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Abstract. We prove sufficient conditions for the degeneracy of integral points on cer-
tain threefolds and other varieties of higher dimension. In particular, under a normal crossings
assumption, we prove the degeneracy of integral points on an affine threefold with seven ample
divisors at infinity. Analogous results are given for holomorphic curves. As in our previous
works [2], [5], the main tool involved is Schmidt’s Subspace Theorem, but here we introduce
a technical novelty which leads to stronger results in dimension three or higher.

Introduction. In the present paper we build upon the work appearing in [1], [3] and [5],
by providing sufficient conditions for the degeneracy of integral points on certain threefolds
and other varieties of higher dimension.

The underlying method of proof, as in the aforementioned papers, is to embed the variety
of interest into a suitable projective space of high dimension, and then apply Schmidt’s Sub-
space Theorem with an appropriately chosen set of hyperplanes. In carrying out this method,
a technical difficulty appears in dealing with integral points which, for some place v, are
v-adically close to several divisors at infinity.

In the case of surfaces, under the assumption that the divisors at infinity are in ‘general’
position, this technical difficulty can be overcome. In this case, an integral point can be v-
adically close to at most two divisors at infinity; then by applying a simple lemma from linear
algebra on vector spaces with two filtrations (see [3], Lemma 3.2), one reduces, essentially,
to the case of integral points which are v-adically close to only a single divisor at infinity. In
dimension q > 2, where a point can be v-adically close to q divisors at infinity, this technique
breaks down as the analogous linear algebra lemma for q > 2 filtrations is no longer true.

However, as in the paper [5], the linear algebra lemma for two filtrations can still be ap-
plied in higher dimensions by dividing the set of divisors at infinity into two sets, whose sums
represent two divisors to which the lemma is applied; this reduces the problem essentially to
the case where [(q + 1)/2] divisors are at infinity and again leads to some improvement with
respect to a naive approach. This method is also adopted in [1], with some further technical
devices, including consideration of the rate of v-adic convergence of a sequence of integral
points to the approached divisors.

By means of these methods, for instance, the following result has been proved, which we
state after introducing a bit of notation, used throughout this paper.
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We let k be a number field, S be a finite set of places of k, including the archimedean ones,
and denote by OS the ring of S-integers in k. Let X̃ be a projective nonsingular irreducible
variety of dimension q defined over k. Let D1, . . . ,Dr be reduced effective divisors, such
that at most q of them contain a given point. We define X := X̃ \ ⋃r

i=1 Di .

THEOREM A (Autissier [1]). Suppose that D1, . . . ,Dr are ample and that q > 1 and
r ≥ q2. Then no set of S-integral points of X is Zariski-dense in X . Furthermore, there exists
a proper Zariski-closed subset Y ⊂ X , independent of k and S, such that X \ Y has only
finitely many S-integral points of X .

The case q = 2 of Theorem A was proved in [3] under certain numerical assumptions
on the divisors Di . The general case of q = 2 was proved in [5] (along with the case r >

2q[(q + 1)/2] for q ≥ 3).
The purpose of this paper is to introduce a new approach in higher dimensions, to cope

with the absence of the mentioned linear algebra lemma. In all of the related previous ap-
proaches, a key element is constructing rational functions which vanish to a high order along
the divisors at infinity which contain a given point. In the present paper, we modify this step
by considering functions which vanish to a high order along the intersection of such divisors;
actually, in this paper we apply this method only when the said intersection consists of iso-
lated points. This will be advantageous because imposing vanishing conditions at a point is
significantly less restrictive than imposing vanishing along whole divisors.

Throughout this paper we shall work under the assumption that the divisors at infinity
have normal crossings; this kind of assumption is very common in this context and appears,
for instance, in the celebrated conjectures of Vojta. Under the normal crossings assumption,
we shall improve Theorem A by proving the following:

THEOREM CLZ. Suppose that D1, . . . ,Dr are ample, that
∑r

i=1 Di is a reduced nor-
mal crossings divisor, and that q > 2 and r > q2 − q . Then no set of S-integral points of
X is Zariski-dense in X . Furthermore, there exists a proper Zariski-closed subset Y ⊂ X ,

independent of k and S, such that X \ Y has only finitely many S-integral points of X .

