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Abstract. In 2003, Shestakov-Umirbaev solved Nagata’s conjecture on an automor-
phism of a polynomial ring. In the present paper, we reconstruct their theory by using the
“generalized Shestakov-Umirbaev inequality”, which was recently given by the author. As a
consequence, we obtain a more precise tameness criterion for polynomial automorphisms. In
particular, we deduce that no tame automorphism of a polynomial ring admits a reduction of
type IV.

1. Introduction. Let k be a field, n a natural number, and k[x] = k[x1, . . . , xn] the
polynomial ring in n variables over k. In the present paper, we discuss the structure of the
automorphism group Autk k[x] of k[x] over k. Let F : k[x] → k[x] be an endomorphism
of k[x] over k. We identify F with the n-tuple (f1, . . . , fn) of elements of k[x], where fi =
F(xi) for each i. Then, F is an automorphism of k[x] if and only if the k-algebra k[x] is
generated by f1, . . . , fn. Note that the sum degF := ∑n

i=1 deg fi of the total degrees of
f1, . . . , fn is at least n whenever F is an automorphism. An automorphism F is said to be
affine if degF = n, in which case there exist (ai,j )i,j ∈ GLn(k) and (bi)i ∈ kn such that fi =∑n
j=1 ai,j xj +bi for each i. We say that F is elementary if there exist l ∈ {1, . . . , n} and φ ∈

k[x1, . . . , xl−1, xl+1, . . . , xn] such that fl = xl +φ and fi = xi for each i �= l. The subgroup
Tk k[x] of Autk k[x] generated by affine automorphisms and elementary automorphisms is
called the tame subgroup, and elements of Tk k[x] are called tame automorphisms.

It is a fundamental question in polynomial ring theory whether Tk k[x] = Autk k[x] holds
for each n. The equality is obvious if n = 1. It also holds true if n = 2, which was shown by
Jung [4] in 1942 when k is a field of characteristic zero, and by van der Kulk [5] in 1953 when
k is an arbitrary field. This is a consequence of the result that every automorphism but an affine
automorphism of k[x] admits an elementary reduction if n = 2. Here, we say that F admits
an elementary reduction if degF ◦ E < degF for some elementary automorphism E, that
is, there exist l ∈ {1, . . . , n} and φ ∈ k[f1, . . . , fl−1, fl+1, . . . , fn] such that deg(fl + φ) <

deg fl . In the case of n = 2, it follows from the result that, for each F ∈ Autk k[x] with
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degF > 2, there exist elementary automorphisms E1, . . . , Er for some r ∈ N such that

degF > degF ◦ E1 > · · · > degF ◦E1 ◦ · · · ◦ Er = 2 .

This implies that F is tame.
When n = 3, the structure of Autk k[x] becomes far more difficult. In 1972, Nagata [8]

conjectured that the automorphism

F = (x1 − 2(x1x3 + x2
2)x2 − (x1x3 + x2

2)
2x3, x2 + (x1x3 + x2

2)x3, x3)(1.1)

is not tame. This famous conjecture was finally solved in the affirmative by Shestakov-
Umirbaev [10] in 2003 for a field k of characteristic zero. Therefore, Tk k[x] is not equal
to Autk k[x] if n = 3. We note that the question remains open for n ≥ 4.

Shestakov-Umirbaev [10] showed that, if degF > 3 for F ∈ Tk k[x], then F admits
an elementary reduction, or there exists a sequence of elementary automorphismsE1, . . . , Er

such that degF ◦ E1 ◦ · · · ◦ Er < degF , where r ∈ {2, 3, 4}. In the latter case, F satisfies
some special conditions, and is said to admit a reduction of type I, II, III or IV according to
the conditions. Nagata’s automorphism is not affine, and does not admit neither an elementary
reduction nor any one of the four types of reductions. Therefore, Shestakov-Umirbaev con-
cluded that Nagata’s automorphism is not tame. We note that there exist tame automorphisms
which admit reductions of type I (see [1], [7] and [10]). However, it is not known whether
there exist automorphisms admitting reductions of the other types.

To prove the criterion above, Shestakov-Umirbaev [9, Theorem 3] showed an inequality
concerning the total degrees of polynomials, which was used as a crucial tool. This inequality
was recently generalized by the author [6]. The purpose of this paper is to reconstruct the
Shestakov-Umirbaev theory using the generalized inequality. As a consequence, we obtain a
more precise tameness criterion for polynomial automorphisms. In particular, we deduce that
no tame automorphism of k[x] admits a reduction of type IV (Theorem 7.1).

The main theorem (Theorem 2.1) is formulated in Section 2 using the notion of
the weighted degree of a differential form. In Section 3, we derive some consequences of
the generalized Shestakov-Umirbaev inequality. In Section 4, we investigate properties of
“Shestakov-Umirbaev reductions", which is roughly speaking a generalization and refinement
of the notions of reductions of types I, II and III. In Section 5, we prove some technical propo-
sitions which form the core of the proof of the main theorem. The main theorem is proved in
Section 6 with the aid of the results in Sections 3, 4 and 5. In Section 7, we discuss relations
with the original theory of Shestakov-Umirbaev. We conclude this paper with some remarks
and an appendix.

2. Main result. In what follows, we assume that the field k is of characteristic zero.
Let Γ be a finitely generated totally ordered Z-module, and w = (w1, . . . , wn) an n-tuple of
elements of Γ with wi > 0 for i = 1, . . . , n. Since a finitely generated totally ordered Z-
module is necessarily free, we sometimes regard Γ as a Z-submodule of Q ⊗Z Γ . We define
the w-weighted grading k[x] = ⊕

γ∈Γ k[x]γ by setting k[x]γ to be the k-vector subspace
of k[x] generated by monomials xa1

1 · · · xann with
∑n
i=1 aiwi = γ for each γ ∈ Γ . For
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f ∈ k[x] \ {0}, we define the w-degree degw f of f to be the maximum among γ ∈ Γ with
fγ �= 0, where fγ ∈ k[x]γ for each γ such that f = ∑

γ∈Γ fγ . We define f w = fδ , where
δ = degw f . In case f = 0, we set degw f = −∞, i.e., a symbol which is less than any
element of Γ . For example, if Γ = Z and wi = 1 for i = 1, . . . , n, then the w-degree is
the same as the total degree. For each k-vector subspace V of k[x], we define V w to be the
k-vector subspace of k[x] generated by {f w; f ∈ V \ {0}}. For each l-tuple F = (f1, . . . , fl)

of elements of k[x] for l ∈ N , we define degw F = ∑l
i=1 degw fi . For each σ ∈ Sl , we

define Fσ = (fσ(1), . . . , fσ(l)), where Sl is the symmetric group of {1, . . . , l}. The identity
permutation is denoted by id. For distinct i1, . . . , ir ∈ {1, . . . , l}, the cyclic permutation with
i1 �→ i2, i2 �→ i3, . . . , ir �→ i1 is denoted by (i1, . . . , ir ).

The w-degree of a differential form was defined by the author [6]. Let Ωk[x]/k be the
module of differentials of k[x] over k, and

∧l
Ωk[x]/k the l-th exterior power of the k[x]-

moduleΩk[x]/k for l ∈ N . Then, we may uniquely express each ω ∈ ∧l
Ωk[x]/k as

ω =
∑

1≤i1<···<il≤n
fi1,...,il dxi1 ∧ · · · ∧ dxil ,

where fi1,...,il ∈ k[x] for each i1, . . . , il . Here, df denotes the differential of f for each
f ∈ k[x]. We define the w-degree of ω by

degw ω = max{degw fi1,...,il xi1 · · · xil ; 1 ≤ i1 < · · · < il ≤ n} .
By the assumption that ωi > 0 for i = 1, . . . , n, it follows that

degw ω ≥ min{wi1 + · · · +wil ; 1 ≤ i1 < · · · < il ≤ n} > 0(2.1)

if ω �= 0. For each f ∈ k[x] \ k, we have

degw df = max{degw fxi xi; i = 1, . . . , n} = degw f ,(2.2)

since df = ∑n
i=1 fxi dxi . Here, fxi denotes the partial derivative of f in xi for each f ∈

k[x] and i ∈ {1, . . . , n}. We remark that df1 ∧ · · · ∧ dfl �= 0 if and only if f1, . . . , fl

are algebraically independent over k for f1, . . . , fl ∈ k[x] (cf. [3, Proposition 1.2.9]). By
definition, it follows that

degw df1 ∧ · · · ∧ dfl ≤
l∑
i=1

degw dfi =
l∑
i=1

degw fi .(2.3)

In (2.3), the equality holds if and only if f w
1 , . . . , f

w
l are algebraically independent over k.

Actually, we can write df1 ∧ · · · ∧ dfl = dfw
1 ∧ · · · ∧ dfw

l + η, where η ∈ ∧l
Ωk[x]/k with

degw η <
∑l
i=1 degw dfi , and degw df

w
1 ∧· · ·∧dfw

l = ∑l
i=1 degw dfi if df w

1 ∧· · ·∧dfw
l �= 0.

Therefore, if f1, . . . , fn ∈ k[x] are algebraically independent over k, then
n∑
i=1

degw fi =
n∑
i=1

degw dfi ≥ degw df1 ∧ · · · ∧ dfn ≥
n∑
i=1

wi =: |w|(2.4)

by (2.1), (2.2) and (2.3). As will be shown in Lemma 6.1(i), F is tame if degw F = |w| for
F ∈ Autk k[x].
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Now, assume that n ≥ 3, and let T be the set of triples F = (f1, f2, f3) of elements of
k[x] such that f1, f2 and f3 are algebraically independent over k. We identify each F ∈ T
with the injective homomorphism F : k[y] → k[x] of k-algebras defined by F(yi) = fi for
i = 1, 2, 3, where k[y] = k[y1, y2, y3] is the polynomial ring in three variables over k. In the
case where n = 3, we identify k[y] with k[x] by the identification yi = xi for each i. Let Ei
denote the set of elementary automorphisms E of k[y] such that E(yj ) = yj for each j �= i

for i ∈ {1, 2, 3}, and set E = ⋃3
i=1 Ei . We say that F ∈ T admits an elementary reduction

for the weight w if degw F ◦ E < degw F for some E ∈ E , and call F ◦ E an elementary
reduction of F for the weight w.

Let F = (f1, f2, f3) andG = (g1, g2, g3) be elements of T . We say that the pair (F,G)
satisfies the Shestakov-Umirbaev condition for the weight w if the following conditions hold:
(SU1) g1 = f1 + af 2

3 + cf3 and g2 = f2 + bf3 for some a, b, c ∈ k, and g3 − f3 belongs to
k[g1, g2],
(SU2) degw f1 ≤ degw g1 and degw f2 = degw g2,
(SU3) (gw

1 )
2 ≈ (gw

2 )
s for some odd number s ≥ 3,

(SU4) degw f3 ≤ degw g1, and fw
3 does not belong to k[gw

1 , g
w
2 ],

(SU5) degw g3 < degw f3,
(SU6) degw g3 < degw g1 − degw g2 + degw dg1 ∧ dg2.

Here, h1 ≈ h2 (resp. h1 �≈ h2) denotes that h1 and h2 are linearly dependent (resp.
linearly independent) over k for h1, h2 ∈ k[x] \ {0}. We say that F ∈ T admits a Shestakov-
Umirbaev reduction for the weight w if there exist G ∈ T and σ ∈ S3 such that (Fσ ,Gσ )
satisfies the Shestakov-Umirbaev condition, and call this G a Shestakov-Umirbaev reduction
of F for the weight w. As will be discussed in Section 4, F and G have various properties
when (F,G) satisfies the Shestakov-Umirbaev condition. For example, it follows from (SU1)
through (SU6) that degwG < degw F (Property (P6)).

Here is the main theorem.

THEOREM 2.1. Assume that n = 3, and w = (w1, w2, w3) is a triple of elements of
Γ with wi > 0 for i = 1, 2, 3. If degw F > |w| for a tame automorphism F of k[x], then F
admits an elementary reduction for the weight w or a Shestakov-Umirbaev reduction for the
weight w.

In the case where n = 3 and Γ = Z, the condition that F admits a Shestakov-Umirbaev
reduction for the weight w = (1, 1, 1) implies that F admits an elementary reduction or a
reduction of one of the types I, II and III (Proposition 7.2). In view of this, the reader who
is familiar with the theory of Shestakov-Umirbaev may notice that no tame automorphism of
k[x] admits a reduction of type IV (Theorem 7.1). In fact, if F admits a reduction of type IV,
then there exists an elementary automorphism E such that F ◦ E admits a reduction of type
IV, but does not admit an elementary reduction nor any of the reductions of types I, II and III
(cf. Appendix). In Section 7, however, we prove this result more directly.

We remark that F admits an elementary reduction for the weight w if and only if f w
i

belongs to k[fj , fl]w for some i ∈ {1, 2, 3}, where j, l ∈ {1, 2, 3} \ {i} with j < l. In the case
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where degw f1, degw f2 and degw f3 are pairwise linearly independent over Z, this condition
implies that degw fi belongs to the subsemigroup of Γ generated by degw fj and degw fl .
Indeed, each φ ∈ k[fj , fl ] \ {0} is a linear combination of f pj f

q
l for (p, q) ∈ (Z≥0)

2 over k,

in which degw f
p
j f

q
l �= degw f

p′
j f

q ′
l if and only if (p, q) �= (p′, q ′). Here, Z≥0 denotes the

set of nonnegative integers. Hence, degw φ = degw f
p
j f

q
l = p degw fi + q degw fl for some

p, q ∈ Z≥0.
Note that δ := (1/2) degw f2 = (1/2) degw g2 belongs to Γ by (SU2) and (SU3). As

will be shown in Section 4, (SU1) through (SU6) imply that δ < degw fi ≤ sδ for each
i ∈ {1, 2, 3} (Property (P7)). Since δ > 0, it follows that degw fi < s degw fj for each
i, j ∈ {1, 2, 3}. Therefore, if F admits a Shestakov-Umirbaev reduction for the weight w,
then F satisfies the following conditions:
(i) One of (1/2) degw f1, (1/2) degw f2 and (1/2) degw f3 belongs to Γ .

(ii) For each i, j ∈ {1, 2, 3}, there exists l ∈ N such that degw fi < l degw fj .
Now, we deduce that Nagata’s automorphism is not tame by means of Theorem 2.1.

Let Γ = Z3 equipped with the lexicographic order, i.e., the ordering defined by a ≤ b for
a, b ∈ Z3 if the first nonzero component of b − a is positive, and let w = (e1, e2, e3), where
ei is the i-th standard unit vector of R3 for each i. Then, we have

degw f1 = (2, 0, 3) , degw f2 = (1, 0, 2) , degw f3 = (0, 0, 1) .

Hence, degw F = (3, 0, 6) > (1, 1, 1) = |w|. The three vectors above are pairwise linearly
independent over Z, while any one of them is not contained in the subsemigroup of Z3 gen-
erated by the other two vectors. Hence, F does not admit an elementary reduction for the
weight w. Since (1/2) degw fi does not belong to Z3 for each i ∈ {1, 2, 3}, we know that
F does not admit a Shestakov-Umirbaev reduction for the weight w. By the definition of the
lexicographic order, l degw f3 = (0, 0, l) is less than degw fi for i = 1, 2 for any l ∈ N ,
which also implies that F does not admit a Shestakov-Umirbaev reduction for the weight w.
Therefore, we have the following corollary to Theorem 2.1.

COROLLARY 2.2. Nagata’s automorphism defined in (1.1) is not tame.

We define the rank of w as the rank of the Z-submodule of Γ generated by w1, . . . , wn.
If rank w = n, then the dimension of the k-vector space k[x]γ is at most one for each γ .
Consequently, degw f = degw g if and only if f w ≈ gw for each f, g ∈ k[x] \ {0}. In such
a case, the assertion of Theorem 2.1 can be proved more easily than the general case. In fact,
a few steps can be skipped in the proof. We note that w = (e1, e2, e3) has the maximal rank
three, and therefore it suffices to prove the assertion of Theorem 2.1 in this special case to
conclude that Nagata’s automorphism is not tame.

3. Inequalities. In this section, we derive some consequences from the generalized
Shestakov-Umirbaev inequality [6, Theorem 2.1]. In what follows, we denote “degw" by
“deg" for the sake of simplicity. Let g be a nonzero element of k[x], and Φ = ∑

i φiy
i a

nonzero polynomial in a variable y over k[x], where φi ∈ k[x] for each i ∈ Z≥0. We define
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degg
wΦ to be the maximum among degφig i for i ∈ Z≥0. Then, degg

wΦ is not less than the
w-degree of Φ(g) := ∑

i φig
i in general. On the other hand, degg

wΦ
(i) = degΦ(i)(g) holds

for sufficiently large i, where Φ(i) denotes the i-th order derivative of Φ in y. We define
m

g
w(Φ) to be the minimal i ∈ Z≥0 such that degg

wΦ
(i) = degΦ(i)(g).

In the notation above, the generalized Shestakov-Umirbaev inequality is stated as fol-
lows. This inequality plays an important role in our theory, yet the proof is quite simple and
short.

THEOREM 3.1 ([6, Theorem 2.1]). Assume that f1, . . . , fr ∈ k[x] are algebraically
independent over k, where 1 ≤ r ≤ n. Then,

degΦ(g) ≥ degg
wΦ +m

g
w(Φ)(degω ∧ dg − degω − deg g)

holds for each Φ ∈ k[f1, . . . , fr ][y] \ {0} and g ∈ k[x] \ {0}, where ω = df1 ∧ · · · ∧ dfr .
Here is a remark (see [6, Section 3] for detail). Define Φw,g = ∑

i∈I φw
i y

i for each
Φ ∈ k[x][y], where I is the set of i ∈ Z≥0 such that degφig i = degg

wΦ. Then, (Φ(i))w,g =
(Φw,g )(i) holds for each i. Moreover, degg

wΦ = degΦ(g) if and only if Φw,g (gw) �= 0.
Hence, mg

w(Φ) is equal to the minimal i ∈ Z≥0 such that (Φw,g )(i)(gw) �= 0. Since k is of
characteristic zero, this implies that gw is a multiple roof of Φw,g of order mg

w(Φ).
Now, let S = {f, g} be a subset of k[x] such that f and g are algebraically independent

over k, and φ a nonzero element of k[S]. We can uniquely express φ = ∑
i,j ci,j f

igj , where

ci,j ∈ k for each i, j ∈ Z≥0. We define degS φ to be the maximum among deg f igj for
i, j ∈ Z≥0 with ci,j �= 0. We will frequently use the fact that, if φw does not belong to
k[fw, gw], or if degφ < degf and φ does not belong to k[g], then degφ < degS φ.

The following lemma is a consequence of Theorem 3.1. The statement (i) is an analogue
of Shestakov-Umirbaev [10, Corollary 1], while the statement (ii) is essentially new.

LEMMA 3.2. Let S = {f, g} be as above, and φ a nonzero element of k[S] such that
degφ < degS φ. Then, there exist p, q ∈ N with gcd(p, q) = 1 such that (gw)p ≈ (fw)q .
Furthermore, the following assertions hold:
(i) degφ ≥ q degf + deg df ∧ dg − deg f − deg g .

(ii) Let h be an element of k[x] such that f , g and h are algebraically independent over k.
If deg(h+ φ) < degh, then

deg(h+ φ) ≥ q deg f + deg df ∧ dg ∧ dh− deg df ∧ dh− deg g .

PROOF. Let Φ = ∑
i,j ci,j f

iyj be an element of k[f ][y] such that Φ(g) = φ, where

ci,j ∈ k for each i, j ∈ Z≥0, and let J be the set of (i, j) ∈ (Z≥0)
2 such that ci,j �= 0 and

deg f igj = degS φ. Then, we have degg
wΦ = degS φ and

Φw,g =
∑
(i,j)∈J

ci,j (f
w)iyj .

