (g™)P ~ (fV).
Furthermore, the following assertions hold:

(i) dege >gdegf+degdf Andg—deg f —degg.
(ii) Let h be an element of k[X] such that f, g and h are algebraically independent over k.
Ifdeg(h + ¢) < degh, then

deg(h + ¢) > gdeg f +degdf Ndg ANdh —degdf Ndh —degg.

PROOF. Let® =3, ci,j f'y’ be an element of k[ f1[y] such that @(g) = ¢, where
¢i,j € kforeachi, j € Z>¢, and let J be the set of (i, j) € (220)2 such that ¢; ; # 0 and
deg f1g/ = deg® ¢. Then, we have degy @ = deg’ ¢ and

oM = Z cij(f™'y7.
G, jred

Since deg¢p < deg’ ¢ by assumption, we get deg ®(g) < degl @. Hence, my(P) > 1 and
®%9(g%) = 0 as mentioned. In particular, J contains at least two elements, say (i, j) and
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@i’, j), since @9 £ 0, g% # 0 and ®"-9(g¥) = 0. Then, (i —i')deg f = (j' — j) degg.
Since deg f > 0 and deg g > 0, this implies that g deg f = p deg g for some p, g € N with
gcd(p, q) = 1. For each (i1, j1), (i2, jo) € J, there exists | € Z such thatip — i1 = —ql
and j» — j1 = pl. Hence, we can find (ip, jo) € J and m € N such that J is contained in
{Go—gql, jo+ pl);l=0,...,m},and (ip — gm, jo + pm) belongs to J. Note that gm < iy.
Putting ¢; = ¢jy—q1, jo+p1 for each [, we get

m m

M = (fM)0pl N (fM) Uy = e, (YO [Ty — ),

1=0 =1
where oy, ..., a, are the roots of the equation Z;”ZO c; yl = 0 in an algebraic closure of
k. Since ®%'9(g%) = 0, we get (fV)"7(g%)? = o4 for some /. Then, «; belongs to k \ {0},
because f% and g% are in k[x]\{0}. Therefore, (¢%)” ~ (fW)?. This proves the first assertion.
By the expression above, we know that @%-9 cannot have a multiple root of order greater than
m. Hence, mgv(dﬁ) < m. Thus, it follows that

3.1) degh @ = deg® ¢ = deg [0 ¢ > igdeg f > gmdeg f > gm¥(®) deg f.
By Theorem 3.1, together with (2.2) and (3.1), we get
degp = deg P(g) > degy, @ +miy(P)(degdf Adg — deg f — degg)
> qmiy(®) deg f + my(P)(degdf ndg — deg f — degg) = my(P)M .
where M = gdeg f + degdf A dg — deg f — degg. Since my(®) > 1, the assertion (i)
follows from the inequality above if M > 0. If M < 0, then (i) is clear, since deg ¢ > 0.

To show (ii), consider the polynomial ¥ := h 4 @ in y over k[ f, h]. Recall thatdeg ¢ <
deg® ¢ = degy @. By the assumption that deg(h + ¢) < degh, we get degp = degh.
Hence, degh < degy ®. Thus, we have degh ¥ = degl @ and ¥™9 = &9, and so
my(¥) = my(P). Therefore, degl ¥ > gmi(¥)deg f by (3.1). By Theorem 3.1, we
obtain

deg(h + ¢) = deg ¥ (g)
> degy ¥ +my (WM = gmy(¥) deg f +my(¥)M' = my(¥)(qdeg f + M),
where M’ = degdf A dh A dg — degdf A dh — deg g. Since m¥(¥) = m¥(®) > 1, the
inequality above implies the inequality in (ii). O

Let p and g be natural numbers such that gcd(p, g) = 1 and 2 < p < g. The following

assertions are checked easily.

d pg—p—q=>0.
) If pg—p—q <gq,then p=2andgq > 3 is an odd number.
3) Ifpg—p—q < p,thenp =2andqg = 3.

LEMMA 3.3. Let f, g, ¢ and p, q be as in Lemma 3.2.
(1) Assume that ¥ does not belong to klg™], and g% does not belong to k[ f%]. Then,
deg¢ > degdf Adg.
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(ii) Assume that deg f < degg, deg¢ < degg, and g% does not belong to k[ fV]. Then,
p =2,q > 3is an odd number, § :== (1/2) deg f belongs to I", and

3.2) degp > (g —2)6 +degdf Nndg, degdp Adf > qb+degdf Adg.
Ifdeg¢p < deg f, then g = 3.

PROOF. Since pdegg = g deg f and gcd(p, g) = 1, it follows that § := (1/p) deg f
belongs to I". By Lemma 3.2(i), we have

(3.3) degp > pdegg +degdf ndg—deg f —degg=(pq —p—q)d+degdf ANdg.

Since (¢%)? ~ (f%")? and ged(p, ¢) = 1, the assumptions of (i) imply 2 < p < ¢ or
2 < g < p. Hence, pg — p — g > 0 as claimed above. Therefore, deg¢ > degdf A dg by
(3.3), proving (i).

If the assumptions of (ii) are satisfied, we have 2 < p < ¢, since g% does not belong to
k[fY]. Since deg¢ < deg g = ¢4 by assumption, (3.3) yields pg — p — g < g. Thus, p =2,
and ¢ > 3 is an odd number by the claim. By substituting p = 2, we obtain from (3.3) the
first inequality of (3.2). To show the second inequality of (3.2), consider @ € k[ f][y] defined
in the proof of Lemma 3.2. Recall that m¥%(®) > 1, and pm%(®) deg g = gmy(P) deg f <
degd, @ by (3.1). By definition, degd @V = degy ® — deg g and my (@) = my(®) — 1.
Since p = 2 and deg f < deg g, it follows from Theorem 2.1 that

deg ¢(1)(g) > deggv oD + mgv(¢(1))M//
= deg‘% & —degg + md(®) — HM"
> 2miy(®) deg g — deg g + (m¥ (@) — )M

= (md(®) — 1)(degdf Adg — deg f +deg g) +degyg
>degg =¢qd,

where M” = degdf Adg —deg f —degg. Since d¢ = (3, ; ci jif' "' g))df + @V (g)dy,
we have dp A df = @V (g)dg A df. Therefore,

degdg A df = deg®V(g) +degdf Adg > q8+degdf Ady.

This proves the second inequality of (3.2). If deg¢ < deg f, then pg — p — g < p by (3.3),
since deg f = pd. Hence, ¢ = 3 as claimed above. a

The following remark is useful. Assume that f, g, h € k[x] and ¢ € k[S] satisfy the
following (i) through (iv), where S = {f, g}:
(i) f and g are algebraically independent over k,
(i) deg f < degganddegh < degg,
(iii) ¢ and AY do not belong to k[ %],
(iv) deg(h + ¢) < degh.
Then, we claim that deg¢ < deg® ¢, and that f, g and ¢ satisfy the assumptions of Lemma
3.3(ii). In fact, ¥ ~ A" by (iv), and &%¥ does not belong to k[ ¥, gV], since A% does not
belong to k[ V] by (iii), and degh < deg g by (ii). Hence, ¢" does not belong to k[ f%, g"].
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Because ¢ is an element of k[ f, g], we get deg < deg® ¢. By (ii) and (iii), it follows that
deg f < degg, deg¢p = degh < degg, and g% does not belong to k[ fV]. Thus, f, ¢ and
¢ satisfy the required conditions. Therefore, the conclusion of Lemma 3.3(ii) holds in this
situation.

The following theorem is a generalization of Shestakov-Umirbaev [9, Lemma 5].

THEOREM 3.4 ([6, Theorem 5.2]). For any n1,...,n € S$2kx)/k With | > 2, there
exist 1 < iy < ip <1 such that

degn;, + deg;, = degn;, + deg7;, > degn; + deg7);
fori=1,...,1,where i =n1 A--- ANi—1 Afit+1 A -+ A n foreachi.

Using Theorem 3.4, we prove a lemma needed later. Assume that k1, k2, k3 € k[x] are
algebraically independent over k, and k| := kj + ak% + cks + ¥ and k), := ky + ¢ satisfy the
following conditions for some a, ¢ € k, ¥ € k[kz] and ¢ € k[k3]:

(a) degk) < degk,

(b) degk| —degk} < degks,

(c) degy < degk] — degk) + degko,

(d) degks + degdky A dk), < degk] + degdk) A dks.

LEMMA 3.5. Under the assumption above, we have
3.4 degdk; A dk3 = degk] — degk), + degdka A dks3.

If furthermore ¢ = bkz + d for some b, d € k, then the following assertions hold:
(i) Ifa # 0 and degdk| A dk} < degks, then
degdk) A dky, = degks + degdky A dk3 .
(ii) Assume that deg dk| A dk) < degdky A dks. Then,

degks +degdky Andks if a #0

deg dk; A dks if a=0andb #0

degdl; A dky =

cedki Ndk2 =3 oo dky A diy ifa=b=0andc#0
deg dk/ A dk, ifa=b=c=0.

(iii) Assume that r belongs to k. Set k| = k| + a/kg +ck3+ ' and k) = ky + b'ks +d’
fora' b, c',d', ' € k. Ifdegdk] Adk and degdky A dk} are less than deg dky A dk3, then
(@b, c")=(a,b, o).

PROOF. Putn; = dk|, n = dk/, and n3 = dk3. Then, deg n3+deg i3 < degni+degn;
by (d), since degdk; = degk; fori = 1,2 and degdks = degks by (2.2). Hence, we have
degn1 + degn; = degny + degiz by Theorem 3.4. Since ¢ is an element of k[k3], we get
d¢ A dksz = 0. Hence, dké ANdk3 = d(ky + ¢) A dkz = dko A dk3. Thus, we obtain

degdk] A dksz = degij, = degn — degna + deg 7
(3.5) = degk| — degk), + degdk) A dk3
= degk} — degk) + degdky A dk3.
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We show that deg dk| A dk3 = degdk A dks, which implies (3.4). Set 1 = ¥V (ky), where
¥ is an element of k[y] satisfying ¥ (ko) = . Then, degy; < degy — degks, and so
deg ¥ < degk| — degk) by (c). Hence,
deg llfldkz VAN dk3 = deg Iﬂl + deg dk2 VAN dk3

< degk] — degk), + degdkr A dkz = degdk] A dks
by (3.5). Since dyy = Y1dk», it follows that

(3.6)

dky A dks = dky A dk3 + 2aksdks A dk3 + cdk3 A dks + dyr A dk3
=dky AN dks + Y1dka A dks .
This equality and (3.6) imply degdky A dk3 = degdk| A dk3. This proves (3.4).
Next, assume that ¢ = bk3 + d for some b, d € k. Then, we have
dki A dky = dky A dkb + 2aksdka A dks
— b(dky A dks + Yidka A dk3) + cdka A dk3 .
By (b), (a) and (3.6), it follows that

(3.7)

deg k3dky A dkz = degks + degdky A dks > deg k’1 — deg ké + degdky A dks
> max{degdks A dk3, degy1dka A dk3} .
Since the right-hand side of the first inequality is equal to degdk; A dk3 by (3.4), we get
(3.8) degkzdka N dks > degdky N dkz > max{degdky A dks, deg yr1dky A dk3}.

In view of (3.8), the assertions (i) and (ii) easily follow from (3.7).
Finally, we verify (iii). A direct computation shows that

Ak A dkl — dK| A dKy = 2(a — a'Yksdky A dks — (b — b)dk) A dks
+ (¢ — ¢Ydky A dk3 .

By assumption, the w-degree of the left-hand side of this equality is less than that of dky Adk3,
while those of k3dky Adk3 and dkj Adks are greater than that of dky Adk3 by (3.8). Therefore,
it follows thata = a’, b = b’ and c = ¢'. O

4. Shestakov-Umirbaev reductions. In this section, we study the properties of
Shestakov-Umirbaev reductions. In what follows, unless otherwise stated, F = (fi, f2, f3)
and G = (g1, g2, g3) denote elements of 7, and S; := {f1, f2, f3} \ {fi} for each i. We
say that the pair (F, G) satisfies the weak Shestakov-Umirbaev condition for the weight w if
(SU4), (SUS5), (SU6) and the following three conditions hold:

(SUI) g1 — fi, g2 — f2and g3 — f3 belong to k[ f2, f3], k[ f3] and k[g1, g2], respectively,
(SU2) deg f; < degg; fori =1,2,
(SU3’) degg» < deggi, and g)" does not belong to k[g3'].

It is easy to see that (SU1), (SU2) and (SU3) imply (SU1"), (SU2') and (SU3’), re-
spectively. Hence, if (F, G) satisfies the Shestakov-Umirbaev condition for the weight w,
then (F, G) satisfies the weak Shestakov-Umirbaev condition for the weight w. We say that
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F € T admits a weak Shestakov-Umirbaev reduction for the weight w if (F,, G, ) satisfies
the weak Shestakov-Umirbaev condition for the weight w for some o € G3 and G € T, and
call this G a weak Shestakov-Umirbaev reduction of F for the weight w. The weight w is
fixed throughout, and so is not explicitly mentioned in what follows.

We show that F and G have the following properties (P1) through (P12) if (F, G) satis-
fies the weak Shestakov-Umirbaev condition:
(P1) (g{"’)2 ~ (gy)* for some odd number s > 3, and so § := (1/2) deg g belongs to I".
P2) deg fz > (s —2)6 +degdg Ndgp.
(P3) deg f2 = deg 2.
(P4) If degp < degg) for ¢ € k[S1], then there exist a’, ¢’ € k and ¥' € k[f2] with
degy’ < (s — Désuchthatp = a'f7 + ' fz+ ¥
(P5) Ifdeg fi < deggi,thens =3, g)' ~ (f3w)2, deg f3 = (3/2)8 and

5
deg f1 > §5+degdg1 ANdg .

(P6) degG < degF.

(P7) deg f» < deg f1,deg f3 < deg fi1,and 6 < deg f; <séfori =1,2,3.

(P8)  f does not belong to k[fjw] ifi # jand (i, j) # (1, 3). If f}" belongs to k[ f3"], then
s =3, f¥ ~ (f{)* and deg f3 = (3/2)8.

(P9) Ifdeg¢ < deg f> for ¢ € k[S>], then there exist ', d’ € k such that¢p =b'f3 + d’.
(P10) Assume that k[g1, 2] # k[S3]. If deg¢p < deg fi for ¢ € k[S3], then there exist
¢’ € kand ¥ € k[f»] with deg¥” < min{(s — 1)8, deg®} such that ¢ = ¢" f1 + ¢". If
deg¢ < deg f1, then ¢” = 0.

(P11) There exist a,b,c,d € k and ¢ € k[ f>] with degyr < (s — 1)§ such that g =
fitafi+cfs+vandgp = fr+bfs+d. Ifa #0orb # 0, then deg f3 < deg f>. If
deg f3 < deg f>, then s = 3. Furthermore, if ¢ belongs to k, then a, b and ¢ are uniquely
determined by F in the following sense: If (F, G’) satisfies the weak Shestakov-Umirbaev
condition for G’ = (g1, g5, g}) € T, where g| = fi+a' fi+c f3+y and g) = fo+b' f3+d’
witha', b',c’',d', ' € k,thena’ =a,b’ =band ¢’ = c.