We remark that an entirely similar method of proof leads to an analogous result for
holomorphic curves (requiring now only that all objects involved be defined over C). The only
substantial modification consists in using Vojta’s version of Cartan’s Second Main Theorem
[8] in place of the Schmidt Subspace Theorem (see, e.g., [5]). We explicitly state such a result
(omitting a proof).

THEOREM CLZ (holomorphic version). Suppose that D1, . . . ,Dr are ample, that∑r
i=1 Di is a reduced normal crossings divisor, and that q > 2 and r > q2 − q . Then

there does not exist a holomorphic map f : C → X with Zariski-dense image. Furthermore,
there exists a proper Zariski-closed subset Y ⊂ X such that the image of any non-constant
holomorphic map f : C → X is contained in Y .
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1. Proofs. Suppose we have any infinite set of S-integral points on X , and let us
consider a positive-dimensional irreducible component Z of its Zariski closure; it is a well-
known easy fact that we may find a sequence (Pi) of points in our set such that every infinite
subsequence has Zariski closure Z . Then, by replacing the sequence with a subsequence
if necessary, we may assume that for each v ∈ S, Pi converges v-adically to some point
Pv ∈ X̃ (kv).

We now explain in more detail our strategy for improvement on previous results, restrict-
ing for clarity to the case q = 3, which is the first case which can’t be treated by the simple
linear algebra approach.

As in previous approaches based on the Schmidt Subspace Theorem, one considers an
appropriate linear combination D of the ample divisors D1, . . . ,Dr and the space L(nD) of
rational functions on X̃ whose pole-divisor is ≥ −nD. We want to construct for each place
v ∈ S a basis of L(nD) which consists of functions that ‘on average’ vanish at Pv . This
vanishing implies that certain linear forms corresponding to this basis take small values at Pi ,
which allows the successful application of Diophantine Approximation.

Now, this construction depends on the set of divisors among D1, . . . ,Dr which contain
Pv . For instance, when Pv lies on a single such divisor Di , since k(Pv) may be a transcenden-
tal extension of k, to obtain functions which vanish at Pv we are forced to construct functions
which vanish along the whole divisor Di . The efficiency of this construction depends on the
numerical properties of D and Di .

When Pv lies on two distinct divisors Di,Dj , the previously quoted papers argue as
follows: one considers the two filtrations of L(nD) with respect to the order of vanishing
along Di and Dj , and by using the linear algebra [3, Lemma 3.2] one can combine these two
filtrations to define a basis of L(nD) having on average the said vanishing property simulta-
neously with respect to Di and Dj ; effectively, this reduces the present situation to the case of
a single divisor. This linear algebra lemma is of a general nature and does not use any peculiar
property of L(nD).

For surfaces, one often assumes that no three of the divisors intersect, so no further
case appears. However, already for threefolds, the linear algebra lemma is insufficient to
cope with the situation when Pv lies on three distinct divisors Di ; in fact, one can construct
counterexamples to the analogous conclusion of the lemma for three filtrations of a vector
space, not only in the general linear algebra case, but also in our relevant geometric context.
This shows that in higher dimensions some other tools are needed to replace the lemma.

As mentioned above, the method of the paper [5] is to divide the set of divisors into
two subsets, and then to apply the lemma to the two filtrations coming from the two subsets.
A similar idea occurs in [1], where one considers the filtration corresponding to the pair of
divisors which are most rapidly approached v-adically by the sequence (Pi).