Since degφ < degS φ by assumption, we get degΦ(g) < degg
wΦ. Hence, mg

w(Φ) ≥ 1 and
Φw,g (gw) = 0 as mentioned. In particular, J contains at least two elements, say (i, j) and
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(i ′, j ′), since Φw,g �= 0, gw �= 0 and Φw,g (gw) = 0. Then, (i − i ′) degf = (j ′ − j) deg g .
Since degf > 0 and deg g > 0, this implies that q degf = p deg g for some p, q ∈ N with
gcd(p, q) = 1. For each (i1, j1), (i2, j2) ∈ J , there exists l ∈ Z such that i2 − i1 = −ql
and j2 − j1 = pl. Hence, we can find (i0, j0) ∈ J and m ∈ N such that J is contained in
{(i0 − ql, j0 + pl); l = 0, . . . ,m}, and (i0 − qm, j0 + pm) belongs to J . Note that qm ≤ i0.
Putting c′l = ci0−ql,j0+pl for each l, we get

Φw,g = (fw)i0yj0

m∑
l=0

c′l(f w)−qlypl = c′m(fw)i0yj0

m∏
l=1

((fw)−qyp − αl) ,

where α1, . . . , αm are the roots of the equation
∑m
l=0 c

′
ly
l = 0 in an algebraic closure of

k. Since Φw,g (gw) = 0, we get (f w)−q (gw)p = αl for some l. Then, αl belongs to k \ {0},
because f w and gw are in k[x]\{0}. Therefore, (gw)p ≈ (fw)q . This proves the first assertion.
By the expression above, we know thatΦw,g cannot have a multiple root of order greater than
m. Hence,mg

w(Φ) ≤ m. Thus, it follows that

degg
wΦ = degS φ = deg f i0gj0 ≥ i0 degf ≥ qm degf ≥ qm

g
w(Φ) deg f.(3.1)

By Theorem 3.1, together with (2.2) and (3.1), we get

degφ = degΦ(g) ≥ degg
wΦ +m

g
w(Φ)(deg df ∧ dg − deg f − deg g)

≥ qm
g
w(Φ) deg f +m

g
w(Φ)(deg df ∧ dg − deg f − deg g) ≥ m

g
w(Φ)M ,

where M = q degf + deg df ∧ dg − deg f − deg g . Since mg
w(Φ) ≥ 1, the assertion (i)

follows from the inequality above if M > 0. If M ≤ 0, then (i) is clear, since degφ ≥ 0.
To show (ii), consider the polynomial Ψ := h+Φ in y over k[f, h]. Recall that degφ <

degS φ = degg
wΦ. By the assumption that deg(h + φ) < degh, we get degφ = degh.

Hence, degh < degg
wΦ. Thus, we have degg

w Ψ = degg
wΦ and Ψ w,g = Φw,g , and so

m
g
w(Ψ ) = m

g
w(Φ). Therefore, degg

w Ψ ≥ qm
g
w(Ψ ) degf by (3.1). By Theorem 3.1, we

obtain

deg(h+ φ) = degΨ (g)

≥ degg
w Ψ +m

g
w(Ψ )M

′ ≥ qm
g
w(Ψ ) deg f +m

g
w(Ψ )M

′ ≥ m
g
w(Ψ )(q degf +M ′) ,

where M ′ = deg df ∧ dh ∧ dg − deg df ∧ dh − deg g . Since mg
w(Ψ ) = m

g
w(Φ) ≥ 1, the

inequality above implies the inequality in (ii). �

Let p and q be natural numbers such that gcd(p, q) = 1 and 2 ≤ p < q . The following
assertions are checked easily.
(1) pq − p − q > 0.
(2) If pq − p − q ≤ q , then p = 2 and q ≥ 3 is an odd number.
(3) If pq − p − q ≤ p, then p = 2 and q = 3.

LEMMA 3.3. Let f , g , φ and p, q be as in Lemma 3.2.
(i) Assume that f w does not belong to k[gw], and gw does not belong to k[fw]. Then,
degφ > deg df ∧ dg .
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(ii) Assume that degf < deg g , degφ ≤ deg g , and gw does not belong to k[fw]. Then,
p = 2, q ≥ 3 is an odd number, δ := (1/2) deg f belongs to Γ , and

degφ ≥ (q − 2)δ + deg df ∧ dg , deg dφ ∧ df ≥ qδ + deg df ∧ dg .(3.2)

If degφ ≤ deg f , then q = 3.

PROOF. Since p deg g = q degf and gcd(p, q) = 1, it follows that δ := (1/p) degf
belongs to Γ . By Lemma 3.2(i), we have

degφ ≥ p deg g + deg df ∧ dg − deg f − deg g = (pq − p − q)δ + deg df ∧ dg .(3.3)

Since (gw)p ≈ (f w)q and gcd(p, q) = 1, the assumptions of (i) imply 2 ≤ p < q or
2 ≤ q < p. Hence, pq − p − q > 0 as claimed above. Therefore, degφ > deg df ∧ dg by
(3.3), proving (i).

If the assumptions of (ii) are satisfied, we have 2 ≤ p < q , since gw does not belong to
k[fw]. Since degφ ≤ deg g = qδ by assumption, (3.3) yields pq −p− q < q . Thus, p = 2,
and q ≥ 3 is an odd number by the claim. By substituting p = 2, we obtain from (3.3) the
first inequality of (3.2). To show the second inequality of (3.2), consider Φ ∈ k[f ][y] defined
in the proof of Lemma 3.2. Recall that mg

w(Φ) ≥ 1, and pmg
w(Φ) deg g = qm

g
w(Φ) degf ≤

degg
wΦ by (3.1). By definition, degg

wΦ
(1) = degg

wΦ − deg g and mg
w(Φ

(1)) = m
g
w(Φ) − 1.

Since p = 2 and deg f < deg g , it follows from Theorem 2.1 that

degΦ(1)(g) ≥ degg
wΦ

(1) +m
g
w(Φ

(1))M ′′

= degg
wΦ − deg g + (m

g
w(Φ)− 1)M ′′

≥ 2mg
w(Φ) deg g − deg g + (m

g
w(Φ)− 1)M ′′

= (m
g
w(Φ)− 1)(deg df ∧ dg − degf + deg g)+ deg g

≥ deg g = qδ ,

whereM ′′ = deg df ∧ dg − degf − deg g . Since dφ = (
∑
i,j ci,j if

i−1gj )df +Φ(1)(g)dg ,

we have dφ ∧ df = Φ(1)(g)dg ∧ df . Therefore,

deg dφ ∧ df = degΦ(1)(g)+ deg df ∧ dg ≥ qδ + deg df ∧ dg .
This proves the second inequality of (3.2). If degφ ≤ degf , then pq − p − q < p by (3.3),
since degf = pδ. Hence, q = 3 as claimed above. �

The following remark is useful. Assume that f, g, h ∈ k[x] and φ ∈ k[S] satisfy the
following (i) through (iv), where S = {f, g}:

(i) f and g are algebraically independent over k,
(ii) deg f < deg g and degh < deg g ,

(iii) gw and hw do not belong to k[fw],
(iv) deg(h+ φ) < degh.
Then, we claim that degφ < degS φ, and that f , g and φ satisfy the assumptions of Lemma
3.3(ii). In fact, φw ≈ hw by (iv), and hw does not belong to k[fw, gw], since hw does not
belong to k[fw] by (iii), and degh < deg g by (ii). Hence, φw does not belong to k[fw, gw].
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Because φ is an element of k[f, g], we get degφ < degS φ. By (ii) and (iii), it follows that
deg f < deg g , degφ = degh < deg g , and gw does not belong to k[fw]. Thus, f , g and
φ satisfy the required conditions. Therefore, the conclusion of Lemma 3.3(ii) holds in this
situation.

The following theorem is a generalization of Shestakov-Umirbaev [9, Lemma 5].

THEOREM 3.4 ([6, Theorem 5.2]). For any η1, . . . , ηl ∈ Ωk[x]/k with l ≥ 2, there
exist 1 ≤ i1 < i2 ≤ l such that

degηi1 + deg η̃i1 = degηi2 + deg η̃i2 ≥ degηi + deg η̃i

for i = 1, . . . , l, where η̃i = η1 ∧ · · · ∧ ηi−1 ∧ ηi+1 ∧ · · · ∧ ηl for each i.

Using Theorem 3.4, we prove a lemma needed later. Assume that k1, k2, k3 ∈ k[x] are
algebraically independent over k, and k′

1 := k1 + ak2
3 + ck3 +ψ and k′

2 := k2 + φ satisfy the
following conditions for some a, c ∈ k, ψ ∈ k[k2] and φ ∈ k[k3]:
(a) deg k′

2 < deg k′
1,

(b) deg k′
1 − deg k′

2 < deg k3,
(c) degψ < deg k′

1 − deg k′
2 + deg k2,

(d) deg k3 + deg dk′
1 ∧ dk′

2 < deg k′
1 + deg dk′

2 ∧ dk3.

LEMMA 3.5. Under the assumption above, we have

deg dk1 ∧ dk3 = deg k′
1 − deg k′

2 + deg dk2 ∧ dk3 .(3.4)

If furthermore φ = bk3 + d for some b, d ∈ k, then the following assertions hold:
(i) If a �= 0 and deg dk′

1 ∧ dk′
2 < deg k3, then

deg dk1 ∧ dk2 = deg k3 + deg dk2 ∧ dk3 .

(ii) Assume that deg dk′
1 ∧ dk′

2 < deg dk2 ∧ dk3. Then,

deg dk1 ∧ dk2 =




deg k3 + deg dk2 ∧ dk3 if a �= 0
deg dk1 ∧ dk3 if a = 0 and b �= 0
deg dk2 ∧ dk3 if a = b = 0 and c �= 0
deg dk′

1 ∧ dk′
2 if a = b = c = 0 .

(iii) Assume that ψ belongs to k. Set k′′
1 = k1 + a′k2

3 + c′k3 + ψ ′ and k′′
2 = k2 + b′k3 + d ′

for a′, b′, c′, d ′, ψ ′ ∈ k. If deg dk′
1 ∧ dk′

2 and deg dk′′
1 ∧ dk′′

2 are less than deg dk2 ∧ dk3, then
(a′, b′, c′) = (a, b, c).

PROOF. Put η1 = dk′
1, η2 = dk′

2 and η3 = dk3. Then, degη3+deg η̃3 < degη1+deg η̃1

by (d), since degdk′
i = deg k′

i for i = 1, 2 and deg dk3 = deg k3 by (2.2). Hence, we have
deg η1 + deg η̃1 = deg η2 + deg η̃2 by Theorem 3.4. Since φ is an element of k[k3], we get
dφ ∧ dk3 = 0. Hence, dk′

2 ∧ dk3 = d(k2 + φ) ∧ dk3 = dk2 ∧ dk3. Thus, we obtain
deg dk′

1 ∧ dk3 = deg η̃2 = deg η1 − deg η2 + deg η̃1

= deg k′
1 − deg k′

2 + deg dk′
2 ∧ dk3

= deg k′
1 − deg k′

2 + deg dk2 ∧ dk3 .

(3.5)
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We show that deg dk′
1 ∧ dk3 = deg dk1 ∧ dk3, which implies (3.4). Set ψ1 = Ψ (1)(k2), where

Ψ is an element of k[y] satisfying Ψ (k2) = ψ . Then, degψ1 ≤ degψ − deg k2, and so
degψ1 < deg k′

1 − deg k′
2 by (c). Hence,

degψ1dk2 ∧ dk3 = degψ1 + deg dk2 ∧ dk3

< deg k′
1 − deg k′

2 + deg dk2 ∧ dk3 = deg dk′
1 ∧ dk3

(3.6)

by (3.5). Since dψ = ψ1dk2, it follows that

dk′
1 ∧ dk3 = dk1 ∧ dk3 + 2ak3dk3 ∧ dk3 + cdk3 ∧ dk3 + dψ ∧ dk3

= dk1 ∧ dk3 + ψ1dk2 ∧ dk3 .

This equality and (3.6) imply deg dk1 ∧ dk3 = deg dk′
1 ∧ dk3. This proves (3.4).

Next, assume that φ = bk3 + d for some b, d ∈ k. Then, we have

dk1 ∧ dk2 = dk′
1 ∧ dk′

2 + 2ak3dk2 ∧ dk3

− b(dk1 ∧ dk3 + ψ1dk2 ∧ dk3)+ cdk2 ∧ dk3 .
(3.7)

By (b), (a) and (3.6), it follows that

deg k3dk2 ∧ dk3 = deg k3 + deg dk2 ∧ dk3 > deg k′
1 − deg k′

2 + deg dk2 ∧ dk3

> max{deg dk2 ∧ dk3, degψ1dk2 ∧ dk3} .
Since the right-hand side of the first inequality is equal to deg dk1 ∧ dk3 by (3.4), we get

deg k3dk2 ∧ dk3 > deg dk1 ∧ dk3 > max{deg dk2 ∧ dk3, degψ1dk2 ∧ dk3} .(3.8)

In view of (3.8), the assertions (i) and (ii) easily follow from (3.7).
Finally, we verify (iii). A direct computation shows that

dk′′
1 ∧ dk′′

2 − dk′
1 ∧ dk′

2 = 2(a − a′)k3dk2 ∧ dk3 − (b − b′)dk1 ∧ dk3

+ (c− c′)dk2 ∧ dk3 .

By assumption, the w-degree of the left-hand side of this equality is less than that of dk2∧dk3,
while those of k3dk2∧dk3 and dk1∧dk3 are greater than that of dk2∧dk3 by (3.8). Therefore,
it follows that a = a′, b = b′ and c = c′. �

4. Shestakov-Umirbaev reductions. In this section, we study the properties of
Shestakov-Umirbaev reductions. In what follows, unless otherwise stated, F = (f1, f2, f3)

and G = (g1, g2, g3) denote elements of T , and Si := {f1, f2, f3} \ {fi} for each i. We
say that the pair (F,G) satisfies the weak Shestakov-Umirbaev condition for the weight w if
(SU4), (SU5), (SU6) and the following three conditions hold:
(SU1′) g1 − f1, g2 − f2 and g3 − f3 belong to k[f2, f3], k[f3] and k[g1, g2], respectively,
(SU2′) degfi ≤ deg gi for i = 1, 2,
(SU3′) deg g2 < deg g1, and gw

1 does not belong to k[gw
2 ].

It is easy to see that (SU1), (SU2) and (SU3) imply (SU1′), (SU2′) and (SU3′), re-
spectively. Hence, if (F,G) satisfies the Shestakov-Umirbaev condition for the weight w,
then (F,G) satisfies the weak Shestakov-Umirbaev condition for the weight w. We say that
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F ∈ T admits a weak Shestakov-Umirbaev reduction for the weight w if (Fσ ,Gσ ) satisfies
the weak Shestakov-Umirbaev condition for the weight w for some σ ∈ S3 and G ∈ T , and
call this G a weak Shestakov-Umirbaev reduction of F for the weight w. The weight w is
fixed throughout, and so is not explicitly mentioned in what follows.

We show that F and G have the following properties (P1) through (P12) if (F,G) satis-
fies the weak Shestakov-Umirbaev condition:
(P1) (gw

1 )
2 ≈ (gw

2 )
s for some odd number s ≥ 3, and so δ := (1/2) deg g2 belongs to Γ .

(P2) deg f3 ≥ (s − 2)δ + deg dg1 ∧ dg2.
(P3) deg f2 = deg g2.
(P4) If degφ ≤ deg g1 for φ ∈ k[S1], then there exist a′, c′ ∈ k and ψ ′ ∈ k[f2] with
degψ ′ ≤ (s − 1)δ such that φ = a′f 2

3 + c′f3 + ψ ′.
(P5) If deg f1 < deg g1, then s = 3, gw

1 ≈ (fw
3 )

2, deg f3 = (3/2)δ and

deg f1 ≥ 5

2
δ + deg dg1 ∧ dg2 .

(P6) degG < degF .
(P7) deg f2 < degf1, deg f3 ≤ degf1, and δ < deg fi ≤ sδ for i = 1, 2, 3.
(P8) f w

i does not belong to k[fw
j ] if i �= j and (i, j) �= (1, 3). If f w

1 belongs to k[fw
3 ], then

s = 3, fw
1 ≈ (fw

3 )
2 and deg f3 = (3/2)δ.

(P9) If degφ ≤ degf2 for φ ∈ k[S2], then there exist b′, d ′ ∈ k such that φ = b′f3 + d ′.
(P10) Assume that k[g1, g2] �= k[S3]. If degφ ≤ degf1 for φ ∈ k[S3], then there exist
c′′ ∈ k and ψ ′′ ∈ k[f2] with degψ ′′ ≤ min{(s − 1)δ, degφ} such that φ = c′′f1 + ψ ′′. If
degφ < degf1, then c′′ = 0.
(P11) There exist a, b, c, d ∈ k and ψ ∈ k[f2] with degψ ≤ (s − 1)δ such that g1 =
f1 + af 2

3 + cf3 + ψ and g2 = f2 + bf3 + d . If a �= 0 or b �= 0, then degf3 ≤ deg f2. If
deg f3 ≤ degf2, then s = 3. Furthermore, if ψ belongs to k, then a, b and c are uniquely
determined by F in the following sense: If (F,G′) satisfies the weak Shestakov-Umirbaev
condition forG′ = (g ′

1, g
′
2, g

′
3) ∈ T , where g ′

1 = f1+a′f 2
3 +c′f3+ψ ′ and g ′

2 = f2+b′f3+d ′
with a′, b′, c′, d ′, ψ ′ ∈ k, then a′ = a, b′ = b and c′ = c.
(P12) The following equalities and inequality hold:

deg df1 ∧ df2 =




deg f3 + deg df2 ∧ df3 if a �= 0
deg df1 ∧ df3 if a = 0 and b �= 0
deg df2 ∧ df3 if a = b = 0 and c �= 0
deg dg1 ∧ dg2 if a = b = c = 0

deg df1 ∧ df3 = (s − 2)δ + deg df2 ∧ df3

deg df2 ∧ df3 ≥ sδ + deg dg1 ∧ dg2 .

To show these properties, we set φi = gi − fi for i = 1, 2, 3. Since deg g3 < deg f3

by (SU5), we have φw
3 = −f w

3 and degφ3 = deg f3. Hence, degφ3 ≤ deg g1 and φw
3

does not belong to k[gw
1 , g

w
2 ] by (SU4). Set U = {g1, g2}. Since φ3 is contained in k[U ] by

(SU1′), it follows that degφ3 < degU φ3. In view of (SU3′), we know that the assumptions of
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Lemma 3.3(ii) hold for f = g2, g = g1 and φ = φ3. Therefore, there exists an odd number
s ≥ 3 such that (gw

1 )
2 ≈ (gw

2 )
s and

degf3 = degφ3 ≥ (s − 2)δ + deg dg1 ∧ dg2 ,(4.1)

deg dg2 ∧ dφ3 ≥ sδ + deg dg1 ∧ dg2 ,(4.2)

where δ = (1/2) deg g2. This proves (P1) and (P2).
We show that g2 is expressed as in (P11). By (SU1′), φ2 = g2 − f2 belongs to k[f3].

Hence, φ2 = ∑p

i=0 bif
i
3 for some b0, . . . , bp ∈ k with bp �= 0, where p ∈ Z≥0. By (SU2′),

degφ2 ≤ max{deg g2, deg f2} = deg g2 = 2δ. By (4.1), we get deg f3 > δ, since s ≥ 3.
Thus, we must have p ≤ 1 and φ2 = b1f3 + b0, for otherwise degφ2 = p degf3 > pδ ≥ 2δ,
a contradiction. Therefore, g2 is expressed as stated.