(P12) The following equalities and inequality hold:

deg f3 +degdfo Adfs if a #0

| degapi nafs if a=0andb #0
degdfiNA2 = Geodfy ndfs ifa=b=0andc #0
degdgi Ad g ifa=b=c=0

degdfi Adfs = (s —2)8 + degdfr Adf3
degdf>o ANdfz > s§+degdgi1 ANd g .

To show these properties, we set ¢; = ¢g; — f; fori = 1,2,3. Since deg g3 < deg f3
by (SU5), we have ¢y = —f3" and deg¢3 = deg f3. Hence, deggs < degg and ¢3
does not belong to k[g)", g3'] by (SU4). Set U = {g1, g»}. Since ¢3 is contained in k[U] by
(SU1), it follows that deg ¢3 < degU ¢3. In view of (SU3’), we know that the assumptions of
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Lemma 3.3(ii) hold for f = ¢», ¢ = ¢1 and ¢ = ¢3. Therefore, there exists an odd number
s > 3 such that (g}")? ~ (g)")® and

4.1) deg f3 = deg¢ps > (s —2)8 +degdgi Nd g2,
(4.2) degdgpp Ndp3 > 58 +degdgi Ndga ,

where 6 = (1/2) deg ¢». This proves (P1) and (P2).

We show that ¢ is expressed as in (P11). By (SUL’), ¢» = g» — f> belongs to k[ f3].
Hence, ¢ = Z,p:o b,'f3" for some by, ..., b, € k with b, # 0, where p € Z>¢. By (SU2'),
deg¢o < max{deg g2, deg fo} = deggr = 25. By (4.1), we get deg f3 > §, since s > 3.
Thus, we must have p < 1 and ¢» = by f3 + by, for otherwise deg ¢» = p deg f3 > ps§ > 26,
a contradiction. Therefore, ¢ is expressed as stated.

We show (P3) and the first assertion of (P8) for (i, j) = (2, 3), (3, 2) by contradiction.
Supposing that deg f> # deg ¢, we have deg f» < deg ¢ by (SU2'). Since ¢»p = fo+bfz+d
as shown above, it follows that g} = bfy* and b # 0. Hence, f3' belongs to k[g}", ¢3'],
a contradiction to (SU4). Therefore, deg f> = deg g», proving (P3). Next, we show that
£ % f3". Supposing that f)" &~ f3¥, we have deg f> = deg f3. Hence, deg g» = deg f3 by
(P3). Thus, gy = f)' + bfy". Since f)¥ ~ f3¥, we get g3 ~ f3". This contradicts (SU4).
Therefore, f)* % f3". Now, suppose that f3* belongs to k[ f;*]. Then, f3¥ ~ (f," )! for some
1 > 2,since f)* % f3". Hence, deg f> < deg f3. From deg f> = deg g» = deg(f> +bf3 +d),
we get b =0, and f)¥ = g)'. Since f3' ~ (f;" )., it follows that 3~ (gy )%, a contradiction
to (SU4). Therefore, f3* does not belong to k[ f,*]. Suppose that )" belongs to k[ f3"]. Then,
f2w ~ (f3w)l for some / € N, where ! > 2 as above. This is impossible, because deg f> = 25
by (P3) and deg f3 > & by (4.1). Therefore, f," does not belong to k[ f3"].

Since g» — f> is contained in k[ f3] by (SUL’), it follows that df> A dfs — dg A dfs =
d(fo — ¢) Adfz = 0. Moreover, df3 = dg3 — d¢3. Hence,

4.3) dfandfs=dp ANdfs=dprndg —dgp Ndps.
By (2.3), (SU6), (P1) and (4.2), we get
degdgy Ndg3 < deg gr + deg g3 < deg g1 +degdgi Adg»
=58 +degdgi Ndgp <degdgp Adep3.
Then, it follows from (4.3) that degdf> A dfs = degdgx A d¢3. Therefore, we obtain
4.4 degdfr Adfs > 58 +degdgi ANdgp

by (4.2). This proves the last inequality of (P12).
The following lemma is useful in proving (P4), (P9), (P10) and (P11).

LEMMA 4.1. Assume that deg f» = 28 and (s — 2)6 < deg f3 < s6 for some 6 € I
and an odd number s > 3. Then, the following assertions hold:
(i) IfdegSl ¢ < s for ¢ € k[S1], then there exist a,c € k and ¥ € k[ f»] with deg¢ <
(s — 1)6 such that ¢ = af32 +cfs + . Ifa # 0, then deg f3 < deg f>.
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(i) Assume that deg fi > deg f>. If deg® ¢ < deg f> for ¢ € k[S>], then there exist
b,d € k such that ¢ = bfs +d.

(iii) Assume that deg fi < s8. If deg® ¢ < deg f1 for ¢ € k[Ss], then there exist ¢’ € k and
V' € k[ fa] withdeg ¢’ < min{(s—1)8, deg> ¢} suchthat ¢ = ¢’ fi+v'. Ifdeg® ¢ < deg fi,
then ¢’ = 0.

(iv) Ifdeg f3 < deg f>, then s = 3.

PROOF. To show (i), write ¢ = Zi’j c,-,jfz"f3j, where ¢; ; € k for each i, j € Z>.
Since deg®' ¢ < s8 by assumption, deg fzi f3j <sdifc¢j # 0fori,j € Z>9. We verify
that, if deg f2if3j <sé,theni < (s —1)/2and j = 0,0ri = 0 and j = 1, 2. This shows
that ¢ can be expressed as in (i). It follows that deg f; f3 > 2i6 + (s —2)§ > sdif i > 1.
If i > (s —1)/2, then 2i > s, since s is an odd number. Hence, deg f; = 2i§ > s4. If
j = 3, thendeg f{ > j(s —2)8 > s8, since s > 3. Thus, if deg fi f{ < s8, then (i, j)
must be as stated above. Therefore, ¢ can be expressed as in (i). Assume that a # 0. Then,
deg f32 < degsl ¢ < s6. Since (s — 2)é < deg f3, we get 2(s — 2) < s. Thus, s < 4, and
hence s = 3. Therefore, deg f3 < (s/2)§ = (3/2)6 < 26 = deg f»>. This proves (i).

We can prove (ii) and (iii), similarly. Actually, if deg f1 > deg f> and if deg ff f3j <
deg f> fori, j € Z~,theni = 0. Moreover, we have j < 1, since deg f32 > 2(s—2)§ > 26 =
deg f>. Therefore, ¢ = bf3 + d for some b, d € k in the case (ii). To show (iii), assume that
deg® ¢ < deg f) for ¢ € k[S3]. Clearly, i = 0 or (i, j) = (1, 0) if deg flifzj < deg f1, while
i = 0if deg f} f2j < deg fi. Hence, ¢ = ¢’ fi + ¢’ for some ¢’ € k and ' € k[ f»] where
¢ = 0if deg% ¢ < deg fi. We note that degy’ < deg™ ¢. Since deg™ ¢ < deg fi < s8
by assumption, it follows that deg ¥/’ < s8. This implies that deg ¥’ < (s — 1)§, because s
is an odd number, and deg /' = deg le = 21§ with [ € Z>¢ if ¥’ # 0. Therefore, we obtain
deg ' < min{(s — 1), deg™ ¢}.

The assertion (iv) follows from (s — 2)§ < deg f3 < deg fo» = 2. O

We show (P4) using Lemma 4.1(i). Since deg f>» = degg» = 26 by (P3), and since
(s —2)8 < deg f3 < s6 by (4.1) and (SU4), it suffices to check that degs1 ¢ < s8. Supposing
the contrary, we have deg ¢ < deg’! ¢, since deg¢ < deg g; = 58 by the assumption of (P3).
As shown above, f does not belong to k[f)"’] for (i, j) = (2,3), (3,2). Hence, deg¢ >
degdf> A dfz by Lemma 3.3(i). Since degdf> A dfs > s by (4.4), we get degg > 56, a
contradiction. Thus, deg>! ¢ < 58, and thereby proving (P4).

We complete the proof of the former part of (P11). Since ¢1 = g1 — f1 belongs to
k[S1] by (SU1"), and since deg ¢; < max{deg gi, deg f1} = deg g1 = s3 by (SU2’), we know
by (P4) that g1 = f1 + ¢1 is expressed as in (P11). If a # O, then deg f3 < deg f> by
the last assertion of Lemma 4.1(i). Since deg /> = deg ¢, and ¢o = f> + bfz + d, we get
deg f3 < deg f> if b # 0. By Lemma 4.1(iv), deg f3 < deg f> implies s = 3. We have thus
proved the former part of (P11).

We show that the conditions listed before Lemma 3.5 and the inequality deg dk} Adk) <
degdks A dks hold for k; = f; fori = 1,2,3 and kl’. = g; fori = 1, 2. By the former part of
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(P11), k} and k) are expressed in terms of k1, k> and k3 as required. Since deg g» < deg g1 by
(SU3’), we get (a). Since deg g — deg g» = (s — 2)8, (b) follows from (4.1). By (P3), (¢) is
equivalent to deg ¢ < degk, which follows from deg vy < (s — 1) < deg g;. The rest of the
conditions are due to (4.4), since df> A df3 = dg A dfz as mentioned. Therefore, we obtain
the estimation of degdf; A df> described in (P12) from Lemma 3.5(ii). Owing to (3.4), we
have

4.5) degdfi Adfs = (s —2)8 +degdfa Adf3,

the second equality of (P12). The uniqueness of a, b and ¢ claimed in (P11) follows from
Lemma 3.5(iii). This completes the proofs of (P11) and (P12).
Here, we remark that

(4.6) degdfi Adfs = 2(s — 1)6 +degdgi Ad g
follows from (4.4) and (4.5). Since deg f1 + deg f3 > degdf1 A df3, we obtain that
4.7 deg f1 = 2(s — 1)6 +degdg; Adg, — deg f3.

Now, we show (P5). By the assumption of (P5), we have deg fi < degg;. Hence,
g;' = (fi +¢1)" = ¢}, and so deg¢; = s3. Since g)' % f3' by (SU4), we get ¢)" % f3".
By (P11), we have ¢ = af32 + c¢f3 + ¢, in which degyr < (s — 1)38. From this, it follows
that a # 0, for otherwise qbi” = cf3w, a contradiction. Hence, s = 3 by (P11). Moreover,
o) ~ (f;")z, and thus g" ~ (f3w)2. Therefore, deg f3 = (1/2)deg g1 = (3/2)5. The last
inequality of (P5) follows from (4.7).

We show (P6) and (P7) with the aid of (P5). If deg g; = deg fi, then (P6) is clear, since
deg go = deg f> by (P3), and deg g3 < deg f3 by (SU5). Assume that deg f; < deg ¢;. Then,

5 3
deg f1 +deg f3 > E(S—l—degdgl ANdgp + 58 =45+ degdgi Adp

by (P5). On the other hand, since deg g = 2§, and deg g; = 56 = 3§ by (P5), it follows from
(SU6) that

degg) +deggz < degg) +degg; —deggr +degdgr ANdg =45 +degdgr Adgo .

Therefore, deg G < deg F by (P3). This proves (P6). If deg fi = deggi, then deg f> <
deg f1 by (SU3), and deg f3 < deg f1 by (SU4). If deg fi < deggi, then deg f1 > (5/2)é
and deg f3 = (3/2)$ by (P5). Hence, deg f; < deg f1 for i = 2, 3. This proves the first
two statements of (P7). The last statement of (P7) follows from the conditions that (5/2)§ <
deg fi <deggi = sd,deg f> =26 and (s — 2)§ < deg f3 < degg.

Let us complete the proof of (P8). First, we show that deg f; # [ deg f; holds for any
!l € N for (i, j) = (1,2), (2, 1), which proves that fiw does not belong to k[fjw]. In the
case deg f1 = deg g1, we have 2deg f1 = sdeg f> by (P1) and (P3). Since s > 3 is an odd
number, the assertion is true. In the case deg f; < deg g1, we have (5/2)é < deg fi < 36 by
(P5). Since deg f> = 28, the assertion is readily verified. Thus, f;" does not belong to k[ fjw]
for (i, j) = (1,2), (2, 1). Next, suppose to the contrary that f;" belongs to k[flw]. Since
deg f3 < deg f1 by (P7), it follows that f3* ~ f". In view of (P5), we get deg f1 = deg gi.
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Hence, g = f}" + cfy'. Consequently, we obtain f3* ~ g, a contradiction to (SU4).
Therefore, f3w does not belong to k[flw]. Since the cases (i, j) = (2, 3), (3, 2) are done, this
completes the proof of the former part of (P8). For the latter part, assume that f," belongs to
k[ f3']. Then, f* ~ (f3w)l for some / € N. Since f3" does not belong to k[ f}"], it follows
that / > 2. Then, we must have s = 3 and/ = 2. Infact,if s > S5or/ > 3,thens < I(s — 2),
and so

deg fi < deggi =58 <I(s —2)8 < ldeg f3,

which contradicts f¥ &~ (V). Thus, £¥ ~ (f¥")%. If deg f3 # (3/2)8, then deg fi = deg g
by (P5), and hence
1 1 1 3
deg f3 = 5 deg fi = S degg1 = 558 = 4,
a contradiction. Therefore, deg f3 = (3/2)4. This completes the proof of (P8).

We show (P9) using Lemma 4.1(ii). Since deg f>» < deg f1 by (P7), we verify that,
if degg < deg f> for ¢ € k[S,], then deg® ¢ < deg f». Supposing the contrary, we get
deg¢p < deg® ¢. By Lemma 3.2(i), there exist p,q € N with gcd(p,q) = 1 such that
(fHP =~ (") and

26 =deg fr > degp > g deg f1 +degdfi Adfs —deg fi —deg f3
(4.8) > (¢ — 1) deg fi —deg f3 +2(s — 1)d + degdg1 Ad g2,

where the last inequality is due to (4.6). Since f3" does not belong to k[ f}"] by (P8), we have
p > 2. If deg f1 < deggp, thens = 3,deg f1 > (5/2)é and deg f3 = (3/2)§ by (P5), and
hence the right-hand side of (4.8) is greater than
5 3 5
(g — 1)58 — 55 + 45 +degdg1 Ad g > EqS > 25,
a contradiction. Thus, deg f; = deg g1 = s§. Then, the right-hand side of (4.8) is at least

(=158 — Lss 4 2(s — D5+ degdgy Adgp > L(p—1)5 + (s — 2)8,
p p

which is less than 2§ by (4.8). Hence, s = 3 and (3¢/p)(p — 1) < 1. Since p > 2, it
follows that 3 < 3g < 1 + 1/(p — 1) < 2, a contradiction. Therefore, we conclude that
deg2 ¢ < deg f», and thereby proving (P9).

