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Abstract. We study the stability of direct images by Frobenius morphisms. First, we
compute the first Chern classes of direct images of vector bundles by Frobenius morphisms
modulo rational equivalence up to torsions. Next, introducing the canonical filtrations, we
prove that if X is a nonsingular projective minimal surface of general type with semistable
Ω1
X

with respect to the canonical line bundle KX , then the direct images of line bundles on X
by Frobenius morphisms are semistable with respect to KX .

1. Introduction. Let k be an algebraically closed field of characteristic p > 0, X
a nonsingular projective variety over k of dimension n, F = FX the absolute Frobenius
morphism of X, and H a numerically positive divisor on X. A divisor H on X is called
numerically positive if it is numerically effective and Hn > 0. Then one can define the slope
of a torsion free sheaf E on X with respect to H by

µ(E ) = c1(E )H
n−1

rk(E )
,

where c1(E ) is the first Chern class of E and rk(E ) is the rank of E . Then a torsion free sheaf
E on X is called semistable (resp. stable) with respect to H if for all nonzero torsion free
subsheaves F of E , µ(F ) ≤ µ(E ) (resp. µ(F ) < µ(E )).

As for the semistability of Frobenius pull-backs of vector bundles, a lot of useful and
important results have been obtained (see, for examples, [5], [8], [16]). On the other hand,
Lange and Pauly proved recently the following theorem on the stability of Frobenius direct
images of line bundles.

THEOREM (Lange-Pauly [11]). Let X be a nonsingular projective curve over k of
genus g(X) ≥ 2 and L a line bundle on X. Then F∗L is stable.

Hence it is quite natural to consider the following question for higher dimensional cases:

PROBLEM. Let X be a nonsingular projective variety of general type over k of dimen-
sion n ≥ 2 and E a semistable vector bundle with respect to a numerically positive divisorH
on X. Then is F∗E semistable with respect to H ?

2000 Mathematics Subject Classification. Primary 14J60; Secondary 13A35, 14J29.
Key words and phrases. Vector bundles, stability, Frobenius morphisms, canonical filtrations, geography.
∗ The second author is partly supported by the Grant-in-Aid for Scientific Research (C), Japan Society for the

Promotion of Science.



288 Y. KITADAI AND H. SUMIHIRO

It is well-known that the de Rham complex (F∗(Ω•
X), d) of X plays an important role

in the proof of Deligne and Illusie’s theorem [2]. Hence it seems that our claim of the Prob-
lem might be useful in the studies, such as geography, Kodaira vanishing theorem or etc., of
nonsingular projective varieties of general type in positive characteristic. In this paper, we
shall prove the following theorems which give affirmative answers to the Problem when X is
a surface and E is a line bundle on X.

THEOREM 5.1. Let X be a nonsingular projective surface over k, and let H be a nu-
merically positive divisor onX such that |mH | is base point free and it contains a nonsingular
member for sufficiently large integers m. Assume that KXH > 0 and Ω1

X is semistable with
respect to H . Then F∗L is semistable with respect to H for any line bundle L on X.

and

THEOREM 5.3. Let X be a nonsingular projective surface over k, and let H be a nu-
merically positive divisor onX such that |mH | is base point free and it contains a nonsingular
member for sufficiently large integers m. Assume that KX ≡ 0 (numerically equivalent to 0)
and Ω1

X is semistable with respect to H . Then F∗L is semistable with respect to H for any
line bundle L on X.

As corollaries of Theorem 5.1, we obtain the following

COROLLARY 5.2. Let X be a nonsingular projective minimal surface of general type
over k. Assume that Ω1

X is semistable with respect to KX. Then F∗L is semistable with
respect to KX for any line bundle L on X.

Further, we obtain the following on geography of minimal projective surface of general
type in positive characteristic.

COROLLARY 6.1. Let X be a nonsingular projective minimal surface of general type
over k. Assume that Ω1

X is semistable with respect to KX .
(1) (Bogomolov’s inequality) If Ω1

X is strongly semistable, i.e., (F k)∗(Ω1
X) is

semistable for every k ∈ N with respect to KX, then we have

c2
1(X) ≤ 4c2(X) .

(2) If (F k−1)∗(Ω1
X) is semistable and (F k)∗(Ω1

X) is not semistable with respect toKX
for a positive integer k, then we have

c2
1(X) ≤ 4p2k

p2k − (p − 1)2
c2(X) .

In particular, we obtain that c2(X) > 0.