We show (P3) and the first assertion of (P8) for (i, j) = (2, 3), (3, 2) by contradiction.
Supposing that deg f2 �= deg g2, we have degf2 < deg g2 by (SU2′). Since g2 = f2 +bf3 +d
as shown above, it follows that gw

2 = bfw
3 and b �= 0. Hence, f w

3 belongs to k[gw
1 , g

w
2 ],

a contradiction to (SU4). Therefore, degf2 = deg g2, proving (P3). Next, we show that
f w

2 �≈ f w
3 . Supposing that f w

2 ≈ fw
3 , we have deg f2 = degf3. Hence, deg g2 = degf3 by

(P3). Thus, gw
2 = fw

2 + bfw
3 . Since f w

2 ≈ f w
3 , we get gw

2 ≈ f w
3 . This contradicts (SU4).

Therefore, fw
2 �≈ f w

3 . Now, suppose that f w
3 belongs to k[fw

2 ]. Then, fw
3 ≈ (fw

2 )
l for some

l ≥ 2, since fw
2 �≈ f w

3 . Hence, deg f2 < degf3. From degf2 = deg g2 = deg(f2 + bf3 + d),
we get b = 0, and f w

2 = gw
2 . Since fw

3 ≈ (fw
2 )

l , it follows that f w
3 ≈ (gw

2 )
l , a contradiction

to (SU4). Therefore, fw
3 does not belong to k[fw

2 ]. Suppose that f w
2 belongs to k[fw

3 ]. Then,
f w

2 ≈ (f w
3 )

l for some l ∈ N , where l ≥ 2 as above. This is impossible, because degf2 = 2δ
by (P3) and degf3 > δ by (4.1). Therefore, f w

2 does not belong to k[fw
3 ].

Since g2 − f2 is contained in k[f3] by (SU1′), it follows that df2 ∧ df3 − dg2 ∧ df3 =
d(f2 − g2) ∧ df3 = 0. Moreover, df3 = dg3 − dφ3. Hence,

df2 ∧ df3 = dg2 ∧ df3 = dg2 ∧ dg3 − dg2 ∧ dφ3 .(4.3)

By (2.3), (SU6), (P1) and (4.2), we get

deg dg2 ∧ dg3 ≤ deg g2 + deg g3 < deg g1 + deg dg1 ∧ dg2

= sδ + deg dg1 ∧ dg2 ≤ deg dg2 ∧ dφ3 .

Then, it follows from (4.3) that deg df2 ∧ df3 = deg dg2 ∧ dφ3. Therefore, we obtain

deg df2 ∧ df3 ≥ sδ + deg dg1 ∧ dg2(4.4)

by (4.2). This proves the last inequality of (P12).
The following lemma is useful in proving (P4), (P9), (P10) and (P11).

LEMMA 4.1. Assume that degf2 = 2δ and (s − 2)δ < degf3 ≤ sδ for some δ ∈ Γ

and an odd number s ≥ 3. Then, the following assertions hold:
(i) If degS1 φ ≤ sδ for φ ∈ k[S1], then there exist a, c ∈ k and ψ ∈ k[f2] with degψ ≤
(s − 1)δ such that φ = af 2

3 + cf3 + ψ . If a �= 0, then degf3 < degf2.
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(ii) Assume that degf1 > degf2. If degS2 φ ≤ degf2 for φ ∈ k[S2], then there exist
b, d ∈ k such that φ = bf3 + d .
(iii) Assume that deg f1 ≤ sδ. If degS3 φ ≤ deg f1 for φ ∈ k[S3], then there exist c′ ∈ k and
ψ ′ ∈ k[f2] with degψ ′ ≤ min{(s−1)δ, degS3 φ} such that φ = c′f1+ψ ′. If degS3 φ < deg f1,
then c′ = 0.
(iv) If degf3 ≤ degf2, then s = 3.

PROOF. To show (i), write φ = ∑
i,j ci,j f

i
2f

j

3 , where ci,j ∈ k for each i, j ∈ Z≥0.

Since degS1 φ ≤ sδ by assumption, degf i2f
j

3 ≤ sδ if ci,j �= 0 for i, j ∈ Z≥0. We verify

that, if degf i2f
j

3 ≤ sδ, then i ≤ (s − 1)/2 and j = 0, or i = 0 and j = 1, 2. This shows
that φ can be expressed as in (i). It follows that degf i2f3 > 2iδ + (s − 2)δ ≥ sδ if i ≥ 1.
If i > (s − 1)/2, then 2i > s, since s is an odd number. Hence, degf i2 = 2iδ > sδ. If

j ≥ 3, then degf j3 > j(s − 2)δ ≥ sδ, since s ≥ 3. Thus, if deg f i2f
j
3 ≤ sδ, then (i, j)

must be as stated above. Therefore, φ can be expressed as in (i). Assume that a �= 0. Then,
deg f 2

3 ≤ degS1 φ ≤ sδ. Since (s − 2)δ < degf3, we get 2(s − 2) < s. Thus, s < 4, and
hence s = 3. Therefore, degf3 ≤ (s/2)δ = (3/2)δ < 2δ = degf2. This proves (i).

We can prove (ii) and (iii), similarly. Actually, if deg f1 > degf2 and if deg f i1f
j

3 ≤
deg f2 for i, j ∈ Z≥0, then i = 0. Moreover, we have j ≤ 1, since degf 2

3 > 2(s−2)δ ≥ 2δ =
deg f2. Therefore, φ = bf3 + d for some b, d ∈ k in the case (ii). To show (iii), assume that
degS3 φ ≤ degf1 for φ ∈ k[S3]. Clearly, i = 0 or (i, j) = (1, 0) if degf i1f

j

2 ≤ deg f1, while

i = 0 if degf i1f
j

2 < deg f1. Hence, φ = c′f1 + ψ ′ for some c′ ∈ k and ψ ′ ∈ k[f2] where
c′ = 0 if degS3 φ < degf1. We note that degψ ′ ≤ degS3 φ. Since degS3 φ ≤ degf1 ≤ sδ

by assumption, it follows that degψ ′ ≤ sδ. This implies that degψ ′ ≤ (s − 1)δ, because s
is an odd number, and degψ ′ = degf l2 = 2lδ with l ∈ Z≥0 if ψ ′ �= 0. Therefore, we obtain
degψ ′ ≤ min{(s − 1)δ, degS3 φ}.

The assertion (iv) follows from (s − 2)δ < degf3 ≤ deg f2 = 2δ. �

We show (P4) using Lemma 4.1(i). Since degf2 = deg g2 = 2δ by (P3), and since
(s − 2)δ < degf3 ≤ sδ by (4.1) and (SU4), it suffices to check that degS1 φ ≤ sδ. Supposing
the contrary, we have degφ < degS1 φ, since degφ ≤ deg g1 = sδ by the assumption of (P3).
As shown above, fw

i does not belong to k[fw
j ] for (i, j) = (2, 3), (3, 2). Hence, degφ >

deg df2 ∧ df3 by Lemma 3.3(i). Since deg df2 ∧ df3 > sδ by (4.4), we get degφ > sδ, a
contradiction. Thus, degS1 φ ≤ sδ, and thereby proving (P4).

We complete the proof of the former part of (P11). Since φ1 = g1 − f1 belongs to
k[S1] by (SU1′), and since degφ1 ≤ max{deg g1, deg f1} = deg g1 = sδ by (SU2′), we know
by (P4) that g1 = f1 + φ1 is expressed as in (P11). If a �= 0, then deg f3 < degf2 by
the last assertion of Lemma 4.1(i). Since deg f2 = deg g2 and g2 = f2 + bf3 + d , we get
deg f3 ≤ deg f2 if b �= 0. By Lemma 4.1(iv), degf3 ≤ degf2 implies s = 3. We have thus
proved the former part of (P11).

We show that the conditions listed before Lemma 3.5 and the inequality degdk′
1 ∧dk′

2 <

deg dk2 ∧ dk3 hold for ki = fi for i = 1, 2, 3 and k′
i = gi for i = 1, 2. By the former part of
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(P11), k′
1 and k′

2 are expressed in terms of k1, k2 and k3 as required. Since deg g2 < deg g1 by
(SU3′), we get (a). Since deg g1 − deg g2 = (s − 2)δ, (b) follows from (4.1). By (P3), (c) is
equivalent to degψ < deg k′

1, which follows from degψ ≤ (s− 1)δ < deg g1. The rest of the
conditions are due to (4.4), since df2 ∧ df3 = dg2 ∧ df3 as mentioned. Therefore, we obtain
the estimation of deg df1 ∧ df2 described in (P12) from Lemma 3.5(ii). Owing to (3.4), we
have

deg df1 ∧ df3 = (s − 2)δ + deg df2 ∧ df3 ,(4.5)

the second equality of (P12). The uniqueness of a, b and c claimed in (P11) follows from
Lemma 3.5(iii). This completes the proofs of (P11) and (P12).

Here, we remark that

deg df1 ∧ df3 ≥ 2(s − 1)δ + deg dg1 ∧ dg2(4.6)

follows from (4.4) and (4.5). Since degf1 + degf3 ≥ deg df1 ∧ df3, we obtain that

degf1 ≥ 2(s − 1)δ + deg dg1 ∧ dg2 − deg f3 .(4.7)

Now, we show (P5). By the assumption of (P5), we have deg f1 < deg g1. Hence,
gw

1 = (f1 + φ1)
w = φw

1 , and so degφ1 = sδ. Since gw
1 �≈ fw

3 by (SU4), we get φw
1 �≈ fw

3 .
By (P11), we have φ1 = af 2

3 + cf3 + ψ , in which degψ ≤ (s − 1)δ. From this, it follows
that a �= 0, for otherwise φw

1 = cfw
3 , a contradiction. Hence, s = 3 by (P11). Moreover,

φw
1 ≈ (fw

3 )
2, and thus gw

1 ≈ (f w
3 )

2. Therefore, degf3 = (1/2) deg g1 = (3/2)δ. The last
inequality of (P5) follows from (4.7).

We show (P6) and (P7) with the aid of (P5). If deg g1 = deg f1, then (P6) is clear, since
deg g2 = degf2 by (P3), and deg g3 < deg f3 by (SU5). Assume that degf1 < deg g1. Then,

deg f1 + degf3 >
5

2
δ + deg dg1 ∧ dg2 + 3

2
δ = 4δ + deg dg1 ∧ dg2

by (P5). On the other hand, since deg g2 = 2δ, and deg g1 = sδ = 3δ by (P5), it follows from
(SU6) that

deg g1 + deg g3 < deg g1 + deg g1 − deg g2 + deg dg1 ∧ dg2 = 4δ + deg dg1 ∧ dg2 .

Therefore, degG < degF by (P3). This proves (P6). If deg f1 = deg g1, then deg f2 <

deg f1 by (SU3′), and degf3 ≤ deg f1 by (SU4). If deg f1 < deg g1, then deg f1 > (5/2)δ
and deg f3 = (3/2)δ by (P5). Hence, deg fi < deg f1 for i = 2, 3. This proves the first
two statements of (P7). The last statement of (P7) follows from the conditions that (5/2)δ <
deg f1 ≤ deg g1 = sδ, degf2 = 2δ and (s − 2)δ < degf3 ≤ deg g1.

Let us complete the proof of (P8). First, we show that deg fi �= l deg fj holds for any
l ∈ N for (i, j) = (1, 2), (2, 1), which proves that f w

i does not belong to k[fw
j ]. In the

case deg f1 = deg g1, we have 2 degf1 = s degf2 by (P1) and (P3). Since s ≥ 3 is an odd
number, the assertion is true. In the case deg f1 < deg g1, we have (5/2)δ < deg f1 < 3δ by
(P5). Since degf2 = 2δ, the assertion is readily verified. Thus, f w

i does not belong to k[fw
j ]

for (i, j) = (1, 2), (2, 1). Next, suppose to the contrary that f w
3 belongs to k[fw

1 ]. Since
deg f3 ≤ degf1 by (P7), it follows that f w

3 ≈ fw
1 . In view of (P5), we get degf1 = deg g1.
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Hence, gw
1 = f w

1 + cfw
3 . Consequently, we obtain f w

3 ≈ gw
1 , a contradiction to (SU4).

Therefore, f w
3 does not belong to k[fw

1 ]. Since the cases (i, j) = (2, 3), (3, 2) are done, this
completes the proof of the former part of (P8). For the latter part, assume that f w

1 belongs to
k[fw

3 ]. Then, fw
1 ≈ (fw

3 )
l for some l ∈ N . Since fw

3 does not belong to k[fw
1 ], it follows

that l ≥ 2. Then, we must have s = 3 and l = 2. In fact, if s ≥ 5 or l ≥ 3, then s ≤ l(s − 2),
and so

deg f1 ≤ deg g1 = sδ ≤ l(s − 2)δ < l degf3 ,

which contradicts f w
1 ≈ (f w

3 )
l . Thus, f w

1 ≈ (f w
3 )

2. If deg f3 �= (3/2)δ, then degf1 = deg g1

by (P5), and hence

degf3 = 1

2
degf1 = 1

2
deg g1 = 1

2
sδ = 3

2
δ ,

a contradiction. Therefore, deg f3 = (3/2)δ. This completes the proof of (P8).
We show (P9) using Lemma 4.1(ii). Since degf2 < degf1 by (P7), we verify that,

if degφ ≤ degf2 for φ ∈ k[S2], then degS2 φ ≤ deg f2. Supposing the contrary, we get
degφ < degS2 φ. By Lemma 3.2(i), there exist p, q ∈ N with gcd(p, q) = 1 such that
(f w

3 )
p ≈ (f w

1 )
q and

2δ = deg f2 ≥ degφ ≥ q degf1 + deg df1 ∧ df3 − deg f1 − degf3

≥ (q − 1) deg f1 − deg f3 + 2(s − 1)δ + deg dg1 ∧ dg2 ,(4.8)

where the last inequality is due to (4.6). Since f w
3 does not belong to k[fw

1 ] by (P8), we have
p ≥ 2. If degf1 < deg g1, then s = 3, deg f1 > (5/2)δ and degf3 = (3/2)δ by (P5), and
hence the right-hand side of (4.8) is greater than

(q − 1)
5

2
δ − 3

2
δ + 4δ + deg dg1 ∧ dg2 >

5

2
qδ > 2δ ,

a contradiction. Thus, deg f1 = deg g1 = sδ. Then, the right-hand side of (4.8) is at least

(q − 1)sδ − q

p
sδ + 2(s − 1)δ + deg dg1 ∧ dg2 >

qs

p
(p − 1)δ + (s − 2)δ ,

which is less than 2δ by (4.8). Hence, s = 3 and (3q/p)(p − 1) < 1. Since p ≥ 2, it
follows that 3 ≤ 3q < 1 + 1/(p − 1) ≤ 2, a contradiction. Therefore, we conclude that
degS2 φ ≤ degf2, and thereby proving (P9).

To show (P10), assume that k[S3] �= k[g1, g2], and take φ ∈ k[S3] such that degφ ≤
deg f1. By virtue of Lemma 4.1(iii), it suffices to check that degφ = degS3 φ. Supposing
the contrary, we get degφ < degS3 φ. By (P8), fw

i does not belong to k[f w
j ] for (i, j) =

(1, 2), (2, 1). Hence, degφ > deg df1 ∧ df2 by Lemma 3.3(i). Since k[S3] �= k[g1, g2], we
must have (a, b, c) �= (0, 0, 0). Hence, deg df1 ∧ df2 ≥ deg df2 ∧ df3 > sδ by (P12). Thus,
degφ > sδ. This is a contradiction, because degφ ≤ deg f1 and degf1 ≤ deg g1 = sδ.
Therefore, degφ = degS3 φ, and thereby (P10) is proved.

We have thus proved the following theorem.

THEOREM 4.2. If (F,G) satisfies the weak Shestakov-Umirbaev condition for F,G ∈
T , then (P1) through (P12) hold for F andG.
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The following proposition is a consequence of Theorem 4.2.

PROPOSITION 4.3. (i) If (F,G) satisfies the weak Shestakov-Umirbaev condition
for F,G ∈ T , then there exist Ei ∈ Ei for i = 1, 2 with degG ◦ E1 = degG such that
(F,G ◦ E1 ◦ E2) satisfies the Shestakov-Umirbaev condition.
(ii) For F ∈ T , it follows that F admits a Shestakov-Umirbaev reduction if and only if F
admits a weak Shestakov-Umirbaev reduction.

PROOF. (i) Assume that g1 and g2 are expressed as in (P11). Take Ψ ∈ k[y] such that
Ψ (f2) = ψ , and defineEi ∈ Ei for i = 1, 2 byE1(y1) = y1−Ψ (y2−d) andE2(y2) = y2−d .
Then, (E1 ◦E2)(yi) = Ei(yi) for i = 1, 2. Set G′ = G ◦E1 ◦E2 and g ′

i = G′(yi) for each i.
We show that (F,G′) satisfies (SU1) through (SU6). By definition, g ′

2 = g2 − d = f2 + bf3.
If b = 0, then Ψ (g2 − d) = Ψ (f2) = ψ . Hence, g ′

1 = g1 − Ψ (g2 − d) = f1 + af 2
3 + cf3.

Assume that b �= 0. Then, s = 3 by (P11). Hence, degψ ≤ (s − 1)δ = 2δ. Since ψ belongs
to k[f2] and since deg f2 = 2δ by (P3), we may write ψ = ef2 + e′, where e, e′ ∈ k. Then,
Ψ = ey2 + e′, and so

g ′
1 = g1 − (e(g2 − d)+ e′) = f1 + af 2

3 + (c − be)f3 .(4.9)

Thus, g ′
1 and g ′

2 are expressed as in (SU1). From the construction of g ′
1 and g ′

2, it follows that
k[g ′

1, g
′
2] = k[g1, g2]. Since (F,G) satisfies (SU1′) by assumption, g ′

3 −f3 = g3 −f3 belongs
to k[g1, g2], and hence belongs to k[g ′

1, g
′
2]. Therefore, (F,G′) satisfies (SU1). We remark

that (F,G) satisfies (SU2) and (SU3) on account of (P3), (SU2′), and (P1), and satisfies
(SU4) through (SU6) by the definition of the weak Shestakov-Umirbaev condition. From
this, we can easily conclude that (F,G′) satisfies (SU2) through (SU6) on the assumption
that dg ′

1 ∧dg ′
2 = dg1 ∧dg2 and (g ′

i )
w = gw

i for i = 1, 2. So, we verify these equalities. Since
g ′

2 = g2 −d , we have (g ′
2)

w = gw
2 and dg ′

2 = dg2. Since dg ′
1 = dg1 −Ψ (1)(g2 −d)dg2, we get

dg ′
1 ∧ dg ′

2 = dg1 ∧ dg2. If b = 0, then g ′
1 = g1 −ψ . Since degψ ≤ (s − 1)δ < sδ = deg g1,

we have (g ′
1)

w = gw
1 . If b �= 0, then degf3 ≤ degf2 by (P11), and so deg f3 < deg g1 by

(SU3′) and (P3). Hence, (g ′
1)

w = (g1 − ψ − bef3)
w = gw

1 . Thus, it holds that dg ′
1 ∧ dg ′

2 =
dg1 ∧ dg2 and (g ′

i )
w = gw

i for i = 1, 2. Thereby, (F,G′) satisfies (SU2) through (SU6).
Therefore, (F,G′) satisfies the Shestakov-Umirbaev condition. Since G ◦ E1 = (g ′

1, g2, g3)

and deg g ′
1 = deg g1, we have degG ◦ E1 = degG.