In the present paper we adopt a still different approach: for instance, in dimension three
and when three divisors intersect at Pv , in many situations (clarified in the detailed proof) we
construct a filtration corresponding to a pointwise vanishing rather than a vanishing along a
whole divisor. In these cases the filtration lemma will be avoided completely.
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These filtrations may be constructed naively, by using linear algebra on the power series
locally representing the functions; however, in some cases one may improve the orders of
vanishing by taking into account that the functions lie in the space L(nD), which restricts the
possibilities for the coefficients of the said power series (see Remark 1.2).

This new pointwise method will be adopted only when the sequence of integral points
converges in a certain way to some divisors at infinity; when the convergence is of a different
type, we use the method of the papers [1] and [5] (e.g., Corollary 1.4).

In the rest of the paper, we work with the notation and assumptions of the Introduction.
For integers a1, . . . , ar > 0, we define D = ∑r

i=1 aiDi and we assume that
∑r

i=1 Di is
a reduced normal crossings divisor on X̃ . By Di.Dj or Dq we shall denote intersection
products, and we let l(nD) = dim L(nD).

We let k be a number field and, for a place v of k, we let kv be the completion and | · |v
be a corresponding absolute value normalized so that the absolute Weil height of x ∈ k∗ is
h(x) = ∑

v log+ |x|v .
We start with some lemmas.

LEMMA 1.1. Let v be a place of k and (Pm) be a sequence in X (kv) such that :
1. (Pm) converges v-adically to a point Pv ∈ X̃ (k) ⊂ X̃ (kv).
2. The limit Pv lies in the intersection of the q distinct divisors D1, . . . ,Dq .
3. Letting for i = 1, . . . , q , φi ∈ k(X̃ ) be a rational function defining Di locally at Pv ,

the limit

(1.1) lim
m→∞

log |φi(Pm)|v∑q

l=1 log |φl(Pm)|v
exists and is nonzero for i = 1, . . . , q . Denote the limit in (1.1) by ti .

4.

(1.2) Dq >

(∑q

i=1 aiti
)q

(1 + 1/q)q∏q

i=1 ti
.

Given these conditions, there exists ε > 0 such that for all large n there exists a basis
f1, . . . , fl(nD) ∈ k(X̃ ) of L(nD) with

(1.3) lim
m→∞ |φi(Pm)|−ε

v

∣∣∣∣
l(nD)∏
j=1

fj (Pm)

∣∣∣∣
v

= 0 , i = 1, . . . , q .

PROOF. Since
∑r

i=1 Di is a reduced normal crossings divisor, it follows that the maxi-
mal ideal mPv of OX̃ ,Pv

is generated by φ1, . . . , φq and that (over k) the completion of OX̃ ,Pv

with respect to mPv is naturally isomorphic to the power series ring k[[φ1, . . . , φq ]]. For

i = (i1, . . . , iq) ∈ Nq , let φi = ∏q

j=1 φ
ij
j . If f is regular at Pv , let

∑
i∈Nq ci(f )φi be its

canonical image in k[[φ1, . . . , φq ]]. Let a = (a1, . . . , aq) and t = (t1, . . . , tq ). Then for any
f ∈ L(nD), the function φnaf is regular at Pv . Let Vj be the subspace of L(nD) given by

Vj = {f ∈ L(nD) ; ci(φ
naf ) = 0 if i · t < j } .
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This construction is motivated by the fact that

lim
m→∞

log |φb(Pm)|v∑q
l=1 log |φl(Pm)|v

= b · t .

Let N be the largest positive integer such that VN �= 0 (this exists since L(nD) is finite-
dimensional). Note that V0 = L(nD) and that we have a vector space filtration L(nD) =
V0 ⊃ V1 ⊃ · · · ⊃ VN ⊃ 0. Let f1, . . . , fl(nD) be a basis of L(nD) with respect to
this filtration. That is, take a basis of VN and successively complete it to bases of VN−1,
VN−2, . . . , V0 = L(nD).

We have
l(nD)∏
j=1

fj =
∏l(nD)

j=1 φnafj

φl(nD)na .

Then to show (1.3) it suffices to show that

lim
m→∞

log
∏l(nD)

j=1 |φnafj (Pm)|v
log |φl(nD)na(Pm)|v > 1 .