To show (P10), assume that k[S3] # k[g1, ¢2], and take ¢ € k[S3] such that deg¢p <
deg f1. By virtue of Lemma 4.1(iii), it suffices to check that deg¢ = deg® ¢. Supposing
the contrary, we get degg < degs ¢. By (P8), /" does not belong to [ f}”] for (i, j) =
(1,2), (2, 1). Hence, deg¢ > degdfi A df; by Lemma 3.3(i). Since k[S3] # kl[g1, g2], we
must have (a, b, c) # (0, 0, 0). Hence, degdfi A df, > degdf, A dfs > s§ by (P12). Thus,
deg¢ > sé. This is a contradiction, because deg¢ < deg fi and deg f; < degg; = 4.
Therefore, deg ¢ = deg® ¢, and thereby (P10) is proved.

We have thus proved the following theorem.

THEOREM 4.2. If(F, G) satisfies the weak Shestakov-Umirbaev condition for F, G €
T, then (P1) through (P12) hold for F and G.
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The following proposition is a consequence of Theorem 4.2.

PROPOSITION 4.3. (i) If (F, G) satisfies the weak Shestakov-Umirbaev condition
for F, G € T, then there exist E; € & fori = 1,2 withdegG o E1 = deg G such that
(F, G o Eq o Ey) satisfies the Shestakov-Umirbaev condition.

(i) For F € T, it follows that F admits a Shestakov-Umirbaev reduction if and only if F
admits a weak Shestakov-Umirbaev reduction.

PROOF. (i) Assume that g and g» are expressed as in (P11). Take ¥ € k[y] such that
Y (f2) = ¢, anddefine E; € &; fori =1,2by Ei(y1) = y1—¥(y2—d) and Ex(y2) = y2—d.
Then, (Eq 0 E2)(y;) = Ei(y;) fori =1,2.Set G’ = G o E1 0 E3 and g/ = G'(y;) for each i.
We show that (F, G') satisfies (SU1) through (SU6). By definition, g) = go —d = f2 + bf3.
Ifb = 0, then ¥ (g2 — d) = ¥(f2) = ¥ Hence, g = g1 — ¥(2 — d) = fi +af2 + cfs.
Assume that b # 0. Then, s = 3 by (P11). Hence, degys < (s — 1)§ = 24. Since y belongs
to k[ f2] and since deg f>» = 268 by (P3), we may write { = ef> + ¢/, where e, ¢’ € k. Then,
¥ =ey; + €, and so

(4.9) =g —(p-—d+e)=fitaf}+(@c—be)fs.

Thus, g; and g} are expressed as in (SU1). From the construction of g; and g, it follows that
klgy, 951 = kl[g1, g2]. Since (F, G) satisfies (SU1") by assumption, g5 — f3 = g3 — f3 belongs
to k[g1, g2], and hence belongs to k[g], g5]. Therefore, (F, G’) satisfies (SUL). We remark
that (F, G) satisfies (SU2) and (SU3) on account of (P3), (SU2'), and (P1), and satisfies
(SU4) through (SU6) by the definition of the weak Shestakov-Umirbaev condition. From
this, we can easily conclude that (F, G') satisfies (SU2) through (SU6) on the assumption
thatdg; Adg, = dgi Ad g and () = g fori = 1, 2. So, we verify these equalities. Since
g5 = gp—d, wehave (g))" = ¢ anddg, = dg,. Since dg; = dgi — ¥V (g2 —d)d g», we get
dgi ndgs=dgi Adgy. If b =0, then g; = g1 — . Since deg ¥ < (s — 1)§ < 58 = deg g1,
we have (g))% = g". If b # 0, then deg f3 < deg f> by (P11), and so deg f3 < deg g1 by
(SU3’) and (P3). Hence, (g))" = (g1 — ¥ — bef3)™ = g)'. Thus, it holds that dg; A dg), =
dg1 Ndg and (gl./)W = giw for i = 1,2. Thereby, (F, G’) satisfies (SU2) through (SU6).
Therefore, (F, G') satisfies the Shestakov-Umirbaev condition. Since G o E;| = (gi, 9, B3)
and deg g; = deg g1, we have deg G o E| = deg G.

(ii) Itis clear that F admits a weak Shestakov-Umirbaev reduction if F' admits a Shestakov-
Umirbaev reduction. The converse follows from (i). a

The following remark is readily verified. If (F, G) satisfies (SU2'), (SU3'), (SU4), (SU5)
and (SUG6), then so does (F’, G'). Here, F' = (f], f;, f3) is an element of 7 such that
deg f/ < deg f; fori = 1,2 and () ~ f3* + h for some h € k[g{", ¢)'], and G’ =
(c191, 292, c3g3), where ¢y, c2, ¢3 € k \ {0}. Note that F’ := F o E satisfies this condition
for E € & suchthatdeg F o E < deg F ifi € {1,2},and (F o E)(y3)" ~ f3" + h for some
h € klgy", g3'1if i = 3. Moreover, (F’, G') satisfies (SU1’) if the following conditions hold:
1 cq1 — fl’ belongs to k[ f>, f3]ifi =landcy; =¢c3 =1,

(i) c1g1 — f1and c292 — f; respectively belong to k[ f;, f3] and k[ f3]if i =2 and c3 = 1,
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(iii) c191 — f1,c2g2 — f2 and c393 — f; respectively belong to k[ f2, f31, k[ f3] and k[g1, g2]
ifi =3.

To end this section, we prove a proposition which will be used in the proof of Theo-
rem 2.1. We note that the case (ii) does not arise if rank w = 7, since deg f; = deg f3 implies
fjw ~ f3'if rank w = n, while fjw # f3 for j = 1,2 by (P8).

PROPOSITION 4.4. Assume that (F, G) satisfies the weak Shestakov-Umirbaev condi-
tion. If deg F o E < deg F for E € &;, then the following assertions hold for F' .= F o E,
wherei € {1, 2, 3}.
Q) Ifi = lori =2 o0rifi =3,kLfi, 2] # kg1, go] and deg f; # deg f3 for j = 1,2,
then (F', G) satisfies the weak Shestakov-Umirbaev condition.
(i) Ifi = 3, k[f1, f2] # klg1, 2] and deg f; = deg f3 for some j € {1, 2}, then there
exists u € k \ {0} such that (F', G') or (F., G") satisfies the weak Shestakov-Umirbaev
condition. Here, G' = (g1, g5, ug3) and G" = (g, g5, —ug3) with g} =ulgjand g = g
forl e {1,2}\{j},and T = (j, 3).

PROOF. Set f/ = F'(y;) and ¢; = f/ — f;. Then, deg f/ < deg fi, since deg F' <
deg F by assumption. Hence, deg¢; < max{deg f/, deg f;} < deg f;. We note that ¢; be-
longs to k[S;]. Besides, g1 — f1, ¢ — f2 and g3 — f3 belong to k[ f>, f3], [ /3] and k[ g1, ¢]
by (SUL'), respectively, since (F, G) satisfies the weak Shestakov-Umirbaev condition.

(i) First, assume that i € {1,2}, ori = 3 and ¢3 is contained in k. Since deg F' <
deg F, we know by the remark above that (F’, G) satisfies (SU2'), (SU3’), (SU4), (SU5) and
(SU6)ifi e {1,2}. Ifi = 3,then (f;)¥ = f3", since f;— f3 = ¢3 belongs to k by assumption.
Hence, (F’, G) satisfies the five conditions similarly. We check that (F’, G) satisfies (SU1).
Ifi =1, then g — fl’ = (g1 — f1) — ¢1 belongs to k[S1], since so do g1 — f1 and ¢;. If i = 2,
then ¢, belongs to k[ f3] by (P9), because ¢ is an element of k[ S>] such that deg ¢» < deg f>.
Hence, k[ f;, f3] = k[ f2, f3]. to which g1 — f1 belongs. Moreover, g2 — f; = (g2 — f2) — ¢2
belongs to k[ f3], since so does g» — f>. If i = 3, then ¢3 is contained in k. Hence, g1 — fi
and ¢» — f> belong to k[ f2, f;]1 = k[f2. f3] and k[ f;] = k[f3], respectively. Moreover,

f3 (g3 — f3) — ¢3 belongs to k[ g1, g»1, since so does g3 — f3. Thus, (F’, G) satisfies
(SUl/ ) in each case. Therefore, (F’, G) satisfies the weak Shestakov-Umirbaev condition.

Next, assume that i = 3 and ¢3 is not contained in k. We show that ( f3/)w = fi'+a(g)?
for some @ € k and p € N, which implies that (G, F) satisfies (SU2), (SU3), (SU4),
(SU5) and (SU6) by the remark. Since f{ = f3+ ¢3, deg ¢3 < deg f3, and f3* does not
belong to k[gy'] by (SU4), it suffices to check that ¢Y =~ (g}')” for some p € N. We
establish that ¢3 belongs to k[ f2], and f)' = g)'. Since deg f| # deg f3 by assumption,
we have deg f3 < deg fi by (P7). Hence, deg¢3 < deg f1. Since k[ f1, fo] # klg1, ¢2] by
assumption, it follows from (P10) that ¢3 belongs to k[ f2]. Since ¢3 is not contained in %,
we get deg f» < deg¢3. Hence, deg f> < deg f3. Since deg f> # deg f3 by assumption, we
get deg f» < deg f3. By (P11), it follows that b = 0, where we write go = f> + bfz + d.
Hence, g = f> +d, and so g3 = f,*. Thus, we have proved that ()% = f3* + a(g")”
for some « € k and p € N, and thereby proved that (G’, F) satisfies the five conditions.
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As for (SUY’), g — fo = d clearly belongs to k[ f;]. Since ¢3 is contained in k[ f2], we
know that gy — f1 and g3 — f; = (g3 — f3) — ¢3 belong to k[ f2, f3] = k[f2, f3] and
klg1, 921 = klg1, g2, f2], respectively. Thus, (F’, G) satisfies (SU1’), and therefore satisfies
the weak Shestakov-Umirbaev condition.

(ii) By (P7),degf» < deg fi = deg f3 if j = 1, and deg f3 = deg f>» < deg f; if
j = 2. In view of (P5), deg fi = deg ¢ in either case. Furthermore, if j = 1, then we can
write g1 = f1 +cfs + ¢ and ¢ = f» +d by (P11), sincea = b =0 if deg f» < deg f3. We
claim that g; = f; + afs + ¢! and ¢3 = Bf; + ¥ for some o, B € k, and yP € k[ f>] for
p = 1,2 such that deg ” < deg f1 if j = 1, and degy? < 0if j = 2. In fact, g; has such
an expression if j = 1 as mentioned, since degyr < (s — 1)§ < s§ = degg; = deg f1. If
j = 1, then deg ¢z < deg f3 = deg f1. Hence, it follows from (P10) that ¢5 is expressed as
claimed. If j = 2, then deg ¢35 < deg f3 < deg f1, and so ¢3 belongs to k[ f>] by (P10). Since
deg f» = deg f3 and deg 3 < deg f3, we have ¢3 = Bf> + ¥ for some B, Y% € k. The
expression of g; is due to (P11). Therefore, g; and ¢3 have expressions as claimed. Observe
that degy? < deg f; for p = 1, 2. Moreover, deg f; = deg f3, while fjw # f3' by (P8).
Thus, we have

@10) ¥ = [T Haff. (DY =(H+e)Y = [+ = —ap) Y + By

First, assume that @8 # 1. We show that (F’, G’) satisfies the weak Shestakov-Umirbaev
condition for u = 1 — . From the second equality of (4.10), we get (/)™ ~ f3' + u’lﬁg}”.
Hence, (F/, G') satisfies (SU2"), (SU3’), (SU4), (SU5) and (SU6) as remarked. We check
(SUI"). If j = 1, then g} = ¢», and g5 — f> = g2 — f> = d belongs to k[ f3]. If j = 2, then
f3’ — f3 = ¢3 is contained in k[ f2] by (P10) as mentioned. Hence, k[ f>, f3’] = k[ f2, f3],to0
which g{ — f1 = g1 — f1 belongs. A direct computation shows that

1 1 1
9= fi= 9= fi= g tefs+¥h = fj = g+ —av?),

ugs — fi = —af)gs — (fs + Bfj +¥°) = (1 —aB)(gs — f3) — Bg; + BY' —¥°.
By the first expression, g} — fj belongs to k[ f2, f3]if j = 1, and to k[ f3] if j = 2, since
¥! and ¥ belong to k[ f2]if j = 1, and to k if j = 2. We show that ugs — f; belongs to
klg1, g2]. Since g3 — f3 and g; belong to k[ g1, g21, it suffices to check that wl and wz belong
to k[g1, g2]. This is obvious if j = 2. If j = 1, then ¢o = f» 4+ d. Hence, k[g2] = k[ f2],
to which ¢! and ¥ belong. Thus, ugs — f; belongs to k[gi, g»]. This proves that (F’, G')
satisfies (SU1’), Therefore, (F’, G') satisfies the weak Shestakov-Umirbaev condition.

Next, assume that ¢ = 1. We show that (F., G”) satisfies the weak Shestakov-
Umirbaev condition for u = «. Write F, = (hy, h2, h3). Then, degh; = degf; <
deg f3 = deg f; and degh; = deg f; for [ € {1,2}\ {j}. By the first equality of (4.10),
we get hY = fjw = —afy' + g}v since B~! = «. Hence, (F., G") satisfies (SU2'), (SU3’),
(SU4), (SU5) and (SU6) by the remark. We check (SU1’). As in the case of @8 # 1 above,
gy —hy = ¢ — fo = d belongs to k[h3] if j = 1, and g/ — h1 = g1 — f1 belongs to
klhy, h3] = k[fé, 21 =kl f2, f3]if j = 2. A direct computation shows that
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1 1 ,_ 1 1 2 L 2
gj_hjzagj_f3=5(fj+“f3+‘/f)—(f3+,3fj+1/f)=51/f — e,
—ugs —hy=—ag— fj=—alg— f3) —afs — fj = —algs— f3) —g; +¥'.

By the first expression, g}’ — hj belongs to k[ha, h3] = k[ f>, filif j = 1, and to k[h3]
if j = 2. As in the case of 8 # 1 above, —ugs — h3 belongs to k[g1, g2] by the second
expression. Thus, (F’, G) satisfies (SU1’). Therefore, (F’, G) satisfies the weak Shestakov-
Umirbaev condition. O

5. Analysis of reductions. In this section, we prove some technical propositions
which will be needed in the proof of Theorem 2.1. First, we show a useful lemma.

LEMMA 5.1. Assume that (Fy, G) satisfies the weak Shestakov-Umirbaev condition

for some o € G3. Then, the following assertions hold:

(i) [Ifdeg fi <deg fifori=2,3,thenco(l) =1.

(i) If (Fs,G) satisfies the Shestakov-Umirbaev condition, and if o(1) = 1 and
degdfi Adf> < deg f1, then o =id and (f1, f2) = (g1, 92)-
(iii) Ifdeg f3 < deg f> < deg f1 and 2deg fi < 3deg f>, then either 3deg f» = 4deg f3,
or 2deg fi = sdeg f3 for some odd number s > 3.

@iv) Ifdegdf> Adfz < degdfi Adfs < degdfi A dfa, then one of the following holds:

(1) o =idand2deg g = 3deg f>.

2) o=(1,2,3)and 2deg f>» = sdeg f3 for some odd number s > 3.

