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TWISTED KUMMER AND KUMMER-ARTIN-SCHREIER THEORIES
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Abstract. We discuss an analogue of the Kummer and Kummer-Artin-Schreier theo-
ries, twisting by a quadratic extension. The argument is developed not only over a field but
also over a ring, as generally as possible.

Introduction. The Kummer theory is an important item in the classical Galois theory to
describe explicitly cyclic extensions of a field. Nowadays it is common to deduce the Kummer
theory from an exact sequence of algebraic groups over a field K :

(1) 0— pyx —> Gug —> Gug — 0.

If n is invertible in K and all the n-th roots of unity are contained in K, the group scheme
I, k 1is isomorphic to the constant group scheme Z/nZ. Hence it follows from the Hilbert
90 that the exact sequence (1) yields an isomorphism

K*/n — HY(K,Z/nZ) = Homeon (T, Z/nZ)

where [Tk denotes the absolute Galois group of K.

However, if the field K does not contain all the n-th roots of unity, the Kummer theory
does not work any longer, which requires us to modify the theory. Recently Komatsu [6]
formulated a descent Kummer theory, twisting the Kummer theory by a quadratic extension.
In this article, we give a formulation and a generalization of the descent Kummer theory
developed in [6] in the framework of group schemes.

Now we explain the contents of the article. In Section 1, we recall the Kummer, Artin-
Schreier and Kummer-Artin-Schreier theories in the framework of group schemes. This shows
us a way to develop twisted Kummer and Kummer-Artin-Schreier theories. In Section 2, we
define group schemes Up /4 and G g, 4, which are needed to describe the twisted Kummer and
twisted Kummer-Artin-Schreier theories. The first half of the section is devoted to statements
on elementary facts concerning the group schemes Up,4 and Gp/4. In particular, we have
two exact sequences of group schemes

) 0 —> Upja —> [| G ~> Guoa — 0
B/A
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and

3) 0— Gua —> [[ Gmp —> Gy/a — 0,
B/A

where A is a ring, B is a quadratic extension of A and [, /A denotes the Weil restriction
functor with respect to the extension B/A (cf. 2.1). The sequence (2) plays an important role
in the twisted Kummer theory, and the sequence (3) in the twisted Kummer-Artin-Schreier
theory. These two exact sequences enable us to calculate the cohomology groups with coeffi-
cients in Up,4 and G g, 4, notably to establish the Hilbert 90 for Up,4 and G g, 4 (Proposition
2.6). We owe the description of the group scheme G g4 to Waterhouse-Weisfeiler [15].

In the latter half of Section 2, we construct equivariant compactifications ¢ : Gp/a —
P }4 andt : Ugja — P i&. Our starting point is a commutative diagram with exact rows of
group schemes

00— Gua — l—[Gm’B —> Gpa —> O
B/A

l l l
1 — Gya — GL2) — PGL2) — 1,
where p : ]_[B/A G,.p — GL(2, A) is a regular representaion.

Section 3 is devoted to a description of an exact sequence of group schemes over
Zlw, 1/n]

@) 0 —> Z/nZ —> Upja —> Upja — 0,

where 7 is a positive integer > 3 and @ = e>*/" 4 ¢727i/" (Theorem 3.2). Calculating
cohomology groups of the sequence (4) together with the Hilbert 90 for Up, 4, we obtain the
following

COROLLARY 3.3. Let R be a local Z[w, 1/nl-algebra. If n is odd, H (R, Z/nZ) is
isomorphic to Up/a(R)/n.

This was established by Komatsu [6] in a different manner when R is a field. Moreover,
using an equivariant compactification ¢ : U4 — P}L‘, we arrive at the following assertion.

COROLLARY 3.12. Let R be a local Z[w, 1/n]-algebra and S an unramified cyclic
extension of degree n. If n is odd, there exists a morphism Spec R — P}Lx such that the square
of rational maps

SpecS — Pk
| L
SpecR — Pk

is cartesian.
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The cyclic covering v : P 2 — P 2 is defined in Lemma 3.11. In a certain sence the
rational map v is a geometric expression of the generic polynomial for cyclic extensions of
degree n, discovered by Rikuna [7].