(ii) It is clear that F admits a weak Shestakov-Umirbaev reduction if F admits a Shestakov-
Umirbaev reduction. The converse follows from (i). �

The following remark is readily verified. If (F,G) satisfies (SU2′), (SU3′), (SU4), (SU5)
and (SU6), then so does (F ′,G′). Here, F ′ = (f ′

1, f
′
2, f

′
3) is an element of T such that

deg f ′
i ≤ deg fi for i = 1, 2 and (f ′

3)
w ≈ f w

3 + h for some h ∈ k[gw
1 , g

w
2 ], and G′ =

(c1g1, c2g2, c3g3), where c1, c2, c3 ∈ k \ {0}. Note that F ′ := F ◦ E satisfies this condition
for E ∈ Ei such that degF ◦ E ≤ degF if i ∈ {1, 2}, and (F ◦ E)(y3)

w ≈ fw
3 + h for some

h ∈ k[gw
1 , g

w
2 ] if i = 3. Moreover, (F ′,G′) satisfies (SU1′) if the following conditions hold:

(i) c1g1 − f ′
1 belongs to k[f2, f3] if i = 1 and c2 = c3 = 1,

(ii) c1g1 − f1 and c2g2 − f ′
2 respectively belong to k[f ′

2, f3] and k[f3] if i = 2 and c3 = 1,
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(iii) c1g1 −f1, c2g2 −f2 and c3g3 −f ′
3 respectively belong to k[f2, f

′
3], k[f ′

3] and k[g1, g2]
if i = 3.

To end this section, we prove a proposition which will be used in the proof of Theo-
rem 2.1. We note that the case (ii) does not arise if rank w = n, since deg fj = deg f3 implies
f w
j ≈ fw

3 if rank w = n, while f w
j �≈ f w

3 for j = 1, 2 by (P8).

PROPOSITION 4.4. Assume that (F,G) satisfies the weak Shestakov-Umirbaev condi-
tion. If degF ◦ E ≤ degF for E ∈ Ei , then the following assertions hold for F ′ := F ◦ E,
where i ∈ {1, 2, 3}.
(i) If i = 1 or i = 2, or if i = 3, k[f1, f2] �= k[g1, g2] and degfj �= deg f3 for j = 1, 2,
then (F ′,G) satisfies the weak Shestakov-Umirbaev condition.
(ii) If i = 3, k[f1, f2] �= k[g1, g2] and degfj = degf3 for some j ∈ {1, 2}, then there
exists u ∈ k \ {0} such that (F ′,G′) or (F ′

τ ,G
′′) satisfies the weak Shestakov-Umirbaev

condition. Here, G′ = (g ′
1, g

′
2, ug3) and G′′ = (g ′

1, g
′
2,−ug3) with g ′

j = u−1gj and g ′
l = gl

for l ∈ {1, 2} \ {j }, and τ = (j, 3).

PROOF. Set f ′
i = F ′(yi) and φi = f ′

i − fi . Then, deg f ′
i ≤ degfi , since degF ′ ≤

degF by assumption. Hence, degφi ≤ max{degf ′
i , deg fi} ≤ deg fi . We note that φi be-

longs to k[Si]. Besides, g1 − f1, g2 − f2 and g3 − f3 belong to k[f2, f3], [f3] and k[g1, g2]
by (SU1′), respectively, since (F,G) satisfies the weak Shestakov-Umirbaev condition.

(i) First, assume that i ∈ {1, 2}, or i = 3 and φ3 is contained in k. Since degF ′ ≤
degF , we know by the remark above that (F ′,G) satisfies (SU2′), (SU3′), (SU4), (SU5) and
(SU6) if i ∈ {1, 2}. If i = 3, then (f ′

3)
w = f w

3 , since f ′
3−f3 = φ3 belongs to k by assumption.

Hence, (F ′,G) satisfies the five conditions similarly. We check that (F ′,G) satisfies (SU1′).
If i = 1, then g1 −f ′

1 = (g1 −f1)−φ1 belongs to k[S1], since so do g1 −f1 and φ1. If i = 2,
then φ2 belongs to k[f3] by (P9), because φ2 is an element of k[S2] such that degφ2 ≤ deg f2.
Hence, k[f ′

2, f3] = k[f2, f3], to which g1 − f1 belongs. Moreover, g2 − f ′
2 = (g2 − f2)−φ2

belongs to k[f3], since so does g2 − f2. If i = 3, then φ3 is contained in k. Hence, g1 − f1

and g2 − f2 belong to k[f2, f
′
3] = k[f2, f3] and k[f ′

3] = k[f3], respectively. Moreover,
g3 − f ′

3 = (g3 − f3)− φ3 belongs to k[g1, g2], since so does g3 − f3. Thus, (F ′,G) satisfies
(SU1′) in each case. Therefore, (F ′,G) satisfies the weak Shestakov-Umirbaev condition.

Next, assume that i = 3 and φ3 is not contained in k. We show that (f ′
3)

w = f w
3 +α(gw

2 )
p

for some α ∈ k and p ∈ N , which implies that (G′, F ) satisfies (SU2′), (SU3′), (SU4),
(SU5) and (SU6) by the remark. Since f ′

3 = f3 + φ3, degφ3 ≤ deg f3, and f w
3 does not

belong to k[gw
2 ] by (SU4), it suffices to check that φw

3 ≈ (gw
2 )
p for some p ∈ N . We

establish that φ3 belongs to k[f2], and fw
2 = gw

2 . Since degf1 �= degf3 by assumption,
we have deg f3 < deg f1 by (P7). Hence, degφ3 < deg f1. Since k[f1, f2] �= k[g1, g2] by
assumption, it follows from (P10) that φ3 belongs to k[f2]. Since φ3 is not contained in k,
we get deg f2 ≤ degφ3. Hence, degf2 ≤ degf3. Since degf2 �= degf3 by assumption, we
get degf2 < degf3. By (P11), it follows that b = 0, where we write g2 = f2 + bf3 + d .
Hence, g2 = f2 + d , and so gw

2 = f w
2 . Thus, we have proved that (f ′

3)
w = f w

3 + α(gw
2 )

p

for some α ∈ k and p ∈ N , and thereby proved that (G′, F ) satisfies the five conditions.
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As for (SU1′), g2 − f2 = d clearly belongs to k[f ′
3]. Since φ3 is contained in k[f2], we

know that g1 − f1 and g3 − f ′
3 = (g3 − f3) − φ3 belong to k[f2, f

′
3] = k[f2, f3] and

k[g1, g2] = k[g1, g2, f2], respectively. Thus, (F ′,G) satisfies (SU1′), and therefore satisfies
the weak Shestakov-Umirbaev condition.

(ii) By (P7), degf2 < deg f1 = deg f3 if j = 1, and degf3 = degf2 < degf1 if
j = 2. In view of (P5), degf1 = deg g1 in either case. Furthermore, if j = 1, then we can
write g1 = f1 + cf3 + ψ and g2 = f2 + d by (P11), since a = b = 0 if deg f2 < degf3. We
claim that gj = fj + αf3 + ψ1 and φ3 = βfj + ψ2 for some α, β ∈ k, and ψp ∈ k[f2] for
p = 1, 2 such that degψp < degf1 if j = 1, and degψp ≤ 0 if j = 2. In fact, g1 has such
an expression if j = 1 as mentioned, since degψ ≤ (s − 1)δ < sδ = deg g1 = deg f1. If
j = 1, then degφ3 ≤ degf3 = deg f1. Hence, it follows from (P10) that φ3 is expressed as
claimed. If j = 2, then degφ3 ≤ deg f3 < degf1, and so φ3 belongs to k[f2] by (P10). Since
deg f2 = degf3 and degφ3 ≤ degf3, we have φ3 = βf2 + ψ2 for some β,ψ2 ∈ k. The
expression of g2 is due to (P11). Therefore, gj and φ3 have expressions as claimed. Observe
that degψp < degfj for p = 1, 2. Moreover, degfj = deg f3, while fw

j �≈ fw
3 by (P8).

Thus, we have

gw
j = f w

j + αf w
3 , (f ′

3)
w = (f3 + φ3)

w = f w
3 + βf w

j = (1 − αβ)f w
3 + βgw

j .(4.10)

First, assume that αβ �= 1. We show that (F ′,G′) satisfies the weak Shestakov-Umirbaev
condition for u = 1−αβ. From the second equality of (4.10), we get (f ′

3)
w ≈ f w

3 +u−1βgw
j .

Hence, (F ′,G′) satisfies (SU2′), (SU3′), (SU4), (SU5) and (SU6) as remarked. We check
(SU1′). If j = 1, then g ′

2 = g2, and g ′
2 − f2 = g2 − f2 = d belongs to k[f ′

3]. If j = 2, then
f ′

3 − f3 = φ3 is contained in k[f2] by (P10) as mentioned. Hence, k[f2, f
′
3] = k[f2, f3], to

which g ′
1 − f1 = g1 − f1 belongs. A direct computation shows that

g ′
j − fj = 1

u
gj − fj = 1

1 − αβ
(fj + αf3 + ψ1)− fj = 1

1 − αβ
(αf ′

3 + ψ1 − αψ2) ,

ug3 − f ′
3 = (1 − αβ)g3 − (f3 + βfj + ψ2) = (1 − αβ)(g3 − f3)− βgj + βψ1 − ψ2 .

By the first expression, g ′
j − fj belongs to k[f2, f

′
3] if j = 1, and to k[f ′

3] if j = 2, since

ψ1 and ψ2 belong to k[f2] if j = 1, and to k if j = 2. We show that ug3 − f ′
3 belongs to

k[g1, g2]. Since g3 − f3 and gj belong to k[g1, g2], it suffices to check that ψ1 and ψ2 belong
to k[g1, g2]. This is obvious if j = 2. If j = 1, then g2 = f2 + d . Hence, k[g2] = k[f2],
to which ψ1 and ψ2 belong. Thus, ug3 − f ′

3 belongs to k[g1, g2]. This proves that (F ′,G′)
satisfies (SU1′), Therefore, (F ′,G′) satisfies the weak Shestakov-Umirbaev condition.

Next, assume that αβ = 1. We show that (F ′
τ ,G

′′) satisfies the weak Shestakov-
Umirbaev condition for u = α. Write F ′

τ = (h1, h2, h3). Then, deghj = degf ′
3 ≤

deg f3 = degfj and deghl = degfl for l ∈ {1, 2} \ {j }. By the first equality of (4.10),
we get hw

3 = f w
j = −αf w

3 + gw
j since β−1 = α. Hence, (F ′

τ ,G
′′) satisfies (SU2′), (SU3′),

(SU4), (SU5) and (SU6) by the remark. We check (SU1′). As in the case of αβ �= 1 above,
g ′′

2 − h2 = g2 − f2 = d belongs to k[h3] if j = 1, and g ′′
1 − h1 = g1 − f1 belongs to

k[h2, h3] = k[f ′
3, f2] = k[f2, f3] if j = 2. A direct computation shows that
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g ′′
j − hj = 1

α
gj − f ′

3 = 1

α
(fj + αf3 + ψ1)− (f3 + βfj + ψ2) = 1

α
ψ1 − ψ2 ,

−ug3 − h3 = −αg3 − fj = −α(g3 − f3)− αf3 − fj = −α(g3 − f3)− gj + ψ1 .

By the first expression, g ′′
j − hj belongs to k[h2, h3] = k[f2, f1] if j = 1, and to k[h3]

if j = 2. As in the case of αβ �= 1 above, −ug3 − h3 belongs to k[g1, g2] by the second
expression. Thus, (F ′,G) satisfies (SU1′). Therefore, (F ′,G) satisfies the weak Shestakov-
Umirbaev condition. �

5. Analysis of reductions. In this section, we prove some technical propositions
which will be needed in the proof of Theorem 2.1. First, we show a useful lemma.

LEMMA 5.1. Assume that (Fσ ,G) satisfies the weak Shestakov-Umirbaev condition
for some σ ∈ S3. Then, the following assertions hold:

(i) If degfi < degf1 for i = 2, 3, then σ(1) = 1.
(ii) If (Fσ ,G) satisfies the Shestakov-Umirbaev condition, and if σ(1) = 1 and
deg df1 ∧ df2 < degf1, then σ = id and (f1, f2) = (g1, g2).
(iii) If deg f3 < degf2 < deg f1 and 2 deg f1 < 3 deg f2, then either 3 degf2 = 4 degf3,
or 2 degf1 = s degf3 for some odd number s ≥ 3.
(iv) If deg df2 ∧ df3 < deg df1 ∧ df3 < deg df1 ∧ df2, then one of the following holds:
(1) σ = id and 2 deg g1 = 3 degf2.
(2) σ = (1, 2, 3) and 2 degf2 = s deg f3 for some odd number s ≥ 3.

PROOF. (i) By (P7), we have degfσ(i) ≤ degfσ(1) for i = 2, 3. Hence, σ(1) = 1 if
deg fi < degf1 for i = 2, 3.

(ii) Since σ(1) = 1 by assumption, we have

deg f1 = degfσ(1) ≤ deg g1

= sδ < deg dfσ(2) ∧ dfσ(3) < deg dfσ(1) ∧ dfσ(3) = deg df1 ∧ dfσ(3)
by (SU2′) and the last two conditions of (P12). Since deg df1 ∧ df2 < deg f1 by assumption,
we get σ(3) �= 2. Hence, σ(3) = 3, and so σ = id. Because (F,G) = (Fσ ,G) satisfies
the Shestakov-Umirbaev condition by assumption, we may write g1 and g2 as in (SU1). It
follows from the inequality above that the w-degrees of df1 ∧ df3 and df2 ∧ df3 are greater
than deg f1, and hence greater than degdf1 ∧ df2. This implies that a = b = c = 0 by the
first equality of (P12). Therefore, we obtain (f1, f2) = (g1, g2).

(iii) Since degfi < degf1 for i = 2, 3 by assumption, we have σ(1) = 1 by (i).
Hence, σ = id or σ = (2, 3). First, assume that σ = id. Then, deg f2 = deg g2 = 2δ by
(P3). Since 2 deg f1 < 3 degf2 by assumption, we have degf1 < (3/2) deg f2 = 3δ ≤ sδ =
deg g1. Hence, degf3 = (3/2)δ by (P5). Therefore, we obtain 3 degf2 = 6δ = 4 degf3.
Next, assume that σ = (2, 3). Then,

3

2
δ < 2δ = degfσ(2) = degf3 < deg f2 = degfσ(3) .



94 S. KURODA

Hence, deg f1 = deg g1 in view of (P5). By (P1), we have 2 deg g1 = s deg g2 for some odd
number s ≥ 3. By (P3), deg g2 = deg fσ(2) = degf3. Therefore, 2 deg f1 = s degf3.

(iv) Set γi = deg dfp ∧ dfq for each i, where p, q ∈ N \ {i} with 1 ≤ p < q ≤ 3.
In view of the first equality of (P12), we know that there exist four possibilities for γσ(3) =
deg dfσ(1) ∧ dfσ(2). Since γ1 < γ2 < γ3 by assumption, we have γσ(3) �= γσ(i) for i =
1, 2. Hence, the second and the third cases do not arise. Accordingly, γσ(3) must be either
deg fσ(3) + γσ(1) or deg dg1 ∧ dg2, where a �= 0 or a = b = c = 0, respectively. In the
former case, γσ(2) = (s − 2)δ + γσ(1) < degfσ(3) + γσ(1) = γσ(3) by the second equality of
(P12) and (P2). Hence, γσ(1) < γσ(2) < γσ(3). Thus, we get σ = id. Since a �= 0, we have
s = 3 by (P11). Therefore, 2 deg g1 = 3 deg g2 = 3 degf2 by (P1) and (P3). In the latter case,
γσ(3) = deg dg1 ∧ dg2 < γσ(1) < γσ(2) by the last two conditions of (P12). Hence, we get
σ = (1, 2, 3). Since a = 0, we have degf2 = deg fσ(1) = deg g1 in view of (P5). By (P3),
deg f3 = degfσ(2) = deg g2. Therefore, 2 degf2 = s degf3 for some odd number s ≥ 3 by
(P1). �

From Lemma 5.1(i) and (ii), we get the following proposition.

PROPOSITION 5.2. Assume that

deg fi < deg f1 (i = 2, 3) and deg df1 ∧ df2 < degf1 .(5.1)

If (Fσ ,G) satisfies the Shestakov-Umirbaev condition for some σ ∈ S3 and G ∈ T , then
there exists E ∈ E3 such that F ◦ E = G.

PROOF. Since deg fi < degf1 for i = 2, 3, we have σ(1) = 1 by Lemma 5.1(i). Since
deg df1 ∧ df2 < deg f1, we get σ = id and (f1, f2) = (g1, g2) by Lemma 5.1(ii). Then,
(SU1) implies that G = F ◦ E for some E ∈ E3. �

In the rest of this section, we assume that f w
3 does not belong to k[fw

2 ], and

deg f1 = sδ , deg f2 = 2δ , (s − 2)δ < degf3 < sδ(5.2)

for some odd number s ≥ 3 and δ ∈ Γ . Under the assumption, f w
2 does not belong to k[fw

3 ],
because fw

2 �≈ f w
3 and deg f2 = 2δ ≤ 2(s − 2)δ < deg f 2

3 . Furthermore, fw
1 belongs to

k[fw
3 ] if and only if f w

1 ≈ (f w
3 )

2, in which case s = 3. In fact, if f w
1 belongs to k[fw

3 ], then
f w

1 ≈ (f w
3 )

l for some l ∈ N . Since deg f3 < deg f1 by assumption, we have l ≥ 2. If l ≥ 3
or s ≥ 5, then deg f1 = sδ ≤ l(s − 2)δ < l deg f3, a contradiction. Thus, l = 2 and s = 3. If
f w

1 ≈ (fw
3 )

2, then fw
1 clearly belongs to k[fw

3 ].
Under the assumption above, the following two propositions hold.

PROPOSITION 5.3. Assume that

deg df1 ∧ df2 ≤ deg f3 − (s − 2)δ + ε ,(5.3)

where ε := deg df1 ∧ df2 ∧ df3 > 0. If f w
2 belongs to k[S2]w, then f w

1 ≈ (f w
3 )

2.

PROOF. By assumption, there exists φ2 ∈ k[S2] such that φw
2 = f w

2 . As mentioned
after (5.2), f w

2 does not belong to k[fw
3 ]. Since deg f2 < degf1 by (5.2), f w

2 does not
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belong to k[fw
1 , f

w
3 ] \ k[fw

3 ]. Thus, fw
2 does not belong to k[fw

1 , f
w
3 ], and hence neither

does φw
2 . Therefore, we have degφ2 < degS2 φ2. By Lemma 3.2(ii), there exist p, q ∈ N

with gcd(p, q) = 1 such that (f w
1 )

p ≈ (f w
3 )

q and

2δ = deg f2 > deg(f2 − φ2) ≥ p deg f1 + ε − deg df1 ∧ df2 − deg f3

≥ p deg f1 − (deg f3 − (s − 2)δ)− degf3

=
(
s

(
p + 1 − 2p

q

)
− 2

)
δ .(5.4)

Here, we use (5.3) for the last inequality, and deg f3 = (p/q) degf1 and degf1 = sδ for
the last equality. Now, suppose to the contrary that f w

1 �≈ (f w
3 )

2. Then, the assumptions
of Lemma 3.3(ii) hold for f = f3 and g = f1. In fact, f w

1 does not belong to k[fw
3 ] if

f w
1 �≈ (f w

3 )
2 as remarked after (5.2). By (5.2), it follows that deg f3 < deg f1 and degφ2 =

deg f2 < degf1. Thus, we may conclude by Lemma 3.3(ii) that p = 2, and q ≥ 3 is an odd
number. Consequently, the right-hand side of (5.4) is at least (3(2 + 1 − 2 · 2/3)− 2)δ = 3δ,
a contradiction. Therefore, we must have f w

1 ≈ (f w
3 )

2 if f w
2 belongs to k[S2]w. �

The following proposition forms the core of the proof of Theorem 2.1.