We introduced a natural filtrationW • = {Wi} (0 ≤ i ≤ n(p−1)+1) of F ∗F∗(E ) called
a canonical filtration of F ∗F∗E (cf. Definition 3.1)

F ∗F∗E = W 0 ⊃ W 1 ⊃ · · · ⊃ Wn(p−1)+1 = 0
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as follows. Let ϕ : F ∗F∗OX → OX be the canonical surjective homomorphism and I =
Ker(ϕ) the kernel of ϕ. Since F ∗F∗E is an F ∗F∗OX module, we define

Wi = F ∗F∗E · I i , 0 ≤ i ≤ n(p − 1)+ 1 .

This canonical filtration is also introduced by Joshi, Ramanan, Xia and Yu [8] and Sun [19]
using the canonical connection ∇ : F ∗F∗E → F ∗F∗E ⊗Ω1

X of F ∗F∗E , which is the positive
characteristic version of the Gauss-Manin connection [9]. It is easily seen that both filtrations
coincide with each other by local calculations. The canonical filtration and canonical connec-
tion play an essential role in our proofs of Theorem 5.1 and Theorem 5.3.

The authors would like to express their sincere gratitude to Professor Kei-ichi Watanabe
for pointing out Lange and Pauly’s Theorem ([11]) to them and to the referee for the referee’s
comments.

2. A formula for first Chern classes of the direct images by Frobenius morphisms.
LetX be a nonsingular projective variety of dimension n over k and E a vector bundle of rank
r on X. The aim of this section is to compute the first Chern class c1(FX∗E ) to determine its
slope.

THEOREM 2.1. Let E be a vector bundle on X of rank r . Then

c1(F∗E ) ≡ pn − pn−1

2
rKX + pn−1c1(E ) ,

where ≡ denotes rational equivalence up to torsions and KX is the canonical divisor of X.

PROOF. Applying Grothendieck-Riemann-Roch Theorem (cf. [4]) to F : X → X, we
obtain

ch(F∗E ) · td(X) = F∗(ch(E ) · td(X))

in the Chow ring A(X)Q. Hence it follows that

c1(F∗E )− 1

2
pnrKX = F∗(c1(E ))− r

2
F∗KX .

Since F∗D = pn−1D for every divisorD of X, we obtain the desired formula. �

REMARK 2.2. Kurano proved a similar formula by using Singular Riemann-Roch
Theorem.

THEOREM 2.3 (Kurano [10]). Let k be a perfect field, char(k) = p > 0, and X a
normal algebraic variety of dimension n over k. Then

c1(F∗OX) = pn − pn−1

2
KX

in An−1(X)Q.

3. Canonical filtrations. In this section, we introduce a useful filtration on F ∗F∗E ,
where E is a vector bundle onX. Let I be the kernel of the natural surjectionF ∗F∗OX → OX.
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Since F ∗F∗OX is an OX-algebra, we obtain a descending filtration

I 0 := F ∗F∗OX ⊃ I 1 := I ⊃ I 2 ⊃ I 3 ⊃ · · ·
on F ∗F∗OX. Here we consider F ∗F∗OX as an OX-module from right. Further, we have a
descending filtration on F ∗F∗E :

W 0 = F ∗F∗E ⊃ W 1 = F ∗F∗E · I ⊃ · · · ⊃ Wi = F ∗F∗E · I i ⊃ · · · ⊃ Wn(p−1)+1 = (0) .

DEFINITION 3.1. We call this filtration W • (resp. I •) the canonical filtration on
F ∗F∗E (resp. F ∗F∗OX).

REMARK 3.2. It is observed that the canonical filtration on F ∗F∗E introduced in [8]
and [19] by using the canonical connection ∇ : F ∗F∗E → F ∗F∗E ⊗Ω1

X (cf. [9]) coincides
with our canonical filtrationW • = {Wi = F ∗F∗E · I i | 0 ≤ i ≤ n(p − 1)+ 1} on F ∗F∗E .

Consider the following commutative diagram:

X ×Xp X

p′
1

��

j

���
�

�
�

� p′
2

��
X ×k X

p1

��

p2 �� X

ϕ

��

F
�����������

X
ψ

����
��

��
��

�

X

F

������������
ϕ

�� Spec k ,

where ϕ is the structure morphism of X, ψ is the morphism induced from the map taking the
p-th root of elements of k, and pi , p′

i are natural projections. Then there exists the morphism
j in the diagram which is a closed immersion.

Let J (resp. I ′) be the kernel of the natural surjection OX×kX → OX (resp. OX×XpX →
OX). Then there exists the following commutative diagram with exact rows of sheaves on
X ×k X:

0 �� J

����

�� OX×kX

����

�� OX �� 0

0 �� j∗I ′ �� j∗OX×XpX �� j∗OX �� 0 .