If f ∈ Vj , then

lim
m→∞

log |φnaf (Pm)|v∑q

l=1 log |φl(Pm)|v
≥ j .

Thus

lim
m→∞

log
∏l(nD)

j=1 |φnafj (Pm)|v
log |φl(nD)na(Pm)|v = lim

m→∞

log
∏l(nD)

j=1 |φnafj (Pm)|v∑q

l=1 log |φl(Pm)|v
log |φl(nD)na(Pm)|v∑q

l=1 log |φl(Pm)|v

= 1

l(nD)na · t
lim

m→∞

l(nD)∑
j=1

log |φnafj (Pm)|v∑q

l=1 log |φl(Pm)|v

= 1

l(nD)na · t
lim

m→∞

N∑
j=0

∑
fh∈Vj\Vj+1

log |φnafh(Pm)|v∑q

l=1 log |φl(Pm)|v

≥ 1

l(nD)na · t

N∑
j=0

j (dim Vj − dim Vj+1)

≥ 1

l(nD)na · t

N∑
j=1

dim Vj .

So it suffices to show that
N∑

j=1

dim Vj > l(nD)na · t .
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From the definition of Vj it is clear that

dim Vj ≥ l(nD) − #{i ∈ Nq ; i · t < j } .

Let U = {x ∈ (R≥0)
q ; x · t < 1}. By standard lemmas on counting lattice points in homoge-

neously expanding domains, we have

#{i ∈ Nq ; i · t < j } = Vol(U)jq + O(jq−1) .

It is easily calculated that Vol(U) = (
q! ∏q

i=1 ti
)−1

. By Riemann-Roch, since D is ample,

l(nD) = Dqnq

q! + O(nq−1) .

Thus

dim Vj ≥ Dqnq

q! − jq

q! ∏q
i=1 ti

+ O(nq−1) .

So, for M = [
n q

√
Dq

∏q

i=1 ti
]
,

N∑
j=1

dim Vj ≥ 1

q!
M∑

j=1

(
Dqnq − jq∏q

i=1 ti
+ O(nq−1)

)

≥ 1

q!
((

Dq

q∏
i=1

ti

)1/q

Dqnq+1 −
(
Dq

∏q

i=1 ti
)1/q

Dqnq+1

(q + 1)

)
+ O(nq)

≥ q
(
Dq

∏q
i=1 ti

)1/q
Dqnq+1

(q + 1)! + O(nq) .

Then (1.3) holds if

q
(
Dq

∏q

i=1 ti
)1/q

Dqnq+1

(q + 1)! >
Dqa · t nq+1

q! + O(nq) .

This holds for a sufficiently large integer n precisely when (1.2) is satisfied. �

REMARK 1.2. By consideration of the dimensions of various Riemann-Roch spaces,
it is possible in some cases to improve Lemma 1.1. For instance, when t = (t1, . . . , tq ) =
(1, 0, . . . , 0), the estimate

dim Vj ≥ l(nD) − #{i ∈ Nq ; i · t < j }
used in the proof of Lemma 1.1 is always trivial. On the other hand, in this case we have the
obvious estimate

dim Vj ≥ l(nD − jD1) .

Using refinements of this observation, one may give an improvement of inequality (1.2) which
takes into account the information coming from the relevant Riemann-Roch spaces.
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The following result corresponds to [1, Theorem 4.4], stated therein in a different no-
tation. It provides a convenient choice of the weights ai , so that two certain inequalities are
satisfied. The first one will be used in applying Lemma 1.1, whereas the second one will be
used when the convergence properties assumed in Lemma 1.1 do not hold.

LEMMA 1.3 (Autissier). Suppose that D1, . . . ,Dr are ample divisors. Let ε > 0.
Then there exist positive integers a1, . . . , ar such that if D = ∑r

i=1 aiDi , then

(1.4)

∣∣∣∣ Dq

aiDi.Dq−1 − r

∣∣∣∣ < ε , i = 1, . . . , r ,

and for every index i in {1, . . . , r} and sufficiently large integer n,

(1.5)

∑
k≥1 l(nD − kaiDi)

l(nD)
>

rn

2q
.