PROOF. (i) By (P7), we have deg f,() < deg f51) fori = 2,3. Hence, o (1) = 1 if
deg f; < deg f1 fori =2, 3.
(i) Since o (1) = 1 by assumption, we have

deg f1 = deg fo(1) < deg g1
=56 < deg dfg(z) VAN dfo‘(3) < deg dfo‘(l) VAN dfo‘(3) = deg df1 AN dfo‘(3)

by (SU2’) and the last two conditions of (P12). Since degdfi A df> < deg f1 by assumption,
we get 0(3) # 2. Hence, 0(3) = 3, and so 0 = id. Because (F, G) = (Fy, G) satisfies
the Shestakov-Umirbaev condition by assumption, we may write g; and g as in (SU1). It
follows from the inequality above that the w-degrees of df] A dfs and df> A df3 are greater
than deg f1, and hence greater than degdf; A df>. This implies thata = b = ¢ = 0 by the
first equality of (P12). Therefore, we obtain ( f1, f2) = (91, ¢2).

(iii) Since deg f; < deg f1 fori = 2,3 by assumption, we have (1) = 1 by (1).
Hence, 0 = id or 0 = (2, 3). First, assume that ¢ = id. Then, deg f>» = deg ¢ = 24 by
(P3). Since 2deg f1 < 3 deg f» by assumption, we have deg f1 < (3/2)deg f» =35 < s6 =
deg g1. Hence, deg f3 = (3/2)$ by (P5). Therefore, we obtain 3deg f» = 66 = 4deg f3.
Next, assume that o = (2, 3). Then,

3
55 < 28 = deg fy2) = deg f3 < deg fo = deg fo3) -
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Hence, deg f1 = deg g in view of (P5). By (P1), we have 2deg g; = s deg ¢» for some odd
number s > 3. By (P3), deg g» = deg f(2) = deg f3. Therefore, 2deg f1 = s deg f3.

(iv) Sety; = degdf, Adf, foreach i, where p,q € N\ {i} with1l < p < g < 3.
In view of the first equality of (P12), we know that there exist four possibilities for y,3) =
degdfsy A dfs). Since y1 < y2 < y3 by assumption, we have y,;3) # Vo) fori =
1, 2. Hence, the second and the third cases do not arise. Accordingly, y,(3) must be either
deg fo3) + Vo1) or degd gy A dgp, where a # O ora = b = ¢ = 0, respectively. In the
former case, y,2) = (s — 2)8 + Yo (1) < deg f53) + Vo(1) = Vo (3) by the second equality of
(P12) and (P2). Hence, y5(1) < Yo(2) < Yo3)- Thus, we get 0 = id. Since a # 0, we have
s = 3 by (P11). Therefore, 2deg g1 = 3 deg ¢» = 3 deg f> by (P1) and (P3). In the latter case,
Vo) = degdgi Adgp < Vo(1) < Yo(2) by the last two conditions of (P12). Hence, we get
o = (1,2,3). Since a = 0, we have deg f» = deg f,(1) = deg g1 in view of (P5). By (P3),
deg f3 = deg fo(2) = deg g». Therefore, 2deg f> = s deg f3 for some odd number s > 3 by
(P1). )

From Lemma 5.1(i) and (ii), we get the following proposition.

PROPOSITION 5.2. Assume that
5.1 deg f; <deg fi (i =2,3) and degdfi Adfs <degfi.

If (Fy, G) satisfies the Shestakov-Umirbaev condition for some o € S3 and G € T, then
there exists E € &3 suchthat F o E = G.

PROOF. Since deg f; < deg f1 fori = 2,3, we have 0(1) = 1 by Lemma 5.1(i). Since
degdfi Adf, < deg f1, we get 0 = id and (f1, f2) = (91, ¢2) by Lemma 5.1(ii). Then,
(SUT) implies that G = F o E for some E € &3. O

In the rest of this section, we assume that f3w does not belong to k[ f2W ], and
5.2) deg fi =s6, degfr=25, (s—2)5<degfs <sé

for some odd number s > 3 and § € I". Under the assumption, f," does not belong to k[ £3"],
because f)' % f3' and deg f = 26 < 2(s — 2)§ < deg f32. Furthermore, f}" belongs to
k[ f3']if and only if f¥ ~ (f3w)2, in which case s = 3. In fact, if f}" belongs to k[ f3'], then
= (f3w)l for some [ € N. Since deg f3 < deg f1 by assumption, we havel > 2. If [ > 3
ors > 5,thendeg f1 = s6 <I(s —2)§ < ldeg f3, a contradiction. Thus,/ =2 and s = 3. If
= (f3w)2, then f" clearly belongs to k[ f3'].

Under the assumption above, the following two propositions hold.

PROPOSITION 5.3. Assume that
(5.3) degdfi ANdf, <deg f3 — (s —2)0 +¢,
where ¢ 1= degdfi Adfy Adfs > 0. If £ belongs to k[S2]V, then f" ~ (f3w)2.

PROOF. By assumption, there exists ¢> € k[Sz] such that ¢ = f;*. As mentioned
after (5.2), f)* does not belong to k[ f3']. Since deg f> < deg f1 by (5.2), f," does not
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belong to k[ ", f3']1 \ k[ f3']. Thus, f3" does not belong to k[ f*, f3*], and hence neither
does ¢Y'. Therefore, we have deg¢, < degs2 ¢>. By Lemma 3.2(ii), there exist p,qg € N
with ged(p, g) = 1 such that (f*)? ~ (f3")9 and

28 = deg fo > deg(f2 — ¢2) > pdeg fi1 + & —degdfi Adf, —deg f3
> pdeg f1 — (deg f3 — (s — 2)3) — deg f3

54 = <s<p+1—261—p>—2>8.

Here, we use (5.3) for the last inequality, and deg f3 = (p/q) deg f1 and deg f; = s§ for
the last equality. Now, suppose to the contrary that f* % ( f3w)2. Then, the assumptions
of Lemma 3.3(ii) hold for f = f3 and ¢ = fi. In fact, f" does not belong to k[ f3'] if
i # (f3"")2 as remarked after (5.2). By (5.2), it follows that deg f3 < deg f1 and deg ¢, =
deg f>» < deg f1. Thus, we may conclude by Lemma 3.3(ii) that p = 2, and ¢ > 3 is an odd
number. Consequently, the right-hand side of (5.4) is atleast 3(2+ 1 —2-2/3) —2)§ = 36,
a contradiction. Therefore, we must have f¥ ~ ( f_q)w)2 if f," belongs to k[S2]%. a

The following proposition forms the core of the proof of Theorem 2.1.

PROPOSITION 5.4. Assume that
(5.5) degdfi ndfy < deg f3 — (s —2)5 + min{4, ¢} .

If there exists ¢1 € k[S1] such that deg f{ < deg f1, then either [ ~ (f3w)2, or (fzw)2 ~
(f3"")3 and F' does not admit a Shestakov-Umirbaev reduction, where f| = fi + ¢1 and
F' = (f], f2. f3). Assume further that (f|)™ does not belong to k[S1]%. Then, the following
assertions hold:

(1) fY does not belong to k[S;1¥ for i = 2,3, where S| = {f{, f2, f3} \ { fi}. Hence, F’
does not admit an elementary reduction.

2) If flw x (f3"")2 and (F)., G) satisfies the weak Shestakov-Umirbaev condition for some
0 € G3and G € T, then o = id and (F, G) satisfies the weak Shestakov-Umirbaev condi-
tion.

PROOF. To begin with, we show that deg¢; < deg®! ¢ if i # (f3w)2. Since ¢ is
an element of k[S;], we check that ¢}" does not belong to k[ f;", f3*]. By the assumption that
deg(f1 + ¢1) < deg f1, we have ¢ ~ f". Since deg fi = (s/2) deg f> for an odd number
s by (5.2), f¥ does not belong to k[ £;']. Since f* % (f;)* by assumption, f}* does not
belong to k[ f3w] as mentioned after (5.2). By (5.2), it follows that

deg f1 =25+ (s —2)§ < deg f>» +deg f3 .

Hence, f" does not belong to k[ f;*, f3*1\ (k[ /"1 U k[f3']). Thus, f" does not belong to
k[ fy¥, f3"], and hence neither does @Y. Therefore, deg ¢ < degS! ¢ if i # (f3w)2.

First, we show that ( fz"")2 ~ ( f3"")3 and F’ does not admit a Shestakov-Umirbaev reduc-
tion in the case where deg ¢y < deg®' ¢;. Then, we obtain the first part of the proposition as
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a consequence, since deg ¢ < deg’! ¢ if % ( f_q)w)2 as shown above. By Lemma 3.2(ii),
there exist p, g € N with ged(p, g) = 1 such that (") ~ (f,*)4 and

s8 =deg f1 > deg(f1 +¢1) > gdeg fo + & —degdfi Adf, —deg f3
> g deg fo — (deg f3 — (s —2)8) — deg f3

(5.6) = <q<2—i>+s—2>8,
p

where we use (5.5) for the last inequality, and deg f3 = (¢/p)deg f>» and deg f> = 2§ for
the last equality. Recall that we are assuming that f3* does not belong to k[ f,"], while f)"
does not belong to k[ f3w ] as mentioned after (5.2). Hence, we have p > 2 and ¢ > 2. We
show that p = 3 and ¢ = 2 by contradiction. Supposing that p = 2, we have deg f3 =
(g/2)deg f> = g8. Hence, (s —2)§ < g6 < s6 by (5.2),and so ¢ = s — 1. Since p = 2 and
s is an odd number, we get gcd(p, ¢) = 2, a contradiction. If p > 4, then the right-hand side
of (5.6) would be at least (g + s — 2)6 > s6 since ¢ > 2. This is a contradiction. Thus, we
get p = 3. If g > 3, then the right-hand side of (5.6) would be at least s§, a contradiction.
Hence, we have ¢ = 2. Therefore, we obtain ( f3w )~ ( fzw )2, From this, we know that
deg f3 = (2/3)deg f» = (4/3)5. Since deg f3 > (s — 2)8 by (5.2), it follows that s = 3.
Consequently, the right-hand side of (5.6) is equal to (7/3)8. Thus, we get

4 7
(5.7) deg f5 = 58 <deg fr =26 < 58 < deg f{ <38.

It follows that 2deg f{ < 65 = 3 deg f>. Then, by Lemma 5.1(iii), we can conclude that F’
does not admit a weak Shestakov-Umirbaev reduction, since

16
3deg fr =68 # <6 = 4deg f3,
14 , 20
3deg fz =46 < ?8 < 2deg f] <68 < ?(S:Sdegﬁ.

Therefore, F’ does not admit a Shestakov-Umirbaev reduction.

In this situation, assume further that (f{)" does not belong to k[S1]%. We show that f*
does not belong to k[S] for i = 2,3 by contradiction. Suppose that there exists ¢; € k[S]]
such that ¢1W = fiw for some i € {2, 3}. Then, the conditions (i) through (iv) after Lemma 3.3
are fulfilled for f = f;, g = f{, h = fi and ¢ = ¢;, where j € {2,3}\ {i}. Actually,
fl’ = f1 + ¢1, f>» and f3 are algebraically independent over k, since so are fi, f> and f3,
and ¢ is an element of k[S1]. Moreover, deg fi < deg f| for I = 2,3 by (5.7), and f"
does not belong to k[f}”] by assumption, since (7, j) is (2, 3) or (3, 2). By assumption, (fl’)W
does not belong to k[S1]¥, and hence does not belong to k[fjw]. By the choice of ¢;, we
have deg(f; — ¢i) < deg f;. Thus, (i) through (iv) are satisfied. By Lemma 3.3(ii) and the
remark following it, we may conclude that ((fl’ W2 a2 ( f ]W)q for some odd number g > 3.
Hence, deg f{ = (¢/2)deg f; is equal to (2¢/3)8 if j = 3, and ¢é if j = 2. Since no
odd number g > 3 satisfies 7/3 < 2g/3 < 3 or7/3 < g < 3, we get a contradiction by
(5.7). Therefore, f does not belong to k[S;]¥ for i = 2, 3. Since (f{)" does not belong
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to k[S1]%, it follows that F’ does not admit an elementary reduction. This proves (1) in the
case where deg; < deg®' ¢1. The assumption of (2) does not hold in this situation, since
deg f1 = 38 # (8/3)5 = deg f32 by (5.7).

Next, we show (1) and (2) in the case where deg¢; = degs1 ¢1 and (f{)™ does not
belong to k[S1]%. By the remark in the first paragraph, we know that f* ~ ( f3w)2 ifdeggp; =
deg’! ¢1. As mentioned after (5.2), = (f3"")2 implies s = 3. Hence, deg fi = s§ = 34,
and so deg f3 = (1/2)deg fi = (3/2)8. Since deg®' ¢ = deg¢; and deg¢; = deg f1, we
have degS1 ¢1 = 36. By Lemma 4.1(i), we may write ¢1 = af32 4+ cfz + ¥, where a,c € k
and ¥ € k[ f>] withdegvy < (3—1)8 = 24. Since deg f» = 28, we get ¥ = ef» + ¢’ for some
e, ¢ € k. Note that a is not zero, for otherwise deg¢; < max{deg f3,degy} < deg f1, a
contradiction. We claim that the conditions (a) through (d) before Lemma 3.5 hold for k; = f;
fori =1,2,3and klf = k; fori = 1, 2. In fact, (a), (b), (c) follow from deg k; = degki = 34,
degky = degk), = 268 and degks = (3/2)8. The left-hand side of (d) is less than 38, since
degdfi Adfy < deg f3 = (3/2)5 by (5.5) with s = 3. Because the right-hand side of (d) is
greater than deg k1 = 3§, we know that (d) holds true. Therefore, by (3.4), we obtain

(5.8)  degdfi ndfs =deg fi —deg fo +degdfr ndf3 =5+ degdfr ndfs.

Hence, degdf> Adfs < degdfi Adfs. Since dp Adfs = dyr ANdfz = edfr Adfz, we have
df{ ndfs = dfi ANdfs +edfy Adf;. Thus, degdf] A dfs = degdfi Adf3, and so

5.9 degdf{ Adfs; =8+ degdfr Adf3

by (5.8). For the same reason as above, the conditions (a) through (d) before Lemma 3.5 hold
forky = f{. ki = fifori = 2,3, k] = fi =k —ak%—ck3 — ¢ and k) = ko, for k;

is not involved in the conditions. Since @ # 0 and degdfi A df» < deg f3, we know by
Lemma 3.5(i) that

3
(5.10) degdf{ ndfs =deg f5 +degdfs ndfs = 35 +degdfs ndfs.

