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Abstract. In a previous paper, we showed that any Jacobi field along a harmonic map
from the 2-sphere to the complex projective plane is integrable (i.e., is tangent to a smooth
variation through harmonic maps). In this paper, in contrast, we show that there are (non-full)
harmonic maps from the 2-sphere to the 3-sphere and 4-sphere which have non-integrable
Jacobi fields. This is particularly surprising in the case of the 3-sphere where the space of har-
monic maps of any degree is a smooth manifold, each map having image in a totally geodesic
2-sphere.

Introduction. A harmonic map between smooth Riemannian manifolds is a smooth
map which extremizes the energy functional — a natural generalization of the Dirichlet inte-
gral. A Jacobi field along a harmonic map is an infinitesimal deformation of the harmonic
map which preserves harmonicity ‘to first order’.

It is important to know whether a Jacobi field is integrable, i.e., tangent to a family of
maps which are genuinely harmonic —not just to first order. We shall study this question
for maps between compact manifolds. Then, if all the Jacobi fields along the harmonic maps
between two given real-analytic Riemannian manifolds are integrable, it follows that the space
of harmonic maps between those manifolds is a finite-dimensional real-analytic manifold with
tangent spaces given by the Jacobi fields [1]. The case that we study here of maps from the
2-sphere to a Riemannian manifold N has special interest; for instance, the integrability of
Jacobi fields is related to the properties of the singular set of weakly harmonic maps from an
arbitrary Riemannian manifold to N [38] (see [32, p. 471]).

Whether the Jacobi fields are integrable is known only for a handful of cases, see [32].
In the present paper, we consider the case of 2-sphere to higher-dimensional spheres. Recall
that a smooth map from the 2-sphere is harmonic if and only if it is a minimal branched
immersion in the sense of [25]. The construction of all harmonic 2-spheres in spheres has
been understood for a long time, see [8, 9, 10, 11, 4, 7], however, the only case where the
integrability question was settled was for harmonic maps from the 2-sphere to itself [26].

Thinking of the codomain 2-sphere as CP!, it is natural to consider next maps into the
complex projective plane CP2. In this case, the authors [32] showed that all Jacobi fields
along harmonic 2-spheres in CP? are integrable, by analysing the construction [17] of all
harmonic maps.
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In contrast, in the present paper we show that, along some harmonic 2-spheres in S* or
S*, there are non-integrable Jacobi fields. From the twistor theory for harmonic maps, we
see that the space of harmonic maps ¢ : S> — S$* of fixed twistor degree is an algebraic
variety [41]; at a non-smooth point ¢, there are non-integrable Jacobi fields. When the twistor
degree is at least three, the algebraic variety is the union of three components with transverse
intersection; we call the maps in the intersections of those components collapse points. Such
maps are not full, but are the limits of families of full maps; they are non-smooth points, and
so have non-integrable Jacobi fields.

The case of maps into S> follows from the S* case, but is more surprising since the space
of harmonic 2-spheres in S3 of any fixed twistor degree is a smooth manifold. At some points
of this manifold, there are extra Jacobi fields not in its tangent space, and so non-integrable.

A main tool is to show that Jacobi fields along a full harmonic map ¢ : S* — S* can
be lifted to deformations of its twistor lift— a non-trivial result in the presence of branch
points — this allow us to examine the Jacobi fields by lifting the problem to the holomor-
phic category. For non-full maps, we may not be able to lift Jacobi fields; instead, we
use a correspondence between Jacobi fields and eigenfunctions of a Schrodinger equation
[34, 20, 18, 19, 30].

The paper is arranged as follows. In Section 1, we recall the twistor construction of
harmonic maps from S? to $* in terms of horizontal holomorphic maps from S? to CP3, and
study the infinitesimal deformations of such holomorphic maps.

In Section 2, we show how the twistor construction gives diffeomorphisms between the
spaces of holomorphic and harmonic maps (Theorem 2.3). We then show that Jacobi fields
can be lifted, thus giving bijections between the infinitesimal deformations of the harmonic
and holomorphic data (Theorem 2.5). We use this in Section 3 to show the non-integrability of
some Jacobi fields along certain non-full harmonic maps into S*. Then using the Schrodinger
equation as above, we deduce the same property in the case of S>.

For a harmonic map from a 2-sphere, equivalently a minimal branched immersion, the
(real) dimension of the space of Jacobi fields along the map is called its nullity (for the en-
ergy). In Section 4, we relate this to the nullity for the area, and compare our results with
those of S. Montiel and F. Urbano for minimal immersions of §% in S*.

In Section 5, we study the subvariety of collapse points, equivalently, the subvariety of
maps admitting an extra eigenfunction, showing that it is non-empty for all twistor degrees
d > 3, and finding it explicitly for the important case 3 < d < 5. We discuss the influence of
branch points: we note first that, when d = 3, collapse points occur precisely when the four
branch points exhibit the most symmetry; we then analyse the case d = 4 with branch points
already exhibiting some symmetry, and find the further necessary and sufficient conditions to
give collapse points.

For general facts on Jacobi fields along harmonic maps, see [44, 38]; some of the results
of this paper were announced in [45].

The authors thank the referee for many useful comments. The second author thanks
Luis Fernandez, Bruno Ascenso Simdes and Martin Svensson for lively discussions on this
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work, and the Belgian FNRS for financial support for part of this work. This work is part
of a programme started by a question posed by L. Simon during the first MSJ International
Research Institute in Tohoku University, Sendai (1993).

1. Preliminaries.

1.1. Harmonic maps. Harmonic maps are defined to be the solutions to a variational
problem as follows (see, for example, [16, 12, 13, 14]).

Let M = (M™, g) and N = (N", h) be compact smooth Riemannian manifolds without
boundary of arbitrary (finite) dimensions m and n, respectively, and let ¢ : (M, g) — (N, h)
be a smooth map between them. Define the energy of ¢ by

1
(1.1) E(p) = E/MIdfﬂlzwg

where w, is the volume measure on M defined by the metric g, and |dg| is the Hilbert—
Schmidt norm of d¢ given at each point x € M by
m
(12) ldey | = "(dex(e;). dox(ei))
i=1
for any orthonormal basis {e;} of T, M. Here, and throughout the paper, (-, -) denotes the inner
product on the relevant bundle £ — M induced from the metrics on M and N and | - | the
corresponding norm given by |v| = 4/{v,v) (v € E). Further, we shall use I"(E) to denote
the space of smooth sections of E.
By a smooth (one-parameter) variation @ = {¢;} of ¢ we mean a smooth map @ :
M x (—e,e) - N, @(x,t) = ¢:(x), where ¢ > 0 and g9 = ¢. The variation vector field
of @ = {¢} is defined by v = d¢,/9dt|;=0 , this is a vector field along ¢, i.e., a section of the
pull-back bundle ¢ "' TN — M; we shall say that v is tangent to the variation {¢;}.
A smoothmap ¢ : (M, g) — (N, h) is called harmonic if it is an extremal of the energy
integral, i.e., for all smooth one-parameter variations {¢;} of ¢, the first variation % E(¢)li=0
is zero. We compute (see, for example, [13]):

d
(1.3) d—E(wt)lt:o = —/ (t(9), v) wyg ,
t M

where t(p) € F((p‘lTN) is the tension field of ¢ defined by

m
T(p) = Trace Vdgp = Z Vdo(e;, e;)
i=1

= > {V&dg(e)) — dp(VY e} .
i=1

Here VM denotes the Levi-Civita connection on M, V¥ the pull-back of the Levi-Civita con-
nection VY on N to the bundle ¢"!TN — M, and V the tensor product connection on the
bundle T*M ® (p_1 T N induced from these connections. Equation (1.3) says that t(¢) is the
negative of the gradient at ¢ of the energy functional E on a suitable space of mappings, i.e.,
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it points in the direction in which E decreases most rapidly [12, (3.5)]. It follows from (1.3)
that ¢ is harmonic if and only if it satisfies the harmonicity equation: t(¢) = 0.

For any manifold M, T°M = TM ® C will denote the complexified tangent bundle.
When (M, J) is an almost complex manifold, this decomposes into the direct sum of the
holomorphic (or (1, 0)-) tangent bundle 7'M and the antiholomorphic (or (0, 1)-) tangent
bundle T” M these being the (+i)- and (—1i)-eigenspaces of J. When (M, J) is a complex
manifold, these three bundles are holomorphic bundles, and, as is standard, we shall use the
map v > its (1,0)-part v/ = (v — iJv)/2 to identify TM with T'M, thus giving TM a
holomorphic structure under which the action of J on T M corresponds to multiplication by i
inT'M.

Now suppose that (M2, g) is a 2-dimensional Riemannian manifold. Then the energy
(1.1), and so harmonicity, of a map depend only on the conformal structure induced by g. In
fact, let (x1, x2) be isothermal coordinates and write z = x1 + ixp . Write d/dz = (9/9x1 —
i0/0x2)/2 and 0/0z = (9/9dx1 + 19/9x2)/2; the harmonicity equation can then be written
(see, for example [3, Section 3.5]):

(1.4) ye 09

d
00z 3, =0 or, equivalently, V ¢

8/813_220‘

When M? is oriented, by taking charts consisting of oriented isothermal coordinates
(x1, x2), we give M 2 the structure of a one-dimensional complex manifold, or Riemann sur-
face with complex coordinates z = x1 + ixp. Then 9/0z and 9/9z provide local bases for
T'M and T” M, respectively.

Forn € {1,2,...}, let S" be the unit sphere in R"t! with the induced metric, and let
CP" be the n-dimensional complex projective space with its Fubini-Study metric of constant
holomorphic sectional curvature. We shall frequently identify the complex projective line
CP! with the 2-sphere by the mapping

(15) (20, 21] > e (Iz0* = 12117, 22021) ;

lzo2 + |z

this is biholomorphic and an isometry up to scale; we further identify CP!' conformally
(in fact, biholomorphically) with the extended complex plane C U {oo} by the mapping
[z0, z1] = zj 111. The composition of these two identifications is the biholomorphic map
given by stereographic projection o : §* — C U {o0}:

(1.6) z=0(x1,x2,x3) = (x2 +1ix3)/(1 + x1) .

Amap ¢ : M? — N is called weakly conformal if, away from points where dg is zero, it
preserves angles; in a local complex coordinate z on M2, this can be expressed by the equation

do dp\°
(1.7) <_‘p,_¢’> —0
0z 0z

Here (-, -)¢ denotes the complex-bilinear extension of the inner product (-, -) on N. Note that
(1.7) says that d¢/0z is orthogonal to d¢/dz with respect to the Hermitian extension of the
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inner product:
(1.8) (, ™ = (v W) (v, w € TSN, x € N).

Note that the energy of a weakly conformal map is equal to its area. As is well-known,
any harmonic map from the 2-sphere is weakly conformal, indeed, the harmonic equation
(1.4) shows that the quantity (d¢/dz, dp/dz)°dz? is a well-defined holomorphic differential
on SZ, and so must vanish.

A minimal branched immersion is a smooth map from a Riemann surface which is a
conformal minimal immersion except at isolated points where it has branch points in the sense
of [25]. A non-constant weakly conformal map is harmonic if and only if it is a minimal
branched immersion; in particular, a smooth map from S* is harmonic if and only if it is a
minimal branched immersion.

More generally, a smooth map ¢ : M?> — N is called real isotropic if, in any local
complex coordinate z, the quantities

ro1( 99 s—1( 99 ‘
Mrs (@) = <(V§/81) 1<3_z) + (Vij50) 1(8_z>>

are zero for all integers r, s > 1. Note that this condition is independent of the complex coor-

dinate chosen, and putting » = s = 1 shows that any real-isotropic map is weakly conformal.
Let ¢ : §> — S” be a harmonic map from the 2-sphere to an n-sphere (n > 2). Then ¢

is real isotropic [8, 9]. Indeed, one shows by induction on k = r 4 s that 1, s(¢) dz* defines a

holomorphic k-differential, i.e., a holomorphic section of ®k T,;Sz, and so must vanish.
Leti: §" — R"*! denote the standard isometric inclusion mapping. For a smooth map

@ M?* — S" write

(1.9) P =iogp.

Then (see, for example, [12, 3]), ¢ is harmonic if and only if

92 AP |2
(1.10) _ =—‘— @
0z 0z 0z
or, more invariantly,
(1.11) AMp = |do 2P

where AM is the Laplace-Beltrami operator on (M, g) (conventions as in [13, 44]).
The real isotropy of ¢ can be expressed in terms of @ by
P P
Note that (1.12) holds automatically for » 4+ s = 1, and coincides with the weak conformality
condition (1.7) for (r, s) = (1, 1).
The real isotropy allows us to construct all harmonic maps from S to §” explicitly from
holomorphic data, see [8, 9, 10, 11, 4, 7]; the case n = 4 is rather special, we shall recall that
construction below.

c
(1.12) > =0 forall r,s €{0,1,2,...} with r+s5>1.