PROPOSITION 5.4. Assume that

deg df1 ∧ df2 < deg f3 − (s − 2)δ + min{δ, ε} .(5.5)

If there exists φ1 ∈ k[S1] such that deg f ′
1 < degf1, then either f w

1 ≈ (f w
3 )

2, or (fw
2 )

2 ≈
(f w

3 )
3 and F ′ does not admit a Shestakov-Umirbaev reduction, where f ′

1 = f1 + φ1 and
F ′ = (f ′

1, f2, f3). Assume further that (f ′
1)

w does not belong to k[S1]w. Then, the following
assertions hold:
(1) f w

i does not belong to k[S′
i ]w for i = 2, 3, where S′

i = {f ′
1, f2, f3} \ {fi}. Hence, F ′

does not admit an elementary reduction.
(2) If fw

1 ≈ (f w
3 )

2 and (F ′
σ ,G) satisfies the weak Shestakov-Umirbaev condition for some

σ ∈ S3 and G ∈ T , then σ = id and (F,G) satisfies the weak Shestakov-Umirbaev condi-
tion.

PROOF. To begin with, we show that degφ1 < degS1 φ1 if f w
1 �≈ (f w

3 )
2. Since φ1 is

an element of k[S1], we check that φw
1 does not belong to k[fw

2 , f
w
3 ]. By the assumption that

deg(f1 + φ1) < degf1, we have φw
1 ≈ f w

1 . Since deg f1 = (s/2) degf2 for an odd number
s by (5.2), f w

1 does not belong to k[fw
2 ]. Since f w

1 �≈ (f w
3 )

2 by assumption, f w
1 does not

belong to k[f w
3 ] as mentioned after (5.2). By (5.2), it follows that

degf1 = 2δ + (s − 2)δ < degf2 + deg f3 .

Hence, f w
1 does not belong to k[fw

2 , f
w
3 ] \ (k[fw

2 ] ∪ k[fw
3 ]). Thus, fw

1 does not belong to
k[fw

2 , f
w
3 ], and hence neither does φw

3 . Therefore, degφ1 < degS1 φ1 if fw
1 �≈ (f w

3 )
2.

First, we show that (f w
2 )

2 ≈ (fw
3 )

3 and F ′ does not admit a Shestakov-Umirbaev reduc-
tion in the case where degφ1 < degS1 φ1. Then, we obtain the first part of the proposition as
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a consequence, since degφ1 < degS1 φ1 if f w
1 �≈ (f w

3 )
2 as shown above. By Lemma 3.2(ii),

there exist p, q ∈ N with gcd(p, q) = 1 such that (f w
3 )

p ≈ (fw
2 )

q and

sδ = deg f1 > deg(f1 + φ1) ≥ q degf2 + ε − deg df1 ∧ df2 − degf3

> q degf2 − (deg f3 − (s − 2)δ)− deg f3

=
(
q

(
2 − 4

p

)
+ s − 2

)
δ ,(5.6)

where we use (5.5) for the last inequality, and degf3 = (q/p) degf2 and deg f2 = 2δ for
the last equality. Recall that we are assuming that f w

3 does not belong to k[fw
2 ], while f w

2
does not belong to k[fw

3 ] as mentioned after (5.2). Hence, we have p ≥ 2 and q ≥ 2. We
show that p = 3 and q = 2 by contradiction. Supposing that p = 2, we have deg f3 =
(q/2) deg f2 = qδ. Hence, (s − 2)δ < qδ < sδ by (5.2), and so q = s − 1. Since p = 2 and
s is an odd number, we get gcd(p, q) = 2, a contradiction. If p ≥ 4, then the right-hand side
of (5.6) would be at least (q + s − 2)δ ≥ sδ since q ≥ 2. This is a contradiction. Thus, we
get p = 3. If q ≥ 3, then the right-hand side of (5.6) would be at least sδ, a contradiction.
Hence, we have q = 2. Therefore, we obtain (f w

3 )
3 ≈ (f w

2 )
2. From this, we know that

deg f3 = (2/3) degf2 = (4/3)δ. Since deg f3 > (s − 2)δ by (5.2), it follows that s = 3.
Consequently, the right-hand side of (5.6) is equal to (7/3)δ. Thus, we get

degf3 = 4

3
δ < degf2 = 2δ <

7

3
δ < degf ′

1 < 3δ .(5.7)

It follows that 2 deg f ′
1 < 6δ = 3 degf2. Then, by Lemma 5.1(iii), we can conclude that F ′

does not admit a weak Shestakov-Umirbaev reduction, since

3 degf2 = 6δ �= 16

3
δ = 4 deg f3 ,

3 degf3 = 4δ <
14

3
δ < 2 degf ′

1 < 6δ <
20

3
δ = 5 degf3 .

Therefore, F ′ does not admit a Shestakov-Umirbaev reduction.
In this situation, assume further that (f ′

1)
w does not belong to k[S1]w. We show that f w

i

does not belong to k[S′
i] for i = 2, 3 by contradiction. Suppose that there exists φi ∈ k[S′

i]
such that φw

i = f w
i for some i ∈ {2, 3}. Then, the conditions (i) through (iv) after Lemma 3.3

are fulfilled for f = fj , g = f ′
1, h = fi and φ = φi , where j ∈ {2, 3} \ {i}. Actually,

f ′
1 = f1 + φ1, f2 and f3 are algebraically independent over k, since so are f1, f2 and f3,

and φ1 is an element of k[S1]. Moreover, degfl < deg f ′
1 for l = 2, 3 by (5.7), and f w

i

does not belong to k[fw
j ] by assumption, since (i, j) is (2, 3) or (3, 2). By assumption, (f ′

1)
w

does not belong to k[S1]w, and hence does not belong to k[f w
j ]. By the choice of φi , we

have deg(fi − φi) < deg fi . Thus, (i) through (iv) are satisfied. By Lemma 3.3(ii) and the
remark following it, we may conclude that ((f ′

1)
w)2 ≈ (fw

j )
q for some odd number q ≥ 3.

Hence, deg f ′
1 = (q/2) deg fj is equal to (2q/3)δ if j = 3, and qδ if j = 2. Since no

odd number q ≥ 3 satisfies 7/3 < 2q/3 < 3 or 7/3 < q < 3, we get a contradiction by
(5.7). Therefore, fw

i does not belong to k[S′
i]w for i = 2, 3. Since (f ′

1)
w does not belong
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to k[S1]w, it follows that F ′ does not admit an elementary reduction. This proves (1) in the
case where degφ1 < degS1 φ1. The assumption of (2) does not hold in this situation, since
deg f1 = 3δ �= (8/3)δ = degf 2

3 by (5.7).
Next, we show (1) and (2) in the case where degφ1 = degS1 φ1 and (f ′

1)
w does not

belong to k[S1]w. By the remark in the first paragraph, we know that f w
1 ≈ (f w

3 )
2 if degφ1 =

degS1 φ1. As mentioned after (5.2), fw
1 ≈ (f w

3 )
2 implies s = 3. Hence, degf1 = sδ = 3δ,

and so degf3 = (1/2) deg f1 = (3/2)δ. Since degS1 φ1 = degφ1 and degφ1 = deg f1, we
have degS1 φ1 = 3δ. By Lemma 4.1(i), we may write φ1 = af 2

3 + cf3 + ψ , where a, c ∈ k

andψ ∈ k[f2] with degψ ≤ (3−1)δ = 2δ. Since degf2 = 2δ, we get ψ = ef2 +e′ for some
e, e′ ∈ k. Note that a is not zero, for otherwise degφ1 ≤ max{degf3, degψ} < deg f1, a
contradiction. We claim that the conditions (a) through (d) before Lemma 3.5 hold for ki = fi

for i = 1, 2, 3 and k′
i = ki for i = 1, 2. In fact, (a), (b), (c) follow from deg k1 = deg k′

1 = 3δ,
deg k2 = deg k′

2 = 2δ and deg k3 = (3/2)δ. The left-hand side of (d) is less than 3δ, since
deg df1 ∧ df2 < deg f3 = (3/2)δ by (5.5) with s = 3. Because the right-hand side of (d) is
greater than deg k1 = 3δ, we know that (d) holds true. Therefore, by (3.4), we obtain

deg df1 ∧ df3 = degf1 − deg f2 + deg df2 ∧ df3 = δ + deg df2 ∧ df3 .(5.8)

Hence, deg df2 ∧ df3 < deg df1 ∧ df3. Since dφ1 ∧ df3 = dψ ∧ df3 = edf2 ∧ df3, we have
df ′

1 ∧ df3 = df1 ∧ df3 + edf2 ∧ df3. Thus, deg df ′
1 ∧ df3 = deg df1 ∧ df3, and so

deg df ′
1 ∧ df3 = δ + deg df2 ∧ df3(5.9)

by (5.8). For the same reason as above, the conditions (a) through (d) before Lemma 3.5 hold
for k1 = f ′

1, ki = fi for i = 2, 3, k′
1 = f1 = k1 − ak2

3 − ck3 − ψ and k′
2 = k2, for k1

is not involved in the conditions. Since a �= 0 and deg df1 ∧ df2 < deg f3, we know by
Lemma 3.5(i) that

deg df ′
1 ∧ df2 = deg f3 + deg df2 ∧ df3 = 3

2
δ + deg df2 ∧ df3 .(5.10)

Set Φ = f1 + ay2 + cy + ef2 + e′. Then, degf3
w Φ = degf1, while degΦ(f3) = deg f ′

1 <

deg f1. Since Φ(1) = 2ay + c and a �= 0, we have degf3
w Φ(1) = deg f3 = degΦ(1)(f3).

Hence, mf3
w (Φ) = 1. By Theorem 3.1, it follows that

deg f ′
1 = degΦ(f3) ≥ degf3

w Φ +m
f3
w (Φ)(ε − deg df1 ∧ df2 − degf3)

= degf1 + ε − deg df1 ∧ df2 − degf3

> degf1 − 2 degf3 + (s − 2)δ = δ ,

(5.11)

where the last inequality is due to (5.5). With the aid of (5.11), we show the following:

(i) (f ′
1)

w �∈ k[fw
2 , f

w
3 ] . (ii) fw

2 �∈ k[(f ′
1)

w, f w
3 ] . (iii) f w

3 �∈ k[(f ′
1)

w, f w
2 ] .

Since k[f w
2 , f

w
3 ] is contained in k[S1]w, (i) follows from the assumption that (f ′

1)
w does not

belong to k[S1]w. In particular, fw
2 �≈ (f ′

1)
w. By (5.11), degf2 = 2δ < deg(f ′

1)
2. Hence, f w

2
does not belong to k[(f ′

1)
w]. Since deg f3 = (3/2)δ < degf2 < 3δ = deg f 2

3 , it follows that
f w

2 does not belong to k[fw
3 ]. By (5.11), degf2 < δ + (3/2)δ < deg f ′

1f3, and so fw
2 does
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not belong to k[(f ′
1)

w, fw
3 ] \ (k[(f ′

1)
w] ∪ k[f w

3 ]). Thus, f w
2 does not belong to k[(f ′

1)
w, f w

3 ],
proving (ii). It follows that fw

3 �≈ (f ′
1)

w by (i), and deg f3 < 2δ < deg(f ′
1)

2 by (5.11). Hence,
f w

3 does not belong to k[(f ′
1)

w]. Since degf3 < degf2, we get that fw
3 does not belong to

k[(f ′
1)

w, f w
2 ] \ k[(f ′

1)
w]. This proves (iii).

Now, we show that fw
2 does not belong to k[S′

2]w by contradiction. Supposing the con-
trary, there exists φ2 ∈ k[S′

2] such that φw
2 = fw

2 . Then, φw
2 does not belong to k[(f ′

1)
w, fw

3 ]
by (ii). Hence, degφ2 < degS

′
2 φ2. By Lemma 3.2(i), there exist p, q ∈ N with gcd(p, q) = 1

for which ((f ′
1)

w)q ≈ (f w
3 )

p and

2δ = deg f2 = degφ2 ≥ pqγ + deg df ′
1 ∧ df3 − pγ − qγ

= pqγ + δ + deg df2 ∧ df3 − pγ − qγ ,
(5.12)

where γ ∈ Γ such that deg f ′
1 = pγ and deg f3 = qγ , and the last equality is due to

(5.9). From (5.12), it follows that (pq − p − q)γ < δ. Since deg f ′
1 > δ by (5.11), and

since deg f3 = (3/2)δ > δ, we have δ < min{degf ′
1, degf3} = min{p, q}γ . Hence, pq −

p − q < min{p, q}. By (iii) and (i), f w
3 and (f ′

1)
w do not belong to k[(f ′

1)
w] and k[fw

3 ],
respectively. As gcd(p, q) = 1, we get 2 ≤ p < q or 2 ≤ q < p. It follows from the
claim before Lemma 3.3 that (p, q) = (2, 3) or (p, q) = (3, 2). If (p, q) = (2, 3), then
3δ < 3 deg f ′

1 = 2 deg f3 = 3δ by (5.11), a contradiction. Thus, (p, q) = (3, 2). Then,
deg f ′

1 = (3/2) deg f3 = (9/4)δ and γ = (1/2) deg f3 = (3/4)δ, and so

deg df2 ∧ df3 ≤ 2δ − pqγ − δ + pγ + qγ = 2δ − 6γ − δ + 3γ + 2γ = 1

4
δ(5.13)

by (5.12). By Lemma 3.2(ii) and (5.13), we get

deg(f2 − φ2) ≥ 3 deg f3 + ε − deg df2 ∧ df3 − deg f ′
1 >

9

2
δ − 1

4
δ − 9

4
δ = 2δ .

However, since φw
2 = fw

2 , we have deg(f2 − φ2) < deg f2 = 2δ, a contradiction. Therefore,
f w

2 does not belong to k[S′
2]w.

Similarly, suppose to the contrary that there exists φ3 ∈ k[S′
3] such that φw

3 ≈ f w
3 . Then,

φw
3 does not belong to k[(f ′

1)
w, f w

2 ] by (iii). Hence, degφ3 < degS
′
3 φ3. By (i) and (ii), (f ′

1)
w

and f w
2 do not belong to k[fw

2 ] and k[(f ′
1)

w], respectively. Thus,

deg df ′
1 ∧ df2 < degφ3 = deg f3 = 3

2
δ

by Lemma 3.3(i). This contradicts (5.10). Therefore, f w
3 does not belong to k[S′

3]w. This
completes the proof of (1).

Finally, we show (2). Assume that (F ′
σ ,G) satisfies the weak Shestakov-Umirbaev

condition for some σ ∈ S3 and G ∈ T . By (5.9) and (5.10), we have

deg df2 ∧ df3 < deg df ′
1 ∧ df3 < deg df ′

1 ∧ df2 .

In addition, 2 degf2 = 4δ �= (3/2)rδ = r degf3 for any odd number r ≥ 3. Hence, we
get σ = id and 2 deg g1 = 3 degf2 by Lemma 5.1(iv). Thus, (F ′,G) satisfies the weak
Shestakov-Umirbaev condition, and deg g1 = (3/2) deg f2 = deg f1. Then, it is immediate
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that (F,G) satisfies (SU2′), (SU3′), (SU4), (SU5) and (SU6). As for (SU1′), we have only to
check that g1 −f1 belongs to k[f2, f3]. Since (F ′,G) satisfies the weak Shestakov-Umirbaev
condition, g1 − f ′

1 belongs to k[f2, f3] by (SU1′). Hence, g1 − f1 = (g1 − f ′
1)+ φ1 belongs

to k[f2, f3], since so does φ1. Thus, (F,G) satisfies (SU1′). Therefore, (F,G) satisfies the
weak Shestakov-Umirbaev condition. This completes the proof of (2). �

We note that (5.11) is the key estimation which guarantees that no tame automorphism
admits a reduction of type IV.

6. Proof of Theorem 2.1. We begin with the following lemma.

LEMMA 6.1. (i) If degF = |w| for F ∈ Autk k[x], then F is tame.
(ii) Σ := {a1w1 + · · · + anwn; a1, . . . , an ∈ Z≥0} is a well-ordered subset of Γ .

PROOF. (i) We may assume thatw1 ≤ · · · ≤ wn and degf1 ≤ · · · ≤ degfn by chang-
ing the indices of w1, . . . , wn and f1, . . . , fn if necessary. Write fi = bi +∑n

j=1 ai,j xj +f ′
i

for each i, where bi, ai,j ∈ k for each j , and f ′
i is an element of the ideal Q of k[x] gen-

erated by all the quadratic monomials. Clearly, F is tame if and only if so is F ◦ G′ or
G′ ◦ F for some G′ ∈ Tk k[x]. Since degF ◦ G = degF for G = (x1 − b1, . . . , xn − bn),
we may assume that bi = 0 for each i by replacing F by F ◦ G. Note that det(ai,j )i,j is
equal to the Jacobian of F , so (ai,j )i,j is invertible. Let H be an affine automorphism of
k[x] defined by H(xi) = ∑n

j=1 ai,j xj for each i. Then, degH(xi) ≤ degfi for each i since
fi = H(xi)+ f ′

i . We claim that degfi = wi for each i. In fact, if not, we can find i such that
deg fi < wi since degF = |w| by assumption. Then, degH(xj) ≤ deg fj ≤ deg fi < wi

for j ≤ i, while deg xl = wl ≥ wi for l ≥ i by assumption. Hence, H(xj) is contained
in the (i − 1)-dimensional k-vector space

⊕i−1
l=1 kxl for j = 1, . . . , i. This contradicts that

H(x1), . . . , H (xi) are linearly independent over k. Thus, we get deg fi = wi , and hence
degH(xi) ≤ wi for each i. We show that degH−1(xi) ≤ wi for each i. Let m be the maxi-
mal number for whichwm = wi . Then,H(xj) belongs to

⊕m
l=1 kxl for j = 1, . . . ,m. Hence,

H induces an automorphism of
⊕m

l=1 kxl . Thus, H−1(xi) belongs to
⊕m

l=1 kxl . Therefore,
degH−1(xi) ≤ wm = wi = deg xi . This implies that degH−1(g) ≤ deg g holds for each
g ∈ k[x]. Consequently,

|w| ≤ degH−1 ◦ F =
n∑
i=1

degH−1(fi) ≤
n∑
i=1

deg fi = degF = |w| .

Therefore, degH−1 ◦ F = |w|, and so we may replace F by H−1 ◦ F . It follows that fi =
xi + f ′′

i for each i, where f ′′
i = H−1(f ′

i ) ∈ Q. We show that f ′′
i belongs to k[x1, . . . , xi−1]

for every i by contradiction. Suppose that there appears in f ′′
i a monomial xa1 · · · xan , where

a1, . . . , an ∈ {1, . . . , n} with a1 ≥ i. Since xa1 · · · xan belongs to Q, we have n ≥ 2. Hence,

wi = deg fi ≥ degf ′′
i ≥ deg xa1 · · · xan =

n∑
i=1

wai > wa1 ≥ wi,
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a contradiction. Thus, f ′′
i belongs to k[x1, . . . , xi−1] for each i. This means that F is triangu-

lar. Here, we say that (h1, . . . , hn) ∈ Autk k[x] is triangular if there exists σ ∈ Sn such that
hσ(i) = xσ(i) + φi for some φi ∈ k[xσ(1), . . . , xσ(i−1)] for i = 1, . . . , n. Since a triangular
automorphism is tame, we conclude that F is tame.