Section 4 is devoted to a description of an exact sequence of group schemes over Z[w]

v
(&) O—>Z/pZ—>GB/A—>G§/A—>O,

where p is an odd prime and @ = ¢>*/P 4 ¢=27{/P (Theorem 4.2). Calculating cohomology
groups of the sequence (5) together with the Hilbert 90 for G g, 4, we obtain the following

COROLLARY 4.3. Let R be a local Z[w]-algebra. Then H' (R, Z/ pZ) is isomorphic
to Coker[¥ : Gg/a(R) — GB/A(R)]'

Furthermore, using an equivariant compactification ¢ : Ggja4 — P k, we also arrive at
the following assertion.

COROLLARY 4.7. Let R bealocal Z|w]-algebra and S an unramified cyclic extension
of degree p. Then there exists a morphism Spec R — P 2 such that the square

SpecS — P}4

l v

SpecR — P}4

is cartesian.

The cyclic covering ¥ : P ix — P }4 is defined in Lemma 4.6. In a sence the morphism
¥ is a geometric expression of the everywhere generic polynomial for cyclic extensions of
degree p, discovered by Komatsu [6].

The author expresses his gratitude to Boris Kunyavski for valuable discussions at Stel-
lenbosch under the Southern Cross. The author thanks also the referee for his careful reading
of the munuscript.

NOTATION. For a commutative ring R, the multiplicative group G, (R) is denoted by
R*.

For a commutative group M and an endomorphim ¢ of M, ,M and M /¢ stand for
Ker[¢ : M — M] and Coker[¢ : M — M], respectively.

For a scheme X and a commutative group scheme G over X, H*(X, G) denotes the
cohomology group with respect to the fppf-topology. It is known that, if G is smooth over
X, the fppf-cohomology group coincides with the étale cohomology group (Grothendieck [4],
MI.11.7).

LIST OF GROUP SCHEMES.
G, 4: the additive group scheme over A
G, 4: the multiplicative group scheme over A
wy a: Kerln : Gya — G, al
GL(2): the general linear group scheme over A
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PGL(2): the projective linear group scheme over A
GM: recalled in 1.3
U/a, Gpya: defined in 2.2 and in 2.3, respectively

LIST OF MORPHISMS AND RATIONAL MAPS.
a® . g® G 4 recalledin 1.3
s:Up/a®aB— Gup,0:Gpa®sB— GM: defined in 2.2
o GB/A — UB/A,,B :Upj/a — GB/AZ defined in 2.3
t:Gpja — P}f the open immersion defined in 2.9
t:Upja — P}4: defined in 2.11
o:PL— PL s:PL — P definedin2.12

1. Recall: Kummer and Kummer-Artin-Schreier theories. In this section, we re-
call the Kummer, Artin-Schreier and Kummer-Artin-Schreier theories. We refer to [1] or [13]
on formalisms of affine group schemes, Hopf algebras and the cohomology with coefficients
in group schemes.

1.1. (Kummer theory). Let G, = Spec Z[U, 1/U] denote the multiplicative group
scheme. The multiplication is givenby U = U ® U.

Let n be an integer > 2 and ¢ a primitive n-th root of unity. Then n,, = Ker[n : G,, —
G,] is isomorphic to the constant group scheme Z/nZ over Z[{, 1/n]. Hence, if X is a
Z[¢, 1/n]-scheme, the exact sequence of group schemes (called Kummer sequence)

0—>;Ln—>Gm—">Gm—>O
induces a long exact sequence
0 — H%X,Z/nZ) — H°(X, G,) - H(X, G,)
— H'(X,Z/nZ) — H'(X,G,) - H' (X,G,) — --- .
Furthermore, we obtain an exact sequence
0— I'(X,0)*/n - HY(X,Z/nZ) — ,Pic(X) — 0,

noting H'(X, G,,) = Pic(X) (Hilbert 90).
In particular, if X = Spec K (KX is a field), we have an isomorphism

K*/n —> HY(K,Z/nZ),

which implies that 1" — u € K (u)[¢] is a generic polynomial for Z/nZ-extensions of K.

1.2. (Artin-Schreier theory). Let G, = Spec Z[T] denote the additive group scheme.
The addition is definedby T — T ® 1 + 1 Q T.