PROOF. This is essentially [1, Theorem 4.4], up to the fact that inequality (1.4) is not
given in the statement of the theorem, but it is contained in its proof. For the reader’s conve-
nience, we repeat in our notation Autissier’s proof (for another proof of (1.4), see [5, Lemma
9.7]).

Let ∆ ⊂ Rr be defined as ∆ = {t = (t1, . . . , tr ) ; t1, . . . , tr ≥ 0, t1 + · · · + tr = 1}. For
every t ∈ ∆, let Dt be the R-divisor Dt = ∑r

i=1 tiDi and put φ(t) = (
∑r

i=1(D
q−1
t .Di)

−1)−1.
Finally, let us define the continuous map f : ∆ → ∆ by

f (t) =
(

φ(t)

(D
q−1
t .D1)

, . . . ,
φ(t)

(D
q−1
t .Dr)

)
.

By Brouwer’s fixed point theorem, there exists a point t = (t1, . . . , tr ) which is fixed for
f . This means that for each index i in {1, . . . , r}, φ(t)/(Dq−1

t .Di) = ti , so (D
q−1
t .tiDi) is

independent of i. Then D
q
t /(D

q−1
t .tiDi) must be equal to r . By approximating t by a rational

point of the form (a1/m, . . . , ar/m), we can achieve inequality (1.4). Inequality (1.5) follows
by using [1, Corollary 4.3], applied with E = aiDi , exactly as in the last part of the proof of
[1, Theorem 4.4]. �

For a rational function f ∈ k(X̃ )∗, we let div(f )0 denote the divisor of zeros of f . From
Autissier’s Lemma above we derive the following.

COROLLARY 1.4. Suppose that D1, . . . ,Dr are ample divisors. Let ε > 0. Then there
exist positive integers a1, . . . , ar such that if D = ∑r

i=1 aiDi , then∣∣∣∣ Dq

aiDi.Dq−1 − r

∣∣∣∣ < ε , i = 1 , . . . , r ,

and for a sufficiently large integer n and any i1, i2 in {1, . . . , r} with i1 �= i2, there exists a
basis f1, . . . , fl(nD) of L(nD) such that

(1.6) div

( l(nD)∏
i=1

fi

)
0

>

((
r

2q
− 1

)
Dq

q! nq+1 + O(nq)

)
(ai1Di1 + ai2Di2) .
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PROOF. Let us choose the integers a1, . . . , ar as provided by Lemma 1.3, so that (1.4)
holds and the first inequality of Corollary 1.4 is proved. Let n > 0 be an integer sufficiently
large so that inequality (1.5) of Lemma 1.3 holds. Let us fix two indices i1, i2 with i1 �= i2,
and consider the two filtrations of the space L(nD) defined for j = 1, 2 by the chain

L(nD) ⊃ L(nD − Dij ) ⊃ L(nD − 2Dij ) ⊃ · · · ⊃ {0} .

By the linear algebra [3, Lemma 3.2], there exists a basis f1, . . . , fl(nD) of L(nD) which
contains a basis of all the nonzero subspaces of the form L(nD − kDij ) for j = 1, 2 and

k ≥ 0. Then the order of vanishing of the product
∏l(nD)

i=1 fi at each of the divisors aij Dij is
at least

∑
k≥0

(k − n) dim(L(nD − kaij Dij )/L(nD − (k + 1)aij Dij ))

= −nl(nD) +
∑
k≥1

k dim(L(nD − kaij Dij )/L(nD − (k + 1)aij Dij ))

= −nl(nD) +
∑
k≥1

l(nD − kaij Dij ) .