(ii) We show that each nonempty subset S of Σ has the minimum element. As men-
tioned, we may regard Γ = Zr for some r ∈ N . Let k[y, y−1] be the Laurent polynomial ring
in y1, . . . , yr over k, and R the k-subalgebra of k[y, y−1] generated by ywi for i = 1, . . . , n,
where yα = y

α1
1 · · · yαrr for each α = (α1, . . . , αr ). Then, R is Noetherian, and contains yα

for each α ∈ Σ . Consider the ideal I of R generated by {yα; α ∈ S}. Since R is Noether-
ian, there exists a finite subset S′ of S with minimum element µ such that I is generated by
{yα; α ∈ S′}. Then, µ becomes the minimum element of S. In fact, for each α ∈ S, there
exist β ∈ S′ and γ ∈ Σ such that yα = yβyγ . Then, β ≥ µ, γ ≥ 0 and α = β + γ . Hence,
α ≥ β ≥ µ. Thus, µ is the minimum element of S. Therefore, Σ is a well-ordered subset of
Γ . �

In the rest of the paper, we assume that n = 3, and identify k[y] with k[x]. Let A be the
set of F ∈ Autk k[x] for which there exists Gi ∈ Autk k[x] for i = 1, . . . , l with G1 = F

and degGl = |w| such that Gi+1 is an elementary reduction or a weak Shestakov-Umirbaev
reduction of Gi for i = 1, . . . , l − 1, where l ∈ N . Then, each element of A is tame, since
Gl is tame if degGl = |w| by Lemma 6.1(i), andGi is tame if and only if so isGi+1 for each
i. Hence, A is contained in Tk k[x]. By definition, if degF > |w| for F ∈ A, then F admits
an elementary reduction or a weak Shestakov-Umirbaev reduction. By Proposition 4.3(ii), F
admits a weak Shestakov-Umirbaev reduction if and only if F admits a Shestakov-Umirbaev
reduction. Thus, if degF > |w| for F ∈ A, then F admits an elementary reduction or a
Shestakov-Umirbaev reduction. The goal of this section is to establish that A = Tk k[x],
which implies Theorem 2.1 immediately.

We remark that, if F belongs to A, then so do Fσ and F ◦ H , where σ ∈ S3 and
H = (c1x1, c2x2, c3x3) with c1, c2, c3 ∈ k \ {0}. If degF = |w| or if there exists G ∈ A
such that G is an elementary reduction or a weak Shestakov-Umirbaev reduction of F , then
F belongs to A.

The following is a key proposition.

PROPOSITION 6.2. If degF ◦ E ≤ degF for F ∈ A and E ∈ E , then F ◦ E belongs
to A.

Note that, if degF ◦ E > degF for F ∈ A and E ∈ E , then F ◦ E belongs to A.
Actually, (F ◦ E) ◦ E−1 = F is an elementary reduction of F ◦ E.

We deduce from Proposition 6.2 that Tk k[x] is contained in A. Take any F ∈ Tk k[x].
Then, we can express F = H ◦E1 ◦ · · · ◦El , whereH = (c1x1, c2x2, c3x3) with c1, c2, c3 ∈
k \ {0}, l ∈ Z≥0, and Ei ∈ E for i = 1, . . . , l. We show that F belongs to A by induction
on l. The assertion is true if l = 0, i.e., F = H , since degH = |w|. Assume that l > 0. By
induction assumption, F ′ := H ◦ E1 ◦ · · · ◦ El−1 belongs to A. Then, F = F ′ ◦ El belongs
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to A by Proposition 6.2 and the note following it. Therefore, Tk k[x] is contained in A on the
assumption that Proposition 6.2 is true.

The following proposition is necessary to prove Proposition 6.2.

PROPOSITION 6.3. Assume that F = (f1, f2, f3) ∈ A satisfies

degf1 = sδ , degf2 = 2δ , (s − 2)δ + deg df1 ∧ df2 ≤ deg f3 < sδ(6.1)

for some odd number s ≥ 3 and δ ∈ Γ , and that f w
3 does not belong to k[fw

2 ]. Then, there
exists E ∈ E3 such that degF ◦ E < degF and F ◦ E belongs to A.

We note that (6.1) implies (5.1), (5.2), (5.3) and (5.5). Furthermore, f w
1 and fw

2 are
algebraically dependent over k in this situation, for otherwise

deg df1 ∧ df2 = deg f1 + deg f2 = (s + 2)δ

as mentioned after (2.3), which contradicts the last inequality of (6.1).
We establish Propositions 6.2 and 6.3 simultaneously by induction on degF . Since Σ is

well-ordered by Lemma 6.1(ii), so is the subset ∆ := {degH ;H ∈ A}, where min∆ = |w|.
Assume that F ∈ A satisfies degF = |w|. If degF ◦E ≤ degF for E ∈ E , then degF ◦E =
|w|, since degF ◦ E ≥ |w| by (2.4). Hence, F ◦ E belongs to A. Thus, the statement of
Proposition 6.2 holds forF ∈ A with degF = |w|. Note that f w

1 , f w
2 and f w

3 are algebraically

independent over k if degF = |w|, for otherwise degdf1 ∧ df2 ∧ df3 <
∑3
i=1 degfi = |w|,

a contradiction. Therefore, the assumption of Proposition 6.3 is not fulfilled.
Let µ be an element of ∆ such that µ > |w|, and assume that the statement of Proposi-

tion 6.2 holds for each F ∈ A with degF < µ. For F ∈ Autk k[x], we define IF to be the set
of i ∈ {1, 2, 3} for which there exists E ∈ Ei such that degF ◦E < degF and F ◦E belongs
to A. Note that, if degF > |w| for F ∈ A, then either IF �= ∅, or (Fσ ,G) satisfies the weak
Shestakov-Umirbaev condition for some σ ∈ S3 andG ∈ A.

CLAIM 1. Let F be an element of A such that degF = µ.
(i) If E is an element of Ei for some i ∈ IF , then F ◦ E belongs to A.

(ii) If there exist E′, E′′ ∈ E and Ei ∈ Ei with degF ◦ Ei < degF for some i ∈ IF such
that E ◦ E′ = Ei ◦ E′′ for E ∈ E , then F ◦ E belongs to A.
(iii) For a triangular automorphism H of k[x], we define Ei ∈ Ei by Ei(xi) = H(xi) for
each i. If deg(F ◦ H)(xi) < deg fi , or equivalently degF ◦ Ei < degF , for some i ∈ IF ,
then F ◦ Ej belongs to A for j = 1, 2, 3.
(iv) If IF \ {i} �= ∅ and fw

j belongs to k[fw
i ] for some i, j ∈ {1, 2, 3} with i �= j , then j

belongs to IF .
(v) If (F,G) satisfies the weak Shestakov-Umirbaev condition for some G ∈ A, then there

exists G′ ∈ A such that (F,G′) satisfies the Shestakov-Umirbaev condition.

PROOF. (i) Since i is an element of IF , there exists Ei ∈ Ei such that degF ◦ Ei <
degF and F ◦ Ei belongs to A. Then, we have degF ◦ Ei < µ, since degF = µ by
assumption. For each E ∈ Ei , it follows that E′ := E−1

i ◦ E is an element of Ei . Hence,
F ◦ E = (F ◦ Ei) ◦ E′ belongs to A by the induction assumption of Proposition 6.2.



102 S. KURODA

(ii) We may assume that E is contained in Ej for some j �= i by (i), and degF ◦ E ≤
degF by the note after Proposition 6.2. Then, E′ and E′′ belong to Ei and Ej , respectively,
since E ◦E′ = Ei ◦E′′ by assumption. Hence, (Ei ◦ E′′)(xj ) = (E ◦E′)(xj ) = E(xj ), and
(Ei ◦E′′)(xl) = Ei(xl) for l �= j . Since degF ◦Ei < degF and degF ◦E ≤ degF , we have

deg(F ◦Ei ◦ E′′)(xl) =



deg(F ◦ Ei)(xi) < degfi if l = i

deg(F ◦ E)(xj ) ≤ deg fj if l = j

deg(F ◦ Ei)(xl) = deg fl otherwise .

Thus, degF ◦Ei◦E′′ < degF . Note that F ◦Ei◦E′′ belongs to A by the induction assumption
of Proposition 6.2, since degF ◦Ei < degF = µ, and F ◦Ei belongs to A by (i). Therefore,
(F ◦ Ei ◦ E′′) ◦ (E′)−1 belongs to A for the same reason. This shows that F ◦ E belongs to
A, since F ◦ Ei ◦ E′′ ◦ (E′)−1 = F ◦ E ◦ E′ ◦ (E′)−1 = F ◦ E.

(iii) Without loss of generality, we may assume that i �= j by (i). We may also assume
that H(xl) = xl + φl for each l, where φl ∈ k[x1, . . . , xl−1]. Then, Ep ◦E′ = Eq ◦Ep holds
for each p < q , where E′ ∈ Eq such that E′(xq) = xq + E−1

p (φq). In view of this, we can
find E′, E′′ ∈ E such that Ej ◦ E′ = Ei ◦ E′′. By assumption, we have degF ◦ Ei < degF ,
and i is an element of IF . Hence, we conclude that F ◦ Ej belongs to A by (ii).

(iv) Since IF \ {i} �= ∅ by assumption, we can find l ∈ IF \ {i} and El ∈ El such that
degF ◦ El < degF . Clearly, we may assume that j �= l. Since f w

j belongs to k[fw
i ] by

assumption, there exist c ∈ k \ {0} and r ∈ N such that f w
j = c(fw

i )
r . Then, we can define a

triangular automorphism H of k[x] by H(xi) = xi , H(xj) = xj − cxri and H(xl) = El(xl).
Define Ej ∈ Ej by Ej(xj ) = H(xj). Since degF ◦ El < degF for l ∈ IF , it follows
from (iii) that F ◦ Ej belongs to A. Moreover, since deg(fj − cf ri ) < deg fj , we have
degF ◦ Ej < degF . Therefore, j belongs to IF .

(v) Since (F,G) satisfies the Shestakov-Umirbaev condition by assumption, there ex-
ists Ei ∈ Ei for i = 1, 2 such that degG ◦ E1 = degG, and (F,G′) satisfies the Shestakov-
Umirbaev condition by Proposition 4.3(i), whereG′ = G◦E1 ◦E2. We show thatG′ belongs
to A. Since G is an element of A, and since degG < degF = µ by (P6), it follows that
G ◦ E1 belongs to A by the induction assumption of Proposition 6.2. Then, (G ◦ E1) ◦ E2

belongs to A for the same reason, since degG ◦ E1 = degG < µ. Therefore, the assertion
holds for G′ = G ◦ E1 ◦ E2. �

Now, we show that the statement of Proposition 6.3 holds for each F ∈ A with degF =
µ. Since µ > |w|, we have degF > |w|. Hence, IF �= ∅ or (Fσ ,G) satisfies the weak
Shestakov-Umirbaev condition for some σ ∈ S3 and G ∈ A as noted. The conclusion of
Proposition 6.3 is obvious if IF contains 3. If IF contains 2, then degF ◦ E2 < degF for
some E2 ∈ E2. Hence, fw

2 belongs to k[S2]w. Then, we get f w
1 ≈ (f w

3 )
2 by Proposition 5.3.

Here, we remind that the assumption of Proposition 6.3 implies (5.1), (5.2), (5.3) and (5.5).
Thus, fw

1 belongs to k[fw
3 ]. Since IF \{3} �= ∅, this implies that IF contains 1 by Claim 1(iv).

So, assume that IF contains 1. Then, there exists E1 ∈ E1 such that degF ′ < degF and
F ′ belongs to A, where F ′ = F ◦ E1. Clearly, F ′(x1) = f1 + φ1 for some φ1 ∈ k[S1]
and degF ′(x1) < degf1. On account of Claim 1(i), we may assume that F ′(x1)

w does not



SHESTAKOV-UMIRBAEV REDUCTIONS AND NAGATA’S CONJECTURE 103

belong to k[S1]w by replacing E1 if necessary. Then, F and F ′ satisfy all the assumptions of
Proposition 5.4. By the first part of this proposition, we may conclude that either f w

1 ≈ (f w
3 )

2,
or (fw

2 )
2 ≈ (fw

3 )
3 and F ′ does not admit a Shestakov-Umirbaev reduction. We show that F ′

admits a Shestakov-Umirbaev reduction, and hence the latter case is impossible. Observe that
f w

2 and f w
3 are algebraically dependent over k in either case, since so are f w

1 and fw
2 due to

(6.1). This implies that degF ′ > |w| by (2.4). Since F ′ is an element of A, it follows that
IF ′ �= ∅ or (F ′

σ ′ ,G′) satisfies the weak Shestakov-Umirbaev condition for some σ ′ ∈ S3

and G′ ∈ A. By Proposition 5.4(1), F ′ does not admit an elementary reduction. Hence,
IF ′ = ∅. Thus, (F ′

σ ′ ,G′) satisfies the weak Shestakov-Umirbaev condition for some σ ′ ∈ S3

and G′ ∈ A. Accordingly, F ′ admits a weak Shestakov-Umirbaev reduction. Therefore, F ′
admits a Shestakov-Umirbaev reduction by Proposition 4.3(ii). As a result, we get f w

1 ≈
(f w

3 )
2. Then, it follows from Proposition 5.4(2) that σ ′ = id and (F,G′) satisfies the weak

Shestakov-Umirbaev condition. So, we are reduced to the case where (Fσ ,G) satisfies the
weak Shestakov-Umirbaev condition for some σ ∈ S3 and G ∈ A. By Claim 1(iv), we may
assume that (Fσ ,G) satisfies the Shestakov-Umirbaev condition by replacing G if necessary.
Then, there exists E ∈ E3 such that F ◦ E = G by Proposition 5.2. Since degG < degF by
(P6), and since G is an element of A, it follows that degF ◦ E < degF , and F ◦ E belongs
to A. Thus, we arrive at the conclusion of Proposition 6.3. Therefore, we have proved the
assertion of Proposition 6.3 in the case where degF = µ on the assumption that the assertion
of Proposition 6.2 is true if degF < µ.

To complete the induction, we next show the assertion of Proposition 6.2 in the case
where degF = µ on the assumption that the assertions of Propositions 6.2 and 6.3 are true if
degF < µ and degF ≤ µ, respectively. First, assume that IF = ∅. Then, (Fσ ,G) satisfies
the weak Shestakov-Umirbaev condition for some σ ∈ S3 and G ∈ A. Without loss of
generality, we may assume that σ = id. By Claim 1(iv), we may also assume that (F,G)
satisfies the Shestakov-Umirbaev condition by replacing G if necessary. Since IF = ∅, it
follows that F does not admit an elementary reduction. In view of (SU1), this implies that
(f1, f2) �= (g1, g2) and k[f1, f2] �= k[g1, g2]. Then, we know by the following claim that
F ◦ E belongs to A for E ∈ E if degF ◦ E ≤ degF .

CLAIM 2. Assume that (F,G) satisfies the weak Shestakov-Umirbaev condition for
some G ∈ A, and E ∈ Ei satisfies degF ◦ E ≤ degF , where i ∈ {1, 2, 3}. If i = 1 or i = 2,
or if i = 3 and k[f1, f2] �= k[g1, g2], then F ◦ E belongs to A.

PROOF. In the notation of Proposition 4.4, one of the pairs (F ◦E,G), (F ◦E,G′) and
((F ◦ E)τ ,G′′) satisfies the weak Shestakov-Umirbaev condition. Since G belongs to A, so
do G′ and G′′. Hence, in each case, F ◦ E admits a weak Shestakov-Umirbaev reduction to
an element of A. Therefore, F ◦ E belongs to A. �

Therefore, the assertion of Proposition 6.2 is true if degF = µ and IF = ∅.
Next, assume that IF �= ∅, say IF contains 3. We have to check that F ◦ Ei belongs to

A for any Ei ∈ Ei with degF ◦Ei ≤ degF for each i ∈ {1, 2, 3}. By Claim 1(i), this is clear
if i = 3. Since the cases i = 1 and i = 2 are similar, we only consider the case where i = 1.
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Since we assume that IF contains 3, there exists E3 ∈ E3 such that G := F ◦ E3 belongs to
A and degG < degF . By Claim 1(i), we may assume that gw

3 does not belong to k[S3]w by
replacing E3 if necessary. Set φi = F(Ei(xi) − xi) for i = 1, 3. Then, φi belongs to k[Si]
for i = 1, 3, and g3 = f3 + φ3. Since degF ◦ E1 ≤ degF and degG < degF , we have
degφ1 ≤ deg f1, φw

3 = −fw
3 and deg g3 < degf3.

CLAIM 3. F ◦ E1 belongs to A if one of the following conditions holds:
(i) E1(x1)− x1 belongs to k[x2], or equivalently, φ1 belongs to k[f2].

(ii) f w
1 or fw

3 belongs to k[fw
2 ].

(iii) f w
3 ≈ f w

1 + c(fw
2 )

p for some c ∈ k and p ∈ N .

PROOF. (i) If E1(x1)− x1 belongs to k[x2], then we can define a triangular automor-
phism H of k[x] by H(x2) = x2 and H(xi) = Ei(xi) for i = 1, 3. Since degF ◦E3 < degF
and 3 is contained in IF , it follows from Claim 1(iii) that F ◦ E1 belongs to A.

(ii) If fw
3 belongs to k[fw

2 ], then deg(f3 − cf r2 ) < deg f3 for some c ∈ k \ {0} and
r ∈ N . Define a triangular automorphism H of k[x] by H(x2) = x2, H(x3) = x3 − cxr2
and H(x1) = E1(x1). Since deg(F ◦ H)(x3) < deg f3 and 3 is contained in IF , it follows
from Claim 1(iii) that F ◦ E1 belongs to A. If f w

1 belongs to k[fw
2 ], then IF contains 1 by

Claim 1(iv), since IF \ {2} �= ∅. Therefore, F ◦ E1 belongs to A by Claim 1(i).
(iii) By assumption, there exists c′ ∈ k \ {0} such that degf ′ < deg f3, where f ′ =

f3 + c′(f1 + cf
p
2 ). Define E′

1, E
′′
1 ∈ E1 and E′

3 ∈ E3 by E′
1(x1) = x1 + cx

p
2 − (1/c′)x3,

E′′
1 (x1) = (c′)−1(x3 + c′(x1 + cx

p

2 )) and E′
3(x3) = x3 + c′(x1 + cx

p

2 ). Then, we have
degF ◦ E′

3 < degF , because (F ◦ E′
3)(x3) = f ′. Since 3 is contained in IF by assumption,

F ◦ E′
3 belongs to A by Claim 1(i). Hence, F ′ := (F ◦ E′

3) ◦ E′
1 belongs to A by the

induction assumption of Proposition 6.2. Since F ′ = (−(1/c′)f3, f2, f
′), this implies that

F ◦ E′′
1 = ((1/c′)f ′, f2, f3) belongs to A. By assumption, it follows that degf3 = deg f1.

Hence, degF ◦ E′′
1 < degF . Thus, 1 belongs to IF . Therefore, F ◦ E1 belongs to A by

Claim 1(i). �

In the case where 2 belongs to IF besides 3, the statement of Claim 3 is true if we
interchange f2 and f3. Hence, we obtain the following claim.

CLAIM 4. Assume that 2 is contained in IF . If φ1 belongs to k[f3], or if f w
1 or f w

2
belongs to k[fw

3 ], then F ◦ E1 belongs to A.

Now, there exist five cases to be considered as follows:

(1) degf1 = deg f2 = degf3 , (2) deg f1 < degf2 = degf3 ,

(3) degf3 < deg f1 = degf2 , (4) deg f2 < degf3 = degf1 ,

(5) degfl < deg fm for each l ∈ {1, 2, 3} \ {m} for some m ∈ {1, 2, 3} .

Here, we remark that the cases (1) through (4) can be excluded from consideration in the case
where rank w = 3. In fact, degfi = deg fj implies f w

i ≈ fw
j for each i and j if rank w = 3.