170 L. LEMAIRE AND J. WOOD

1.2. Infinitesimal deformations of harmonic maps. Let¢ : (M, g) — (N, h) be har-
monic. We can describe the second variation of the energy at ¢ as follows. Let v, w €
I'(¢~'TN). Choose a (smooth) two-parameter variation @ = {¢or.s} of @ with

99y s 0@ s
=v and =w.
9 |.9=00,0) 95 |(1,9=(0,0)
The Hessian of ¢ is defined by
92E (1.5
(1.13) H, (v, w) = I E@rs) .
atas (T,S)=(0,0)

This depends only on v and w; indeed, it is given by the second variation formula (see, for
example, [13]):

(1.14) Hy(v, w) = /M(J‘p(v), w) wg

where

Jp(v) = A%v — Trace RV(dg, v) dg;
here A? denotes the Laplacian on ¢ ~'T N and R" the curvature operator of N (conventions
as in [13, 32, 43, 44]). The mapping J, : F(q)‘lTN) — F((p‘lTN) is called the Jacobi
operator (for the energy); it is a self-adjoint linear elliptic operator. A vector field v along ¢
is called a Jacobi field (along ¢) if it is in the kernel of the Jacobi operator, i.e., it satisfies the
Jacobi equation

(1.15) J,()=0.

By standard elliptic theory, the set of Jacobi fields along a harmonic map is a finite-dimen-
sional vector subspace of I" ((p_1 TN).

We shall make use of the following interpretation of the Jacobi operator as the lineariza-
tion of the tension field [32].

DEFINITION 1.1. Let {¢;} be a smooth 1-parameter family of maps from (M, g) to
(N, h). Say that {¢;} is harmonic to first order if its tension field is zero to first order in the
sense that (see below for the meaning of 9/97)

=0.

a
(1.16) T(po) =0 and —7(¢)
ot t=0

We shall write the condition (1.16) succinctly as
(1.17) T(p) = o(1).

PROPOSITION 1.2. Let ¢ : M — N be harmonic and let v € I'(¢"'TN). Let
@ = {¢;} be a smooth variation of ¢ tangent to v. Then

B]
(1.18) Jo(v) = — ar(wt)

t=0
In particular, v is a Jacobi field along ¢ if and only if {¢;} is harmonic to first order:
(@) = o(1).
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The meaning of (1.18), here and in [32, 43], is that the components of each side with
respect to a local frame on N satisfy J,(v)* = —(3/0t)t(¢;)%|1=0. Alternatively d/d¢ in
(1.18) and (1.16) can be replaced by the covariant derivative Vg;a ; in the pull-back bundle
@~ TN. The resulting expressions are all equal since 7 (¢) = 0.

In particular, if {¢;} is a smooth variation of ¢ through harmonic maps, its variation
vector field v = d¢; /9t|;— is a Jacobi field. This suggests the following definition.

DEFINITION 1.3. A Jacobi field v along a harmonic map ¢ : M — N is called inte-
grable if it is tangent to a smooth variation {¢;} of ¢ through harmonic maps, i.e., there exists
a one-parameter family {¢;} of harmonic maps with g = ¢ and d¢,/dt|;=0 = v.

When all Jacobi fields are integrable, many consequences follow, see [32]; here we quote
only one.

PROPOSITION 1.4 ([1]). Let gy : (M, g) — (N, h) be a harmonic map between real-
analytic manifolds. Then all Jacobi fields along ¢ are integrable if and only if the space of
harmonic maps (C>%-)close to @y is a smooth manifold whose tangent space at @y is exactly
the space ker I, of Jacobi fields along it.

A vector field v along a conformal map ¢ : M?> — N from a surface is called conformal
if (1.7) is satisfied to first order for any one-parameter variation of ¢ tangent to v. Confor-
mality of harmonic maps from a 2-sphere is preserved to first order by Jacobi fields, see [43,
Section 3.1]. Further, for harmonic maps into spheres, isotropy (1.12) is preserved to first
order, as in the following result, which is equivalent to [43, Proposition 3.4].

PROPOSITION 1.5. Let ¢ : S — S" be a harmonic map, and let v be a Jacobi field
along it. Then v preserves isotropy to first order in the sense that, if {¢;} is any one-parameter
variation of ¢ tangent to v, then, writing ®; = i o ¢, where i : S* — R"*! is the standard
inclusion, we have

D, 5D\
(1.19) W’ B_ZA = o(t)
for all integersr,s > Owithr +s > 1. O

1.3.  The twistor space of the 4-sphere. We recall the well-known construction of the
twistor space of the 4-sphere, and its identification with CP3 and SO(5) /U(2). The seminal
article on this is [2]; our account is based on that in [3, Chapter 7].

Let M = (M*", g) be an oriented Riemannian manifold of even dimension 2m. Let
SO(M) — M denote the bundle whose fibre at x € M is the set SO(T, M) of orthonormal
oriented frames at x. Note that SO(2m) and its subgroup U(m) act on this set. Let x € M. By
an almost complex structure at x (or on Ty M) we mean a linear transformation J, : TyM —
Ty M such that J. xz = —Idr, p; if it is isometric, we call it an almost Hermitian structure at x.
Given an orthonormal basis {eq, ..., e} of Ty M, setting

(1.20) Jrerj1=e2j, Jrepyj=—exj1 (j=1,...,m)
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defines an almost Hermitian structure J, at x which we call positive (resp. negative) according
as {er, ..., exn} is positively (resp. negatively) oriented. This defines a map from the set
SO(T M) of positively oriented orthonormal frames at x to the set Z‘j = Z‘j (M) of positive
almost Hermitian structures at x; that map factors to a bijection SO(7,M)/U(m) — E;r
which endows X with the structure of a Hermitian symmetric space. Further, on fixing an
orthonormal basis for T M, we have an isomorphism SO(7, M) = SO(2m) which induces an
isomorphism of X with SO(2m)/U(m) .

Let (V, (-)) be an inner product space such as (i) R" with its standard inner product
or (ii)) Ty M with the inner product given by the metric. Call a subspace P of V¢ =V ® C
isotropic if (v, w)* = 0 for all v, w € P. A subspace P of T{M is isotropic if and only
if it is orthogonal to its complex conjugate P, with respect to the Hermitian inner product
(1.8). Then there is a one-to-one correspondence between the set of all Hermitian structures
Jy at x and the set of all m-dimensional isotropic subspaces P given by setting P equal
to the (0, 1)-tangent space given by the (—i)-eigenspace of J,; we call P positive (resp.
negative) according as Jy is positive (resp. negative). More explicitly, given an orthonormal
basis {e1, ..., ez} of Tx M, if Jy is given by (1.20), then P is the complex subspace of 7'f M
spanned by {e] +iex, ez +1ies, ..., en—1 +1e2m}.

Let SO(M) — M be the principal bundle of positive orthonormal frames with fibre
SO(Ty M) at x € M. Then the (positive) twistor bundle of M is the associated fibre bundle
7 Xt = XH(M)=SO(M) xso@m) SO(2m)/U(m)

(.21 ~SO(M)/U(m) — M .

The fibre of 7 at x is the set X7 of positive almost Hermitian structures at x. The map 7
is called the twistor map or twistor projection and its total space X is called the (positive)
twistor space of (M, g). The manifold X has a canonical almost complex structure obtained
as follows. First, each fibre Z‘j of m has a complex structure J V; indeed, it has the struc-
ture of a Hermitian symmetric space as described above. Call the bundle of tangents to the
fibres the vertical subbundle V(X T); then the Levi-Civita connection VM of (M, g) defines a
complementary subbundle H(X 1) of T X7, called the horizontal subbundle. Thus, we have
a decomposition

(1.22) T =vEHeHET);

we shall denote the associated projections by the same letters, viz., V : TX T — V(X ) and
H:TXT — H(E). BEachw € X7 defines an almost complex structure on Ty () M; we
use the isomorphism defined by the differential dmy |7, (z+) 1 Huw (X ) - Tr M to lift
this to an almost complex structure «7117;_[ on Hy (X 1). Then the formula

(1.23) Tw=(TY, T wexzt)

defines an almost complex structure 7 on X+,
Later, we shall need to complexify the decomposition (1.22) to a decomposition

(1.24) TCXt =V e HE(ZT);
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we continue to denote the associated projections by V and . This last decomposition restricts
to a decomposition

(1.25) st =yEHeH E

of the (1, 0)-tangent bundle; we denote the associated projections by V' and H’.
We now identify the twistor space Xt (5%) of §* and corresponding twistor projection

(1.26) 72T (shH > st

We use the following general theory for the twistor space of an oriented 4-dimensional Rie-
mannian manifold (M*, g). Letm : Z% — M* be a Riemannian submersion from a Kihler
manifold (Z°, G, J). Suppose that 7 has totally geodesic fibres which are connected compact
complex submanifolds. Then we have a direct sum decomposition of bundles over Z°:

(1.27) 725 =Vv(Z% @ H(Z),

where V(Z°) is the bundle of tangents to the fibres of 7 and H(Z°) is its orthogonal comple-
ment with respect to the metric G. Then, foreachw € Z 6 Jy restricts to an endomorphism of
Hw(Z%); we use the isomorphism dry, [/, (z6y to transfer this to an almost Hermitian structure
t(w) on T,,(w)M4, thus defining a bundle map ¢ : 76 - ztm.

The integrability tensor of 'H is defined by

(1.28) [(X,Y)=V(X,Y]) (X,Y e '(H(Z%)).

Say that H(Z°®) is nowhere integrable if this is non-zero at all points. For the following, see,
for example, [3, Section 7.2].

PROPOSITION 1.6. (i) The map t : (Z%,J) — (Xt (M%), J) is holomorphic and
maps H(Z®) to H(Z ™).
aG) If H(ZG) is nowhere integrable, then t is a bundle isomorphism.

Thus, 7 : Z® — M* provides a model for the twistor bundle £+ of M*. When M* is
the 4-sphere, there are two realizations of this, as follows.

1) A quadric Grassmannian as twistor space. For any positive integers m and n with
2m < n, we define the quadric Grassmannian 7T,, , to be the following submanifold of the
complex Grassmannian G, (C"):

Tmn ={P € G, (C"); P is isotropic}

(1.29) ={P € G (C"); (v,w)¢ =0 forall v, w € P}.

The Kihler structure on G, (C") restricts to a Kéhler structure on 7y, ,,. Clearly, 7,, , can be
identified with the homogeneous space SO(n)/U(m) x SO(n — 2m). Since the frame bundle
of §* can be identified with the homogeneous principal bundle SO(5) — SO(5)/SO(4) =
§4, it follows from (1.21) that the twistor bundle of S is the quadric Grassmannian 7, 5 =
SO(5)/U(2) with twistor projection the Riemannian submersion SO(5)/U(2) — SO(5)/
SO(4) induced by the canonical inclusion of U(2) in SO(4). More geometrically, the twistor
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projection 7 : 7.5 — S%is given by
(1.30) n(P)= (P& P)*

where the direct sum is regarded as an oriented real subspace and (P @ P)* denotes its
positively oriented unit normal. Explicitly, if {eq, e1, €2, e3, e4} is a positive orthonormal basis
of R such that P = spanc{e; + iez, e3 + ies} then 7 (P) = ep. We thus have an orthogonal
direct sum decomposition

C>=P® P ®spancep.

To identify the vertical and horizontal spaces of the Riemannian submersion (1.30), recall
first that the (1, 0)-tangent space of G,,(C") at P € G,,(C™) may be identified with the space
L(P,C"/P) = L(P, P1) of complex linear maps from P to C"/P = P, see for example
[17, Section 2A]. Then it follows from (1.29) that, for P € 7, ,, we have

TpTmn ={€ € L(P, P (0(x), )€ + (x, £(y))¢ =0 forall x,y € P}.

It is easy to see that the decomposition (1.25) into (1, 0)-vertical and horizontal spaces at
P e Tsisgivenby TpTo 5 =V, & H)p where

Vp={t € L(P, P); (£(x), y)* + (x, £(y))* =0},

(1.31) ,
H'p =L(P, spangeo) .

2) CP? as twistor space. Let H = {a + bj : a,b € C} denote the skew-field of
quaternions. The map a + bj > (a, b) gives a canonical identification of H with C? and so
of H? with C*. Let HP' be quaternionic projective space consisting of all one-dimensional
quaternionic subspaces of H?; thus HP! is the quotient of H? \ {0} by the (left)-action by
H \ {0}. We identify HP'! with §* by formula (1.5) with the z; in H. Then we have the
celebrated Calabi-Penrose twistor map

(1.32) 7:.Ccpd > s

given by mapping a complex one-dimensional subspace spancv € CP?3 to the unique quater-
nionic one-dimensional subspace of H> = C* which contains it; explicitly, m(spangv) =
spangyv = spanc{v, juv}. Give CP3 its standard Fubini-Study metric and standard complex
structure J so that it becomes a Kéhler manifold and = becomes a Riemannian submersion
(up to scale). Then (1.32) is another realization of the twistor bundle 7 : X+ (% — $* with
the decompositions (1.22), (1.24) and (1.25) reading

(1.33) TCPP=H®V, TCPP=H@®V', TCPP=HaoV,

where H is the orthogonal complement of V' with respect to the Fubini-Study metric on CP>.