Since, as we already observed, we have l(nD) = Dqnq/q! + O(nq−1), the sought inequality
(1.6) follows from the lower bound (1.5) for the term

∑
l(nD−kaij Dij ), provided by Lemma

1.3. �

We now prove Theorem CLZ.

PROOF OF THEOREM CLZ. By enlarging k and S, we can assume without loss of gen-
erality that D1, . . . ,Dr are defined over k and that every point in the intersection of any q

distinct divisors Di1 , . . . ,Diq is k-rational. By going to an infinite subsequence of the points,
we easily reduce to the case of S-integral sets of points R = ⋃∞

i=1{Pi} with the follow-
ing properties: for each v ∈ S, (Pi) converges v-adically to a point Pv ∈ X̃ (kv), and if
Jv = {j ; Pv ∈ Dj } and φj,v denotes a function defining Dj in a neighborhood of Pv , then
the limit

(1.7) tj,v = lim
i→∞

log |φj,v(Pi)|v∑
l∈Jv

log |φl,v(Pi)|v
exists for each j ∈ Jv .

For a sufficiently small ε > 0, let ai , i = 1, . . . , r , be positive integers as in Corollary
1.4 and let D = ∑r

i=1 aiDi . Let n be a sufficiently large integer. Let g1, . . . , gl(nD) be a basis
of L(nD). Let g : X̃ \ D → P l(nD)−1 be given by the map x 	→ (g1(x) : . . . : gl(nD)(x)).

Let v ∈ S. We consider various cases depending on where Pv lies. In each of these
cases, we shall prove an inequality of the following type (1.8) with the purpose of applying
the Subspace Theorem after summation. For a hyperplane H in a projective space P N , we
shall denote by λv,H a Weil function for H . Namely, if H is defined by a linear form L = 0
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and P = (ξ0 : . . . : ξN) is not in H , we set

λv,H (P ) = − log
|L(P)|v
sup |ξi |v .

The alluded to inequality is

(1.8)
l(nD)∑
j=1

λv,Hj,v (g(Pi )) > (l(nD) + ε) log max
j

|gj (Pi)|v + O(1) , i ∈ N ,

where the hyperplanes Hj,v are in general position.
The easiest case is when Pv does not belong to the support of D. In this case, let

H1,v, . . . , Hl(nD),v be any l(nD) hyperplanes of P l(nD)−1 in general position. Then inequal-
ity (1.8) holds trivially. In fact, Pv �∈ D, so |gj (Pi)|v is bounded for all i and j .

Suppose now that Pv lies in the intersection of m (and not more) distinct divisors
Di1 , . . . ,Dim with 1 ≤ m ≤ q − 1. After reindexing, we can assume that ai1 ti1,v ≥
ai2 ti2,v ≥ · · · ≥ aimtim,v . Let f1, . . . , fl(nD) be the basis from Corollary 1.4 for i1 and i2

(choosing i2 �= i1 arbitrarily if m = 1). Then each fj is a linear form in g1, . . . , gl(nD).
Let {L1, . . . , Ll(nD)} be the set of such linear forms and let {H1,v, . . . , Hl(nD),v} be the cor-
responding set of hyperplanes in P l(nD)−1. It is easily seen that with these choices, (1.8) is
equivalent to

(1.9) max
j ′ |gj ′(Pi)|εv

l(nD)∏
j=1

|fj (Pi)|v � 1

as i goes to ∞. It follows from inequality (1.6) of Corollary 1.4 that, for some rational function
φ that is regular at Pv ,

(1.10)
l(nD)∏
j=1

fj = φ(φ
ai1
i1,vφ

ai2
i2,v

)(r/2q−1)Dqnq+1/q!+O(nq )

m∏
j=3

φ
−aij

nl(nD)

ij ,v .