Let p be a prime number. Then Ker[F — 1 : G, F, = G,. F,l is isomorphic to the
constant group scheme Z/pZ, where F denotes the Frobenius endomorphism. Hence, if X is
an F ,-scheme, the exact sequence of group schemes (called Artin-Schreier sequence)

0— Z/pZ — Gur, = Gur, — 0
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induces a long exact sequence
0— H°(X,Z/pZ) — H°(X,GaF,) = v, Gar,)
— H'\(X, Z/pZ) — H'(X,Gur,) = H'(X,Gup,) — -+ .
Furthermore, we obtain an exact sequence
0— I'(X,0)/(F—1)— H'(X,Z/pZ) - r_1H' (X,0) — 0,

noting H'(X, G,) = H' (X, 0).
In particular, if X = Spec K (K is a field), we have an isomorphism

K/(F—1) — H'(K,Z/pZ),
which implies that t” —t —u € K (u)[t] is a generic polynomial for Z/pZ-extensions of K.

DEFINITION 1.3. Let A be aring and » € A. We define a group A-scheme G by

*) = Spec A| T
g pee [’ATJFJ

with
(1) the multiplication: T = T ® 1+ 1 QT + AT ® T,
(2) the unit: T — 0;

(3) the inverse: T +— —

AT
Moreover, we define a homomorphism of group A-schemes

1 1
O{()L) : g()“) = SpeCA[T, m} — Gm’A = SpecA[U, Ei|
by
U AT +1.

If X is invertible, ™ is an isomorphism. On the other hand, if A = 0, G™ is nothing but
G, A

Let B be an A-algebra. It is known that H!(B, G*) = 0 if B is a local ring or if A is
nilpotent in B ([10], 1.3 and 1.4).

1.4. (Kummer-Artin-Schreier theory). Let p be a prime number and ¢ a primitive p-th
root of unity. Put A = Z[¢], K = Q(¢) and . = ¢ — 1. Then we have
AT +1)P —1
@Wr+hHP-1 € A[T]
AP

and
Wr+nr—-1 _
AP B
A homomorphism of group A-schemes

TP —T mod A.

2 1
v gW = SpecA[T i| — Gg*) = SpecA[T —:|

AT +1 TAPT +1
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is defined by

AT+ 1P —1
> —
AP

T

Then it is verified that Ker[¥ : G® — G*M s isomorphic to the constant group scheme
Z/pZ. We obtain an exact sequence of group schemes
#) 0— Z/pZ — g™ 2, g™ 0.
Furthermore, the sequence (#) ® 4 K is isomorphic to the Kummer sequence
0—> tpx — Gug —> Gug — 0.
On the other hand, the residue ring A /(1) is isomorphic to the finite field F ,, and the sequence

(#) ®a Fp is isomorphic to the Artin-Schreier sequence

0— Z/pZ — Gur, ~= Gy, — 0.

Let X be an A-scheme. Then the exact sequence of group schemes (#) induces a long
exact sequence

0 — H(X, Z/pZ) — H(X,G") L HOx,G0")
— H'(X. Z/pZ) — H'(X.¢") %> H'(X,G*") — -
In particular, if X = Spec B (B is a local A-algebra), we have an isomorphism
Coker[¥ : g™ (B) — ¢*"(B)] = HY(B, Z/pZ).
One may say that {(At + 1)? — 1}/A? — u € Alu]lt] is a generic polynomial for Z/pZ-
extensions of A.

REMARK 1.5. The exact sequence (#) was discovered independently by Waterhouse
[14] and [11]. The equation
A+ 1P -1
B — el |
AP
ascends to the work of Furtwingler [2, 3].