We have I = p′
2∗I

′ because F ∗F∗OX = p′
2∗OX×XpX and p′

2 = p2 ◦ j is an affine morphism.

Hence the morphism J i/J i+1 = Si(Ω1
X) � j∗(I ′i/I ′i+1

) ∼= I i/I i+1 is surjective on X,
where Ω1

X is the vector bundle of regular differential forms of degree 1.
Let U = SpecA ⊂ X be a nonempty affine open subset. Then the exact sequence

0 → I → F ∗F∗OX → OX → 0
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is locally expressed in the following way:

0 → I → A⊗Ap A → A → 0

and I = 〈a ⊗ 1 − 1 ⊗ a | a ∈ A〉A. We consider A ⊗Ap A as an A-module from right.
Let {x1, . . . , xn} be a regular system of parameters. For any element a ∈ A, write a =∑

0≤i1,...,in≤p−1 a
p
i1,...,in

x
i1
1 · · · xinn , where ai1,...,in ∈ A by shrinking U sufficiently small if

necessary. Then we have

a ⊗ 1 − 1 ⊗ a =
∑

a
p

i1,...,in
x
i1
1 · · · xinn ⊗ 1 − 1 ⊗

∑
a
p

i1,...,in
x
i1
1 · · · xinn

=
∑

(x
i1
1 · · · xinn ⊗ a

p

i1,...,in
− 1 ⊗ a

p

i1,...,in
x
i1
1 · · · xinn )

=
∑

(x
i1
1 · · · xinn ⊗ 1 − 1 ⊗ x

i1
1 · · · xinn )api1,...,in .

Therefore, I = 〈xi11 · · · xinn ⊗ 1 − 1 ⊗ x
i1
1 · · · xinn | 0 ≤ i1, . . . , in ≤ p − 1〉A locally.

Let us put ωi = xi⊗1−1⊗xi (1 ≤ i ≤ n) and for α = (α1, . . . , αn), β = (β1, . . . , βn),
(0 ≤ αk, βk ≤ p − 1, 1 ≤ k ≤ n) denote by β ≤ α if βk ≤ αk for all k.

LEMMA 3.3. x
α1
1 · · · xαnn ⊗ 1 − 1 ⊗ xα1

1 · · · xαnn = ∑
β≤α ω

β1
1 · · ·ωβnn aβ1,··· ,βn for some

aβ1,...,βn ∈ A.

PROOF. We shall prove by induction on |α| = α1 + · · · + αn. When |α| = 1, it is
obvious by definition. Assume that we have

x
α1
1 · · · xαnn ⊗ 1 − 1 ⊗ x

α1
1 · · · xαnn =

∑
β≤α

ω
β1
1 · · ·ωβnn aβ1,··· ,βn

for some aβ1,...,βn ∈ A. Multiplying by ωk = xk ⊗ 1 − 1 ⊗ xk , we have∑
β≤α

ω
β1
1 · · ·ωβk+1

k · · ·ωβnn aβ1,··· ,βn = (xk ⊗ 1 − 1 ⊗ xk)(x
α1
1 · · · xαnn ⊗ 1 − 1 ⊗ x

α1
1 · · · xαnn )

= x
α1
1 · · · xαk+1

k · · · xαnn ⊗ 1 − 1 ⊗ x
α1
1 · · · xαk+1

k · · · xαnn
+(1 ⊗ xk − xk ⊗ 1)xα1

1 · · · xαnn
+(1 ⊗ x

α1
1 · · · xαnn − x

α1
1 · · · xαnn ⊗ 1)xk .

Hence it follows that

x
α1
1 · · · xαk+1

k · · · xαnn ⊗ 1 − 1 ⊗ x
α1
1 · · · xαk+1

k · · · xαnn
=

∑
β≤α

ω
β1
1 · · ·ωβk+1

k · · ·ωβnn aβ1,··· ,βn +
∑
β≤α

ω
β1
1 · · ·ωβnn aβ1,··· ,βnxk + ωkx

α1
1 · · · xαnn .