It is easy to verify that both the above models have nowhere integrable horizontal spaces,
so satisfy the hypotheses of Proposition 1.6. They can thus be used as models for the twistor
space Xt (5%) of $*. We shall need the following further properties of that twistor space; to
prove these, it is convenient to use its realization as CP? discussed above.



JACOBI FIELDS ALONG HARMONIC 2-SPHERES 175

Define a tensor field A" e I'(T*CP?® ® H* ® V) by flg}Y = V(V)?P3 Y) (X €
I'(TCP3), Y € I'(H)). This extends by complex linearity to a section of TS CcP3® HS ® Ve
which we continue to denote by A™ . The tensor A" has the following properties.

LEMMA 1.7. (i) Forany X € I'(T°CP3), A} respects J, ie., AR(JY) = JARY
forallY € I'(H°).

(ii) fl?x{ is zero for all X € V°.

(iii) The (1, 0)-horizontal subbundle H' is a holomorphic subbundle of T’ CP3; equiv-
alently A;iy =0forall X € I'(T'CP3),Y € I'(H)).

PROOF. (i) This follows quickly from the parallelity of J.

(i) LetX, Z e I'V°)and Y € I'(H®). Then we have (A?Y, Z) = (VgPSY, Z) =
—(Y, VgP 'z ) = 0, since the fibres of 7 are totally geodesic.

(iii) Let X,Y € I'(H®). Since 7 is a Riemannian submersion, AH s antisymmetric on
horizontal vectors [36]. Thus, using part (i),

(1.34) Ay = A ax) = 1 Afx = T ARy
together with (ii) this gives (iii). 0

Denote the restriction of A to H¢ by A™ e I'(HS ® HS ® V°). This is essentially
O’Neill’s tensor [36]; we shall call it the second fundamental form of 'H (in TCP?3). This
tensor has the following properties.

LEMMA 1.8. (i) A" isantisymmetric, i.e., A¥Y = —AX forall X, Y € I'(H°).
Hence .AZ('(Y =1(X,Y)/2 (X,Y € I'(H°)) where I is the integrability tensor (1.28) of 'H.

(i) AM restricts to a tensor AT € T'(H)* ® (H))* ® V') which we shall call the
second fundamental form of H’.

(iii) For each w € CP? and non-zero X € H.,, the linear map A} : M, — V. is
non-zero.

@iv) AM s holomorphic in horizontal directions in the sense that VZ.AH/ = 0 for all
Z € H'. (Here V denotes the connection on H @ HS ® V° induced from the Levi-Civita
connection VEP* of CP3))

PROOF. (i) Antisymmetry follows as for AM above. Thus
H H 1 1
AYY = Ay X = EV([X’ Y] = EI(X’ Y).

(i) This quickly follow from (1.34).

(iii) Suppose that there is some w € CP3 and non-zero X € H,, such that A;;[/Y =0
for all Y € H,. Then Ay/X = —A7X1/Y = 0. Choose Y such that {X, Y} is a basis for
H.,. Then these equations together with antisymmetry show that AM' s zero. It follows from
this and Lemma 1.7(iii) that AM is also zero. However, this is not the case, as H is nowhere
integrable by O’Neill’s formulae [36].
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(iv) Let X, Y and Z be holomorphic sections of 7’. Then, using the definition of AH,,
we have

(VA )xY = V(S (A )
=V v )
=V (V1) Vv S T))) .

Now, the last term on the right-hand side is zero since H(Vgp ’ Y)) lies in H’ which, by
Lemma 1.7(iii), is a holomorphic subbundle of 7¢CP3. Using the definition of the curvature
tensor, the first term on the right-hand side equals

VP (VS + VIV V) + VR(X, 2)Y) .

The first term of this is zero by holomorphicity of Y; the second term is zero since [Z, X] =

VgP X - VgP ®Z which vanish by holomorphicity of X and Z; and the last term is zero by
the standard formula [28, Chapter 9] for the curvature tensor of CP3. O

1.4. Holomorphic maps into the twistor space. Let Hol(S?, CP?) denote the set of
holomorphic maps from the Riemann sphere S% to CP>. On identifying S? biholomorphically
with the extended complex plane {z € CU{0o}} asin (1.6), we see thatany f € Hol(S2, CP?)
is of the form

(1.35) f(@) =[F@)]=[Fo(2), Fi(2), F2(2), F3(z)] (z € C U {oo})

where F = (Fp, F1, F», F3) is a quadruplet of polynomials which we take to be coprime;
we interpret f(oo) as a limit. (Here, for W € ct \ {0}, [W] = [W1, W>, W3, W4] denotes
the point with homogeneous coordinates (W1, W, W3, Wy) so that [W] = p(W) where p
denotes the natural projection from C 4 \ {0} to CP3.) The degree of f is defined to be the
degree of the induced mapping on cohomology: f* : Z = H*(CP3,Z) — H*(S%,Z) = Z,;
this is equal to the maximum degree of the polynomials F; .

We give Hol(S?, CP3) the compact-open topology. Then its connected components are
the spaces Holy(S2, CP3) of holomorphic maps of degree d. Let C [z]3 denote the vector
space of all quadruplets of polynomials of degree at most d; taking coefficients defines a
canonical isomorphism of C [z]g with C*?**_ This factors to a canonical identification of the
projectivization P(C[z]%) with CP4I+3,

The map i : Hol, (8%, CP3) — P(C[z]fl.) given by f +— [Fo, F1, F>, F3] defines a
bijection onto the dense open subset V; of P(C [1]3) = CP**3 given by those quadru-
plets of polynomials which are coprime and of maximum degree exactly d. Giving V; the
subspace topology, it is easily seen that this bijection is a homeomorphism which endows
Holy (S2, CP3) with the structure of a complex manifold of dimension 4d + 3.

Call amap f : S — CP? full if its image does not lie in a proper projective subspace
CP?> C CP3. Let Holfl““(Sz, CP?) denote the space of full holomorphic maps of degree
d. Now i maps Holfluu(Sz, CP?) onto the open subset Vj““ of V; given by those quadruplets
F € V; whose components F; are linearly independent. Since any four polynomials of degree
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< 2 are linearly dependent, Vj““ is non-empty if and only if 4 > 3. Hence, Holfl““(S 2, cpP?)
is empty if d < 2 and is a complex manifold of dimension 4d + 3 if d > 3.

A smooth map f : §?> — CP? is called horizontal if the image of its differential
is contained in the horizontal subbundle H given by (1.33). Let w = [W] where W =
(Wo, Wi, Wa, W3); then, on identifying T, CP3 with L(w, wh), the (1, 0)-vertical space Vi,
at w is the subspace L(w, span(jW)) where jW = (=W, Wy, — W3, Wz). A holomorphic
map (1.35) is horizontal if and only if the image of df is Hermitian orthogonal to V' in
T'CP3. To write this nicely, let Jy denote the matrix

0 -1 0 0
1 0 0 0
=109 0 0o -1 |
0 0 1 0

then a vector v = dpw (V) at w is horizontal if (V, JoW)¢ = 0.

Note that the group of holomorphic isometries of CP? is the projective group PU(4)
corresponding to U(4). The subgroup of U(4) which preserves Jy and hence the horizontality
condition, is the symplectic group Sp(2), cf. [5].

Foranyd € {1,2,...},defineamap Q = Qg : C[z]fl — C[z]2q—2 by

Q(F) = Qu(F) = (F, JoF') = {Fy, F1} + {F>, F3}

1.36
(130 — F\F| — FoF| + FsF} — FyF).

Here, for any polynomials G, G2, we write {G1, G2} = —G1G), + G G>. Note that
deg{G1, G2} = deg G| +deg G, — 1 unless deg G| = deg G, in which case deg{G1, G2} <
deg G| + deg Go — 2. Then f = [F] € Holy(S%, CP3) is horizontal if and only if

(1.37) Q(F)=0.

Note that this condition makes sense for any choice of holomorphic lift ' of f defined on an
open subset of the domain and not necessarily polynomial, and is independent of that choice.

Thus, under the inclusion mapping i : Holy(S%, CP3) — CP*+3, the space of hori-
zontal holomorphic maps HHol, (5%, CP3) of degree d corresponds to the intersection of the
algebraic variety Z(Qy) = {[F] € P(C[z]fl.) ; Q4 (F) = 0} with the dense open subset V; of
P(C [z]fl). The subspace HHolg.“H(Sz, CP?) of full horizontal holomorphic maps corresponds
to the intersection of Z((Q,) with the smaller dense open subset Vj““ of P(C [z]fl).

Given a holomorphic map f : M?> — CP3, we form the pull-back bundles V' =
f~'(V)and H' = f~'(H’) over M?. They are complex subbundles of the holomorphic bun-
dle f~'T’CP3. For any complex coordinate z for M2, define linear bundle maps Ay AT
H' — V' locally by

A (V) =V (V] V). Af(Y) = V(YY) (Y e [(H).

Here V denotes projection associated to the pull-back of the decomposition of complexified
bundles (1.24); parallelity of J as in Lemma 1.7(i) ensures that the maps A, and A’ have

image in V'. Similar definitions can be given for A/, , Ay, : V' — H' by reversing the
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roles of H and V. It is easy to see that A}, and AY,, are minus the adjoints of A, and A’,,,

respectively. Note that we have used a complex coordinate for convenience; our results will
not depend on that choice.

Recall that, if M? is a Riemann surface, any complex bundle E — M? equipped with
a connection V£ has a unique holomorphic structure such that a section s is holomorphic if
and only if Vgs =0 (Z e T'M?) [29]; this is the Koszul-Malgrange holomorphic structure.
When E = T’ M?, this coincides with the natural holomorphic structure on 7'M 2,

Say that a smoothmap f : M?> — CP?3 is vertical if its image lies in a fibre of the twistor
projection (1.32), equivalently, 7 o f is a constant map. We have a version of Proposition 1.8
for the pull-back bundles H’ and V' as follows.

PROPOSITION 1.9. Let f : M?> — CP3 be a holomorphic map.

(i) H'is a holomorphic subbundle of f~'T'CP?; equivalently, A, =0.

(ii) Suppose that f is horizontal. Then A;{, is holomorphic with respect to the Koszul-
Malgrange holomorphic structure on H'* @ V', i.e., Vg;;@vl(A’ /) = 0; equivalently, A, is
antiholomorphic in the sense that Vg///gZ@H/ (A"’,,) =0.

(iii) Suppose that f is not vertical. Then A’y is not identically zero; equivalently A,

is not identically zero.

PROOF. (i) Itis the pull-back of a holomorphic subbundle by a holomorphic map.

(ii) From its definition, we see that A", is the pull-back of A7Z'[/ where Z = df(9/0dz),
so the result follows from Lemma 1.8(iv). Taking the adjoint yields Vgl/g f’H / (A}) =0.

(iii) For any x € M?, on identifying H with H’f(x), we have A’H, = AY'| where
Z =df,(d/9z) € T}.(X)CP3. By Lemma 1.7(ii), this equals A%l(z). Choose x to be a point
where f is not vertical so that H(Z) is non-zero. Then A%/(Z), and so A’H,, is non-zero by
Lemma 1.8(iii). O

1.5. Infinitesimal deformations of holomorphic maps. Let f : M — N be a holo-
morphic map between complex manifolds. For any u € I'(f ' TN), let u’ denote its (1, 0)-
component under the decomposition f~!T¢N =.f’1T’N ® fIT"N; thus u’ = (u —
iJN¥u)/2. Say that u (or u’) is holomorphic if V%u/ = 0 forall Z € T'M. We have the
following analogue of Proposition 1.2 for holomorphic maps.

DEFINITION 1.10. Let{f;} be asmooth I-parameter family of maps between complex
manifolds M and N. Say that { f;} is holomorphic to first order if
=0.

(1.38) (%) =0 and 3(%)
0z 0\ 9z /) |,_g

PROPOSITION 1.11. Let f : M — N be a holomorphic map between Kdhler mani-
folds, and let u € T'(f~'TN). Let { f;} be a smooth variation of f tangent to u. Then

/
f o, 0 [0f:
Vajot = m(az)

t=0
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In particular, u is a holomorphic vector field along f if and only if { fi} is holomorphic
to first order.

PROOF. Working on M x (—¢, €), we swap the order of the derivatives and use the
parallelity of J, see [43, Proposition 4.1]. a

For the following see [40, Chapter 5, Theorem (3.2)], [32, Proposition 4.1] or [43,
Proposition 4.2]

PROPOSITION 1.12. Let f : M — N be a holomorphic map between compact Kdhler
manifolds. Then any Jacobi field along f is holomorphic.