2. Group schemes. In this section, we fixaring A,r,s € Aand B = A[t]/(t2 —rt+
s).

2.1. LetAbearingandr, s € A. Put D =r>—4sand B = A[r]/(t> —rt +5). Lete
denote the image of 7 in B. Then B = A[¢] and e2—re+s = 0. The functor R — (R®4 B)*
is represented by the group scheme (the Weil restriction of G, g to B/A)

1
G =SpecA|U,V,
54 mB =P [ U2+rUV+sV2}

with
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(a) the multiplication
U—UQRU—-sVRV, VUQV4+VRU+rveVv;
(b) the unit

(c) the inverse
U+rV -V
— , Vi .
U2+rUV +5V2 U2+rUV +5V2

Moreover, the canonical injection R* — (R ®4 B)* is represented by the homomor-
phism of group schemes

U

1 1
/ : Goog = Spec A| T, — Gu.s = Spec A| U, V, ,
PrOm,a = Spec [ T}_)g‘ b = Opee [ U2~|—rUV~|—sV2:|

defined by
U—T, V0.

On the other hand, the norm map Nr : (R®4 B)* — R* isrepresented by the homomorphism
of group schemes

1 1
Nr:[]Gums= SpecA[U, Ve mr oy +sV2:| — G = specA[T, ?} ,
B/A
defined by

T U>+rUV +sV?2.

It is readily seen that

1) i:Gua— ]_[B/A G, p is a closed immersion;
(2) Nr: ]_[B/A G, B — Gy, 4 is faithfully flat;

(3) Nroi:Gpa— Gy, 4 is the square map.

DEFINITION 2.2. Put

Up/a = Ker[Nr: 1_[ G — Gm,A} :
B/A

Then
Ug/a = Spec ALU, V1/(U*> +rUV 45V — 1)
with
(a) the multiplication
UUQU—-5sVQV, VeUQV4+VRU+rVRV,;
(b) the unit
U1, VeO0;
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(c) theinverse
U—U+rV, Vi -V.

If D is invertible in A, Up, 4 is a torus over A. More generally, if D is not nilpotent in
A, Up/a ®4 A[1/D] is a torus over A[1/D], splitting over B[1/D]. In fact, T + U + ¢V
defines a homomorphism

1
o :Upja ®a B =Spec B[U, V1/(U*+rUV +sV> —1) > Gy p = SpecB|:T, ?} ,

inducing an isomorphism over B[1/D]. The inverse of 0 ®4 B[1/D] is given by

U ! (e )T—i—g Vi ! T !
S — —r -1, - —.
26 —r T 2e —r T

DEFINITION 2.3 (Waterhouse-Weisfeiler [15]). We define a group scheme G g, 4 over
A by

Gp/a = Spec ALX, Y1/(X? +rXY +5sY* —Y)

with
(a) the multiplication

X XQ14+410X —r XX —25XQY —25Y X —rsY ® Y,
Y YQRI+1QY 4+ —2)Y QY +rXQ@Y +rY @ X +2X Q@ X ;
(b) the unit
X—0, Y—0;
(c) the inverse
XH—>-—-X—-rY, Y—Y.

Then G g, 4 is smooth over A.
Furthermore, a homomorphism of group schemes

1
N G :S A vav
v 54 m, B = Spec [ U2+rUV~I—sV2}

— Gp/a = Spec A[X, Y1/(X> +rXY +sY? —Y)
is defined by

uv V2
, Y .
UZ+rUV +sV?2 UZ+rUV +sV?2
It is readily seen that the sequence

X

0— Gy.a —l> nGm,B AN Gp/ja— 0
B/A

is exact.
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The two group schemes Up,4 and G g, 4 are related by a homomorphism
@:Gpja=Spec A[X, Y]/(X>+rXY +sY>—7Y)
— Upja = Spec A[U, V1/(U? +rUV +sV* — 1)
defined by
U 1—-rX-2Y, Ve=2X+rY.

If D is invertible in A, « is an isomorphism. More generally, if D is not nilpotent in A, « is
isomorphic over A[1/D]. Indeed, the inverse of « ® 4 A[1/D] is given by
X r—rU—2sV’ Yo —2+2U+rV.
D D
We define also a homomorphism
B:Ug/a =Spec A[U, V1/(U* +rUV +sV? — 1)
— Gp/a = Spec A[X, Y1/(X> +rXY +sY? —Y)

as the composite

14
UB/A — 1_[ Gm,B — GB/A-
B/A

Then B is given by
XUV, Y V2,
and therefore,
@of:Upa=SpecAlU, VI/(U?+rUV +sV?—1)
— Upja = Spec A[U, V1/(U? +rUV +sV? - 1)
is given by
U 1—rUV =25V =U%=sV?, Vi 2UV+rV?,

that is, o o B is the square map.
Put A =2¢ —r € B. Then

TH— X +¢eY,

= MX +(r— )Y
T+ X+ r=alj

defines an isomorphism over B

0 :Gp/a®a B =Spec B[X,Y1/(X?+rXY +sY?—7Y)