We exploit this formula by showing that on evaluating at Pi we obtain a small value. We have
l(nD) = Dqnq/q! + O(nq−1). Since, by assumption,

ai1 ti1,v + ai2 ti2,v ≥ (2/(q − 1))

m∑
j=1

aij tij ,v ,

we have (
r

2q
− 1

)
Dq

q! (ai1 ti1,v + ai2 ti2,v)n
q+1 −

m∑
j=3

aij tij ,v
Dq

q! nq+1

≥
m∑

j=1

aij tij ,v
Dq

q! nq+1
(

r

q(q − 1)
− 1

)
.

As r > q(q − 1), it follows easily from (1.10) and the definition of tj,v (1.7) that the left-hand
side of (1.9) is bounded if n has been chosen large enough. Thus (1.8) holds in this case.
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Suppose now that Pv belongs to exactly q distinct divisors Di1 , . . . ,Diq . We consider
two subcases.

SUBCASE A. Suppose that we have ai1 ti1,v, . . . , aiq tiq ,v ≥ (q2−q+1)−1 ∑q

j=1 aij tij ,v .

It is easily seen that, when
∑q

j=1 aij tij ,v is fixed, the minimum of
∏q

j=1 tij ,v subject to these

constraints is attained when q −1 among the aij tij ,v are equal to (q2 −q +1)−1 ∑q

j=1 aij tij ,v ;
in such a way we find that

q∏
j=1

tij ,v ≥ q2 − 2q + 2

(q2 − q + 1)q
∏q

j=1 aij

( q∑
j=1

aij tij ,v

)q

.

So the right-hand side of (1.2) is less than or equal to

(1 + 1/q)q(q2 − q + 1)q

q2 − 2q + 2

q∏
j=1

aij = (q2 + 1/q)q

q2 − 2q + 2

q∏
j=1

aij .

We now estimate Dq from below. Using Corollary 1.4, we have

(Dq)q > (r − ε)q
q∏

j=1

aij Dij .D
q−1 .

By the generalized Hodge index theorem [4, Ch. 1, Ex. 6] for j = 1, . . . , q ,

(Dij .D
q−1)q ≥ D

q
ij
(Dq)q−1 .

It follows that

(Dq)q > (r − ε)q(Dq)q−1
q∏

j=1

aij
q

√
D

q
ij

.

By assumption, r ≥ q2 − q + 1 and D
q
ij

≥ 1 for all j . So

Dq > (q2 − q + 1 − ε)q
q∏

j=1

aij .

For small enough ε, it is easily checked that the inequality

(q2 − q + 1 − ε)q > (q2 + 1/q)q/(q2 − 2q + 2)

holds for q ≥ 3. So the inequality (1.2) holds. Then by Lemma 1.1, for all sufficiently large n,
there exists a basis f1, . . . , fl(nD) of L(nD) such that the left-hand side of (1.9) goes to 0 as
i goes to ∞. So (1.9) is verified and if H1,v, . . . , Hl(nD),v are the hyperplanes corresponding
to f1, . . . , fl(nD) in the basis g1, . . . , gl(nD), then (1.8) holds.

SUBCASE B. Now suppose that, say, aiq tiq < (q2−q+1)−1 ∑q

j=1 aij tij ,v . This means
that the contribution of the corresponding divisor Diq is very small, so we shall essentially
ignore it and proceed as in the case when fewer than q of the divisors meet at our point.
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To carry this out, after reindexing, we can assume that ai1 ti1,v ≥ ai2 ti2,v ≥ · · · ≥ aiq tiq ,v .
Let f1, . . . , fl(nD) be the basis from Corollary 1.4 for i1 and i2. Since

ai1 ti1,v + ai2 ti2,v >
2

q − 1

(
1 − 1

q2 − q + 1

) q∑
j=1

aij tij ,v = 2q

q2 − q + 1

q∑
j=1

aij tij ,v

and r ≥ q2 − q + 1, we have(
r

2q
− 1

)
(ai1 ti1,v + ai2 ti2,v) −

q∑
j=3

aij tij ,v >

(
r

2q

2q

q2 − q + 1
− 1

) q∑
j=1

aij tij ,v ≥ 0 .