Note that, when M? is a Riemann surface, a vector field u along f is holomorphic if, in
any local coordinate z on M 2,

(1.39) vg‘/azu’ =0.

Letn € {1,2,...}. For a holomorphic map f : M?> — CP" we have the following
description. Let F : U — C ntl \ {0} be a holomorphic lift of f defined on some open subset
of M2, so that f = [F] = p o F where p : C"*'\ {0} — CP" is the natural projection.
Then a vector field u along f is given locally by dpr (U) for some map U : U — C"*!: more
invariantly, its (1, 0)-part u” is given by the section of L(F, C A+l /F) defined by F — U
mod F. The vector field u is holomorphic if and only if we can choose U to be holomorphic.
If f € Holy(S?, CP3) we may take F and U to have components polynomial of degree < d.

PROPOSITION 1.13 ([32, Proposition 4.2]). Any holomorphic vector field u along a
holomorphic map f : S — CP" is integrable by holomorphic maps, i.e., there is a smooth
one-parameter family of holomorphic maps f; : S — CP" with fo = f and 8f;/t|,—0 = u.

Indeed, we can take u to be given by rational functions; it can then be integrated explic-
itly.

DEFINITION 1.14. Let f : M?> — CP? be a smooth map which is horizontal. Say that
a vector field u along f is an infinitesimal horizontal deformation if it preserves horizontality
to first order in the sense that, for any smooth one-parameter variation { f;} of f tangent to u,
the norm of the vertical component of df; is o(¢). If, additionally, f and u are holomorphic,
we call u an infinitesimal horizontal holomorphic deformation (IHHD) of f.

N. Ejiri [18, Sec. 2] gives an equation for IHHDs which shows that this notion is inde-
pendent of the choice of { f;}.

By differentiating the formula (1.36), we see that a holomorphic vector field u = dpr(U)
along a holomorphic map f = p o F is an I[HHD if and only if

(1.40) dQr(U) = {Uo, F1} + {Fo, U1} + {Uz, F3} + {F2, U3} =0.

Now the differential dQ r is a linear map from C [z]fl to C[z]oq—2, and the space of
solutions to (1.40) has dimension dimkerdQ r = 4d +4 — dim Image dQ r. Since dim Image



180 L. LEMAIRE AND J. WOOD

dQF < 2d — 1 this is at least 2d + 5. One solution is U = F which projects to u = 0, so the
dimension of the space of IHHD:s is at least 2d + 4.

We now consider what we can say about HHol, (§2, CP3). I.-L. Verdier [41] showed
that (i) HHoly (S2, CP3) is a connected algebraic variety of pure dimension 2d + 4; (ii)
when d = 1,2, HHoly(S?, CP¥) = HHol® (S, CP?), the subspace of non-full maps, and
this is irreducible; (iii) when d > 3, HHold(Sz, CP3) has the two irreducible components
HHolf"(52, CP3) and HHol}*"(S%, CP?).

DEFINITION 1.15. A point f = [F] € HHoly (5%, CP?) is called (a) regular (point
of Q) if Q is submersive at F; this condition is clearly independent of the representative F
chosen.

By the Inverse Function Theorem, if f is regular, then it is a smooth point of
HHol, (8%, CP?), i.e., a point where that algebraic variety is a smooth manifold. The con-
verse holds for non-full maps, see Proposition 3.6. The following shows that there are regular
points in each irreducible component, thus confirming that HHol,(S?, CP?) has pure dimen-
sion 2d + 4.

LEMMA 1.16. The following maps are regular:
(i) f =I[F]eHHol™M(52, CP3), where

Fi)=[z"1=1,—-dz/d-2),z%—dz/d—2),11 d=3);
(i) f = [F] e HHol*"(S2, CP?), where F(z) = [z%,0,1,0] (d > 1).

PROOF. (i) We calculate dQ#(0,0, Uz, 0) = {Us, 1} = U); on putting Up =z, ...,

o , this gives multiples of 1, ..., 241 respectively. On the other hand, dQ (0, 0,0, U3) =
{z? — dz/(d — 2),Us}; on putting Us = z,...,z%"!, this gives polynomials of degree
d,...,2d — 2, respectively. It is clear from this that dQF is surjective. (ii) This is similar.
O

Let f : M?> — CP3 be horizontal and holomorphic. Say that an IHHD u along f is
integrable by horizontal holomorphic maps if it is tangent to a deformation of f by hori-
zontal holomorphic maps, i.e., u = af;/9t|;—o for some one-parameter family of horizontal
holomorphic maps f; : M> — CP3 with fy = f.

PROPOSITION 1.17. Let f = [F] € HHoly(S%, CP?). Then the following are equi-
valent:
(i) f is a regular point;
(ii) the dimension of the space of IHHDs at f is 2d + 4;
(iii)) all IHHDs of f are integrable by horizontal holomorphic maps.

PROOF. If f is a regular point then, as above, the space of IHHDs has dimension 2d +
4, and so coincides with the tangent space to HHol,(S?, CP?) at f. Hence all IHHDs are
integrable.
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Conversely, if f is not regular, then the space of IHHDs at f has dimension more than
2d +4. Since HHol; (S 2 CP3) is an algebraic variety of dimension 2d + 4, not all the IHHDs
in that space can be integrable. O

COROLLARY 1.18. If f is a non-smooth point of HHoly(S%, CP3), then there are
IHHD:s of f which are not integrable by horizontal holomorphic maps.

1.6. The twistor correspondence. Let Harm(S?, S*) denote the set of harmonic maps
from the 2-sphere S? to S*, equipped with the compact-open topology. A map to % is called
full if it does not have image in a totally geodesic (i.e., equatorial) $3 C §*.

The twistor projection (1.26) gives the following well-known correspondence beween
horizontal holomorphic maps into the twistor space and harmonic maps into S*, see, for ex-
ample [15, 37]; we shall generally use the CP3-model (1.32) for the twistor bundle.

Given a smooth map ¢ : M? — S*, as before, write ® = i o ¢ where i : §* — R3is
the canonical inclusion. For any local complex coordinate z on U C M?, define a function
W(p): U — C by

ad  rd 9> 9o

[N A AN— AN —
0z 972 07 072

=Wpo.

Here w € /\SC 3 is the volume form of R> with its standard orientation. Then, for any x €
U, the number W(gp)(x) is real; its sign is clearly independent of the choice of complex
coordinate and is called the spin of ¢ at x. If M?> = §2 and ¢ is harmonic, W (p) has fixed
sign on M 2 and we have three cases [41]:

(i) ¢ is not full and its spin is identically zero, then ¢ has image in a totally geodesic
(equatorial) S C S*: we say that ¢ has zero spin;

(i) ¢ is full and its spin is strictly positive, except possibly at isolated points where it
is zero: we say that ¢ has positive spin;

(iii) ¢ is full and its spin is strictly negative, except possibly at isolated points where it
is zero: we say that ¢ has negative spin.

Thus the space Harm(S2, §%) is the union of the three disjoint spaces Harm"°" (52, §4),
Harm*(Sz, S4) and Harm™ (S2, S4) of harmonic maps of zero, positive and negative spin,
respectively. Write Harm=0(52, §*) = Harm"" (52, §*) U Harm™* (52, §%). Note that com-
posing ¢ with the antipodal map $* — S*, x > —x, changes the sign of its spin and defines
a homeomorphism between Harm™ (52, $*) and Harm™~ (52, §%). In particular, for any har-
monic map ¢ : S% — §% one of +¢ lies in Harmzo(Sz, S4).

The real isotropy (1.12) of a harmonic map from S? to S* tells us that, at each point
x € S? where it is non-zero, (3@ /37) A (82®/822) defines an isotropic subspace P of TXCS4.
Note that ¢ is of positive (resp. negative) spin if and only if P is a positive (resp. negative)
isotropic subspace (see Section 1.3 above for the definition of positivity).
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PROPOSITION 1.19. The map f +— ¢ = m o f defines homeomorphisms:

(1.41) 1" : HHol(S%, CP?) — Harm="(S?, §%),
(1.42) el gHolM (52, €P?) — Harm™ ($2, §%)
(1.43) 77010 - HHoI™" (5%, CP3) — Harm™" (52, %) .

Further, the energy of ¢ is equal to d times the area of S* = 4mwd whered € {0, 1,2, ...}
is the degree of f.

Since they are induced by the twistor projection (1.32), we shall also call the above maps
or their restrictions twistor projections. The integer d is called [15] the twistor degree of
. Since it is weakly conformal, a harmonic map S*> — S* with twistor degree d has both
energy and area equal to 4rd. Now, the components of the space HHol(S?, CP?) are the
spaces HHold(Sz, CP3) of horizontal holomorphic maps of degreed (d = 0,1,2,...). It
follows that the spaces Harmy (52, §%) of (full and non-full) harmonic maps from § 2 to §% of
twistor degree d (d =0, 1,2, ...) form the connected components of Harm(S2, $%) [33, 42].

For any d, the space Harmy(S?, $%) is the union of the three disjoint subspaces
Harmg.o“(Sz, 54, Harmj(Sz, $*) and Harm;; (82, 5% of harmonic maps of zero, posi-
tive and negative spin, respectively. We write Harme(Sz, sY = Harmg.o“(Sz, s U
Harm;ir (S2, S4) , then we have the following.

COROLLARY 1.20. Foreachd € {1,2, ...}, the maps (1.41)—(1.43) restrict to home-
omorphisms:

(1.44) 15" : HHoly (82, CP?) — Harm; (52, §%),
(1.45) o™ HHolM (52, €P3) — Harm} (S2, §%),
(1.46) 57" : HHol% (82, CP3) — Harm ™ (2, §%) .

In particular, Harmguu(Sz, S%) is non-empty if and only if d > 3.

It follows that, for any d > 3, the spaces Harm;lIr (52, 5% and Harm; (52, §%) are con-
nected, and are the components of Harmfl““(S 2 5%,

For later use, we sketch the proof of the proposition and corollary. Given ¢ € Harmf
(52, §%), we define its twistor lift f : §2 — X+ = X1 (5% as follows. At a point x €
S2 where @ is immersive, set Tx M = doy (Ty S2) with orientation chosen such that dg, is
orientation preserving, and set

0

+
@(x)
(1.47) fx) = positive almost Hermitian structure fo on T(p(x)S4

which is rotation through +m /2 on 7, M.

the point of X' | representing the unique

More explicitly, we have an orthogonal decomposition T(p(x)S4 = 7. M @ v, M into oriented
subspaces, and fo is rotation through 4 /2 on both t, M and v, M.

Choose any complex coordinate z. Then t, M is determined by the complex vector
d¢p/0z; indeed, it is spanned by its real and imaginary parts. Now, harmonicity (1.4) of ¢
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tells us that this is a holomorphic section of ¢! T¢S%; so an easy argument shows that we can
extend T, M smoothly over the critical points of ¢, giving a decomposition of smooth bundles:

(p_lTS4 =tMdvM.

Hence f extends smoothly to a map f : §* — Xt (5%) called the (positive) twistor lift of .
This map defines a decomposition

(1.48) o TS = PP

which, at each point x € s2, gives the (1, 0)- and (0, 1)-tangent spaces of fo. Thus, in the
quadric Grassmannian model Ty 5 of the twistor space, f is represented by the map P : §* —
Ds.

That ¢ has non-negative spin is equivalent to saying that 32¢/dz? is a section of P.
Then it is easy to see that f (equivalently, P) is horizontal and holomorphic, cf. Section 2.2.
Further, the map ¢ +— f is the inverse of H};Of . Since f is horizontal and 7 is a Riemann-
ian submersion, the energy of ¢ is equal to the energy of f; since f is holomorphic, this
equals the area of S? times the degree of £ thus IT :}m is a bijection from HHoly (5%, CP3) to
Harm?o(Sz, §*). It can be checked that £ is full if and only if ¢ is full so that H};Of restricts

H:llor’full and Hsor’non. That all maps are continuous with respect to the compact-

to bijections
open topology is clear; that they are proper follows as in [6] or from Theorem 2.3 below; thus
they are homeomorphisms, completing the proof of the proposition and corollary.

Note that, since ¢ is weakly conformal, for any x € $2, the differential doy : Ty $? -

T‘p(x)S4 intertwines the standard almost complex structure on S 2 at x and fo .

2. Main results.

2.1. The smoothness of the twistor map. We now consider our spaces of holomorphic
and harmonic maps as subspaces of suitable manifolds of maps. For simplicity, as in [31], we
consider spaces of C¥ maps for some fixed k > 2, though many other choices are possible.
The space CX(S2, CP?) of all C* mappings from S? to CP3 with the compact-open topology
forms an infinite-dimensional complex-analytic Banach manifold. The subset Hol(S2, CP?)
is a closed subspace of that manifold; in fact each component, Holy, (S2, CP3), is a closed
complex submanifold of dimension 4d + 3.