�

Thus, we see that I = 〈ωα1
1 · · ·ωαnn | (α1, . . . , αn) �= (0)〉A. In addition, we observe that

LEMMA 3.4. If
∑
α ω

α1
1 · · ·ωαnn aα1,...,αn = 0, aα1,...,αn ∈ A, then aα1,...,αn = 0 for all

α = (α1, . . . , αn).
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PROOF. Multiplying by ωp−2
1 ω

p−1
2 · · ·ωp−1

n , we have

ω
p−1
1 ω

p−1
2 · · ·ωp−1

n a10···0 = 0 ,

since ωpi = 0 for 1 ≤ i ≤ n. Hence

0 = ω
p−1
1 ω

p−1
2 · · ·ωp−1

n a10···0
=

∑
β≤(p−1,··· ,p−1),β �=0

(x
β1
1 · · · xβnn ⊗ 1 − 1 ⊗ x

β1
1 · · · xβnn )bβ1,...,βna10···0

implies a10···0 = 0 because {xβ1
1 · · · xβnn ⊗ 1 | 0 ≤ β1, . . . , βn ≤ p − 1} is a free basis of

A ⊗Ap A as an A-module. Iterating this procedure, we observe that aα1,...,αn = 0 for all
α = (α1, . . . , αn). �

Therefore summing up the above, we obtain the following.

COROLLARY 3.5. (1) I is a free A-module with a basis {ωα1
1 · · ·ωαnn | (α1, . . . , αn)

�= 0, 0 ≤ αk ≤ p − 1, 1 ≤ k ≤ n}.
I =

⊕
(α1,...,αn)

ω
α1
1 · · ·ωαnn A .

(2) I i/I i+1 = ⊕
α1+···+αn=i ω

α1
1 · · ·ωαnn A for 0 ≤ i ≤ n(p − 1).

Next, we will calculate the filtration for the case of curves or surfaces.
3.1. Curve case. Assume that X is a curve. Let x be a regular parameter and put

ω := x ⊗ 1 − 1 ⊗ x. Then we have I = ⊕
1≤i≤p−1 ω

iA and I i/I i+1 = ωiA.

Since I i/I i+1 is a line bundle on X, the surjection J i/J i+1 = K⊗i
X → I i/I i+1 is an

isomorphism for 0 ≤ i ≤ p − 1. Hence we obtain

PROPOSITION 3.6. Let X be a nonsingular projective curve over k and I • the canon-
ical filtration on F ∗F∗OX. Then it follows that

F ∗F∗OX ⊃ I ⊃ I 2 ⊃ · · · ⊃ Ip−1 ⊃ Ip = (0)

and I i/I i+1 = K⊗i
X for 0 ≤ i ≤ p − 1.

3.2. Surface case. Assume that X is a surface. Let {x, y} be a regular system of pa-
rameters and let ω := x ⊗ 1 − 1 ⊗ x and η := y ⊗ 1 − 1 ⊗ y. Then we see that

F ∗F∗OX ⊃ I ⊃ I 2 ⊃ · · · ⊃ I 2p−2 ⊃ I 2p−1 = (0) ,

I i =
⊕

k + l ≥ i,
0 ≤ k, l ≤ p − 1

ωkηlA , I i/I i+1 =
⊕

k + l = i,
0 ≤ k, l ≤ p − 1

ωkηlA .

LEMMA 3.7.

(
p − 1

n

)
= (−1)n in positive characteristic p.

PROOF. It is obvious. �

LEMMA 3.8. I 2p−2 ∼= K
⊗(p−1)
X .
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PROOF. I 2p−2 is a line bundle on X because I 2p−2 = ωp−1ηp−1A locally. Let {x ′, y ′}
be a regular system of parameters of another open subset V . Let ω′ := x ′ ⊗ 1 − 1 ⊗ x ′ and
η′ := y ′ ⊗1−1⊗y ′. Put ω = ω′a+η′b+ (higher terms) and η = ω′c+η′d+ (higher terms)
for a, b, c, d ∈ Γ (U ∩ V,OX) on the intersection U ∩ V . Then since ω′p = η′p = 0, we
have

ωp−1ηp−1 =
∑

0≤m,n≤p−1

ω′m+n
η′2p−2−(m+n) ·

(
p − 1

m

)(
p − 1

n

)
ambp−1−mcndp−1−n

= ω′p−1
η′p−1

∑
0≤m≤p−1

(
p − 1

m

)(
p − 1

p − 1 −m

)
(ad)m(bc)p−1−m.

By Lemma 3.7, it turns out that
∑

0≤m≤p−1

(
p − 1

m

)(
p − 1

p − 1 −m

)
(ad)m(bc)p−1−m

=
∑(

p − 1

m

)
(ad)m(−1)p−1−m(bc)p−1−m

= (ad − bc)p−1.