Then by calculations similar to the second case above, it follows that (1.9) holds. Thus, if
H1,v, . . . , Hl(nD),v are the hyperplanes corresponding to f1, . . . , fl(nD) in the basis g1, . . . ,

gl(nD), then (1.8) holds.
So we have indeed checked that (1.8) holds in every case.
Since R is a set of S-integral points on X , it follows that∑

v∈S

log max
j

|gj (Pi)|v = h(g(Pi)) + O(1)

for all i. So (1.8) implies, if n  0 and ε is sufficiently small,

∑
v∈S

l(nD)∑
j=1

λv,Hj,v (g(Pi)) > (l(nD) + ε)h(g(Pi)) + O(1) for i ∈ N .

By Schmidt’s Subspace Theorem (see e.g. [6, Theorem 1.1, Inequality (1.4)]), it follows that
g(R) is contained in the union of finitely many hyperplanes. Note that for n  0, the map g
is an embedding since D1, . . . ,Dr are ample and that, furthermore, since g1, . . . , gl(nD) are
linearly independent, g(X ) is not contained in any hyperplane of P l(nD)−1. It follows that R

is not Zariski-dense in X̃ . This proves the first part of the theorem.
To prove the existence of the set Y in the theorem, a little more care must be taken. First,

we have to use Vojta’s version [6] of Schmidt’s Subspace Theorem; in this version, up to
excluding finitely many approximating points (which may depend on the field of definition of
the approximating points and the set S), the exceptional hyperplanes can be chosen in a finite
set which depends only on the ‘target hyperplanes’, but neither on the field of definition of the
approximating points nor on the set S.

Now, our target hyperplanes we are choosing depend on Pv and the limits ti,v (in the case
that Pv belongs to q divisors).

Concerning the dependence on Pv , the construction of the target hyperplanes depends not
quite on Pv , but only on a maximal set of divisors Di containing Pv . Therefore the variation
of Pv gives rise only to finitely many possibilities.

Concerning the limits tij ,v (when Pv belongs to Di1 , . . . ,Diq ), it is easily seen that,
if t∗ij ,v are quantities which are sufficiently close to tij ,v (satisfying

∑q

j=1 t∗ij ,v = 1), the
target hyperplanes at v constructed in the proof of Theorem CLZ will be identical. Thus, by
compactness of {(t1, . . . , tq ) ∈ [0, 1]q ; ∑q

i=1 ti = 1}, it follows that we make use of only
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finitely many sets of target hyperplanes in the proof of Theorem CLZ. Now Vojta’s result on
the exceptional hyperplanes in the Subspace Theorem gives the existence of the set Y . �

REMARK 1.5.
1. The results may be in principle applied to study the integral points on a given variety,

but defined over a variable field of bounded degree, for instance the quadratic integral points
over a surface. Following a procedure already adopted for curves, one is led to study the usual
integral points over a symmetric power of the original variety. A difficulty which appears,
compared to the case of curves, is that the symmetric powers are singular if the dimension of
the original variety is greater than one.

2. Our result shows that removing seven ample divisors on a threefold suffices to ob-
tain degeneracy of integral points. However, this number may be decreased down to six or
even five, provided all of the divisors are assumed to be nearly parallel in the Néron-Severi
group. This kind of result may be proved by an entirely similar procedure. (If the divisors are
assumed to be actually parallel, then this follows already from Vojta’s results on semi-abelian
varieties [7].)

3. The results obtained with these methods appear to be strongly ineffective; namely,
even in the cases when one can prove finiteness, the methods do not provide a way to ef-
fectively bound the number of integral points (in the case of curves, however, see [2]). In
general, one can bound the degree of a proper subvariety containing the integral points, but
not the height of such a subvariety. As the bound on the degree depends on the height of
the original variety, this yields a problem when iterating these methods to effectively bound
the number of solutions in a finiteness result. We note, however, that the set Y in Theorem
CLZ can be effectively computed (this follows from the complexity bound on the exceptional
hyperplanes given in [6]).
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