Similarly, the space C¥(52, §%) of all C¥ maps from S? to S* forms an infinite-dimen-
sional real-analytic Banach manifold. The space of harmonic maps Harm(S?, §%) is a closed
subspace of that manifold.

Then the maps (1.41)—(1.45) are restrictions of the real-analytic map

2.1 IT:cks?, cr?y — cks?, sY, freo=mof.
The following lemma is proved in [5, Proposition 2.1 and subsequent remarks].

LEMMA 2.1. Let ¢ : M?> — S* be a non-constant smooth map from a Riemann
surface. If there is a holomorphic map f : M*> — CP3 such that w o f = @, then it is unique.
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Say that a vector field u along a smooth map f : M? — CP? is vertical if dils(u) =0,
i.e, dm o u is identically zero.

LEMMA 2.2. Let f : M* — CP? be a non-vertical holomorphic map. Then any
vertical holomorphic vector field along f is identically zero.

PROOF. The (1, 0)-part u’ of such a vector field is a section of V/ = =1V which
satisfies A, u" = 0. But by Proposition 1.9(iii), unless f is vertical, A, is not identically
zero, and so is non-zero on a dense open set; it follows that u = 0. O

We now consider the image of each component Hol,(S%, CP3) under I1. To obtain an
immersion we shall exclude the closed subspace Verty; C Holy (S2, CP3) of vertical maps.

THEOREM 2.3. Foranyd > 1, the map
(2.2) My : Holy(S%, CP3) \ Verty — C*(S%, %)\ {constant maps}

defined by f — m o f is a real-analytic proper injective immersion, so gives a real-analytic
diffeomorphism onto a (4d + 3)-dimensional real-analytic submanifold Ry. This restricts to
real-analytic diffeomorphisms:

(2.3) " : HHoly(S?, CP%) — Harm} (5%, §%),
(2.4) b HHol (52, €P3) — Harm}(S2, §%),
(2.5) 57" : HHol%*" (52, CP?) — Harm’™ (52, §%).

The inverses of these maps are given by taking the twistor lift.
In particular, Harmfo(S 2 §Y and Harm*"(S 2 %) are real-analytic subvarieties of the
finite-dimensional real-analytic manifold Ry.

PROOF. That I1; is real analytic is clear; that it is injective follows from Lemma 2.1.
That it is immersive follows from Lemma 2.2.

To show that I1y is proper, let {¢,} be a sequence in R; which converges to ¢ € R;. Let
fn = HJI((pn) € Holy (8%, CP3). Then, since Holy(S%, CP?) lies in the compact man-
ifold CP*+3, a subsequence { Sfui} of {fn} must converge in that manifold, let its limit
be f = [Fo, F1, F2, F3]. The polynomials F; might not be coprime, i.e., we might have
(Fo, F1, F2, F3) = (9Go, qG1, G2, ¢G3) for some polynomials G; and g, with g of degree
> 1 so that f = [Gg, G1, G2, G3]. Now, away from the zeros of g, { f, } tends pointwise to
f so that the corresponding subsequence {¢;, } tends pointwise to 7 o f on a dense subset of
S2. However, the original sequence {¢,} tends to ¢ pointwise, so, by the continuity of both
maps, ¢ = o f. Then, by uniqueness (Lemma 2.1), f must be Hd_I((p). Hence I, is proper.

Noting that a map in C*(5?, §%) has zero energy if and only if it is constant, Proposition
1.19 shows that I, restricts to the mappings (2.3) and (2.5). O

REMARK 2.4. (i) Of course, Holy(S%,CP3) is a complex manifold, and
HHoly (S2, CP3) and HHolflO“(Sz, CP?) are complex algebraic subvarieties of it, so that we

can transfer those structures to R, Harmgo(Sz, S4) and Harmgon(Sz, S4), respectively; we



JACOBI FIELDS ALONG HARMONIC 2-SPHERES 185

can then give Harmy(S2, $*) the structure of a complex algebraic variety of pure dimension
2d +4 by amalgamating the complex algebraic varieties Harm?o(S 2, 5% and HarmiO(Sz, )
along Harm2°“(52, $%), see [41]. Then, when d = 1 or 2, Harmy (S2, $%) = Harmgon(Sz, k)
is irreducible; when d > 3, Harmy (S2, S4) has three irreducible components, namely,
Harm} (52, $4), Harm; (S2, $%) and Harm’*" (52, §%) [41].

However, our result considers these spaces as subspaces of R, (and so of Ck($2, 5%) so
that real-analyticity is the appropriate notion.

(i) All the maps in Ry are real isotropic of positive spin, see [15, 37].

(iii) There are families of holomophic maps with image in any given fibre of 7, so
that I7; is neither injective nor immersive when considered as a map from the whole of
Holy(S2, CP3).

2.2. Correspondence between infinitesimal deformations. The following result is non-
trivial in the presence of branch points.

THEOREM 2.5. Let ¢ : S* — S* be a full harmonic map of positive spin and let
f: 8% = £t = CP3 be its twistor lift. The mapping dIly : u — v = dmou defines a one-to-
one correspondence between the space of infinitesimal horizontal holomorphic deformations
u along f and the space of Jacobi fields v along .

PROOF. (a) Letu be an IHHD along f. We show that v = dm o u is a Jacobi field
along ¢.

To do this, let f; be a one-parameter variation of f tangent to u, and set ¢, = w o f;.
Then v = dm o u = d¢,/0t|;=0. By Proposition 1.11, f; is holomorphic to first order, and by
Definition 1.14, it is horizontal to first order, hence

. Vaf, ) .
(2.6) 1) 92 0% =o(t) so that t(f;) =o0(); () (df)” =o().
By the composition law for the tension field [16] we obtain

() =dm o t(f;) + TraceVda (dfy,d f;) .

The first term on the right-hand side is o(¢) by (2.6)(i). As for the second term, by (2.6)(ii) we
have
Vdr(dfy, dfy) = V(@ f)", @) + o) = o).

since, for any Riemannian submersion, Vdr (X, X) = 0 for any horizontal vector X [36].
Hence 7 (¢;) = o(t), and by Proposition 1.2, v = d¢,/9t|;=¢ is a Jacobi field.

(b) Conversely, let v be a Jacobi field along ¢. We show that there is a unique IHHD u
along f such that dw o u = v. We establish this by a sequence of lemmas.

Let Cy, be the set of points where ¢ fails to be an immersion (i.e., the branch points of
@); we first of all lift v at points of S\ Cy . Let {¢;} be a smooth one-parameter variation of
¢ tangent to v. Then, by Proposition 1.2, ¢; is harmonic and isotropic to first order. For each
x € 82\ Cy, ¢, is an immersion at x for small enough |t|, by which we mean for |t| < e(x) for
some ¢(x) > 0; then the twistor lift f;(x) can be defined as in (1.47). Note that all calculations
below will be valid for small enough || in this sense. Set u(x) = 9f;(x)/0¢t|;=¢. Clearly
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dm o u = v. We shall show that u is a well-defined infinitesimal horizontal holomorphic
deformation of f on §2\ Cy.

By definition, f;(x) is a positive almost Hermitian structure on T, (x)S4. It thus gives a
decomposition

2.7) TS oS =T, S* @ T, ' =Pi(x) ® Pi(x)

into (1, 0)- and (0, 1)-tangent spaces. In terms of the quadric Grassmannian model 73 5 of the
twistor space, f;(x) is represented by the positive isotropic 2-plane P;(x) = T(/’); (x)S“.

To examine this, let z be a local complex coordinate on an open subset U of 52\ Cy. For
x € U set ¥, (x) = (3¢, /97)" = (3¢;/87)", the (0, 1)-part, equivalently, P;-component, of
d¢; /07 at x with respect to the decomposition (2.7). Note that this is non-zero for t = 0, so
that it remains non-zero for small enough |¢|. Hence its conjugate (d¢;/3z)" = (3¢,/dz)"" is
also non-zero. Note that P, (x) is the unique positive isotropic 2-plane in T‘;'r (x)S4 containing
Y (x). Replacing U by a smaller open subset if necessary, let b, be a non-zero section of P;
over U such that {b;(x), ¥:(x)} is a basis for P;(x). We calculate derivatives of these sections;
it is convenient to use @; = i o ¢; where i : $* — R’ is the standard inclusion. Note that

09, /0z = d¢; /07 etc.
LEMMA 2.6. Letx € U\ Cy. Then, for small enough |t|,
@ =2 4o
(i) under the orthogonal decomposition C° = P(x) ® Pi(x) ® D;(x), the Pr-com-
ponent (3, /32" of d, /07 satisfies

Py 2
(%> =W o = 2 o).

0z 9z 072
PROOF. (i) This is equivalent to showing that the (1, 0)-part (B(pt/Z)Z)F’ of d¢;/0z is
o(t). Now, as above, for small enough [¢|, the vector (d¢;/ az)P ' is 1non-zero, and so is a basis

for the one-dimensional complex space de, (T°M)N P,. Hence, (d¢;/37)"" must be a multiple
of it. Further, by Proposition 1.5 we have

A AT S TE A (A R S VLT A S
9z ] "\ az \\az ) T\ oz C2\9z 8z '

This implies that (aw,/az)ﬁ is o(t), as required.
(ii) It suffices to show that the components of 91, /9Z in span¢ @, and in P, are o(1).
By part (i) and Proposition 1.5, the component in spany @ is

8'[/[ C 82¢ c
2.8) <a—z’,¢,> =<Tz’,¢t> +o(t) = o(1).

Next note that, when ¢ = 0, {y; , (9,/92)'} equals (9@ /37, 3P /dz>}; this is a basis
for Py on a dense open subset of U \ Cy. It follows that {1/, , (dy;/87)1} is a basis for P; on
that set for small enough |¢|. We use this basis to estimate the component in P .
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First, since v, is in P,

3 <8
<(aw’) wt> —<a@wt> za_m,w =
Second, on using part (i), (2.8) and Proposition 1.5, we have
oui N (0w N\ Lfove aw\S L 1]0%e e\
((52)- (5 ) =2l 5] +om =358 ) +o =0

The last two calculations show that the component of 8V, /37 in P; is o(t). a

We can now examine the derivatives of our basis of P; .

LEMMA 2.7.
a
) % € spang @; + o(t) ;
z
.. Ob
(i1) 8_ ep +Spanc D, +o(1);
i) e P+ o)
. ab;
(iv) 3 € P +o(t).
PROOF. (i) From Lemma 2.6(i) and (1.10) we have
Y 9%,
= D t
3z 09707 ¢ o).

(i) From part (i) we have
ab ¢ v \© ab 19 .
<a—;,wt> =—<bt,aizt> —o(r); also <a—;,bt> = 532 {brb) =0,

which shows (ii).
(iii) Immediate from Lemma 2.6(ii).
(iv) From part (iii) we have

ab ¢ EY ab 19
< a_t ,Wt> = <bt7 82t> =o(t); also <3_Zt’bt> = Ea_z(btybﬁc =0.
Further, by Lemma 2.6(i), d¢;/0z € P; + o(t), so we have

0b; ¢ 3(/’t
= = b ) — t )
< 37 ‘/’t> < 5z =o(1)

which, together with (ii), shows (iv). O

LEMMA 2.8. (i) The twistor lift f; is holomorphic to first order and horizontal to
first order.
(i) u = df,/dt|,—o is an IHHD defined on S\ Cy.
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PROOF. (i) Using the quadric Grassmannian model, the (1, 0)-part of derivative
df:/0z is the linear map from P; to PtJ- which maps the basis vectors ¥; and b; to the PtJ--
components of 0y, /dz and db,/9Z, respectively. By Lemma 2.7, these components are o(¢).
Hence the (1, 0)-part of df; /97 is o(t), which proves the first assertion.

Similarly, the (1, 0)-part of 9f; /dz is the linear map from P; to P,J- which maps the basis
vectors ¥, and b, to the P,l-components of 0y, /dz and db; /0z, respectively. By Lemma 2.7,
these last quantities lie in spanq-¢; to o(t). Hence the (1, 0)-part of derivative df;/0z lies in
L(P;, spanc¢;) to o(t); this is the (1, 0)-horizontal space by (1.31).

(i) This follows from (i) by Proposition 1.11 and Definition 1.14. a

LEMMA 2.9. The vector field u can be extended to an IHHD on S>.

PROOF. With respect to the pull-back of the decomposition (1.22) write u = u" + u’l;
then we have the corresponding decomposition (1.25) of (1, 0)-parts: u’ = uV" +uf’. Note
that u*’ is the horizontal lift of v, and so both it and its (1, 0)-part u™' can be extended to
real-analytic vector fields on S2.