This is the transition function of K⊗(p−1)
X . �

If i ≤ p−1, then J i/J i+1 and I i/I i+1 are vector bundles onX of the same rank, and so
it follows that I i/I i+1 ∼= J i/J i+1 ∼= Si(Ω1

X). On the other hand, there exists the following
perfect pairing:

I i/I i+1 ⊗OX I
2p−2−i/I 2p−1−i −→ I 2p−2/I 2p−1 = I 2p−2 ∼= ω

⊗(p−1)
X .

∈ ∈

ωkηl ⊗ ωk
′
ηl

′ �−→ ωk+k′
ηl+l′

Thus, combining the above, we obtain

PROPOSITION 3.9. LetX be a nonsingular projective surface over k and I • the canon-
ical filtration on F ∗F∗OX. Then it holds that

F ∗F∗OX ⊃ I ⊃ I 2 ⊃ · · · ⊃ I 2p−2 ⊃ I 2p−1 = (0)

and

I i/I i+1 =


Si(Ω1

X) , 0 ≤ i ≤ p − 1 ,

K
⊗(i−p+1)
X ⊗ S2p−2−i(Ω1

X) , p ≤ i ≤ 2p − 2 .

4. Canonical connections. Let E be a quasi-coherent sheaf on a nonsingular projec-
tive varietyX of dimension n. Then there exists a connection ∇ : F ∗E → F ∗E ⊗Ω1

X, which
is called the canonical connection (cf. [9]). This is locally written as

M ⊗A A−→M ⊗A A⊗A Ω
1
A/k

∼=M ⊗A Ω
1
A/k ,

∈ ∈

m⊗ f �−→ m⊗ df
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where A = Γ (U,OX) and M = Γ (U,E ) for an affine open subset U of X. Here A is
considered as an A-module through Frobenius morphism. In particular, we get a connection
on F ∗F∗OX

∇ : F ∗F∗OX → F ∗F∗OX ⊗Ω1
X .

Let {x1, . . . , xn} be a regular system of parameters on U = SpecA and ωi = xi ⊗ 1 −
1 ⊗ xi for 1 ≤ i ≤ n. Then we have by straightforward computation,

∇(ωα1
1 · · ·ωαnn f ) =

n∑
k=1

(
− αkω

α1
1 · · ·ωαk−1

k · · ·ωαnn f + ω
α1
1 · · ·ωαnn

∂f

∂xk

)
⊗ dxk, f ∈ A .

5. Main results. Using the canonical filtrations (Proposition 3.9), we can prove the
following theorem, which is a generalization of Lange and Pauly’s Theorem to the surface
case.

THEOREM 5.1. Let X be a nonsingular projective surface over k, and let H be a nu-
merically positive divisor onX such that |mH | is base point free and it contains a nonsingular
member for sufficiently large integers m. Assume that KXH > 0 and Ω1

X is semistable with
respect to H . Then F∗L is semistable with respect to H for any line bundle L on X.

PROOF. Assuming that F∗L is not semistable with respect to H , we shall derive
a contradiction. Let S ⊂ F∗L be a destabilizing subsheaf. Then µ(S) > µ(F∗L ) =
((1 − 1/p)/2)KXH + (1/p)c1(L )H .

Let I • (resp. W •) be the canonical filtration of F ∗F∗OX (resp. F ∗F∗L ).
By definition, we have Wi := F ∗F∗L · I i for 0 ≤ i ≤ 2p − 1. Let U = SpecA ⊂ X

be an affine open subset of X andM = Γ (U,L ). ThenM ⊗Ap A = M ⊗A (A⊗Ap A) is an
(A⊗ApA)-module, and soM⊗ApA·I i = M⊗A(A⊗Ap A)·I i = M⊗AI

i . Thus, considering
I i as an OX-module from both sides, we observe thatWi = F ∗F∗L ·I i ∼= L ⊗OX I

i . Hence
W • is a filtration of F ∗F∗L such that

F ∗F∗L ⊃ W 1 ⊃ W 2 ⊃ · · · ⊃ W 2p−2 ⊃ W 2p−1 = (0)

and

(1) Gri (W •) =


L ⊗ Si(Ω1

X) , 0 ≤ i ≤ p − 1 ,

L ⊗K
⊗(i−p+1)
X ⊗ S2p−2−i(Ω1

X) , p ≤ i ≤ 2p − 2

by Proposition 3.9.
Moreover, F ∗S ∩W • is a filtration of F ∗S. Letm be the integer such that F ∗S ∩Wm �=

(0) and F ∗S ∩Wm+1 = (0).

CLAIM. F ∗S ∩Wi � F ∗S ∩Wi+1 for 0 ≤ i ≤ m.