Set ® = f| +ay® + cy + efs + ¢'. Then, deg‘{:,3 @ = deg f1, while deg @ (f3) = deg f| <
deg f. Since @V = 2ay 4+ ¢ and a # 0, we have deg{f oM = deg f3 = deg @V (f3).
Hence, m‘vff (@) = 1. By Theorem 3.1, it follows that
deg f{ = deg @(f3) = degii & + mi (P)(s — degdfi Adfs — deg f3)
(5.11) =deg f1 + & —degdfi Adf, —deg f3
>deg fi —2deg f3+ (s —2)§ =6,
where the last inequality is due to (5.5). With the aid of (5.11), we show the following:

0 (DY RS, 1. G f ERIODY, 1. GiD) Y €RIDY /']
Since k[ f,", fy']is contained in k[S1]V, (i) follows from the assumption that ( f{)* does not
belong to k[S1]%. In particular, £ % (f{)™. By (5.11), deg fo =28 < deg(fl’)z. Hence, f,"
does not belong to k[(f{)"]. Since deg f3 = (3/2)§ < deg f> < 38 = deg f32, it follows that
f5¥ does not belong to k[ f3']. By (5.11), deg f> < § 4+ (3/2)8 < deg f{ f3, and so f" does
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not belong to k[(f)%, f3'1\ (k[(f)HVTUK[f3']). Thus, £ does not belong to k[(f{)¥, f3'],
proving (ii). It follows that f3* % (f{)™ by (i), and deg f3 < 28 < deg(fl’)2 by (5.11). Hence,
f3" does not belong to k[(f{)¥]. Since deg f3 < deg f2, we get that f3* does not belong to
KLCDY, £\ kL(fD™]. This proves (iii).

Now, we show that f;* does not belong to k[S}]™ by contradiction. Supposing the con-
trary, there exists ¢ € k[S}] such that ¢}’ = f)¥. Then, ¢3’ does not belong to k[(f])™, f3']
by (ii). Hence, deg ¢» < degsé ¢>. By Lemma 3.2(i), there exist p, g € N with gcd(p,q) =1
for which ((f{)™)? ~ (f3")? and

28 =deg f> = deg¢o > pqy +degdf| Adfs — py —qy
= pqy + 0 +degdfa ndfs — py —qv,

where y € I such that deg f| = py and deg f3 = gy, and the last equality is due to
(5.9). From (5.12), it follows that (pg — p — q)y < §. Since deg f{ > & by (5.11), and
since deg f3 = (3/2)8 > &, we have § < min{deg f/, deg f3} = min{p, gq}y. Hence, pg —
p —q < min{p, q}. By (iii) and (i), f3* and (f{)" do not belong to k[(f)™] and k[ £3"],
respectively. As ged(p,q) = 1, weget2 < p < gor2 < g < p. It follows from the
claim before Lemma 3.3 that (p,q) = (2,3) or (p,q) = (3,2). If (p,q) = (2, 3), then
38 < 3deg f{ = 2deg f3 = 36 by (5.11), a contradiction. Thus, (p,q) = (3,2). Then,
deg f{ = (3/2)deg f3 = (9/4)8 and y = (1/2) deg f3 = (3/4)$, and so

(5.12)

1
(5.13)  degdfo Andfs <28 —pqy —8+py +qy =286 —6y —8+3y +2y = Z(S
by (5.12). By Lemma 3.2(ii) and (5.13), we get

deg(f> — ¢2) > 3deg f3 + ¢ — degdfo Adf3 — deg f| > 28 - %8 - %8 =26.
However, since ¢) = f)*, we have deg(f> — ¢2) < deg f> = 26, a contradiction. Therefore,
f5" does not belong to k[S5]%.
Similarly, suppose to the contrary that there exists ¢3 € k[S5] such that ¢} ~ f3¥. Then,
@Y does not belong to k[(f)™, f;'] by (iii). Hence, deg¢3 < degs§ ¢3. By (i) and (ii), (f)¥
and f,* do not belong to k[ f,'] and k[( f{)™], respectively. Thus,

3
degdf| Adf> < deg¢3 = deg f3 = 55

by Lemma 3.3(i). This contradicts (5.10). Therefore, f3w does not belong to k[Sé]w. This
completes the proof of (1).

Finally, we show (2). Assume that (F,, G) satisfies the weak Shestakov-Umirbaev
condition for some o € &3 and G € 7. By (5.9) and (5.10), we have

degdfy Adf3 < degdf| Adfs < degdf{ Adf>.

In addition, 2deg f» = 48 # (3/2)ré = rdeg f5 for any odd number r > 3. Hence, we
get 0 = id and 2degg; = 3deg f> by Lemma 5.1(iv). Thus, (F’, G) satisfies the weak
Shestakov-Umirbaev condition, and deg g1 = (3/2) deg f> = deg f1. Then, it is immediate
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that (F, G) satisfies (SU2'), (SU3’), (SU4), (SU5) and (SU6). As for (SU1"), we have only to
check that g — f] belongs to k[ f2, f3]. Since (F’, G) satisfies the weak Shestakov-Umirbaev
condition, g — f{ belongs to k[ f2, f3] by (SU1’). Hence, g1 — f1 = (g1 — f{) + ¢1 belongs
to k[ f2, f3], since so does ¢;. Thus, (F, G) satisfies (SU1’"). Therefore, (F, G) satisfies the
weak Shestakov-Umirbaev condition. This completes the proof of (2). a

We note that (5.11) is the key estimation which guarantees that no tame automorphism
admits a reduction of type I'V.

6. Proof of Theorem 2.1. We begin with the following lemma.

LEMMA 6.1. (i) IfdegF = |w|for F € Auty k[X], then F is tame.
(i) X :={awi1+---+aywy;ai,...,a, € L=o}is awell-ordered subset of I'.

PROOF. (i) Wemay assumethatw; < --- < w, anddeg f; < --- < deg f, by chang-
ing the indices of wy, ..., w, and fi, ..., fy if necessary. Write f; = b; +3__j a; jx; + f}
for each i, where b;, a; j € k for each j, and fl.’ is an element of the ideal Q of k[x] gen-
erated by all the quadratic monomials. Clearly, F is tame if and only if so is F o G’ or
G’ o F for some G’ € Ty k[x]. Since deg F o G = deg F for G = (x; — by, ..., xy — by),
we may assume that b; = 0 for each i by replacing F' by F' o G. Note that det(q; ;); ; is
equal to the Jacobian of F, so (a;,;); ; is invertible. Let H be an affine automorphism of
k[x] defined by H (x;) = 27:1 a;,jxj for each i. Then, deg H (x;) < deg f; for each i since
fi=Hx)+ fl.’ . We claim that deg f; = w; for each i. In fact, if not, we can find i such that
deg fi < w; since deg I = |w| by assumption. Then, deg H (x;) < deg f; < deg f; < w;
for j < i, while degx; = w; > w; for [ > i by assumption. Hence, H(x;) is contained
in the (i — 1)-dimensional k-vector space @;;% kx; for j = 1,...,i. This contradicts that
H(x1), ..., H(x;) are linearly independent over k. Thus, we get deg f; = w;, and hence
deg H (x;) < w; for each i. We show that deg H'(x;) < w; for each i. Let m be the maxi-
mal number for which w,, = w;. Then, H (x;) belongs to @}":1 kx;for j =1,...,m. Hence,
H induces an automorphism of )", kx;. Thus, H~!(x;) belongs to €]~ kx;. Therefore,
deg H™'(x;) < wy, = w; = degx;. This implies that deg H~!(g) < deg g holds for each
g € k[x]. Consequently,

n n
lw| < degH’1 oF = ZdegH*I(fi) < Zdegﬁ =deg F = |w|.
i=1 i=1

Therefore, deg H~! o F = |w|, and so we may replace F by H~! o F. It follows that f; =
x; + f/ for each i, where f/" = H’l(fl.’) € Q. We show that f/" belongs to k[x1, ..., x;_1]
for every i by contradiction. Suppose that there appears in f;” a monomial x, - - - X,,, Where
ai,...,a, €{1,...,n} witha; > i. Since x4, - - - x4, belongs to Q, we have n > 2. Hence,

n
1
w; =deg f; > deg f;" > degxy, -+ Xq, = E Wq; > Wq, = Wi,
i=1
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a contradiction. Thus, fl.” belongs to k[x1, ..., x;—1] for each i. This means that F is triangu-
lar. Here, we say that (hy, ..., h,) € Auty k[x] is triangular if there exists ¢ € G,, such that
ho(iy = Xo@) + ¢i for some ¢; € k[xs(1), ..., Xoi—1)] fori = 1,...,n. Since a triangular

automorphism is tame, we conclude that F is tame.

(ii)) We show that each nonempty subset S of X' has the minimum element. As men-
tioned, we may regard I" = Z" for some r € N. Let k[y, y~'] be the Laurent polynomial ring
in yi, ...,y over k, and R the k-subalgebra of k[y, y_l] generated by y¥i fori = 1,...,n,
where y* = y‘f‘ . yfl’ for each @ = (1, ..., ;). Then, R is Noetherian, and contains y*
for each o € ¥. Consider the ideal / of R generated by {y*; « € S}. Since R is Noether-
ian, there exists a finite subset S’ of § with minimum element w such that I is generated by
{y% a € S’}. Then, u becomes the minimum element of S. In fact, for each a € S, there
exist B € 8’ and y € X such that y* = yPy”. Then, 8 > u, y > Oand @ = S + y. Hence,
o > B > u. Thus, p is the minimum element of S. Therefore, X' is a well-ordered subset of
r. )

In the rest of the paper, we assume that n = 3, and identify k[y] with k[x]. Let .A be the
set of F € Auty k[x] for which there exists G; € Auty k[x] fori = 1,...,l with G| = F
and deg G; = |w]| such that G;4 is an elementary reduction or a weak Shestakov-Umirbaev
reduction of G; fori = 1,...,1 — 1, where [ € N. Then, each element of A is tame, since
G is tame if deg G; = |w| by Lemma 6.1(i), and G; is tame if and only if so is G;+; for each
i. Hence, A is contained in Ty k[x]. By definition, if deg F > |w| for F € A, then F admits
an elementary reduction or a weak Shestakov-Umirbaev reduction. By Proposition 4.3(ii), F
admits a weak Shestakov-Umirbaev reduction if and only if F" admits a Shestakov-Umirbaev
reduction. Thus, if deg F > |w| for F € A, then F admits an elementary reduction or a
Shestakov-Umirbaev reduction. The goal of this section is to establish that A = Ty k[x],
which implies Theorem 2.1 immediately.

We remark that, if F belongs to A, then so do F, and F o H, where 0 € &3 and
H = (c1x1, cox2, c3x3) with ¢, ¢p,¢3 € k \ {0}. If deg F = |w]| or if there exists G € A
such that G is an elementary reduction or a weak Shestakov-Umirbaev reduction of F, then
F belongs to A.

The following is a key proposition.

PROPOSITION 6.2. IfdegF o E <degF for F € Aand E € &, then F o E belongs
to A.

Note that, if degF o E > degF for F € Aand E € &, then F o E belongs to A.
Actually, (F o E) o E~! = F is an elementary reduction of F o E.

We deduce from Proposition 6.2 that Ty k[x] is contained in 4. Take any F € Ty k[x].
Then, we can express F = H o Eyo---0 E;, where H = (c1x1, c2X2, ¢3x3) with ¢y, 2, ¢c3 €
k\{0},l € Z>p,and E; € £ fori = 1,...,1. We show that F belongs to .4 by induction
on /. The assertion is true if / = 0, i.e., F = H, since deg H = |w/|. Assume that/ > 0. By
induction assumption, F’ := H o Ej o --- o Ej_| belongs to A. Then, F = F’ o E; belongs
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to .A by Proposition 6.2 and the note following it. Therefore, Tk k[x] is contained in .A on the
assumption that Proposition 6.2 is true.
The following proposition is necessary to prove Proposition 6.2.

PROPOSITION 6.3. Assume that F = (f1, f2, f3) € A satisfies
(6.1) deg f1 =58, degfr =28, (s—2)5+degdfi Andf, <degfz <s8

for some odd number s > 3 and § € I', and that 3" does not belong to k[ f,"]. Then, there
exists E € &3 suchthatdeg F o E < deg F and F o E belongs to A.

We note that (6.1) implies (5.1), (5.2), (5.3) and (5.5). Furthermore, f¥ and f)" are
algebraically dependent over k in this situation, for otherwise

degdfi ndfs =deg fi +deg fo = (s +2)

as mentioned after (2.3), which contradicts the last inequality of (6.1).

We establish Propositions 6.2 and 6.3 simultaneously by induction on deg F. Since X' is
well-ordered by Lemma 6.1(ii), so is the subset A := {deg H; H € A}, where min A = |w|.
Assume that F € A satisfiesdeg F = |w|. If deg Fo E < deg F for E € £,thendeg Fo E =
|w|, since deg F o E > |w| by (2.4). Hence, F o E belongs to .A. Thus, the statement of
Proposition 6.2 holds for F € A with deg F = |w|. Note that £, f,* and f;" are algebraically
independent over k if deg F = |w/|, for otherwise degdfi Adfo Adf3 < Z?zl deg f; = |w|,
a contradiction. Therefore, the assumption of Proposition 6.3 is not fulfilled.

Let u be an element of A such that & > |w|, and assume that the statement of Proposi-
tion 6.2 holds for each F € A with deg F < p. For F' € Auty k[x], we define I to be the set
of i € {1, 2, 3} for which there exists E € &; such thatdeg F o E < deg F and F o E belongs
to A. Note that, if deg F > |w| for F € A, then either Ir # ¥, or (F,, G) satisfies the weak
Shestakov-Umirbaev condition for some o € &3 and G € A.

CLAIM 1. Let F be an element of A such that deg F = .

(1) IfE is an element of & for some i € If, then F o E belongs to A.

(ii) If there exist E', E" € £ and E; € & withdeg F o E; < deg F for some i € I such
that E o E' = E; o E” for E € &, then F o E belongs to A.
(iii)) For a triangular automorphism H of k[x], we define E; € & by E;i(x;) = H(x;) for
eachi. If deg(F o H)(x;) < deg fi, or equivalently deg F o E; < degF, for some i € If,
then F o E belongs to Afor j =1,2,3.
@Gv) IfIp\ {i} # ¥ and fjw belongs to k[ f*] for some i, j € {1,2,3} withi # j, then j
belongs to If.

(v) If (F, G) satisfies the weak Shestakov-Umirbaev condition for some G € A, then there
exists G' € A such that (F, G') satisfies the Shestakov-Umirbaev condition.

PROOF. (i) Since i is an element of I, there exists E; € & such thatdeg F o E; <
deg F and F o E; belongs to A. Then, we have deg F o E; < pu, since degF = u by
assumption. For each E € &, it follows that E’ := E;l o E is an element of &;. Hence,
F o E = (F o E;) o E’ belongs to .A by the induction assumption of Proposition 6.2.
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(ii)) 'We may assume that E is contained in £; for some j # i by (i), anddeg F o E <
deg F by the note after Proposition 6.2. Then, E’ and E” belong to & and &;, respectively,
since E o E’ = E; o E” by assumption. Hence, (E; o E")(x;) = (E o E")(x;) = E(x}), and
(Ei o E")(x1) = E;(x;) forl # j. Sincedeg Fo E; < deg F anddeg F o E < deg F, we have

deg(Fo Ej)(x;) <deg f; ifl=i
deg(F o E; o E")(x;) = { deg(F o E)(xj) <degf; ifl=]j
deg(F o E;j)(x;) =deg f; otherwise.