Noting that the Kihler nature of CP> means that covariant derivatives respect the type
decomposition, holomorphicity of u” tells us that, with respect to any local complex coordinate
zon S2,

_ v/
0= Va/az”/

= V' (Vo) + V(] o™y + BV V) + H (] ™)

=V +0+ ALu" + it
where V"' and V¥’ denote the induced connections on V’ and H'; the second term is zero by
holomorphicity of H' (Proposition 1.9(i)). Taking components in V' and H’ we obtain

(2.9 @D Vipu' =0 and (i) Apu’ =-vi "

The first equation says that uV'is a holomorphic section of V' with respect to its Koszul-
Malgrange holomorphic structure. Hence, at any point of C, it has a removable singularity,
a pole or an isolated essential singularity.

However, by Proposition 1.9(ii), A}, is antiholomorphic, so near a point of Cy, in a local
complex coordinate z centred on that point, it is of the form z¥ times a real-analytic non-zero
map for some k € {0, 1, 2, ...}. It follows that Z"uvl is smooth, which is not possible if u’’
has a pole or isolated essential singularity.

Hence 1" has a removable singularity at each point of C,, and so can be extended
smoothly to S2. 1t follows that u’, and so also u, can be extended smoothly to s2, O

LEMMA 2.10. There is at most one holomorphic vector field u with dmw ou = v.

PROOF. As in the last proof, the horizontal component of u is uniquely determined as
the horizontal lift of v. The vertical component is determined away from zeros of A’(/, by
(2.9)(ii); since the complement of the zeros is a dense set, by continuity this component is
also unique. O
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This completes the proof of Theorem 2.5. ]

We now turn to the integrability (Definition 1.3) of the corresponding infinitesimal de-
formations.

PROPOSITION 2.11. Let ¢ : §? — S* be a full harmonic map of positive spin and let
f 82 - ¥t = CP? be its twistor lift. Let u be an IHHD along f and v = dr o u the
corresponding Jacobi field along ¢. Then the following are equivalent:
(i) v is integrable;
(i1) u is integrable by horizontal holomorphic maps.

PROOF. Suppose that (i) holds. Then there is a one-parameter family of harmonic maps
@ 8% — S* with g9 = ¢ and d¢,/dt|,—o = v. For small enough |f[, ¢; has positive spin
and so its twistor lift is a horizontal holomorphic map f; : S> — CP3. Clearly, fo = f and
dfy/0t|;=0 = u, hence (ii) holds. The converse is similar. d

DEFINITION 2.12. Letg € Harm&““(Sz, §4). Recall that one of +¢ has positive spin
and so has a twistor lift f € HHolZ“”(Sz, CP?). Say that ¢ is regular if f is regular in the
sense of Definition 1.15.

By Theorem 2.3, a regular point is a smooth point of Harmguu(Sz, $4). By Theorem 2.5
and Proposition 2.11, we obtain the main result of this section.

THEOREM 2.13. Letd € {3,4,...} and let ¢ € HarmM'(S2, §%). Then the following
are equivalent:
(i) o is a regular point;
(ii) the dimension of the space of Jacobi fields at ¢ is 2d + 4;
(iii) all Jacobi fields along ¢ are integrable.

PROOF. On composing with an orientation-reversing isometry, if necessary, we can as-
sume that ¢ is of positive spin and thus given as the projection = o f of a full horizontal
holomorphic map. The result then follows by combining Propositions 1.17 and 2.11 with
Theorem 2.5. O

J. Bolton and L. M. Woodward [6] show that all f € HHOIZ““(SZ, CP3) are regular; in
particular, Harmguu(Sz, S4) is a smooth manifold for d = 3, 4, 5.

COROLLARY 2.14. All Jacobi fields along a full harmonic map of twistor degree at
most 5 are integrable.

J. Bolton and L. Fernandez inform us that they have also proved thatall f € HHolg"11 (52,
CP?) are regular, in which case the corollary also holds for degree 6.

3. The non-full case.

3.1. Infinitesimal deformations of non-full horizontal holomorphic maps. Recall that
amap S* — CP3 is non-full if and and only if its image lies in a projective subspace CP? C
CP3. We study the space of non-full horizontal holomorphic maps, HHol"" (52, CP3).
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It turns out that any such map has image in a CP!; this must be horizontal in the sense
that its tangent spaces are in the horizontal subbundle H of (1.33). In fact, let CPO1 =
{lz0, 0, 22, 0] : [z0,z2] € CPI}; note that this is a horizontal CP'. Recalling that Sp(2)
acts on CP> preserving horizontality, we have the following.

LEMMA 3.1. Let f : S> — CP? be a non-full horizontal holomorphic map. Then
there is an A € Sp(2) such that A o f has its image in CPOI.

PROOF. First, we can choose A; € Sp(2) such that f = A1 o f has the form f =
[Fo, 0, F>, F3]. Then the horizontality condition (1.37) gives

F2F3/ — F3F2/ =0

which implies that F3/ F» is constant. We next choose A2 € Sp(2) such that, after composing
with A, that constant is zero. Then A o Aj o f has image in CPOI. O

The proof shows that Sp(2) acts transitively on the set of horizontal CP's; clearly the
isotropy group is a copy of U(2), hence the set of horizontal CP's can be identified with the
complex homogeneous space Sp(2)/U(2) of dimension 3.

Fix d € {1,2,...}. It is clear that Holy(S?, CPJ) is a complex submanifold of
Holy(S2, CP3) of dimension 2d + 1. We deduce the following.

PROPOSITION 3.2. The space HHOISOH(SZ, CP3) is a complex submanifold of
Holg(S?, CP3) of dimension 2d + 4.

PROOF. The map HHol™"(S2, CP?) — Sp(2)/U(2) given by mapping f to its im-
age—a horizontal CP! —is easily seen to be a locally trivial fibre bundle with fibres bi-
holomorphic to Holy (S, CP'). So HHO]SOH(SZ, CP?) is a complex manifold of dimension

(2d + 1) + 3 = 2d + 4. Since its topology and complex structure are those induced from
Holy (8%, CP?), it is actually a complex submanifold of Holy (5%, CP?). O

Now, HHol, (52, CP3) is the disjoint union of HHol'($2, CP3) and HHol’*" (S, CP3).
Although HHol"*"(52, CP?) is closed in HHoly (52, CP?), the subspace HHolf!!(52, CP3) is
not; this motivates the following definition.

DEFINITION 3.3. Say that f € HHol%*"(52, CP3) is a collapse point if it is in
HHol™(52, CP3) N HHol’™(S2, CP?).

Thus a non-full horizontal holomorphic map f is a collapse point if it occurs as the
limit of a sequence of full horizontal holomorphic maps; since HHol,(S?, CP?) is an alge-
braic variety, this is equivalent to the existence of a one-parameter family of full horizontally
holomorphic maps which ‘collapses’ to f.

The set of collapse points f forms a proper algebraic subvariety of HHol?*"(52, CP?).
Ford = 1 or 2, HHO]ZUH(SZ, CP?) is empty so that the set of collapse points is empty. The
following examples show that, for each d > 3, the set of collapse points is non-empty; see
Section 5 for more information on that set.
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EXAMPLE 3.4. Let f;(z) = [z, 3tz%, 22 +1,t]. Fort # 0, this defines a full horizontal
holomorphic map f; : > — CP3 of degree 3. Ast — 0, it approaches the non-full horizontal
holomorphic map fy : 2 — CP? of the same degree given by fo(z) = [z,0, 2> + 1,0]; by
definition, the map fy is a collapse point.

This is the only example for d = 3 up to fractional linear transformations, see Section 5.

For higher values of d, there is a greater variety of examples; we give one family (equivalent
to the previous one when d = 3).

EXAMPLE 3.5 [18,20]. Letd > 3. For any o # 0 and any positive integers £, k with
L#kandl+k=4d,let

L+k t+k
e ¢ _of k_

For t # 0, this defines a full horizontal holomorphic map f; : S — CP? of degree d. As
t — 0, it approaches the non-full horizontal holomorphic map fy : 2 — CP? of the same
degree given by fo(z) = [2F —a,0, 28— + k) /(€ —k)),0]; by definition, the map fy
is a collapse point.

Let f € HHolgon(Sz, CP?); without loss of generality, by Lemma 3.1, we can assume
that f € Hold(Sz, CPOI). Write f = [F] where F = (Fp, 0, F2, 0) is a holomorphic lift.
Let u be a holomorphic vector field along f. As in Section 1.5, u = dpp(U) for some
holomorphic U = (Up, Uy, Uy, Uz). Let u = ul + ut be the decomposition of u into
components tangential and normal to CPol. Then u” = dpp(UT) and ut = dpp(UL) where
UT = (Uy, 0, Uy, 0) and Ut = (0, Uy, 0, U3), respectively.

Now, from (1.40), u is an infinitesimal horizontal holomorphic deformation if and only

if

3. dOr(U) =0

where

(3.2) dQr(U) = —FyU] + FjU; — F>U; + F;U3.

Note that this condition is well defined and only involves the normal part u of u.

On taking F and U to be polynomial of degree < d, the differential dQ r can be thought
of as a linear map from C [z]ﬁ to Clzloq—2, so has kernel of dimension dimkerdQr =
2d + 2 — dimImage dQfr > 3. There are three obvious solutions to this: (Uj, U3) =
(Fp, 0), (0, F») and (F3, Fp). It is clear that these span the three-dimensional subspace of
THHol*" (52, CP3) which is tangent to the action of Sp(2); thus they are all integrable. Say
that u is an extra IHHD if u™ is not in this three-dimensional space; equivalently, u is not
tangent to HH012°“(52, CP3).

PROPOSITION 3.6. Let f : S> — CP? be a non-full horizontal holomorphic map.
Then the following are equivalent.
(i) f is a non-smooth point of HHoly (52, CP3);
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(ii) f is a collapse point,
(iii) f has an extra IHHD;

(iv) f has an extra IHHD which is not integrable by horizontal holomorphic maps;
(v)  f has an extra IHHD which is integrable by horizontal holomorphic maps.

PROOF. The equivalence of (i) and (ii) holds since, by Proposition 3.2, HHolgon(Sz,
CP?) is a submanifold of HHol,(S?, CP?) at f if and only if f is not the limit of maps in
HHolM!(s2, CP3).

That (i) implies (iv) follows from Proposition 1.17. That (iv) or (v) implies (iii) is trivial.

To show that (iii) implies (v) and (ii), suppose that u = dpr(U) is an extra IHHD along
f. Then, by (3.1), f; = [F + tU"] is actually horizontal for all z. We claim that there exists
& > 0 such that f; is full for all non-zero ¢ with |f| < . If not, there would be a sequence
of non-zero values of ¢ tending to O such that f; is not full. But this would imply that u is
tangent to Hol;**(S?, CP?), which it is not. Thus f is a collapse point, and u is an extra
IHHD which is integrable. O

Recalling Definition 1.15, we deduce the following.

COROLLARY 3.7. A non-full horizontal holomorphic map f : §*> — CP? is a smooth
point of HHoly (5%, CP?) if and only if it is a regular point.

It follows from Proposition 3.6 that we can determine whether a point f is a collapse
point by finding all solutions (Uj, U3) to the linear equations (3.1) with U; and U3 polyno-
mials of degree < d. If the space of all solutions is more than 3-dimensional, then there are
extra IHHDs and f is a collapse point; otherwise it is not. It is an exercise in linear algebra to
see, for example, that f : §* — §2 defined by z — z¢ is not a collapse point for any d; this
also follows from Lemma 1.16.

3.2. Infinitesimal deformations of non-full harmonic maps. Fixd € {1,2,...}. By
Theorem 2.3, the twistor projection (2.2) maps HHol*"(S2, CP?) diffeomorphically
onto the space Harmg"“(Sz, $4). Since the former is a complex-analytic submanifold of
Hol, (S2, cp3 ), the latter is a real-analytic submanifold of R;. We now look at maps in
Harm}*"(S 2 %) in more detail.

Let Sg ={(x1,x2,x3,0,0) € S4}; this is a totally geodesic $2 in $*. From [9] we have

PROPOSITION 3.8. Any non-full harmonic map ¢ : S — S* is the composition of a
weakly conformal map with image a totally geodesic S* and the inclusion map i : §* — S*.
In fact, up to isometries of S*, we may assume that ¢ = i o @y for some holomorphic map
@ 8% - Sg.

Now the twistor projection (1.32) maps CPO1 onto S(% isometrically; in fact, it is just the
standard identification (1.5) of CP! with S?. Let the twistor lift of ¢ : $? — §5 < §*
be f : S — CP3. Then f = io fy wherei : CPj < CP? is the inclusion map and
fo: 8? — CPO1 is holomorphic. The twistor projection identifies fy with ¢g, so that the
non-full map ¢ and its twistor lift f may be considered to be the same map.
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The Jacobi equation simplifies considerably for non-full maps, as follows.

LEMMA 3.9. A vector field along a non-constant non-full harmonic map ¢ : §* — §*
is Jacobi if and only if its tangential and normal parts are Jacobi. Further, the tangential part
is Jacobi if and only if it is conformal. In fact, if ¢ is the composition of a holomorphic map
s$? - Sg and the inclusion map, then the tangential part is holomophic.