~ 1
* = Spec B| T )
— g pec |: ’1+AT:|

The inverse of o is given by

T —(r—e)T? T2
X — = .
1+ AT 1+ AT




192 N. SUWA
Furthermore the diagram of group B-schemes

Gp/a®s B —> GW
o

Ol®13l la(k)

Up/a ®a B T) G,

is commutative.

REMARK 2.4.1. It is verified without difficulty that the composite 8 o o : Gp/a —
G g/ is the square map.

REMARK 2.4.2. Assume that D is not invertible in A, and put Ag = A/(D). If 2 is

invertible in Ao, the group scheme G ;4 ®4 A is isomorphic to the additive group scheme
Gy, a,- Indeed,

Gp/a ®a Ao = Spec Ag[X, Y1/(X> +rXY +sY2 —Y)

2
— Spec Aol X, Y]/((X + %Y) - Y) :
and X > S — (r/2)S%, Y > S§? defines a isomorphism

~ r 2
Ga.a, = Spec Ao[S] = G/a ®4 Ao = Spec AglX, Y]/((X + EY) - Y) .
Furthermore, if D is a non zero divisor in A, we have an exact sequence
0 —> Gpya(A) —> Upja(A) —> Upja(Ao).

Indeed, let u, v € A with u? + ruv + sv? = 1, and assume that u = 1 mod D, v = 0
mod D. Puttingu = 1 + Do, v = D (a, B € A), we obtain

(20 +rB) + D(&® +raf + 58 = 0.
Putnow x = —ra — 258, y = 2« + rf. Then we see that
(x> +rxy+sy>) —y=—D(@* +raf +sB>) — Qu+rp) =0
and
a(x,y) =+ Da, DB) .

2.5. Let X be an A-scheme. Then the exact sequence of group schemes

0—> Upja — l_[ Gp ~> G — 0
B/A
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induces a long exact sequence
0 —> I'(X,Upja) — I'(X ®4 B, G) —> I'(X, Gy)
— H'(X,Uga) —> Pic(X ®4 B) ~> Pic(X)
— HX(X,Ugja) — HXX ®4 B. Gp) —> HX(X,Gp) —> - -
On the other hand, the exact sequence of group schemes

0— Gm,A —l) l_[ Gm,B - GB/A —0
B/A

induces a long exact sequence
0 —> I'(X, Gp) = I'(X ®4 B, Gp) —> I'(X, G/)
— Pic(X) —> Pic(X ®4 B) —> H'(X, Gp/4)
— HX(X, Gp) —> HX (X ®4 B, Gyy) — H2(X,Gpja) — -+
If X = Spec R, we obtain exact sequences
0—> Ug/a(R) — (R®4 B)* =5 R*
—> H'(R,Up/a) —> Pic(R ®4 B) —> Pic(R)
— H%(R,Ugja) — HXR®4 B.Gp) —> H (R, Gp) —> -+~
and
0—> R* 5> (R®4 B)* —> Gg/a(R)
— Pic(R) —> Pic(R ®4 B) —> H'(R. Gp/4)
— H(R, Gp) —> HX(R®4 B.Gp) —> HX(R,Gpgja) —> -+~ .
In particular, we have

PROPOSITION 2.6 (Hilbert 90). Let R be a local A-algebra. Then we have exact se-

quences
(R®4 B)* =5 R* —> H'(R, Ugja) —> 0
and
0 —> H' (R, Gpja) — H*(R.G,) —> HX(R®4 B.G,).
Furthermore, Hl(R, Up/a) and Hl(R, G p/a) are annihilated by 2.