Thus, deg FoE;oE” < deg F. Note that FoE;o E” belongs to A by the induction assumption
of Proposition 6.2, since deg F o E; < deg F = u, and F o E; belongs to A by (i). Therefore,
(FoE;oE")o(E")"! belongs to A for the same reason. This shows that F o E belongs to
A,since FoE;oE"o(E) ! =FoEoE o(E)"! =FoE.

(iii)) Without loss of generality, we may assume that i # j by (i). We may also assume
that H (x;) = x; + ¢; for each [, where ¢; € k[x1, ..., x;-1]. Then, E}, o E' = E4 o Ej, holds
for each p < ¢, where E’ € &, such that E'(xy) = x4 + E;l(cpq). In view of this, we can
find E’, E” € £ suchthat Ej o E' = E; o E”. By assumption, we have deg F o E; < deg F,
and i is an element of /. Hence, we conclude that F o E; belongs to A by (ii).

(iv) Since I \ {i} # ¥ by assumption, we can find/ € Ir \ {i} and E; € & such that
deg F o E; < deg F. Clearly, we may assume that j # [. Since fjw belongs to k[ /] by
assumption, there exist ¢ € k \ {0} and r € N such that f]W = c(f")". Then, we can define a
triangular automorphism H of k[x] by H (x;) = x;, H(xj) = x; — cx] and H (x;) = E;(x)).
Define E; € &£ by E;j(x;) = H(xj). Since deg F o E; < degF for [ € I, it follows
from (iii) that F o E; belongs to .A. Moreover, since deg(f; — cf]) < deg f;, we have
deg F o Ej < deg F. Therefore, j belongs to IF.

(v) Since (F, G) satisfies the Shestakov-Umirbaev condition by assumption, there ex-
ists E; € & fori = 1,2 such that deg G o E; = deg G, and (F, G’) satisfies the Shestakov-
Umirbaev condition by Proposition 4.3(i), where G’ = G o E| o E5. We show that G’ belongs
to A. Since G is an element of A, and since degG < deg F = u by (P6), it follows that
G o E| belongs to A by the induction assumption of Proposition 6.2. Then, (G o E1) o E»
belongs to A for the same reason, since deg G o E; = deg G < . Therefore, the assertion
holds for G’ = G o E| o E». O

Now, we show that the statement of Proposition 6.3 holds for each F € A with deg F =
w. Since u > |w|, we have deg ' > |w|. Hence, Ir # ¥ or (Fy, G) satisfies the weak
Shestakov-Umirbaev condition for some o € &3 and G € A as noted. The conclusion of
Proposition 6.3 is obvious if Ir contains 3. If /r contains 2, then deg F o E; < deg F for
some Ep € &. Hence, f," belongs to k[S2]™. Then, we get f¥ ~ (f?)w)2 by Proposition 5.3.
Here, we remind that the assumption of Proposition 6.3 implies (5.1), (5.2), (5.3) and (5.5).
Thus, f}" belongs to k[ f3"]. Since I\ {3} # ¢, this implies that /r contains 1 by Claim 1(iv).
So, assume that Ir contains 1. Then, there exists E; € & such that deg F’ < deg F and
F’ belongs to A, where F/ = F o E;. Clearly, F'(x;) = f1 + ¢1 for some ¢; € k[S]]
and deg F'(x1) < deg f1. On account of Claim 1(i), we may assume that F’(x1)" does not
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belong to k[S]V by replacing E if necessary. Then, F and F’ satisfy all the assumptions of
Proposition 5.4. By the first part of this proposition, we may conclude that either f* ~ (f3" )2,
or ( fzw )2 ~ ( f3w)3 and F’ does not admit a Shestakov-Umirbaev reduction. We show that F’
admits a Shestakov-Umirbaev reduction, and hence the latter case is impossible. Observe that
f3" and f3" are algebraically dependent over k in either case, since so are f* and f," due to
(6.1). This implies that deg F’ > |w| by (2.4). Since F’ is an element of A, it follows that
Ipr # ¥ or (F.,, G') satisfies the weak Shestakov-Umirbaev condition for some o’ € &3
and G’ € A. By Proposition 5.4(1), F’ does not admit an elementary reduction. Hence,
I = @. Thus, (F (; ,, G') satisfies the weak Shestakov-Umirbaev condition for some o’ € S3
and G’ € A. Accordingly, F’ admits a weak Shestakov-Umirbaev reduction. Therefore, F’
admits a Shestakov-Umirbaev reduction by Proposition 4.3(ii). As a result, we get f" ~
( f3w)2. Then, it follows from Proposition 5.4(2) that ¢’ = id and (F, G') satisfies the weak
Shestakov-Umirbaev condition. So, we are reduced to the case where (F,, G) satisfies the
weak Shestakov-Umirbaev condition for some o0 € &3 and G € A. By Claim 1(iv), we may
assume that (F,, G) satisfies the Shestakov-Umirbaev condition by replacing G if necessary.
Then, there exists E € & such that F o E = G by Proposition 5.2. Since deg G < deg F by
(P6), and since G is an element of A, it follows that deg F o E < deg F, and F o E belongs
to A. Thus, we arrive at the conclusion of Proposition 6.3. Therefore, we have proved the
assertion of Proposition 6.3 in the case where deg F' = u on the assumption that the assertion
of Proposition 6.2 is true if deg F' < u.

To complete the induction, we next show the assertion of Proposition 6.2 in the case
where deg F = u on the assumption that the assertions of Propositions 6.2 and 6.3 are true if
deg F < p and deg F < pu, respectively. First, assume that /r = @J. Then, (F,, G) satisfies
the weak Shestakov-Umirbaev condition for some ¢ € &3 and G € A. Without loss of
generality, we may assume that 0 = id. By Claim 1(iv), we may also assume that (F, G)
satisfies the Shestakov-Umirbaev condition by replacing G if necessary. Since Ir = #, it
follows that F' does not admit an elementary reduction. In view of (SU1), this implies that
(f1, ) # (91, ) and k[ f1, fo] # klg1, g2]. Then, we know by the following claim that
F o E belongs to Afor E € £ifdeg F o E < degF.

CLAIM 2. Assume that (F, G) satisfies the weak Shestakov-Umirbaev condition for
some G € A, and E € &; satisfies deg F o E < deg F, wherei € {1,2,3}. Ifi =1 ori =2,
orifi =3 and k[ f1, f2] # klg1, ¢o], then F o E belongs to A.

PROOF. In the notation of Proposition 4.4, one of the pairs (F o E, G), (F o E, G’) and
((F o E)¢, G") satisfies the weak Shestakov-Umirbaev condition. Since G belongs to A, so
do G’ and G”. Hence, in each case, F o E admits a weak Shestakov-Umirbaev reduction to
an element of A. Therefore, F o E belongs to .A. O

Therefore, the assertion of Proposition 6.2 is true if deg F = p and Ir = 0.

Next, assume that [r # @, say Ir contains 3. We have to check that F' o E; belongs to
Aforany E; € & withdeg F o E; < deg F foreachi € {1, 2, 3}. By Claim 1(i), this is clear
if i = 3. Since the cases i = 1 and i = 2 are similar, we only consider the case where i = 1.
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Since we assume that /r contains 3, there exists E3 € &3 such that G := F o E3 belongs to
Aand deg G < deg F. By Claim 1(i), we may assume that g3 does not belong to k[S3]% by
replacing E3 if necessary. Set ¢; = F(E;(x;) — x;) fori = 1, 3. Then, ¢; belongs to k[S;]
fori = 1,3,and g3 = f3 + ¢3. Since deg F o E; < deg F and degG < deg F, we have
degp1 < deg fi1, ¢} = — f3" and deg g3 < deg f3.

CLAIM 3. F o E| belongs to A if one of the following conditions holds:
(i) E1(x1) — x1 belongs to k[x2], or equivalently, ¢1 belongs to k[ f>].
(i) f¥ or f3¥ belongs to k[ f}'].
(i) 3~ Y+ ()P for some c € kand p € N.

PROOF. (i) If E1(x1) — x1 belongs to k[x2], then we can define a triangular automor-
phism H of k[x] by H(x3) = x2 and H (x;) = E;(x;) fori =1, 3. Sincedeg F o E3 < deg F
and 3 is contained in I, it follows from Claim 1(iii) that F o E belongs to A.

(i) If f3" belongs to k[ f,"], then deg(f3 — cf;) < deg f3 for some ¢ € k \ {0} and
r € N. Define a triangular automorphism H of k[x] by H(x2) = x2, H(x3) = x3 — cx},
and H(x1) = E1(x1). Since deg(F o H)(x3) < deg f3 and 3 is contained in I, it follows
from Claim 1(iii) that F o E belongs to A. If f}" belongs to k[ f,"], then IF contains 1 by
Claim 1(iv), since I \ {2} # 0. Therefore, F o E| belongs to .4 by Claim 1(i).

(iii) By assumption, there exists ¢’ € k \ {0} such that deg f’ < deg f3, where f' =
A+ + cfzp). Define E{, E{ € & and Ej € & by E{(x1) = x1 + cxé’ — (1/c)x3,
E{(x1) = ()13 + ¢/(x1 + cx})) and E5(x3) = x3 + ¢/(x1 + cx3). Then, we have
deg F o E} < deg F, because (F o E})(x3) = f'. Since 3 is contained in /r by assumption,
F o E} belongs to A by Claim 1(i). Hence, F' := (F o E}) o E] belongs to A by the
induction assumption of Proposition 6.2. Since F' = (—(1/c) f3, f2, f’), this implies that
F o E{ = ((1/c")f’, fa. f3) belongs to A. By assumption, it follows that deg f3 = deg fi.
Hence, deg F o E{ < deg F. Thus, 1 belongs to Ir. Therefore, F o Eq belongs to A by
Claim 1(i). O

In the case where 2 belongs to Ir besides 3, the statement of Claim 3 is true if we
interchange f> and f3. Hence, we obtain the following claim.

CLAIM 4. Assume that 2 is contained in Ir. If ¢ belongs to k[ f3], or if f* or f)'
belongs to k[ f3'], then F o Ey belongs to A.

Now, there exist five cases to be considered as follows:

(1) deg fi =deg f> =deg f3, (2) deg f1 <deg f2 =deg f3,
(3) deg f3 < deg fi =deg f>, (4) deg f>» < deg f3 =deg f1,
(5) deg fi < deg fi, foreachl € {1,2,3}\ {m} for some m € {1, 2, 3}.

Here, we remark that the cases (1) through (4) can be excluded from consideration in the case
where rank w = 3. In fact, deg f; = deg f; implies /" ~ f]W foreachi and j if rankw = 3.
Hence, it immediately follows from Claim 3(ii) and (iii) that F o E; belongs to A4 in the
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cases (1) through (4). For this reason, Claim 5 and the statement (I) of Claim 6 below are not
necessary when considering w with rank w = 3.

CLAIM 5. F o E| belongs to A if one of the following holds:
() f\" and f)" are algebraically independent over k.
(il) F satisfies one of (1), (2) and (3).

PROOF. By Claim 3(i), we may assume that ¢; belongs to k[ f2, f3] \ k[ f2]. Then, it
follows that, if deg fi < deg f3, then f)' and f3" are algebraically dependent over k. In
fact, since deg¢; < deg fi < deg f3, and since ¢; belongs to k[ f>, f3] \ k[ f2], we have
deg ¢1 < deg®' ¢;. Hence, (NP ~ (f3")4 for some p,q € N by Lemma 3.2.

(i) Recall that f3¥ ~ ¢Y and ¢;3 is an element of k[S3]. Hence, f3* belongs to k[S3]".
Since f" and f)" are algebraically independent over k, we have k[S3]™ = k[ f*, f;"]. Thus,
f3" is a polynomial in f}" and f,* over k. By Claim 3(ii), we may assume that f3" does not
belong to k[ f,"]. Then, it follows that deg fi < deg f3. We show that deg f1 = deg f3 by
contradiction. Supposing deg f1 < deg f3, we get that f,* and f3" are algebraically dependent
over k as remarked above. Since f3" is an element of k[ £}V, ']\ k[ f,"], it follows that f}"
and f;" are algebraically dependent over k, a contradiction. Thus, deg fi = deg f3. This
implies that f3* ~ f" + c(f,")? for some ¢ € k and p € N. Therefore, F o E| belongs to A
by Claim 3(iii).

(i) By (i), we may assume that f" and f," are algebraically dependent over k. Then,
fi¥ ~ f) follows from deg fi = deg f> in the cases (1) and (3). If (2), it follows from
deg fi < deg f3 that f," and f3" are algebraically dependent over k as remarked above.
Then, f)* ~ f3¥ follows from deg f3 = deg f>. By Claim 3(ii), F o E| belongs to A in every
case. O

Let us complete the proof of Proposition 6.2 by contradiction. Suppose to the contrary
that F o E| does not belong to .A. Then, the conditions (i), (ii) and (iii) of Claim 3 and (i)
and (ii) of Claim 5 cannot be satisfied. In particular, F' satisfies (4) or (5). Furthermore, f}"
and f3' must be algebraically independent over k if (4). We show that, if F satisfies (5) for
m = 2, and if f," does not belong to k[ f*], then f3¥ does not belong to k[ f}"]. Supposing the
contrary, we have f3' ~ (f|")? forsome p € N. Then, we have p > 2 in view of Claim 3(iii).
Hence, deg fi < deg f3. We verify that f = f3, ¢ = f> and ¢ = ¢ satisfy the assumptions
of Lemma 3.3(ii) with deg¢ < deg f. Recall that ¢ is an element of k[ f>, f3] such that
deg ¢1 < deg f1. Since deg fi; < deg f3, we have deg 91 < deg f3. On account of Claim 3(i),
¢ cannot belong to k[ f>]. Thus, it follows that deg ¢ < degS! ¢;. By assumption, 1" does
not belong to k[ f"]. Since f3* ~ (f{")”, it follows that f;* does not belong to k[ f3*]. By the
condition (5) for m = 2, we have deg f3 < deg f>. Thus, the assumptions of Lemma 3.3(ii)
are satisfied, and so we conclude that

1 1
degp; > (3 —Z)Edegfg +degdfo Adfs > Edegfg = %degfl > deg fi .
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This contradicts that deg ¢ < deg fi. Therefore, f3" does not belong to k[ f"]if F satisfies
(5) form = 2, and f;* does not belong to k[ f}"].

CLAIM 6. If F o E| does not belong to A, then one of the following holds:
(D) deg f> < deg f1,deg fi =deg f3, f{" # f3'. and [\ and f;* do not belong to k[ f5']
and k[ f\", f3'], respectively.
(IT) deg f; < deg f}, deg f3 < deg f;, and f}” and fy" do not belong to k[ f"] for some
(G, ) €{(1,2), 2, D}
(IMT)  deg f1 < deg f;, deg fi < deg f;, f" and fjw do not belong to k[ f'1, and ¢\ belongs
to k[S1]1\ k[ fi] for some (i, j) € {(2,3), (3,2)}.