PROOF. That the image of ¢ is totally geodesic implies that the Jacobi equation (1.15)
splits in tangential and normal parts. Conformality and holomorphicity follow easily from
Proposition 1.12. O

DEFINITION 3.10. A Jacobi field v along a non-full harmonic map ¢ € Harmgon(Sz,
5% is called extra if it is not tangent to Harmgon(Sz, Y.

Note that (i) v is extra if and only if its normal part v is extra; hence, as for the holo-
morphic case in the previous section, it suffices to consider normal vector fields in the sequel;
(ii) a normal vector field is tangent to Harm2°“(52, $%) (i.e., is not extra) if and only if it is
tangent to a rigid motion of 2 in %,

As in the case of holomorphic maps, we make the following definition.

DEFINITION 3.11. Say that ¢ € Harmgon(Sz, $%) is a collapse point if it is in
Harm!(52, §4) N Harm°"($2, $%).

To use the twistor construction, we must restrict to full harmonic maps of positive spin;
the next lemma shows that this is not a problem.

LEMMA 3.12. For any d > 3, the sets Harmf!(s2, §4) N Harm?"(52, $%),
Harm (52, $*) N Harm/*"(S%, $*) and Harm; (52, $*) N Harm*"(52, §%) are all equal.

Hence ¢ € Harmflon(Sz, §*) is a collapse point if and only if its twistor lift f €
HHolgon(Sz, CP3) is a collapse point.

PROOF. Suppose that ¢ € Harm} (52, $*) N Harm°" (52, §%); then g is the limit of a
sequence {¢;}in Harm:lr(S 2 S4). Without loss of generality, assume that ¢ € Harmy (S 2 Sg).
The involution (x1, x2, X3, x4, X5) — (x1, X2, X3, X4, —x5) of S* fixes Sg. Composing a har-
monic map $2 — S* with this involution changes its spin, and so maps the sequence {¢,} to
a sequence in Harm; (S2, S4), which also tends to ¢. O

We can thus find collapse points in Harmzon(Sz, S* for each d > 3, as follows.

EXAMPLE 3.13. Applying the twistor projection (1.32) to Examples 3.4 and 3.5 gives:
(i) a family of full harmonic maps ¢; : S — S* of degree 3 which collapses to a
non-full harmonic map ¢g : S* — Sg of the same degree given by ¢o(z) = (z° + 1)/z;
(ii) for any d > 3, a family of full harmonic maps ¢, : S — S* of degree d which
collapses to a non-full harmonic map ¢g : > — Sg of the same degree given by ¢o(z) =
(e — /(2" —a+ k)L — k)
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We try to translate the results in the last section into results on non-full harmonic maps us-
ing the map I1;. But there is a problem as the image of IT, is not the whole of Harm (52, §%)
but is only the subspace Harme(Sz, 54 of harmonic maps of non-negative spin. Further, the
proof that Jacobi fields along full maps can be lifted breaks down for non-full maps. However
we have

PROPOSITION 3.14. Let ¢ : S* — S* be a non-full harmonic map and let f : §* —
>+ = CP3 be its twistor lift.

The mapping dI1y : u — v = dm o u defines an injective map from the space of
infinitesimal horizontal holomorphic deformations u along f to the space of Jacobi fields v
along @; further u is normal if and only if v is.

PROOF. The proof of part (a) of Theorem 2.5 still applies in the non-full case; injectivity
follows as in Lemma 2.10, and preservation of normality is clear since 7 is a Riemannian
submersion. a

We cannot analyse Jacobi fields by lifting them as we did for the full case; however, we
have a new tool, developed in [34, 20].

Let ¢ € Harm’*"(52, §%). As above, without loss of generality we may assume that
¢ =1 o f for some f € Holy(S?, CPol).

Let {eq, e2, 3, e4, es} be the standard basis for R’ so that the normal space of S(% in $*
is spanned by e4 and es. The following is easy to deduce from (1.15), or by differentiating
(1.11).

LEMMA 3.15. A normal vector field v = vieq 4+ vaes along ¢ is Jacobi if and only if
each component satisfies the generalized eigenvalue (Schrodinger) equation:

(3.3) Av; = |dp)?y; (i =1,2).

Write ® = io¢@ = (®1, D2, P3) where i : Sg — R3 is the standard inclusion. Equation
(1.10) implies that each @; is a solution to (3.3); hence any linear combination of the @; is
also a solution, giving a three-dimensional space of ‘trivial” eigenfunctions. We call any other
solution an extra eigenfunction. The following is clear.

LEMMA 3.16. A normal Jacobi field v = vieq + vaes is an extra Jacobi field if and
only if at least one of the v; is an extra eigenfunction.

The next result uses an interesting correspondence between solutions to (3.3) and mini-
mal branched immersions, see [34, 20, 18, 19, 30].

LEMMA 3.17. Letg: S* — Sg be a holomorphic map and let vi be an extra eigen-
function. Then there is another extra eigenfunction vy such that vies + vaes is an integrable
extra Jacobi field.

PROOF. As in [34, 20], there is a non-constant weakly conformal harmonic map (i.e.,
minimal branched immersion) X : 2 \ Cyp — R?, unique up to an additive constant, with
(i) 9X/0z in the subbundle spanned by d¢/dz, (ii) (X, @) = v; and (iii) X tending to co as
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we approach Cy, . In fact, X = v1® + gradv; is such a map. The components 9 X/9z have
poles at points of Cy, of order at least 2. Let Y be the harmonic conjugate of X. Since X /dz
has no residues, Y is well defined on $2 \ Cyp. Set v; = (¥, @). Then v, extends smoothly
to the whole of S and is another extra eigenfunction. As in [19, 20, 30], we may construct a
deformation of ¢ tangent to vies + vpes. O

REMARK 3.18. Thinking of the space of extra eigenfunctions as the quotient of the
space of all eigenfunctions by the three-dimensional space of trivial ones, it follows from the
lemma that the dimension of the space of extra eigenfunctions is even. M. Kotani [30] actually
shows that, if ¢ has r pairs of extra eigenfunctions, then there is a deformation ¢; of ¢ with
O - $2 —» §2+2r fy1l harmonic for small non-zero [t]. Now [8] full harmonic maps from 52
to $2*2 exist if and only if the twistor degree d is at least (r + 1)(r + 2)/2; on solving this
we obtain the bound r < (+/8d + 1 — 3)/2. See [24] for more information on deformations,
and [22] for a description of the space of harmonic maps from S to ™.

THEOREM 3.19. Let ¢ : S — S* be a non-full harmonic map. Denote its twistor
degree by d. Then the following are equivalent.
(i) @ is a non-smooth point of Harmy (52, 5%);
(i) ¢ is a collapse point,
(iii)) @ has an extra Jacobi field;
(iv) @ has an extra Jacobi field which is integrable;
(V) @ has an extra Jacobi field which is not integrable.

PROOF. (i) < (ii). This follows from the fact that Harmg"“(Sz, $%) is a manifold, cf.
Proposition 3.6.

(i) = (iii). Let ¢ € Harm°"(S2, $%). Then ¢ = 7 o f where f € HHol'"(S%, CP?).
By Lemma 3.12, f is a collapse point, so by Proposition 3.6, there is an extra IHHD. This
descends to an extra Jacobi field.

(iii)) = (iv). Given an extra Jacobi field, Lemma 3.17 provides an extra integrable Ja-
cobi field.

(iv) = (i1). Let v be an extra integrable Jacobi field. Choose a one-parameter family
{¢:} of harmonic maps tangent to v. As in the proof of Proposition 3.6, we can show that ¢;
is full for |#| non-zero and small enough, so that ¢ is a collapse point.

(iii) = (v). The space of Jacobi fields tangent to Harm}*" (52, 5%) has dimension 2d+4.
Since there is an extra Jacobi field, the space of all Jacobi fields along ¢ is strictly bigger than
this. If they were all integrable, then by the result of D. Adams and L. Simon (Proposition
1.4), close to f the space Harm,(S2, S*) would be a manifold of dimension greater than
2d + 4, contradicting Verdier’s result that it is a complex algebraic variety of pure dimension
2d + 4. O

As in the holomorphic case (Corollary 3.7), it follows that a non-full harmonic map
f 1 8% — §%is a smooth point of Harmy (8%, §*) if and only if it is a regular point (Definition
2.12).
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Another consequence of Theorem 3.19 is

COROLLARY 3.20. Letn = 3 or4. Then, for eachd > 3, there are non-full harmonic
maps from S* to S" of degree d which admit non-integrable Jacobi fields.

PROOF. The case n = 4 follows from the last theorem and the fact that the set of
collapse points is non-empty, by Example 3.13(ii).

For the case n = 3, let ¢ : §*> — Sg C S* be a collapse point; some such maps are
provided by Example 3.13(ii). By Theorem 3.19, this has an extra integrable Jacobi field
v = vieq + v2e5. By Lemma 3.16, one of the v; must be an extra eigenfunction, say vi. Now
regard ¢ as a harmonic map into $3 = {(x1, x2, X3, X4, x5) € $*: x5 = 0}. Then vieq is a
Jacobi field along it which cannot be integrable, since Harmgy(S2, %) C Harmﬂon(Sz, 54,
and being extra, vje4 is not tangent to this space. O

4. Areaand nullity. The nullity of (the energy) of a harmonic map is the real dimen-
sion of the space of Jacobi fields along it. Combining Theorems 2.13 and 3.19 we obtain a
result valid in both the full and non-full cases.

THEOREM 4.1. Let ¢ : S — S* be a harmonic map of twistor degree d. Then the
nullity of ¢ is greater than or equal to 4d + 8 with equality if and only if ¢ is a regular point
of the algebraic variety Harmg (S2, S*).

Recalling the result of Bolton and Woodward [6] cited at the end of Section 2, we deduce
the following.

COROLLARY 4.2. The nullity of a full harmonic map ¢ : S* — S* of degree at most
5 is exactly 4d + 8.

As in [32, Section 6], we can consider instead the second variation of the area. This
is unaffected by tangential conformal fields. In fact, results of N. Ejiri and M. Micallef [21]
imply that, for any non-constant harmonic map from the 2-sphere, the map v +— the normal
component of v is a surjective linear map from the space of Jacobi fields for the energy to the
space of Jacobi fields for the area, with kernel the tangential conformal fields.

S. Montiel and F. Urbano [35, Corollary 7] show that the nullity of the (second variation
of the) area of a (full or non-full) minimal immersion of S2 in $* of twistor degree d is exactly
4d + 2. Now the tangential conformal fields form a space of (real) dimension 6. Hence the
nullity of the energy is precisely 4d + 8; on using Theorem 4.1 we deduce that any immersive
harmonic map is a regular, and so a smooth, point of Harmy (52, §%).

5. The set of collapse points.

5.1. Generalities. Fix d € {1,2,...}. We study the set of maps in Harmgon(Sz, )
which are collapse points in the sense of Definition 3.11. It suffices to consider the set Cy of
collapse points in Harmd(S2, Sg) = Harmd(Sz, S2). Further, via the twistor construction, we
may identify this with the set of collapse points in the (2d + 1)-dimensional complex mani-
fold Hold(Sz, CPol) = Hold(Sz, CPl); indeed, as remarked in Section 3.2, since the twistor
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projection (1.32) maps CPO1 onto Sg isometrically, we may consider f € Holy(S?, CP') and
¢ =1 o f € Harmy (52, 5?) to be the same map.

From Example 3.13, C,; is non-empty if and only if d > 3, in which case it is a proper
algebraic subvariety of Holy(S%, CP'). Further, by Theorem 3.19, C, is precisely the set
of f € Holy(S?, CP') which admit extra eigenfunctions. This last subject was studied in
[18, 19, 30, 20] and some results on C; were obtained; we give some new results in Section
5.2,53.

The space Holy(S%, CP') = Holy(S?, CPOI) consists of projective classes of pairs
(Fo, F2) = (Fop, 0, F»,0) of coprime polynomials of maximum degree exactly d. Consider
the map which gives the Wronskian of Fy and F3:

(5.1 W :Czlj > Clzlaa—2. (Fo. F2) = —{Fo, P} = FoFy — Fy F.
Since this is bilinear and antisymmetric, it induces a linear map

(5.2) W /\ZC[z]d ~ /\zcd+1 = 1@tV o Clzlpg—r = €27
given on the set Sq of decomposable 2-vectors by

(5.3) W(Fo A F2) = FoF) — P> Fj.