Indeed, it is trivial in the case i = m by definition of m. Let i < m. Locally, we use the
same notation of ω, η as in 3.2. Pick a nonzero element
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g ⊗
( ∑
k+l=i+1

ωkηlfkl + θ

)
∈ F ∗S ∩Wi+1 ,

where g ∈ Γ (U,L ), fkl ∈ A, and for some fk0l0 �= 0 and θ ∈ I i+2. Then we have

∇
(
g ⊗

( ∑
k+l=i+1

ωkηlfkl + θ

))

= g ⊗
∑

k+l=i+1

(−kωk−1ηlfkl + (higher))⊗ dx

+ g ⊗
∑

k+l=i+1

(−lωkηl−1fkl + (higher))⊗ dy .

Since the restriction of ∇ to F ∗S is a connection of F ∗S, we see that g ⊗ ∑
(−kωk−1ηlfkl +

(higher)) ∈ F ∗S ∩Wi \ F ∗S ∩Wi+1 and g ⊗ ∑
(−lωkηl−1fkl + (higher)) ∈ F ∗S ∩ Wi \

F ∗S ∩Wi+1.
Therefore, F ∗S ∩Wi/F ∗S ∩Wi+1 is a nonzero subsheaf ofWi/Wi+1 ∼= L ⊗ I i/I i+1.

Since Ω1
X is semistable by assumption, Gri (W •) (0 ≤ i ≤ m) is semistable by above (1)

and Ilangovan-Mehta-Parameswaran’s Theorem ([7, 15]) and the restriction theorem (cf. [12,
Corollary 5.4]). Hence we obtain

µ(F ∗S ∩Wi/F ∗S ∩Wi+1) ≤ µ(L ⊗ I i/I i+1) .

Let ri be the rank of F ∗S ∩Wi/F ∗S ∩Wi+1. Then it follows that

(c1(F
∗S ∩Wi)− c1(F

∗S ∩Wi+1))H

ri
≤ c1(L )H + i

2
KXH .

Summing up for all i, we have

c1(F
∗S)H ≤

m∑
i=0

ric1(L )H + 1

2

m∑
i=0

iriKXH ,

µ(F ∗S) = c1(F
∗S)H∑m
i=0 ri

≤ c1(L )H +
∑
iri

2
∑
ri
KXH .

On the other hand,

µ(F ∗S) = p · µ(S) > p ·
(

1 − 1/p

2
KXH + 1

p
c1(L )H

)

= p − 1

2
KXH + c1(L )H .

Thus, we obtain

(2) (p − 1)
m∑
i=0

ri <

m∑
i=0

iri .
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In particular, we may assume m ≥ p from the inequality (2).
Let K = k(X) be the rational function field of X. Then we see that Wi ⊗ K =

〈ωαηβ | α+β ≥ i〉K andWi/Wi+1⊗K = 〈ωαηβ | α+β = i〉K . Let δl = ∑
α+β=i ωαηβf

(l)
αβ

+ (higher) ∈ (F ∗S ∩ Wi) ⊗ K (f
(l)
αβ ∈ K) be a lifting of an element δ̄l ∈ (F ∗S ∩ Wi) ⊗

K/(F ∗S ∩Wi+1) ⊗ K , and put εl = (f
(l)
αβ ) ∈ K⊕(i+1) ∼= Wi/Wi+1 ⊗ K . Then it is easily

seen that {εl | 1 ≤ l ≤ ri} is linearly independent over K if and only if {δ̄l | 1 ≤ l ≤ ri} is
linearly independent overK .

CLAIM. ri ≥ r2p−2−i for 1 ≤ i ≤ p − 2.

Indeed, let {δ̄l | 1 ≤ l ≤ r2p−2−i} be a basis of (F ∗S∩W 2p−2−i )⊗K/(F ∗S∩W 2p−1−i )⊗
K and take {δl | 1 ≤ l ≤ r2p−2−i} a set of liftings of {δ̄l | 1 ≤ l ≤ r2p−2−i}. Put δl =∑
α+β=2p−2−i ωαηβf

(l)
αβ + (higher) ∈ (F ∗S ∩ W 2p−2−i ) ⊗ K and εl = (f

(l)
αβ ) ∈ K⊕(i+1).

Then we see that {εl | 1 ≤ l ≤ r2p−2−i} is linearly independent over K . On the other hand,
we have

∇(δl)=
∑

α+β=2p−2−i
(−αωα−1ηβf

(l)
αβ + (higher)x)⊗ dx

+
∑

α+β=2p−2−i
(−βωαηβ−1f

(l)
αβ + (higher)y)⊗ dy .