Hence, it immediately follows from Claim 3(ii) and (iii) that F ◦ E1 belongs to A in the
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cases (1) through (4). For this reason, Claim 5 and the statement (I) of Claim 6 below are not
necessary when considering w with rank w = 3.

CLAIM 5. F ◦ E1 belongs to A if one of the following holds:
(i) f w

1 and fw
2 are algebraically independent over k.

(ii) F satisfies one of (1), (2) and (3).

PROOF. By Claim 3(i), we may assume that φ1 belongs to k[f2, f3] \ k[f2]. Then, it
follows that, if degf1 < deg f3, then f w

2 and f w
3 are algebraically dependent over k. In

fact, since degφ1 ≤ degf1 < deg f3, and since φ1 belongs to k[f2, f3] \ k[f2], we have
degφ1 < degS1 φ1. Hence, (fw

2 )
p ≈ (fw

3 )
q for some p, q ∈ N by Lemma 3.2.

(i) Recall that f w
3 ≈ φw

3 and φ3 is an element of k[S3]. Hence, f w
3 belongs to k[S3]w.

Since fw
1 and fw

2 are algebraically independent over k, we have k[S3]w = k[fw
1 , f

w
2 ]. Thus,

f w
3 is a polynomial in f w

1 and f w
2 over k. By Claim 3(ii), we may assume that f w

3 does not
belong to k[fw

2 ]. Then, it follows that deg f1 ≤ degf3. We show that deg f1 = degf3 by
contradiction. Supposing degf1 < degf3, we get that fw

2 and f w
3 are algebraically dependent

over k as remarked above. Since f w
3 is an element of k[fw

1 , f
w
2 ] \ k[fw

2 ], it follows that f w
1

and f w
2 are algebraically dependent over k, a contradiction. Thus, degf1 = degf3. This

implies that f w
3 ≈ f w

1 + c(fw
2 )

p for some c ∈ k and p ∈ N . Therefore, F ◦E1 belongs to A
by Claim 3(iii).

(ii) By (i), we may assume that fw
1 and f w

2 are algebraically dependent over k. Then,
f w

1 ≈ f w
2 follows from deg f1 = deg f2 in the cases (1) and (3). If (2), it follows from

deg f1 < degf3 that f w
2 and f w

3 are algebraically dependent over k as remarked above.
Then, f w

2 ≈ f w
3 follows from deg f3 = degf2. By Claim 3(ii), F ◦E1 belongs to A in every

case. �

Let us complete the proof of Proposition 6.2 by contradiction. Suppose to the contrary
that F ◦ E1 does not belong to A. Then, the conditions (i), (ii) and (iii) of Claim 3 and (i)
and (ii) of Claim 5 cannot be satisfied. In particular, F satisfies (4) or (5). Furthermore, f w

1
and f w

3 must be algebraically independent over k if (4). We show that, if F satisfies (5) for
m = 2, and if f w

2 does not belong to k[fw
1 ], then f w

3 does not belong to k[fw
1 ]. Supposing the

contrary, we have f w
3 ≈ (f w

1 )
p for some p ∈ N . Then, we have p ≥ 2 in view of Claim 3(iii).

Hence, deg f1 < deg f3. We verify that f = f3, g = f2 and φ = φ1 satisfy the assumptions
of Lemma 3.3(ii) with degφ < degf . Recall that φ1 is an element of k[f2, f3] such that
degφ1 ≤ deg f1. Since degf1 < deg f3, we have degφ1 < deg f3. On account of Claim 3(i),
φ1 cannot belong to k[f2]. Thus, it follows that degφ1 < degS1 φ1. By assumption, f w

2 does
not belong to k[fw

1 ]. Since fw
3 ≈ (f w

1 )
p, it follows that fw

2 does not belong to k[fw
3 ]. By the

condition (5) for m = 2, we have degf3 < deg f2. Thus, the assumptions of Lemma 3.3(ii)
are satisfied, and so we conclude that

degφ1 ≥ (3 − 2)
1

2
deg f3 + deg df2 ∧ df3 >

1

2
deg f3 = p

2
degf1 ≥ deg f1 .



106 S. KURODA

This contradicts that degφ1 ≤ deg f1. Therefore, fw
3 does not belong to k[fw

1 ] if F satisfies
(5) for m = 2, and f w

2 does not belong to k[fw
1 ].

CLAIM 6. If F ◦ E1 does not belong to A, then one of the following holds:
(I) deg f2 < degf1, deg f1 = deg f3, fw

1 �≈ fw
3 , and fw

1 and f w
3 do not belong to k[fw

2 ]
and k[fw

1 , f
w
2 ], respectively.

(II) deg fi < deg fj , degf3 < deg fj , and f w
j and f w

3 do not belong to k[fw
i ] for some

(i, j) ∈ {(1, 2), (2, 1)}.
(III) deg f1 < degfj , degfi < degfj , f w

1 and f w
j do not belong to k[fw

i ], and φ1 belongs
to k[S1] \ k[fi ] for some (i, j) ∈ {(2, 3), (3, 2)}.

PROOF. We show that F satisfies (I) in the case (4), where degf2 < degf1 and
deg f1 = degf3. On account of Claim 3(ii) and (iii), f w

l does not belong to k[fw
2 ] for l = 1, 3,

and f w
3 �≈ f w

1 . We show that f w
3 does not belong to k[fw

1 , f
w
2 ] by contradiction. Supposing

the contrary, we have fw
3 = afw

1 +b(fw
2 )

p for some a, b ∈ k with (a, b) �= (0, 0) and p ≥ 2,
since deg f3 = deg f1 and deg f1 > deg f2. If a = 0 or b = 0, then f w

3 belongs to k[fw
2 ] or

f w
3 ≈ fw

1 , a contradiction. Hence, a �= 0 and b �= 0. It follows that deg f w
1 = deg(fw

2 )
p.

Owing to Claim 5(i), fw
1 and fw

2 must be algebraically dependent over k. Thus, f w
1 ≈ (fw

2 )
p,

and so f w
1 belongs to k[fw

2 ], a contradiction. Therefore, f w
3 does not belong to k[fw

1 , f
w
2 ].

This proves that F satisfies (I) in the case (4).
We show that F satisfies (II) or (III) in the case (5). Since the conditions (i), (ii) and (iii)

of Claim 3 are not satisfied by supposition, (II) holds for (i, j) = (2, 1) if m = 1, and (III)
holds for (i, j) = (2, 3) if m = 3. Assume that m = 2. As shown before this claim, if f w

2
does not belong to k[fw

1 ], then neither does f w
3 . Hence, (II) holds for (i, j) = (1, 2). If f w

2
belongs to k[fw

1 ], then IF contains 2 by Claim 1(iv) since IF \{1} �= ∅. By Claim 4, we know
that φ1 belongs to k[S1]\k[f3], and fw

1 and f w
2 do not belong to k[f w

3 ]. Therefore, (III) holds
for (i, j) = (3, 2). �

We consider the cases (I) and (II) together. Recall that φw
3 ≈ fw

3 , deg g3 < degf3, gw
3

does not belong to k[S3]w, andG = (f1, f2, g3) belongs to A. We establish the inequality

deg g3 < deg fj − degfi + deg df1 ∧ df2(6.2)

by contradiction, where we set (i, j) = (2, 1) in the case (I). When (I), f w
3 does not be-

long to k[f w
1 , f

w
2 ], and hence neither does φw

3 . The same holds true in the case (II) be-
cause k[fw

1 , f
w
2 ] = k[fw

i , f
w
j ], deg f3 < deg fj and f w

3 does not belong to k[fw
i ]. Since

φ3 is an element of k[S3], it follows that degφ3 < degS3 φ3 in both cases. We show that
G′ := (fj , fi , g3) satisfies the assumptions of Proposition 6.3. Clearly, G′ is an element of
A, since so is G by assumption. By the conditions in (I) and (II), we know deg fi < degfj ,
degφ3 = deg f3 ≤ degfj , and that f w

j does not belong to k[fw
i ]. Hence, it follows from

Lemma 3.3(ii) that degfi = 2δ and deg fj = sδ for some δ ∈ Γ and an odd number s ≥ 3.
Since (6.2) is supposed to be false, we get

(s − 2)δ + deg df1 ∧ df2 = deg fj − degfi + deg df1 ∧ df2
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≤ deg g3 < deg f3 ≤ degfj = sδ .

Since k[S3]w does not contain gw
3 , neither does k[fi]w. Thus, G′ satisfies the assumptions of

Proposition 6.3. Because degG′ < degF = µ, we may conclude that there exists E′
3 ∈ E3

such that degG′ ◦ E′
3 < degG′ by induction assumption. This contradicts that gw

3 does not
belong to k[S3]w, thereby proves that (6.2) is true. We show that (F ′,G′) satisfies the weak
Shestakov-Umirbaev condition, where F ′ = (fj , fi , f3). The first two conditions of (SU1′),
and (SU2′) are obvious. The last condition of (SU1′), and (SU5) follow from the construction
of g3. (SU3′) and the first condition of (SU4) are included in (I) and (II). As mentioned after
(6.2), fw

3 does not belong to k[fw
1 , f

w
2 ], which is the last condition of (SU4). (SU6) is due

to (6.2). Thus, (F ′,G′) satisfies the weak Shestakov-Umirbaev condition. It follows from
Claim 2 that F ′ ◦ E belongs to A for each E ∈ El for l = 1, 2 if degF ′ ◦ E ≤ degF ′. In
particular, (F ◦E1)◦H = F ′ ◦ (H ◦E1 ◦H) belongs to A, whereH = (xj , xi, x3). Actually,
H ◦ E1 ◦H belongs to Ej , and

degF ′ ◦H ◦E1 ◦H = degF ◦ E1 ◦H = degF ◦ E1 ≤ degF = degF ′ .
This implies that F ◦ E1 belongs to A. Therefore, we are led to a contradiction.

Finally, we derive a contradiction in the case (III). It follows that degφ1 < degS1 φ1,
since φ1 is an element of k[fi, fj ] \ k[fi ] with degφ1 ≤ degf1 < degfj . Since deg fi <
deg fj , and since fw

j does not belong to k[fw
i ], we know that fi , fj and φ1 satisfy the as-

sumptions of Lemma 3.3(ii). Hence, there exist δ ∈ Γ and an odd number s ≥ 3 such that
deg fi = 2δ, degfj = sδ and

(s − 2)δ + deg df2 ∧ df3 = (s − 2)δ + deg dfi ∧ dfj ≤ degφ1 ≤ deg f1 < degfj = sδ .

Thus, Fτ satisfies (6.1) for τ ∈ S3 with τ (1) = j , τ (2) = i and τ (3) = 1. Note that
Fτ is an element of A with degFτ = µ since so is F . As fw

1 does not belong to k[fw
i ],

the assumptions of Proposition 6.3 are fulfilled for Fτ . Hence, by induction assumption, we
conclude that degFτ ◦ E′

3 < degFτ and Fτ ◦ E′
3 belongs to A for some E′

3 ∈ E3. Thus, IFτ
contains 3, and so IF contains 1. Therefore, F ◦E1 belongs to A by Claim 1(i), a contradiction.

This proves that the statement of Proposition 6.2 holds for each F ∈ A with degF = µ.
Thus, the proofs of Propositions 6.2 and 6.3 are completed by induction. Thereby, we have
completed the proof Theorem 2.1.

7. Relations with the theory of Shestakov-Umirbaev. In this section, we discuss
relations with the original theory of Shestakov-Umirbaev. Throughout this section, we assume
that Γ = Z and w = (1, 1, 1). Hence, degF ≥ |w| = 3 for each F ∈ Autk k[x]. First, we
recall the notions of reductions of types I, II, III and IV defined by Shestakov-Umirbaev [10,
Definitions 1, 2, 3 and 4].

Let F = (f1, f2, f3) be an element of Autk k[x] such that deg f1 = 2l and deg f2 = sl

for some l ∈ N and an odd number s ≥ 3.
(1) F is said to admit a reduction of type I if 2l < degf3 ≤ sl, f w

3 does not belong to
k[fw

1 , f
w
2 ], and there exists α ∈ k \ {0} for which g1 := f1 and g2 := f2 − αf3 satisfy the

following conditions:
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(i) deg g2 = sl, and gw
1 and gw

2 are algebraically dependent over k.
(ii) deg g3 < deg f3 and deg dg1 ∧ dg3 < sl+ deg dg1 ∧ dg2 for some φ ∈ k[g1, g2], where
g3 = f3 + φ.

(2) F is said to admit a reduction of type II if s = 3, (3/2)l < degf3 ≤ 2l, f w
1 �≈ fw

3 ,
and there exist α, β ∈ k with (α, β) �= (0, 0) for which g1 := f1 − αf3 and g2 := f2 − βf3

satisfy the following conditions:
(iii) deg g1 = 2l, deg g2 = 3l, and gw

1 and gw
2 are algebraically dependent over k.

(iv) deg g3 < deg f3 and deg dg1 ∧ dg3 < 3l+ deg dg1 ∧ dg2 for some φ ∈ k[g1, g2], where
g3 = f3 + φ.

Next, let F = (f1, f2, f3) be an element of Autk k[x] such that degf1 = 2l, and either
deg f2 = 3l and l < deg f3 ≤ (3/2)l, or (5/2)l < degf2 ≤ 3l and deg f3 = (3/2)l for some
l ∈ N . Assume that there exist α, β, γ ∈ k such that g1 := f1 −βf3 and g2 := f2 −γf3 −αf 2

3
satisfy the following conditions:
(v) deg g1 = 2l, deg g2 = 3l, and gw

1 and gw
2 are algebraically dependent over k.

(vi) deg g3 ≤ (3/2)l and deg dg1 ∧ dg3 < 3l + deg dg1 ∧ dg2 for some σ ∈ k \ {0} and
g ∈ k[g1, g2] \ k, where g3 = σf3 + g .

(3) F is said to admit a reduction of type III if we can choose α, β, γ , σ and g so that
(α, β, γ ) �= (0, 0, 0) and deg g3 < l + deg dg1 ∧ dg2.

(4) F is said to admit a reduction of type IV if we can choose α, β, γ , σ and g so that
deg(g2 − µg2

3 ) ≤ 2l for some µ ∈ k \ {0}.
We also say that F admits a reduction of type I (resp. II, III and IV) if Fσ satisfies (1)

(resp. (2), (3) and (4)) for some σ ∈ S3.
Here, we note that the conditions (i), (iii) and (v) are equivalent to the condition that

g1, g2 is a “two-reduced pair", since the conditions on deg g1 and deg g2 imply gw
1 �∈ k[gw

2 ]
and gw

2 �∈ k[gw
1 ]. Although Shestakov-Umirbaev [10] considered the “Poisson bracket” [f, g]

instead of df ∧ dg for f, g ∈ k[x], the degrees of [f, g] and df ∧ dg are defined in the same
way.

The following theorem is a consequence of Theorem 2.1 and Proposition 5.4.

THEOREM 7.1. No tame automorphism of k[x] admits a reduction of type IV.

PROOF. Suppose to the contrary that F satisfies (4) for some F ∈ Tk k[x]. Then, g1

and g2 appearing in the condition satisfy deg g1 = 2l and deg g2 = 3l. Moreover, since
deg(g2 − µg2

3 ) ≤ 2l < (5/2)l < deg g2 for some µ ∈ k \ {0}, we have gw
2 ≈ (gw

3 )
2. Hence,

deg g3 = (3/2)l. Since F belongs to Tk k[x], so does H := (g2, g1, g3). We show that H
satisfies the assumptions of Proposition 5.4 for s = 3 and δ = l. The degrees of g2, g1

and g3 satisfy (5.2), and gw
3 does not belong to k[gw

1 ] since deg g3 < deg g1. We verify that
deg dg1 ∧ dg2 ≤ (1/2)l, which gives (5.5) that

deg dg1 ∧ dg2 ≤ 1

2
l <

3

2
l − l + 1 ≤ deg g3 − (3 − 2)l + min{l, ε} ,

since ε = deg dg1 ∧ dg2 ∧ dg3 = 3 and l ≥ 1. By definition, g is an element of k[g1, g2] \ k
such that deg g ≤ max{degf3, deg g3} = (3/2)l < deg gi for i = 1, 2. Hence, gw does not
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belong to k[gw
1 , g

w
2 ], and so deg g < degU g , where U = {g1, g2}. Since deg g1 = 2l and

deg g2 = 3l, it follows that deg g1 < deg g2 and gw
2 does not belong to k[gw

1 ]. Thus,

deg g ≥ (3 − 2)l + deg dg1 ∧ dg2 = l + deg dg1 ∧ dg2

by Lemma 3.3(ii). Since deg g ≤ (3/2)l, we conclude that deg dg1∧dg2 ≤ (1/2)l. Therefore,
H satisfies the assumptions of Proposition 5.4. Take φ2 ∈ k[g1, g3] so that (g ′

2)
w does not

belong to k[g1, g3]w, where g ′
2 = g2 + φ2. Then, deg g ′

2 ≤ 2l since deg(g2 − µg2
3 ) ≤ 2l.

By Proposition 5.4(1), H ′ := (g ′
2, g1, g3) does not admit an elementary reduction. Since H

belongs to Tk k[x], so doesH ′. Furthermore, degH ′ > 3, because deg gi > l ≥ 1 for i = 1, 3.
Thus,H ′ admits a Shestakov-Umirbaev reduction by Theorem 2.1. Hence, there exist σ ∈ S3

and K ∈ Autk k[x] such that (H ′
σ ,K) satisfies the Shestakov-Umirbaev condition. Since

gw
2 ≈ (gw

3 )
2 as mentioned, we know that σ = id by Proposition 5.4(2). Hence, (H ′,K)

satisfies the Shestakov-Umirbaev condition. Consequently, we get deg g1 < deg g ′
2 by (P7).

This contradicts that deg g1 = 2l and deg g ′
2 ≤ 2l. Therefore, F does not admit a reduction of

type IV. �

To conclude that Nagata’s automorphism is not tame, Shestakov-Umirbaev [10, Theorem
1] showed that, if degF > 3 for F ∈ Tk k[x], then F admits an elementary reduction or a
reduction of one of the types I, II, III and IV. With the aid of the following proposition, the
criterion of Shestakov-Umirbaev is derived from Theorem 2.1.

PROPOSITION 7.2. Assume that (F,G) satisfies the Shestakov-Umirbaev condition
for F,G ∈ Autk k[x]. If (f1, f2) = (g1, g2), then F admits an elementary reduction. If
(f1, f2) �= (g1, g2), then F admits a reduction of one of the types I, II and III.

PROOF. The first assertion follows from (SU1) and (SU5). We show the last assertion.
By (SU1), we may write g1 = f1+af 2

3 +cf3, g2 = f2+bf3 and g3 = f3+φ, where a, b, c ∈ k
and φ ∈ k[g1, g2]. Since (f1, f2) �= (g1, g2) by assumption, we have (a, b, c) �= (0, 0, 0). By
(SU3), there exist l ∈ N and an odd number s ≥ 3 such that deg g1 = sl and deg g2 = 2l.
Then, it follows that l < degf3 ≤ sl by (P7). Put τ = (1, 2). We show that Fτ satisfies (1)
for α = −c if 2l < degf3 ≤ sl, (2) for (α, β) = (−b,−c) if (3/2)l < degf3 ≤ 2l, and (3)
for (α, β, γ ) = (−a,−b,−c), σ = 1 and g = φ if l < deg f3 ≤ (3/2)l.