Now W (Fy, F») = 0 if and only if Fj and F; are linearly dependent. Hence w projectivizes
to a map

(5.4) W:S; — cp*2,

where S; = {[v A w] € P(AN’C*Y) ; v, w € C?*! linearly independent}, called the Wron-
ski map. Note that S; can be thought of as the quotient of Holy (52, CP') by the action of
SL(2, C) given by postcomposing f = [Fyp, F2] € Hold(Sz, CPI) with a fractional linear
transformation of the codomain:

Fy aFy+bF, a b
(5.5) <F2> — (cFo +dF2> for (c d) e SL(12,C).
This action leaves [Fy A F>] invariant. Further, as is well known, S; is the complex quadric

{lw] € Cpad+h/2=1. 4 ¢ /\ZC‘lH, w A o = 0}; this is biholomorphic to the Grassmannian

Gz(Cd+1) via [Fo A F2] — span{Fp, F2}, and so has dimension 2d — 2. The degree of the

Wronski map is given by the d’th Catalan number (1/d) (25:12), see, for example, [23].

LEMMA 5.1 [18]. Themap f = [Fo, F2] € Hold(Sz, CPI) is a collapse point if and
only if [Fo A F»] is a critical point of the Wronski map (5.4); equivalently, if and only if the
kernel of the linear map (5.2) contains a non-zero vector tangent to Sq at Fo N F .

PROOF. A simple calculation shows that the derivative of (5.1) is given by
dW(Fy, Fy) (U3, —Uy) = = RyU| + F{U; — KU} + F3Us
={Fo, Ui} + {F2, Us}
=dQr,0,7,0(0,U1,0,U3),
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where the second equality is from (3.2), the bracket notation is as in (1.40), and Q is given by
(1.36). O

Writing Fo(z) = Z?:o a;7' and F>(z) = Z?:o c;7' for constants a;, c; € C, the map
(5.1) is given by

d
W(Fo, Fa) = 37 G = Daiejd ™™ = 37 (= ihy !
i,j=1 O<i<j<d

where h;j = a;cj —ajc; ; thus, with respect to the basis {z' Az/;0 <i < j < d} of NClzla
and the basis {z¥; 0 < k < 2d — 2} of C[z]oq—> , the linear map (5.2) is given by
h,’jzi A Zj = (j— i)h,'jZH_j_l .

Hence (5.2) is represented by the (2d — 1) x d(d + 1)/2 matrix My , with rows indexed by
k €{0,...,2d — 2} and columns by (i, j) where 0 <i < j < d, with one non-zero entry in
each column (i, j), namely, j —i atrowk =i + j — 1.

5.2. Invariant functions and formulae for small twistor degree. As well as the action
(5.5), SL(2, C) acts on Holy (82, CPY) by precomposition by a fractional linear transforma-
tion of the domain:

b
d

az+b

5.6
(5-6) Zch—i—d

for z € $? = C U {0}, (j ) eSLQ2.C).
This gives an action on /\2C [z]4 and so on Sy. It is clear that Cy is invariant under this action,
so that we expect it to be given as the zero set of polynomials invariant under this action.
We shall find such polynomials for d < 5. This case is special because (i) Harmfl““(Sz, k)
is known to be a manifold for d < 5 [6]; (ii) from Remark 3.18, Harm{'!($2, §°) is empty,
equivalently, the space of extra eigenfunctions has dimension < 2 for all f € Holy (S2, CPl),
if and only if d < 5. We now study the cases d = 3, 4, 5 separately.

The case d = 3. In this case, the linear map (5.2) is given by

5.7 (hot, hoz, hos, hi2, 13, ho3) = (hot, 2hoz2, 3ho3 + hi2, 2h13, ho3)

and we have S3 = {(ho1, hoz, ho3, h12, h13, h23) € C®; r = 0} where r = hotha3 — hooh13 +
hozhiz . 3

The kernel of (5.7) is clearly one-dimensional; it is tangent to S3 precisely when the 6 x 6
matrix M3 made up of M3 with the row vector grad » adjoined is singular. Now

1 0 0 0 0 0

0 2 0 0 0 0

0 0 3 1 0 0

Ms=1 6 o 0 0 2 o
0 0 0 0 0 1

hys  —hiz hi2 hos —ho hot
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and this is singular precisely when 3h¢3 — k12 = 0. Hence, the set C3 € Hol3 (Sz, CPl) of
collapse points is the linear algebraic variety

C3 = {[ho1, ho2, ho3, h12, h13, ho3] € Sq ;3 3hoz — hip =0}

In more concrete terms, this says that f = [Fp, F»] € C3 if and only if the coefficients
of Fy and F> satisfy 3agcs — ajcz + axe1 — 3azco = 0.

It can be checked that P3 = 3hg3 — h12 is indeed SL(2, C)-invariant. We interpret
this polynomial. Guided by invariant theory (see, for example, [27]), for any d, put h;; =
(7) (jl) H;; (,j = 0,1,...,d). Then the fundamental invariant linear polynomial in the
bivector (H;;) is its trace: Trace H;j = Z?:o(_l)i (‘ZI)H, d—i - This gives an invariant poly-
nomial for any d, though it is zero when d is even by the antisymmetry of H;; . To understand
this better, write i = (i1, ...,iq) € I = {0, 1}d. Also write i = |i| = Z;I:I i; , and similarly
for other multi-indices. Write #, for the complement 1 — i; . Then,

2 .
§P3 = Trace H;j = Z(—l)’H,-j

iel

where j = |j| with j determined by the rule j, =i, (t = 1,...,d). Itis easy to prove that
this is the only invariant linear polynomial up to scale.
For any d, we can, in principle, find polynomials giving C, in a similar way. Sy is given

by the vanishing of the (dzl) equations

Tijkt = hijh — highji +hihjr =0 0<i<j<k<l<d);

the gradients of the r;j;; give a matrix of rank (d — 1)(d — 2)/2 = codim S'd. We form a
Q2d—-1+ (i)) x d(d + 1)/2 matrix M from M, by adjoining those gradients; then Cy is the
set on which M fails to have maximal rank. We find this by calculating the highest common
factor of all the minors of size d(d + 1)/2, always working modulo the ideal R generated by
the rijx, giving a polynomial P, in the 4;;. As above, this is SL(2, C)-invariant; we shall now
identify it for d = 4, 5.

The case d = 4. Computer calculation of the above hcf gives

Py = =2 hoohag + 3 (hoshaz + hi2hia) + 18 ho? — 9 hosh13 — hizhas (mod R) .

We shall express this in terms of invariant polynomials. Guided by the case d = 3, we form
the invariant polynomial
P} = (=) HyHj
i,jel

where k = |k| and I = |l with k and 1 determined by the rule k;, = j;, [, = i, (t =
1,...,d). We can define another invariant polynomial P42 by the same formula but with the
more complicated rule k; = i ky =12, ks = j_l, ky = j_z, i =iz, b =1ia,13 = j_3, Iy = j_4.
Note that both these polynomials are sorts of traces. Then computer studies show that P41 and
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P42 form a basis for the vector space of quadratic invariant polynomials modulo R, and that

1 1 4 2

The case d = 5. Similarly, we can define invariant polynomials PSS (s=1,2,3,4) by

Pi = Z (=)™ Hy Hjy Hy
i,jrel
where k = |k|, [ = |l| and s = |s| with k, 1 and s determined by the following rules:

=Dk =inli=jnsi =7 @=1...,5; B B

(6 =2k =ir (t =1,2,3), ka = j1, ks = jo, 1 = is, b = i5,[3 =71, la =72,
s =73,51=Jj3,80=ja,s3=Jjs, s =71 t =4,5);

(s=3)k =i (1t =1,2,3,4), ks = j1,lh =is, b =7r1, 13 =72, 14 =73,15 =T,
S1=j_2,S2=j_3,S3=j_4,S4=j_5,S5=_E; _ _ _ _ - .

(s =4): ky =71, ko =75, ks = i1, ks = in, ks = i3, 11 = ia, o = is, [3 = j1, la = )2,
Is = j3,81 = ja, $2 = J5,83 =T1,84 =T2,55 =T13.

Note that P51 is the cube of the trace of (H;;). More invariant polynomials can be formed
by similar rules. However, computer studies show that these four form a basis for the invariant
cubic polynomials modulo R, and that
P 671 pl 125

T 6 5 2

5.3. The influence of branch points. Let R be in Cp4_>[z]. The inverse image of R
under the Wronski map (5.4) consists of elements [ Fy A F2] of S; such that the position and
order of the branch points of f = [Fy, F>] : S> — CP! are given by the zeros of R. In
general, the number of inverse images = the degree of the Wronski map = the Catalan number
(1/d) (251:12). When some of the inverse images coalesce, they give a critical point of W, i.e.
a collapse point.

The cased = 3. Then the Wronski map has degree 2. Any f in Hol3(S?, CP') has four
branch points up to order. If the branch points of f are not all simple, then, by a fractional
linear transformation, they can be placed at, say, 0, 1 and oo, then direct calculation of P3
shows that f is not a collapse point. This also follows from Proposition 5.3 below.

So we may suppose that f has four distinct simple branch points. By SL(2, C)-invari-
ance, we can assume that three of these points are at 0, 1 and oo; let « be the fourth one. Then
R = z(z — 1)(z — @) and solving (5.7) for f € Sy, we find that

[Fo, F>] = [2° + (68 — 2 — 2a)z%, —z/2 + B]

where 8 is a root of 1282 + (—4 — 4a)f +a = 0.

These roots are usually distinct; they coalesce when the discriminant > — o + 1 is zero
giving o = (1 £ i+/3)/2 = e*7/3, the primitive cube roots of —1, so that R = z> + 1. In
general, a quadruplet of points in S = C U {oo} gives rise to six different values of the cross
ratio. It is called equianharmonic if these values reduce to two, in which case the cross ratios
are the above primitive cube roots of —1; equivalently, by a fractional linear transformation,

125
PZ —225P + TP54 (mod R).
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we can place the points at the vertices of a regular tetrahedron on S2. Taking those vertices to

be 1, w, w?, 0o where w = €2™/3 js a primitive cube root of 41, we obtain

(5.8) [Fo, F2] = [2° 4+ 2, —z/3].

Hence f is a collapse point (equivalently, admits extra eigenfunctions) if and only if it
is given by (5.8) up to fractional linear transformations of the domain and codomain, equiv-
alently, if and only if it has simple branch points which form an equianharmonic quadruplet.
This is proved by a different method in [34].

The case d > 4. Then the Wronski map has degree at least 5. Any f € Holy(S?, CP')
has 2d — 2 > 6 branch points up to multiplicity and there are many possibilities for their po-
sitions and orders to consider; we give an example where the branch points exhibit symmetry
through the origin. We see that collapse points occur when the branch points are so configured
that some preimages of the Wronski map coalesce.

EXAMPLE 5.2. Suppose that d = 4 and that f has six distinct simple branch points
at {0, 1, —1, &, —a, 00}. Then R = (z2 — 1)(z*> — «). Solving W(Fy, F») = R by computer
gives the five solutions:

fi=[*—o? —2/2+ (@ + 1)/4]
frand f3=[z* + 2> + afz — o, —2%/2 + Bz/6 — /6]
foand fs =[2* + y2 +ayz —a?, —2%/2+ yz/6 + /6]
where B = £4/3a2 + 2o + 3 and y = +v/3a2 — 2a + 3.

It can be checked that when § and y are non-zero, none of the five solutions gives P4 = 0,
so are not collapse points. When 8 = 0, i.e., whena = (—lj:ix/g)/3, the solutions f1, f> and
f3 coalesce to give a collapse point. Similarly, when y = 0, i.e., when o = (41 £ i~/8)/3,
the solutions f1, fa and fs coalesce to give a collapse point.

Note that the complexity of the problem grows quickly with the degree d. Indeed, the
Catalan number (1/d) (25:12), which gives the degree of the Wronski map, increases rapidly
with d. Ford = 6, it is 42; for d = 9, it is more than a thousand, for d = 20, it is more than a
billion.

We finish with a general result which shows that, if f has a branch point of maximal
order, then it is not a collapse point.

PROPOSITION 5.3. Suppose that f € Holy(S?, CP') has a branch point of order
r >d — 1 somewhere. Thenr = d — 1 and f is not a collapse point.

PROOF. We can assume that the branch point is at infinity so that R has degree 2d —
2—r <d—1. Now,since f = [Fp, F>] has degree d, then one of Fy or F; has degree exactly
d. Since deg R = deg Fy + deg F» — 1 for deg > < d, we must have r = d — 1, and
deg I, = 0, i.e. F; is a constant which we can take to be 1. But then dQ g, r,)(0, 0,0, U3) =
{1,U3} = U’3; on putting U3 equal to z, ..., z4, this gives multiples of 1,..., zd_l, re-
spectively. On the other hand, dQ g, ,)(0, U1, 0,0) = {Fy, Uy}; on putting Uy equal to
z,...,z%71, this gives polynomials of degree exactly d, ..., 2d — 2, respectively. The image
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of dQ(F,, F,) thus contains a basis for C[z]>4—> so that Q is submersive at f. Hence f is not
a collapse point. O

Note that the first part of the result confirms the well-known result that the maximum
possible order of a branch point of a map f € Holy(S%, CP')isd — 1.
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