Hence, if we put

∇x(δl) =
∑

α+β=2p−2−i
(−αωα−1ηβf

(l)
αβ + (higher)x) ,

∇y(δl) =
∑

α+β=2p−2−i
(−βωαηβ−1f

(l)
αβ + (higher)y) ,

then we see that ∇x(δl) and ∇y(δl) are contained in (F ∗S∩W 2p−3−i )⊗K . Further, it follows
that {∇x(δl) | 1 ≤ l ≤ r2p−2−i} is linearly independent over K , where ∇x(δl) is the residue
class of ∇x(δl) in (F ∗S∩W 2p−3−i )⊗K/(F ∗S∩W 2p−2−i )⊗K , since {εxl | 1 ≤ l ≤ r2p−2−i}
is linearly independent over K , where εxl = (−αf (l)αβ ) ∈ K⊕(i+2). Similarly, it turns out that

{∇y(δl) | 1 ≤ l ≤ r2p−2−i} is linearly independent over K . Thus, iterating these operations

2(p − 1 − i)-times, we observe that {∇p−1−i
y ∇p−1−i

x (δl) | 1 ≤ l ≤ r2p−2−i} is linearly

independent over K , where ∇p−1−i
y ∇p−1−i

x (δl) is the residue class of ∇p−1−i
y ∇p−1−i

x (δl) in
(F ∗S ∩Wi)⊗K/(F ∗S ∩Wi+1)⊗K . Therefore we get

ri ≥ r2p−2−i , 1 ≤ i ≤ p − 2 .
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Hence we have

(p − 1)
m∑
i=0

ri −
m∑
i=0

iri

=
(
(p − 1)

p−1∑
i=0

ri + (p − 1)
m∑
j=p

rj

)
−

( p−1∑
i=0

iri +
m∑
j=p

jrj

)

=
p−1∑
i=0

(p − 1 − i)ri +
p−2∑

j=2p−2−m
(p − 1 − (2p − 2 − j))r2p−2−j

≥
p−1∑
i=0

(p − 1 − i)ri +
p−2∑

j=2p−2−m
(j − (p − 1))rj

=
2p−3−m∑
i=0

(p − 1 − i)ri ≥ 0 .

This contradicts the inequality (2). �

In particular, we obtain the following from Theorem 5.1.

COROLLARY 5.2. Let X be a nonsingular projective minimal surface of general type
over k. Assume that Ω1

X is semistable with respect to KX. Then F∗L is semistable with
respect to KX for any line bundle L on X.

PROOF. We see by [3] that |mKX| (m ≥ 5) is base point free and it contains a nonsin-
gular member. �

Using the canonical filtrations, we can also prove a similar result in the case that KX is
numerically trivial.

THEOREM 5.3. Let X be a nonsingular projective surface over k, and let H be a nu-
merically positive divisor onX such that |mH | is base point free and it contains a nonsingular
member for sufficiently large integers m. Assume that KX ≡

num
0 and Ω1

X is semistable with

respect to H . Then F∗L is semistable with respect to H for any line bundle L on X.

PROOF. Consider the canonical filtration W • as in the proof of Theorem 5.1. Since
KX ≡

num
0, the graded components of W • have the same slope c1(L )H . Hence F ∗F∗L is

semistable, since it is an extension of semistable vector bundles with the same slope c1(L )H

and so F∗L is semistable. �

EXAMPLE 5.4 (cf. Noma [14]). If X ⊂ P 3 is a general surface of degree d ≥ 4, we
can proveΩ1

X is strongly stable, i.e., (F k)∗Ω1
X is stable for every k ∈ N , with respect to any

ample divisor H . So X satisfies the conditions of above theorems.

PROOF. Let L be a sub-line bundle of (F k)∗Ω1
X. By Noether’s Theorem (cf. [1]),

Pic(P 3) ∼= Z → Pic(X) is an isomorphism. So write L = OX(m) for some integer m.
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Consider the following commutative diagram with exact rows and columns:

0

��

0

��

0

��
0 �� OX(−pkd) �� Q

��

�� L = OX(m)

��

�� 0

0 �� OX(−pkd)

��

�� (F k)∗Ω1
P 3 |X �� (F k)∗Ω1

X
�� 0

0

Since H 1(X,OX(−pkd − m)) = 0, the extension Q splits as Q ∼= OX(−pkd) ⊕ OX(m).
There is the exact sequence:

0 → (F k)∗Ω1
P 3 |X →

4⊕
OX(−pk) → OX → 0 .