Note that degf2 = 2l by (SU2), and that degf1 = sl if degf3 �= (3/2)l, and (5/2)l <
deg f1 ≤ 3l otherwise by (P5). Moreover, s = 3 if degf3 ≤ 2l by (P11). From this, we
see that the conditions on the degrees of f1 and f2 are satisfied in every case. It follows that
a = b = 0 if 2l < deg f3 ≤ sl by (P11), and a = 0 if (3/2)l < deg f3 ≤ 2l, since
deg f 2

3 > 3l = deg g1. Hence, g2 = f2 and g1 = f1 − αf3 for α = −c if 2l < deg f3 ≤ sl,
g2 = f2 − αf3 and g1 = f1 − βf3 for (α, β) = (−b,−c) if (3/2)l < degf3 ≤ 2l, and
g2 = f2 −βf3 and g1 = f1 −γf3 −αf 2

3 for (α, β, γ ) = (−a,−b,−c) if l < deg f3 ≤ (3/2)l,
in which α �= 0, (α, β) �= (0, 0), and (α, β, γ ) �= (0, 0, 0), respectively. Besides, g = φ in
(iv) cannot be an element of k, since deg g3 < degf3 by (SU5). So, we verify that (i) through
(vi) are satisfied for g2, g1 and g3. As mentioned, we have deg g2 = 2l and deg g1 = sl,
where s = 3 if deg f3 ≤ 2l. By (SU3), gw

2 and gw
1 are algebraically dependent over k. Thus,
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(i), (iii) and (v) are satisfied. The first conditions in (ii) and (iv) are the same as (SU5). If
deg f3 ≤ (3/2)l, then deg g3 < deg f3 ≤ (3/2)l by (SU5), the first condition in (vi). The
second conditions in (ii), (iv) and (vi) follow from (SU6), since

deg dg2 ∧ dg3 ≤ deg g2 + deg g3 < deg g2 + (deg g1 − deg g2 + deg dg1 ∧ dg2)

= sl + deg dg1 ∧ dg2 .

Therefore, (i) through (vi) are satisfied for g2, g1 and g3.
Let us check the other conditions. It follows from (P8) that f w

2 �≈ fw
3 . Hence, Fτ

satisfies (2) if (3/2)l < degf3 ≤ 2l. We have already shown that Fτ satisfies the assumption
of (3) if l < degf3 ≤ (3/2)l. Since the last condition in (3) is the same as (SU6), Fτ
satisfies (3) in this case. We show that f w

3 does not belong to k[fw
1 , f

w
2 ] as required in (1).

By (P8), f w
3 does not belong to k[fw

1 ] nor k[fw
2 ]. Since degf3 ≤ degf1 by (P7), we have

deg f3 < degf1 + degf2 = deg f1f2. Hence, fw
3 does not belong to k[fw

1 , f
w
2 ]. This proves

that Fτ satisfies (1) if 2l < deg f3 ≤ sl. Therefore, F admits a reduction of one of the types
I, II and III if (f1, f2) �= (g1, g2). �

8. Remarks. In closing, we make some remarks on Shestakov-Umirbaev reductions.
As established in Section 6, for each F ∈ Tk k[x] with degw F > |w|, there exists a sequence
(Gi)

r
i=0 of elements of Tk k[x] for some r ∈ N such thatG0 = F , degGr = |w|, andGi+1 is

an elementary reduction or a weak Shestakov-Umirbaev reduction of Gi for each i. We have
a more precise result as follows.

COROLLARY 8.1. For each F ∈ Tk k[x] with degF > |w|, there exists a sequence
(Gi)

r
i=0 of elements of Tk k[x] for some r ∈ N such that G0 = F , degGr = |w|, andGi+1 is

an elementary reduction or a Shestakov-Umirbaev reduction of Gi for each i.

PROOF. Let B be the set of F ∈ Tk k[x] with degF > |w| for which there does not
exist a sequence as claimed. Suppose to the contrary that B is not empty. Then, we can find
F ∈ B such that degF = min{degH ;H ∈ B} > |w|, since Σ is a well-ordered set by
Lemma 6.1(ii). Since F is tame, there exists G ∈ Tk k[x] which is an elementary reduction
or a Shestakov-Umirbaev reduction of F by Theorem 2.1. Then, degG < degF by (P6).
Hence, G does not belong to B by the minimality of degF . It follows from the definition of
B that degG = |w| or there exists a sequence as claimed for G. In either case, F cannot be
an element of B, a contradiction. Therefore, B is empty. �

For each F ∈ Tk k[x] with degF > |w| and a sequence G = (Gi)
r
i=0 as in Corollary 8.1,

we define SUw(F ;G) to be the number of i ∈ {1, . . . , r} such that Gi+1 is a Shestakov-
Umirbaev reduction ofGi . We define the Shestakov-Umirbaev number SUw(F ) for the weight
w to be the minimum among SUw(F ;G) for the sequences G = (Gi)

r
i=0 as in Corollary 8.1.

It may be an interesting question to ask whether SUw(F ;G) = SUw(F ) for any F ∈ Tk k[x]
and G = (Gi)

r
i=0.

When Gi admits a Shestakov-Umirbaev reduction, the possibilities for Gi+1 are limited
as described in the following propositions.
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PROPOSITION 8.2. If (F,G1) and (F,G2) satisfy the Shestakov-Umirbaev condition
for F,G1,G2 ∈ T , then g1

i = g2
i for i = 1, 2, and g1

3 − g2
3 is contained in k[g1

2 ], where

Gj = (gj1 , g
j

2 , g
j

3 ) for j = 1, 2.

PROOF. By (SU1), there exist aj , bj , cj ∈ k such that gj1 = f1 +ajf 2
3 +cjf3 and gj2 =

f2 + bjf3 for j = 1, 2. By the last statement of (P11), it follows that a1 = a2, b1 = b2 and
c1 = c2. Hence, we have g1

i = g2
i for i = 1, 2. Put φ := g1

3 −g2
3 = (g1

3 −f3)+(f3−g2
3 ). Then,

φ belongs to k[g1
1 , g

1
2 ] = k[g2

1 , g
2
2 ], since so does gj3 − f3 for j = 1, 2 by (SU1). Suppose to

the contrary that φ belongs to k[g1
1 , g

1
2 ] \ k[g1

2 ]. Then, since degφ ≤ max{deg g1
3 , deg g2

3 } <
deg f3 ≤ deg g1

1 by (SU5) and (SU4), we get degφ < degU φ, where U = {g1
1 , g

1
2 }. In view

of (SU3), it follows from Lemma 3.2(i) that

degφ ≥ 2 deg g1
1 + deg dg1

1 ∧ dg1
2 − deg g1

1 − deg g1
2 = deg g1

1 − deg g1
2 + deg dg1

1 ∧ dg1
2 .

Since degφ ≤ max{deg g1
3 , deg g2

3 }, this contradicts (SU6). Therefore, g1
3 − g2

3 belongs to
k[g1

2 ]. �

The following proposition gives a necessary condition on automorphisms to admit both
an elementary reduction and a Shestakov-Umirbaev reduction simultaneously.

PROPOSITION 8.3. Assume that (F,G) satisfies the Shestakov-Umirbaev condition
for F,G ∈ T . Then, fw

i does not belong to k[Si]w for i = 1 if f w
1 �≈ (f w

3 )
2, for i = 2, and

for i = 3 if (f1, f2) �= (g1, g2).

PROOF. In each case, we will find h0, h1 ∈ k[Si] such that k[h0, h1] = k[Si], γ ′
i :=

deg dh0 ∧ dh1 > sδ, hw
j does not belong to k[hw

l ] for (j, l) = (0, 1), (1, 0), and f w
i does not

belong to k[hw
0 , h

w
1 ]. Then, it follows that f w

i does not belong to k[Si]w. In fact, supposing
that fw

i = φw for some φ ∈ k[Si] = k[h0, h1], we have degφ < degU φ for U = {h0, h1},
since φw = f w

i does not belong to k[hw
0 , h

w
1 ]. Since hw

j does not belong to k[hw
l ] for (j, l) =

(0, 1), (1, 0), we get degφ > γ ′
i by Lemma 3.3(i). Thus, degfi = degφ > γ ′

i > sδ. This
contradicts (P7). Therefore, fw

i does not belong to k[Si]w if such h0 and h1 exist.
We remark that γi := degfj ∧ fl > sδ in each case, where j, l ∈ {1, 2, 3} \ {i} with

j < l. Actually, γ1 > sδ and γ2 ≥ δ + γ1 > (s + 1)δ by the last two conditions of (P12).
If i = 3, then (f1, f2) �= (g1, g2) by assumption. Hence, the first condition of (P12) implies
that γ3 is equal to one of degf3 + γ1, γ2 and γ1, which are greater than sδ.

We set (h0, h1) = (f2, f3) if i = 1, and (h0, h1) = (f1, f2) if i = 3. Then, k[h0, h1] =
k[Si ] and γ ′

i = γi > sδ in either case. Moreover, hw
j does not belong to k[hw

l ] for (j, l) =
(0, 1), (1, 0) by (P8). We check that f w

i does not belong to k[hw
0 , h

w
1 ]. This holds for i = 3

because f w
3 does not belong to k[fw

l ] for l = 1, 2 by (P8), and we have deg f3 ≤ deg f1 <

deg f1f2 by (P7). Suppose to the contrary that f w
1 belongs to k[fw

2 , f
w
3 ]. Then, f w

1 must
belong to k[f w

2 ] or k[fw
3 ], since

deg f1 ≤ deg g1 = sδ = 2δ + (s − 2)δ < deg f2 + degf3 = deg f2f3
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by (SU2) and (P2). It follows from (P8) that f w
1 does not belong to k[fw

2 ], and so f w
1 belongs

to k[fw
3 ] and fw

1 ≈ (fw
3 )

2. This contradicts the assumption that f w
1 �≈ (f w

3 )
2. Thus, f w

1 does
not belong to k[hw

0 , h
w
1 ] if i = 1. Therefore, h0 and h1 satisfy the required conditions, and

thereby f w
i does not belong to k[Si]w for i = 1, 3 as mentioned above.

In the case i = 2, set h0 = f3, and h1 = f1 if fw
1 �≈ (fw

3 )
2, while h1 = f1 − cf 2

3
otherwise, where c ∈ k is such that f w

1 = c(fw
3 )

2. Then, k[h0, h1] = k[S2] and γ ′
2 =

γ2 > (s + 1)δ. If f w
1 �≈ (fw

3 )
2, then h1 = f1, and so hw

j does not belong to k[hw
l ] for

(j, l) = (0, 1), (1, 0) by (P8). If f w
1 ≈ (fw

3 )
2, then f w

1 belongs to k[f w
3 ]. By (P8), we get

s = 3 and degh0 = deg f3 = (3/2)δ. Since degh0 + degh1 ≥ γ ′
2 > (s + 1)δ = 4δ by (2.3),

we have degh1 > 4δ − (3/2)δ = (5/2)δ > degh0. Hence, hw
0 does not belong to k[hw

1 ]. It
follows that (5/2)δ < degh1 = deg(f1 − cf 2

3 ) < degf 2
3 = 3δ. Since 5/2 < (3/2)l < 3

does not hold for any l ∈ N , we conclude that hw
1 does not belong to k[hw

0 ]. For both h1 = f1

and h1 = f1 − cf 2
3 , it holds that deg f2 = 2δ < degh1. Hence, fw

2 does not belong to
k[hw

0 , h
w
1 ] \ k[hw

0 ]. By (P8), fw
2 does not belong to k[hw

0 ] = k[fw
3 ]. Thus, fw

2 does not
belong to k[hw

0 , h
w
1 ]. Therefore, h0 and h1 satisfy the required conditions, thereby f w

2 does
not belong to k[S2]w. �

Appendix: Reductions of types I, II, III and IV. In this appendix, we explain that
the following results are implicit in the theory of Shestakov-Umirbaev [10]:

(A) If F ∈ Autk k[x] admits a reduction of one of the types I, II, III and IV, then F
admits none of the reductions of the other three types.

(B) If F ∈ Autk k[x] admits a reduction of type IV, then there exists an elementary au-
tomorphismE such that F ◦E admits a reduction of type IV, but does not admit an elementary
reduction.

From (A) and (B), it follows that, if there exists a tame automorphism admitting a reduc-
tion of type IV, then there exists a tame automorphism which is not affine and does not admit
an elementary reduction nor any one of the reductions of types I, II and III. Actually, an auto-
morphism admitting a reduction of type IV is not affine, and admits none of the reductions of
types I, II and III by (A). Theorem 2.1, together with Proposition 7.2, implies that each tame
automorphism but an affine automorphism admits an elementary reduction or a reduction of
one of the types I, II and III. Thus, we obtain another proof of Theorem 7.1 that no tame
automorphism admits a reduction of type IV.

First, we show (A). Recall the definitions of reductions of types I through IV (see the
conditions (1) through (4) listed in Section 7). If F satisfies (1), then degf1 < degf3 ≤
deg f2. Moreover, (1) implies that degdf1 ∧df2 = deg df1 ∧df3 (cf. [10, Proposition 1 (1)]).
If F satisfies one of (2), (3) and (4), then degf3 ≤ degf1 < degf2, where degf3 = deg f1

holds only in the case (2). Moreover, it follows that

deg df1 ∧ df3 = deg dg1 ∧ dg2 + 3l , deg df2 ∧ df3 = deg df1 ∧ df3 + l(8.1)

in these cases (cf. [10, Equations (6) and (7)]).
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Now, suppose that F satisfies one of (2), (3) and (4), but admits a reduction of type I,
i.e., Fτ satisfies (1) for some τ ∈ S3. Then, deg dfτ(1) ∧ dfτ(2) = deg dfτ(1) ∧ dfτ(3) as
mentioned. It follows from the condition on the degrees of f1, f2 and f3 that τ = (1, 3).
Hence, deg df3 ∧ df2 = deg df3 ∧ df1, which contradicts the second equation of (8.1). If F
satisfies (3) or (4), and admits a reduction of type II, then F satisfies (2) by the conditions
on the degrees of f1, f2 and f3. This is impossible, because (3/2)l < deg f3 if (2), while
deg f3 ≤ (3/2)l if (3) or (4). Finally, we show that F does not admit reductions of types III
and IV simultaneously. Suppose that F satisfies (4), and admits a reduction of type III. Then,
F satisfies (3), since degf3 < degf1 < degf2 in both cases. We remark that α, β, γ ∈ k

appearing in (3) and (4) are uniquely determined by F (cf. [10, Proposition 3 (1), (2) and
(3)]), and hence so are g1 and g2. There exist σ 1, σ 2 ∈ k \ {0} and g1, g2 ∈ k[g1, g2] \ k such
that deg dg1 ∧ dg3,i < 3l + deg dg1 ∧ dg2 for i = 1, 2, deg g3,1 < l + deg dg1 ∧ dg2, and
deg(g2 −µg2

3,2) ≤ 2l for some µ ∈ k \{0}, where g3,i = σ if3 +g i for i = 1, 2. We claim that
deg g3,1 < deg f3. In fact, we have deg g3,1 < l + deg dg1 ∧ dg2, while the first equation of
(8.1) implies degf3 ≥ l+deg dg1 ∧dg2, since degf1 +deg f3 ≥ deg df1 ∧df3 and deg f1 =
2l. Hence, deg g3,1 < degf3 ≤ (3/2)l. From deg(g2 −µg2

3,2) ≤ 2l, we get deg g3,2 = (3/2)l.

It follows that φ := σ 2g1 − σ 1g2 = σ 2g3,1 − σ 1g3,2 is an element of k[g1, g2] such that
deg dg1∧dφ < 3l+deg dg1∧dg2 and degφ = (3/2)l. Since degφ < deg gi for i = 1, 2, and
since φ is not an element of k, we have degφ < degU φ, where U = {g1, g2}. As deg g1 = 2l
and deg g2 = 3l, it follows from Lemma 3.3(ii) that deg dφ ∧ dg1 ≥ 3l + deg dg1 ∧ dg2,
a contradiction. Therefore, F does not admit reductions of types III and IV simultaneously.
This completes the proof of (A).

Next, assume that F satisfies (4). From the proof of [10, Lemma 12], we know that each
a ∈ k[Si] with deg a ≤ deg fi can be written as follows: If i = 1, then a = δ1f3 (up to a
constant term) for some δ1 ∈ k. If i = 2, then a = δ1f

2
3 +σ1f3 +µ1f1 (up to a constant term)

for some δ1, σ1, µ1 ∈ k. If i = 3 and (α, β, γ ) �= (0, 0, 0), then a is an element of k. It is also
mentioned in the proof of [10, Lemma 12] that (f1, f2 +a, f3) satisfies (4) for each a ∈ k[S2]
with deg a ≤ degf2. In fact, it is claimed that (g1, g2 +µ1g1, g3) is a “predreduction" of type
IV of (f1, f2 + a, f3).

We deduce (B) from the facts above. The assertion is clear if F does not admit an el-
ementary reduction. So, assume that degF ◦ E < degF for some E ∈ Ei , where i ∈
{1, 2, 3}. Then, (F ◦ E)(xi) = fi + a and deg(fi + a) < deg fi for some a ∈ k[Si]. Since
deg a = degfi , we can write a as stated in the preceding paragraph. Hence, if i = 1, then
deg a = deg δ1f3 ≤ (3/2)l. Since deg a = deg f1 = 2l, this is impossible. Thus, i �= 1.
If i = 2, then deg a = deg f2 > (5/2)l. Since degf3 ≤ (3/2)l, we have δ1 �= 0 and
deg f2 = deg a = 2 degf3. This implies that degf2 = 3l and deg f3 = (3/2)l, since
deg f2 = 3l if deg f3 < (3/2)l, and degf3 = (3/2)l if degf2 < 3l. If i = 3, then
α = β = γ = 0. and so g1 = f1 and g2 = f2. We show that F ◦ E admits a reduction
of type IV, but does not admit an elementary reduction in the cases i = 2 and i = 3.

Assume that i = 2. Then, deg(f2+a) < deg f2 = 3l. Moreover,F ◦E = (f1, f2+a, f3)

satisfies (4) as mentioned, in which α ∈ k involved in the condition cannot be zero, since
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deg(f2 + a) < 3l. By applying to F ◦ E the argument in the preceding paragraph, we know
that there does not exist E′ ∈ Ej with degF ◦E ◦E′ < degF ◦E for j = 1, for j = 2, since
deg(f2 + a) �= 3l, and for j = 3, since the constant α is not zero. Thus, F ◦E does not admit
an elementary reduction.

Assume that i = 3. Without loss of generality, we may assume that (F ◦ E)(x3)
w does

not belong to k[f1, f2]w by replacing E if necessary. We show that F ◦E = (f1, f2, f3 + a)

satisfies (4) by using the assumption that F satisfies (4) for α = β = γ = 0. We claim that
deg(f3 + a) ≥ l + deg dg1 ∧ dg2. In fact, if not, we can check that (f1, f2 + f3, f3) satisfies
(3) and (4) by the assumption that F satisfies (4) for α = β = γ = 0. This contradicts
(A). Hence, l < deg(f3 + a) ≤ (3/2)l, as required in the assumption of (4). Let g ′ :=
g3 −σ(f3 +a) = σf3 − g −σ(f3 +a). Then, g ′ belongs to k[g1, g2] = k[f1, f2], since so do
g and a. It follows that deg g ′ = (3/2)l, since deg(f3 + a) < degf3 ≤ (3/2)l and deg g3 =
(3/2)l. Hence, g is not an element of k. Moreover, we can express g3 = σ(f3 + a) + g ′.
This shows that F ◦ E satisfies (4). Consequently, there does not exist E′ ∈ Ej such that
degF ◦ E ◦ E′ < degF ◦ E for j = 1, and for j = 2, since deg(f3 + a) �= (3/2)l. This
also holds for j = 3 as we choose E so that (F ◦ E)(x3)

w does not belong to k[f1, f2]w.
Therefore, F ◦ E does not admit an elementary reduction. This completes the proof of (B).
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