PROOF. We show that F satisfies (I) in the case (4), where deg f>» < deg f1 and
deg fi = deg f3. On account of Claim 3(ii) and (iii), f," does not belong to k[ /"] forl/ =1, 3,
and f3* % f". We show that f;* does not belong to k[ /", f;*] by contradiction. Supposing
the contrary, we have f3* = af" +b(f)")? for some a, b € k with (a, b) # (0,0) and p > 2,
since deg f3 = deg f1 and deg fi > deg f>. If a = 0 or b = 0, then f;" belongs to k[ f}"] or
f3' ~ f}", a contradiction. Hence, a # 0 and b # 0. It follows that deg " = deg(f;")”.
Owing to Claim 5(i), f," and f," must be algebraically dependent over k. Thus, "V ~ (f,")?,
and so f" belongs to k[ f,"], a contradiction. Therefore, f;" does not belong to k[ f*, f;*].
This proves that F satisfies (I) in the case (4).

We show that F satisfies (II) or (III) in the case (5). Since the conditions (i), (ii) and (iii)
of Claim 3 are not satisfied by supposition, (II) holds for (i, j) = (2, 1) if m = 1, and (IIT)
holds for (i, j) = (2, 3) if m = 3. Assume that m = 2. As shown before this claim, if f2W
does not belong to k[ f}"], then neither does f3". Hence, (II) holds for (i, j) = (1,2). If f}*
belongs to k[ f"], then I contains 2 by Claim 1(iv) since Ir \ {1} # @. By Claim 4, we know
that ¢; belongs to k[S1]\k[ f3], and f" and f,"* do not belong to k[ f3"]. Therefore, (III) holds
for (i, j) = (3,2). O

We consider the cases (I) and (II) together. Recall that ¢y ~ f3¥, deg g3 < deg f3, g3
does not belong to k[S3]%, and G = (f1, f2, ¢3) belongs to .A. We establish the inequality

(6.2) deg g3 < deg f; —deg f; +degdfi Adf2

by contradiction, where we set (i, j) = (2, 1) in the case (I). When (I), f3w does not be-
long to k[ f*, f;*], and hence neither does @Y. The same holds true in the case (II) be-
cause k[ f\", f'] = k[f¥, f;”], deg f3 < deg f; and f3* does not belong to k[ f;"]. Since
¢3 is an element of k[S3], it follows that deg¢s < degs3 ¢3 in both cases. We show that
G' := (fj, fi, g3) satisfies the assumptions of Proposition 6.3. Clearly, G’ is an element of
A, since so is G by assumption. By the conditions in (I) and (II), we know deg f; < deg f;,
deg¢s = deg f3 < deg fj, and that fjw does not belong to k[ f;]. Hence, it follows from
Lemma 3.3(ii) that deg f; = 26 and deg f; = sd for some § € I" and an odd number s > 3.
Since (6.2) is supposed to be false, we get

(s — 2)8 + degdfi Adfy = deg fj — deg f; + degdfi Adf
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< deggs < deg f3 <degf; =s6.

Since k[S3]% does not contain g%” , neither does k[ f; V. Thus, G’ satisfies the assumptions of
Proposition 6.3. Because deg G’ < deg F = 11, we may conclude that there exists £} € &3
such that deg G’ o E} < deg G’ by induction assumption. This contradicts that g} does not
belong to k[S3]%, thereby proves that (6.2) is true. We show that (F’, G’) satisfies the weak
Shestakov-Umirbaev condition, where F/' = (f i, fi» f3). The first two conditions of (SU1),
and (SU2’) are obvious. The last condition of (SU1"), and (SU5) follow from the construction
of g3. (SU3’) and the first condition of (SU4) are included in (I) and (IT). As mentioned after
(6.2), f3* does not belong to k[ f}", f3"], which is the last condition of (SU4). (SU6) is due
to (6.2). Thus, (F’, G') satisfies the weak Shestakov-Umirbaev condition. It follows from
Claim 2 that F’ o E belongs to A foreach E € & for/ = 1,2 if degF' o E < degF’. In
particular, (Fo E{)o H = F'o(H o E1 o H) belongs to A, where H = (x}, x;, x3). Actually,
H o Ey o H belongs to £;, and

degF'oHoEjoH =degFoEjoH =degFoE| <degF =degF’.

This implies that ' o E belongs to .A. Therefore, we are led to a contradiction.

Finally, we derive a contradiction in the case (IIT). It follows that deg¢; < deg®' ¢,
since ¢1 is an element of k[ f;, f;]\ k[ fi] with deg ¢ < deg f1 < deg f;. Since deg f; <
deg f;, and since f]W does not belong to k[ f"], we know that f;, f; and ¢; satisfy the as-
sumptions of Lemma 3.3(ii). Hence, there exist § € I" and an odd number s > 3 such that
deg f; = 26, deg f; = sd and

(s —2)8 + degdfo Adfs = (s —2)8 + degdf; Adfj < deg¢ < deg fi < deg fj = s6.

Thus, F; satisfies (6.1) for t € &3 with t(1) = j, t(2) = i and 7(3) = 1. Note that
F; is an element of A with deg F; = p since so is F. As f}" does not belong to k[ "],
the assumptions of Proposition 6.3 are fulfilled for F;. Hence, by induction assumption, we
conclude that deg F; o E} < deg F; and F; o EJ belongs to A for some E} € &3. Thus, If,
contains 3, and so /¢ contains 1. Therefore, Fo E| belongs to A by Claim 1(i), a contradiction.

This proves that the statement of Proposition 6.2 holds for each F' € A with deg F = pu.
Thus, the proofs of Propositions 6.2 and 6.3 are completed by induction. Thereby, we have
completed the proof Theorem 2.1.

7. Relations with the theory of Shestakov-Umirbaev. In this section, we discuss
relations with the original theory of Shestakov-Umirbaev. Throughout this section, we assume
that I’ = Z and w = (1, 1, 1). Hence, deg F > |w| = 3 for each F € Auty k[x]. First, we
recall the notions of reductions of types I, II, III and IV defined by Shestakov-Umirbaev [10,
Definitions 1, 2, 3 and 4].

Let F = (f1, f2, f3) be an element of Auty k[x] such that deg f; = 2/ and deg f> = sl
for some / € N and an odd number s > 3.

(1) F is said to admit a reduction of type Iif 2] < deg f3 < sl, f3" does not belong to
kL, f5"], and there exists o € k \ {0} for which g; := fi and ¢» := f> — af3 satisfy the
following conditions:
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(i) deggr =sl, and g)" and g}" are algebraically dependent over k.

(i) deggs < deg f3 anddegdg) Adgs < sl +degdg) Adg for some ¢ € k[g1, go], where
B=Lh+e

(2) F is said to admit a reduction of type Il if s = 3, (3/2)] < deg f3 < 2L, "V % f3',
and there exist o, 8 € k with (o, B) # (0, 0) for which g1 := f| — afz and o0 := fo — Bf3
satisfy the following conditions:
(iii) degg) =2I,deg g =3/, and g)" and g}" are algebraically dependent over .
(iv) deggs < deg f3 anddegdgi Adg3 < 3l+degdg) Adgo for some ¢ € k[g1, g2], where
B=Lh+e

Next, let F = (f1, f2, f3) be an element of Auty k[x] such that deg f; = 2I, and either
deg f>» =3l and ! < deg f3 < (3/2)l, 0r (§/2)] < deg f» < 3l and deg f3 = (3/2)l for some
I € N. Assume that there exist «, B, y € ksuchthat g1 := fi—ffzand ¢ := for—yf3 —ozf32
satisfy the following conditions:
(v) degg) =2I,degg> =3I, and g)" and g, are algebraically dependent over k.
(vi) deggs < (3/2) and degdg1 A dgs < 3] + degdg) A dg, for some o € k \ {0} and
g € klg1, 21\ k, where g3 =0 f3 + g.

(3) F is said to admit a reduction of type III if we can choose «, 8, ¥, o and g so that
(o, B,y) #(0,0,0) and deg g3 < [ + degdg; A dg.

(4) F is said to admit a reduction of type IV if we can choose «, 8, y, o and g so that
deg(g2 — ug32) < 2l for some u € k \ {0}.

We also say that F' admits a reduction of type I (resp. II, III and IV) if F, satisfies (1)
(resp. (2), (3) and (4)) for some o € G3.

Here, we note that the conditions (i), (iii) and (v) are equivalent to the condition that
g1, g2 is a “two-reduced pair", since the conditions on deg g; and deg g> imply g\" & k[g}']
and gy o4 k[g}v]. Although Shestakov-Umirbaev [10] considered the “Poisson bracket” [ £, g]
instead of df A dg for f, g € k[x], the degrees of [ f, g] and df A dg are defined in the same
way.

The following theorem is a consequence of Theorem 2.1 and Proposition 5.4.

THEOREM 7.1. No tame automorphism of k[X] admits a reduction of type IV.

PROOF. Suppose to the contrary that F satisfies (4) for some F € Ti k[x]. Then, g;
and g appearing in the condition satisfy degg; = 2/ and degg, = 3. Moreover, since
deg(gp — ug%) <2l < (5/2)] < deg g, for some u € k \ {0}, we have g ~ (g¥)2. Hence,
deg g3 = (3/2)l. Since F belongs to Tk k[x], so does H = (g2, g1, g3). We show that H
satisfies the assumptions of Proposition 5.4 for s = 3 and § = [. The degrees of ¢, ¢
and g3 satisfy (5.2), and ggv does not belong to k[gfv] since deg g3 < deg g;. We verify that
degdgr Adgy < (1/2)l, which gives (5.5) that

1 3
degdgi Adgr < El < El—l—l—l§degg3—(3—2)l+min{l,£},

since ¢ = degdgi Adg Ndgs =3 and [ > 1. By definition, ¢ is an element of k[g1, g2] \ k
such that deg ¢ < max{deg f3,deg g3} = (3/2)] < degy; fori = 1,2. Hence, g% does not
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belong to k[g", g3'], and so degg < degV g, where U = {g1, g}. Since degg; = 2/ and
deg go = 3/, it follows that deg g1 < deg g» and g)' does not belong to k[g;"]. Thus,

degg > 3 —-2) +degdgi Andgp =1+ degdg1 Ad g

by Lemma 3.3(ii). Since deg g < (3/2)/, we conclude thatdegd g; Adg> < (1/2)I. Therefore,
H satisfies the assumptions of Proposition 5.4. Take ¢» € k[g1, g3] so that (gé)W does not
belong to k[gi, g3]%, where g5 = g» + ¢». Then, deg g, < 2I since deg(¢g> — ng3) < 2I.
By Proposition 5.4(1), H' := (g5, g1, g3) does not admit an elementary reduction. Since H
belongs to Ty k[x], so does H'. Furthermore, deg H' > 3, because degg; > [ > 1fori =1, 3.
Thus, H' admits a Shestakov-Umirbaev reduction by Theorem 2.1. Hence, there exist o € &3
and K € Aut k[x] such that (H/, K) satisfies the Shestakov-Umirbaev condition. Since
9 ~ (g )? as mentioned, we know that o = id by Proposition 5.4(2). Hence, (H', K)
satisfies the Shestakov-Umirbaev condition. Consequently, we get deg g1 < deg g) by (P7).
This contradicts that deg g = 2/ and deg g; < 21. Therefore, F' does not admit a reduction of
type IV. O

To conclude that Nagata’s automorphism is not tame, Shestakov-Umirbaev [10, Theorem
1] showed that, if deg F' > 3 for F € T k[x], then F admits an elementary reduction or a
reduction of one of the types I, II, III and IV. With the aid of the following proposition, the
criterion of Shestakov-Umirbaev is derived from Theorem 2.1.

PROPOSITION 7.2. Assume that (F, G) satisfies the Shestakov-Umirbaev condition
for F,G € Auy k[x]. If (f1, f2) = (91, @), then F admits an elementary reduction. If
(f1, f2) # (g1, 92), then F admits a reduction of one of the types I, Il and II.

PROOF. The first assertion follows from (SU1) and (SUS5). We show the last assertion.
By (SU1), we may write g1 = f1 +af32+cf3, @ = for+bfzand g3 = f3+¢, wherea, b, c € k
and ¢ € k[g1, g2]. Since (f1, f2) # (g1, g2) by assumption, we have (a, b, ¢) # (0,0, 0). By
(SU3), there exist/ € N and an odd number s > 3 such that deg g; = s/ and deg g = 2I.
Then, it follows that / < deg f3 < sl by (P7). Put t = (1,2). We show that F; satisfies (1)
fora = —cif 2] < deg f3 < sl, (2) for (a, B) = (—b, —c) if (3/2)] < deg f3 < 2I, and (3)
for (o, B,y) = (—a, —b, —c),0c = land g = ¢ if | < deg f3 < (3/2)l.

Note that deg f> = 2/ by (SU2), and that deg f1 = s/ if deg f3 # (3/2)], and (5/2)! <
deg f1 < 3l otherwise by (P5). Moreover, s = 3 if deg f3 < 2/ by (P11). From this, we
see that the conditions on the degrees of fi and f; are satisfied in every case. It follows that
a=>b=0if 2] < degfz < sl by (Pl1), anda = 0 if (3/2)] < deg fz < 2I, since
degf32 > 3] = degg;. Hence, o = foand g1 = f1 — af3 fora = —c if 2] < deg f3 < sl,
¢ = fo—afsand g1 = fi — Bf3 for (o, B) = (=D, —c) if (3/2)] < deg f3 < 2I, and
= f—Bfrand g = fi—yfi—afifor (@, B,y) = (—a, —b, —c)if| < deg f3 < (3/2)L,
in which o # 0, (o, B) # (0,0), and (a, B, ) # (0, 0, 0), respectively. Besides, g = ¢ in
(iv) cannot be an element of &, since deg g3 < deg f3 by (SUS). So, we verify that (i) through
(vi) are satisfied for ¢», g1 and g3. As mentioned, we have deg go = 2/ and degg; = s,
where s = 3 if deg f3 < 2. By (SU3), g}" and g;" are algebraically dependent over k. Thus,
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(i), (iii) and (v) are satisfied. The first conditions in (ii) and (iv) are the same as (SUS). If
deg f3 < (3/2)l, then deg g3 < deg f3 < (3/2)] by (SUS), the first condition in (vi). The
second conditions in (ii), (iv) and (vi) follow from (SU6), since

degdgp Ndgzs <degg +deggs < deg g + (deggr —deg g +degdgr Adg)
=sl+degdgi ANdg .

Therefore, (i) through (vi) are satisfied for ¢», g1 and g3.

Let us check the other conditions. It follows from (P8) that f)" % f3*. Hence, F;
satisfies (2) if (3/2)] < deg f3 < 2. We have already shown that F satisfies the assumption
of 3)if ] < deg fz < (3/2)l. Since the last condition in (3) is the same as (SU6), F;
satisfies (3) in this case. We show that f3* does not belong to k[ f}", f,"] as required in (1).
By (P8), f3" does not belong to k[ f*] nor k[ f,"]. Since deg f3 < deg fi by (P7), we have
deg f3 < deg f1 +deg f> = deg f1 f2. Hence, f3" does not belong to k[ f\*, f,']. This proves
that F; satisfies (1) if 2/ < deg f3 < sl. Therefore, F admits a reduction of one of the types
L ILand ITif (f1, f2) # (91, 92)- O

8. Remarks. In closing, we make some remarks on Shestakov-Umirbaev reductions.
As established in Section 6, for each F' € Ty k[x] with deg,, F > |w|, there exists a sequence
(G,-)IT:0 of elements of T k[x] for some » € N such that Go = F,deg G, = |w|, and G4 is
an elementary reduction or a weak Shestakov-Umirbaev reduction of G; for each i. We have
a more precise result as follows.