So the composition

Q ∼= OX(−pkd)⊕ OX(m) ↪→ (F k)∗Ω1
P 3 |X ↪→

4⊕
OX(−pk)

is an injection. If m ≥ 0, then this map cannot be an injection. So m < 0. Therefore,
µ(L ) = mH 2 < 0. On the other hand, µ((F k)∗Ω1

X) = pkKXH/2 ≥ 0, sinceX is of degree
d ≥ 4. ThusΩ1

X is strongly stable with respect to H . �

REMARK 5.5. Using the canonical filtrations in the curve case, we can also prove the
following.

(1) F∗OX ⊗F∗OX is not semistable, whereas F∗OX is stable for nonsingular curvesX
with genus ≥ 2 ([5]).

(2) The following generalization of Lange and Pauly’s Theorem ([11]) by applying the
arguments in Theorem 5.1 to the curve case.

THEOREM 5.6 (Mehta-Pauly [13], Sun [19]). Let X be a nonsingular projective
curve over k of genus g(X) ≥ 2 and E a stable (resp. semistable) vector bundle on X.
Then F∗E is stable (resp. semistable).

REMARK 5.7. Under the assumption of Theorem 5.1, we see that the canonical filtra-
tion W • on F ∗F∗L is the Harder-Narasimhan filtration of F ∗F∗L . In fact, it follows from
Proposition 3.9 thatWi/Wi+1 = L ⊗ I i/I i+1 is semistable with respect to H and the slope
µ(Wi/Wi+1) = c1(L )H + (i/2)KXH for 0 ≤ i ≤ 2(p − 1).

6. An application. In this section, we show an application to the geography of non-
singular projective minimal surfaces of general type.
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THEOREM 6.1. Let X be a nonsingular projective minimal surface of general type
over k. Assume that Ω1

X is semistable with respect to KX.
(1) (Bogomolov’s inequality) If Ω1

X is strongly semistable, i.e., (F k)∗ Ω1
X is

semistable for every k ∈ N , with respect to KX, then we have

c2
1(X) ≤ 4c2(X) .

(2) If (F k−1)∗Ω1
X is semistable with respect toKX and (F k)∗Ω1

X is not semistable with
respect to KX for a positive integer k, then we have

c2
1(X) ≤ 4p2k

p2k − (p − 1)2
c2(X) .

In particular, we obtain c2(X) > 0.

PROOF. (1) is well-known. We shall prove (2).
Assuming OX(L) is a maximal destabilizing subsheaf of (F k)∗Ω1

X, consider the follow-
ing exact sequence

0 → OX(L) → (F k)∗Ω1
X → IZ ⊗ OX(M) → 0 ,

where IZ is the ideal of a 0-dimensional closed subscheme Z of X. Then we have a nonzero
map (F k−1)∗Ω1

X → F∗OX(M) by the adjoint of (F k)∗Ω1
X → OX(M). Since (F k−1)∗Ω1

X

and F∗OX(M) are semistable by Corollary 5.2, it follows that µ((F k−1)∗Ω1
X) ≤

µ(F∗OX(M)). Thus, we obtain

pk

2
K2
X < LKX ≤ pk + p − 1

2
K2
X

by Theorem 2.1. Moreover, we have 0 ≤ deg(Z) = c2(OX(−L)⊗ (F k)∗Ω1
X) = p2kc2(X)−

pkKXL+ L2 = p2kc2(X)−ML.
Assume L2 ≤ 0. In this case, since we have L2 = pkKXL − ML ≤ 0 and ML ≤

p2kc2(X), we obtain

K2
X < 2c2(X) .

Assume M2 ≤ 0. Then since M2 = pkKXM − LM ≤ 0, it turns out that pkKXM ≤
LM ≤ p2kc2(X). On the other hand, we haveMKX = pkK2

X −LKX ≥ (pk −p+ 1/2)K2
X.

Hence it follows that

K2
X ≤ 2p2k

pk − p + 1
c2(X) .

Assume that L2 > 0 and M2 > 0. Then we have L2M2 ≤ (LM)2 by the Hodge index
theorem. Since L2M2 = (pkKXL−ML)(pkKXM −ML), it follows that (KXL)(KXM) ≤
K2
X(LM) ≤ p2kK2

Xc2(X). Since (KXL)(KXM) = (pkK2
X − KXM)(KXM) ≥ (pkK2

X −
(pk − p + 1/2)K2

X)((p
k − p + 1/2)K2

X), we obtain

K2
X ≤ 4p2k

p2k − (p − 1)2
c2(X) .

Combining the above, we get the claim. �
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REMARK 6.2. In the case thatΩ1
X is semistable with respect toKX, Shepherd-Barron

[16, 17] gave a better inequality than ours by different arguments.
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