COROLLARY 8.1. For each F € Ty k[x] with deg F > |w|, there exists a sequence
(Gi)§=0 of elements of Tk k[X] for some r € N such that Gy = F,deg G, = |w|, and G;41 is
an elementary reduction or a Shestakov-Umirbaev reduction of G; for each i.

PROOF. Let B be the set of F € Ty k[x] with deg F > |w]| for which there does not
exist a sequence as claimed. Suppose to the contrary that 5 is not empty. Then, we can find
F € B such that deg F = min{deg H; H € B} > |w|, since X is a well-ordered set by
Lemma 6.1(ii). Since F is tame, there exists G € Ty k[x] which is an elementary reduction
or a Shestakov-Umirbaev reduction of F' by Theorem 2.1. Then, degG < deg F' by (P6).
Hence, G does not belong to B by the minimality of deg F. It follows from the definition of
B that deg G = |w]| or there exists a sequence as claimed for G. In either case, F' cannot be
an element of B, a contradiction. Therefore, B is empty. a

For each F € Ty k[x] with deg F > |w| and a sequence G = (G;);_,, as in Corollary 8.1,
we define SUw(F; G) to be the number of i € {1,...,r} such that G;4; is a Shestakov-
Umirbaev reduction of G;. We define the Shestakov-Umirbaev number SU, (F) for the weight
w to be the minimum among SUy (F; G) for the sequences G = (G;)’_ as in Corollary 8.1.
It may be an interesting question to ask whether SUyw (F; G) = SUw(F) for any F € T k[x]
and G = (G)[_,.

When G; admits a Shestakov-Umirbaev reduction, the possibilities for G, are limited
as described in the following propositions.
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PRrROPOSITION 8.2. If(F, G") and (F, G?) satisfy the Shestakov-Umirbaev condition
or F, Gl, G? ¢ T, then I'— g2 fori = 1,2, and L' _ 42 is contained in k[ 1], where
. 9; g; . 93 93 9

G/ =(g].9y.9)) for j=1,2.

PROOF. By (SU1), there exista/, b/, ¢/ € k such that g{ = fi+al f}+c/ f3 and gg =
H+ bjf3 for j = 1, 2. By the last statement of (P11), it follows that al =a?, bl = b? and
¢! = c%. Hence, we have g! = g7 fori = 1,2. Put := gi — g3 = (g3 — f3)+(f3—g3). Then,
¢ belongs to k[gll, 921] = k[glz, 922], since so does g3j — fz for j = 1,2 by (SU1). Suppose to
the contrary that ¢ belongs to k[gll, 921] \ k[gzl]. Then, since deg ¢ < max{deg 931, deg g%} <
deg f3 < deg gl1 by (SU5) and (SU4), we get deg¢ < degU ¢, where U = {gll, gzl}. In view
of (SU3), it follows from Lemma 3.2(i) that

deg > 2deg g + degdg! Adg, —degg| —degg, = degg| —degg, +degdg! Adg; .

Since deg¢ < max{deg g%, deg 932}, this contradicts (SU6). Therefore, g_% — 932 belongs to
klg; - 0

The following proposition gives a necessary condition on automorphisms to admit both
an elementary reduction and a Shestakov-Umirbaev reduction simultaneously.

PROPOSITION 8.3. Assume that (F, G) satisfies the Shestakov-Umirbaev condition
for F,G € T. Then, f* does not belong to k[S;1% fori = 1if f* % (f3w)2,f0ri =2,and
fori =3if (f1, f2) # (91, %)

PROOF. In each case, we will find hg, hy € k[S;] such that k[ho, h1] = k[S;], yl.’ =
degdhy A dhy > 56, hj" does not belong to k[h)'] for (j, 1) = (0, 1), (1, 0), and f;" does not
belong to k[Ay, hY']. Then, it follows that f does not belong to k[S;]". In fact, supposing
that £ = ¢" for some ¢ € k[S;] = k[ho, h1], we have deg¢ < dechj) for U = {ho, h1},
since % = f" does not belong to k[Ay, h}']. Since h}v does not belong to k[A)"] for (j, 1) =
(0, 1), (1,0), we get deg¢ > y/ by Lemma 3.3(i). Thus, deg f; = deg¢ > y/ > s8. This
contradicts (P7). Therefore, fiw does not belong to k[S;]% if such kg and k| exist.

We remark that y; := deg f; A fi > s6 in each case, where j,I € {1,2,3}\ {i} with
j < 1. Actually, y; > s§ and y» > 6 + y1 > (s + 1) by the last two conditions of (P12).
If i = 3, then (f1, f2) # (g1, g2) by assumption. Hence, the first condition of (P12) implies
that y3 is equal to one of deg f3 + y1, y2 and y;, which are greater than s§.

We set (ho, h1) = (f2, f3) if i = 1, and (ho, h1) = (f1, f2) if i = 3. Then, k[ho, h1] =
k[S;] and yi’ = y; > §6 in either case. Moreover, h}v does not belong to k[h;"’] for (j,1) =
(0, 1), (1, 0) by (P8). We check that f does not belong to k[Ag, ~Y']. This holds fori = 3
because f3* does not belong to k[ /] for [ = 1,2 by (P8), and we have deg f3 < deg fi <
deg f1 f> by (P7). Suppose to the contrary that f;* belongs to k[ f)*, f3*]. Then, f" must
belong to k[ f,"] or k[ f3'], since

deg f1 <degg; =s6 =25+ (s —2)§ <deg f>» +deg f3 =deg 213



112 S. KURODA

by (SU2) and (P2). It follows from (P8) that f}* does not belong to k[ f}"], and so f}" belongs
to k[ f'1and f¥ ~ ( f3w)2. This contradicts the assumption that f* % ( f3w)2. Thus, f" does
not belong to k[hg, hY] if i = 1. Therefore, ho and % satisfy the required conditions, and
thereby fl.w does not belong to k[S;]% fori = 1, 3 as mentioned above.

Inthe case i = 2, set hg = f3, and hy = fi if f}¥ % ()2, while hy = fi — cf}
otherwise, where ¢ € k is such that fV = c(f3w)2. Then, k[ho, h1] = k[S2] and y; =
y2 > (s+ Dé. If fi¥ % (f3w)2, then h; = f1, and so hy does not belong to k[h)"] for
(j.0) = (0,1),(1,0) by (P8). If fi* = (f;")z, then f" belongs to k[ f3']. By (P8), we get
s =3 and deg hg = deg f3 = (3/2)8. Since deg ho + degh; > y; > (s + 1) = 48 by (2.3),
we have degh; > 46 — (3/2)6 = (5/2)6 > degho. Hence, hg does not belong to k[h‘lv]. It
follows that (5/2)§ < degh; = deg(f1 — cf32) < deg f32 = 34. Since 5/2 < (3/2)] < 3
does not hold for any / € N, we conclude that 4} does not belong to k[ ]. For both i = fi
and hy = f1 — cf32, it holds that deg f = 26 < degh;. Hence, f)' does not belong to
k[hy', hY1\ k[h3]. By (P8), f;* does not belong to k[hy] = k[f3']. Thus, f}* does not
belong to k[Af, h}']. Therefore, ho and h; satisfy the required conditions, thereby f,* does
not belong to k[ S>]%. O

Appendix: Reductions of types I, II, III and IV. In this appendix, we explain that
the following results are implicit in the theory of Shestakov-Umirbaev [10]:

(A) If F € Aut k[x] admits a reduction of one of the types I, I, III and IV, then F
admits none of the reductions of the other three types.

(B) If F € Auty k[x] admits a reduction of type IV, then there exists an elementary au-
tomorphism E such that F o E admits a reduction of type IV, but does not admit an elementary
reduction.

From (A) and (B), it follows that, if there exists a tame automorphism admitting a reduc-
tion of type IV, then there exists a tame automorphism which is not affine and does not admit
an elementary reduction nor any one of the reductions of types I, II and III. Actually, an auto-
morphism admitting a reduction of type IV is not affine, and admits none of the reductions of
types I, I and III by (A). Theorem 2.1, together with Proposition 7.2, implies that each tame
automorphism but an affine automorphism admits an elementary reduction or a reduction of
one of the types I, II and IIl. Thus, we obtain another proof of Theorem 7.1 that no tame
automorphism admits a reduction of type IV.

First, we show (A). Recall the definitions of reductions of types I through IV (see the
conditions (1) through (4) listed in Section 7). If F satisfies (1), then deg f; < deg f3 <
deg f>. Moreover, (1) implies that degd f1 Adf, = degdfi Adf3 (cf. [10, Proposition 1 (1)]).
If F satisfies one of (2), (3) and (4), then deg f3 < deg f1 < deg f>, where deg f3 = deg fi
holds only in the case (2). Moreover, it follows that

(8.1)  degdfi ndfs =degdgi Adgs + 31, degdfs Adfs =degdfi Adfs+1

in these cases (cf. [10, Equations (6) and (7)]).
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Now, suppose that F satisfies one of (2), (3) and (4), but admits a reduction of type I,
i.e., Fy satisfies (1) for some 7 € &3. Then, degdf; (1) A dfrx) = degdf:(1) A dfz3) as
mentioned. It follows from the condition on the degrees of f1, f> and f3 that t = (1, 3).
Hence, degdfs A df, = degdfs A dfi, which contradicts the second equation of (8.1). If F/
satisfies (3) or (4), and admits a reduction of type II, then F satisfies (2) by the conditions
on the degrees of fi, f> and f3. This is impossible, because (3/2)] < deg f3 if (2), while
deg f3 < (3/2)l if (3) or (4). Finally, we show that F does not admit reductions of types III
and IV simultaneously. Suppose that F satisfies (4), and admits a reduction of type III. Then,
F satisfies (3), since deg f3 < deg fi < deg f> in both cases. We remark that o, 8,y € k
appearing in (3) and (4) are uniquely determined by F (cf. [10, Proposition 3 (1), (2) and
(3)]), and hence so are g; and g». There exist o', 0% € k \ {0} and ¢', g € k[g1, g2] \ k such
that degd gy Adgs,; < 3l +degdgi Adg fori =1,2,deggs,1 <[ +degdgi Adg, and
deg(g2 — g3 ,) < 21 for some v € k\ {0}, where g3 ; = o' f3+g' fori = 1, 2. We claim that
deg g3,1 < deg f3. In fact, we have deg g3,1 < [ + degd g1 A dgo, while the first equation of
(8.1) implies deg f3 > [ +degd g Ad g, since deg f +deg f3 > degdfi Adfs and deg f) =
2l. Hence, deg ¢3,1 < deg f3 < (3/2)l. From deg(g» — ,ug32’2) < 2[, we getdeg g32 = (3/2)1.
It follows that ¢ := o2g' —olg?> = 02g31 — olg3.2 is an element of k[g;, go] such that
degdgi nd¢p < 3l+degdgi Ad g anddegp = (3/2)I. Since deg¢p < deg g; fori = 1,2, and
since ¢ is not an element of k, we have deg ¢ < degV ¢, where U = {g1, ¢2}. As deg g1 = 2I
and deg g = 3l, it follows from Lemma 3.3(ii) that degd¢ A dg1 > 3] 4+ degdg) A d g,
a contradiction. Therefore, F' does not admit reductions of types III and IV simultaneously.
This completes the proof of (A).

Next, assume that F satisfies (4). From the proof of [10, Lemma 12], we know that each
a € k[S;] with dega < deg f; can be written as follows: If i = 1, thena = §; f3 (upto a
constant term) for some 81 € k. If i = 2, thena = §; f32 401 f3+ w11 f1 (up to a constant term)
for some 61, o1, w1 € k. Ifi =3 and (o, B, y) # (0,0, 0), then a is an element of k. It is also
mentioned in the proof of [10, Lemma 12] that ( f1, f> +a, f3) satisfies (4) for each a € k[.$>]
with dega < deg f>. In fact, it is claimed that (g1, g2 + 141, ¢3) is a “predreduction” of type
IVof (fi, f2 +a, f3).

We deduce (B) from the facts above. The assertion is clear if F does not admit an el-
ementary reduction. So, assume that degF o E < deg F for some E € &;, where i €
{1,2,3}. Then, (F o E)(x;) = f; + a and deg(f; + a) < deg f; for some a € k[S;]. Since
dega = deg f;, we can write a as stated in the preceding paragraph. Hence, if i = 1, then
dega = degdi f3 < (3/2)l. Since dega = deg fi = 2I, this is impossible. Thus, i # 1.
If i = 2, then dega = deg fo > (5/2)I. Since deg f3 < (3/2)I, we have §; # 0 and
deg f» = dega = 2deg f3. This implies that deg f» = 3/ and deg f3 = (3/2)/, since
deg fo = 3l if deg fz < (3/2)l, and deg f3 = (3/2)] if deg fo» < 3I. If i = 3, then
o =B=y =0.andso g1 = f1 and ¢ = f>. We show that F o E admits a reduction
of type IV, but does not admit an elementary reduction in the cases i = 2 andi = 3.

Assume thati = 2. Then, deg(f2+a) < deg f> = 3[. Moreover, FoE = (f1, f2+a, f3)
satisfies (4) as mentioned, in which @ € k involved in the condition cannot be zero, since
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deg(f> + a) < 3l. By applying to F o E the argument in the preceding paragraph, we know
that there does not exist E’ € £; withdeg F o Eo E’ < deg F o E for j = 1, for j = 2, since
deg(f2 +a) # 3l, and for j = 3, since the constant « is not zero. Thus, F o E does not admit
an elementary reduction.

Assume that i = 3. Without loss of generality, we may assume that (F o E)(x3)¥ does
not belong to k[ f1, f2]V by replacing E if necessary. We show that F o E = (f1, f2, f3 +a)
satisfies (4) by using the assumption that F satisfies (4) foro« = B = y = 0. We claim that
deg(f3 +a) > 1+ degdg) Adgn. In fact, if not, we can check that (f1, f> + f3, f3) satisfies
(3) and (4) by the assumption that F satisfies (4) for« = 8 = y = 0. This contradicts
(A). Hence, I < deg(fs + a) < (3/2)l, as required in the assumption of (4). Let ¢’ :=
B —0(fs+a) =0fs—g—o(f3+a). Then, ¢’ belongs to k[ g1, g2] = k[ f1, f>], since so do
g and a. Tt follows that deg ¢’ = (3/2)l, since deg(f3 + a) < deg f3 < (3/2)] and deg g3 =
(3/2)I1. Hence, g is not an element of k. Moreover, we can express g3 = o (f3 +a) + ¢'.
This shows that F o E satisfies (4). Consequently, there does not exist E’ € &; such that
degF o Eo E' < degF o E for j = 1, and for j = 2, since deg(f3 + a) # (3/2)l. This
also holds for j = 3 as we choose E so that (F o E)(x3)¥ does not belong to k[ f1, f2]V.
Therefore, F o E does not admit an elementary reduction. This completes the proof of (B).
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