PROOF. Since R ®4 B is a semi-local ring, we obtain the first asserion, noting that
Pic(R ®4 B) = 0. The second assetion follows from the fact that the composite Nr o i is the
square map.
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Hereafter we devote ourselves to constructing equivariant compactifications ¢ : Gg/4 —
Pk and¢: Ugja — Pk.
2.7. Let GL(2) denote the general linear group scheme of degree 2. Then

1
GL(22) = SpecZ[Tu, Ty, Ta1, Ta2, —:|
T\ 1Ty — Ti2Tx

with the multiplication

T, T2 . TWQT+Ti2®T1 T ®Tia+Ti2® T
Ty T 1T 1 +Tn®Ty T @Tn+Tn®Txn

The regular representation

<l_[ Gm,B)(R) =(R®4B)* — GL2,R):u+evr> (M —sv )

v u—+rv
B/A

is represented by a homomorphism of group A-schemes

p:Up/a = Spec A[U, V]/(U* +rUV +sV?—1) - GL(2)4

T T2 s U —sV
Ty Tx» V U+rV)"

It is readily seen that p is a closed immersion. Moreover, we have a cartesian square

defined by

Upja —> SLQ2)a

l l

[[Gns — GL@a.
B/A r
where the right vertical arrow is the canonical closed immersion.

Now put A = T11Ta — T12Ts1, and let Z[T11/A, Tia/A, To1 /A, Try/A]® denote the
subring of Z[T11, Th2, T21, T22, 1/ A] generated by the fractions 7;; T /A, 1 <1, j, k, [ < 2.
Then Z[T11/A, T2/ A, Ta1/ A, Tra) Al is a Hopf subalgebra of Z[T11, T12, T»1, Tz, 1/A],
and

(@3]
Tiwn Tio Ty T
PGL(2) = Spec Z| L, 212 2L "2\
A A A A
The kernel of the canonical surjection GL(2) — PGL(2) is isomorphic to the multiplicative
group G, and the canonical injection

1 1
G, = Spec Z[T, ?i| — GL(2) = Spec ZI:TU, T2, Tr1, Tap, —i|

A
is given by

T Tipo T O

<T21 T22>'_)<0 T)"
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The commutative diagram

Gm,A —l> l—[Gm,B
B/A

| L

Gua — GL2)a

is extended to a commutaive diagram with exact rows of group A-schemes

00— Gua LN l—[Gm’B AN Gpa —> 0
B/A

| L L
1 —> Gua —> GLQ)4 —> PGLQ)4 —> 1.

Furthermore, the homogeneous space of PGL(2)4 by the upper triangular subgroup is
identified to the projective line Pk. The multiplication on PGL(2) induces an action by
PGL(2) on P, that is to say, we have a commutatice diagram

multiplication

PGL(22) x PGL2) — PGL(2)

l !

PGL(2) x P! - prl.

action

We denote by ¢ the composite G g/ LY PGL(2)4 — P},‘. Then we have gotten a commuta-
tive diagram

multiplication
Gpja xaGpa ——— Gpja

o !

PGL(2)4a xa P}, —— Pl

action
REMARK 2.7.1. The surjective morphism PGL(2) — P! mentioned above is de-
scribed explicitly as follows.
Let P! = Proj Z[Ty, T»], and put T = T/ T>. Then the projective line P! is covered by
affine open subsets Spec Z[T'] and Spec Z[1/T]. Define now morphisms

1 1
Spec Z| Ti1, T2, To1, T2, — || =— | — Spec Z[T]
A || Tr1

and

1T 1 1
Spec Z| Ti1, T2, To1, Toa, — || =— | — Spec Z| —
Pee [” i A:||:Tll:|—> pee [T}
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by T — T11/ T2 and 1/T +— T1/T11, respectively. Gluing the two morphisms, we obtain a
morphism

1
GL(2) = Spec Z[Tll, T2, To1, T2, Z:I — P!,
since we have (711, T21) = Z[T11, T2, T21, T22, 1/ A]. Tt is readily seen that GL(2) — Plis
factorized as GL(2) - PGL(2) — P!l.
Let R be a local ring. Then the map PGL(2, R) — P!(R) is given by

<Ccl Z>+—>(a:c),

and the action of PGL(2, R) on PI(R) is given by

(‘CI Z)(a:ﬂ):(aa+bﬂ:ca+d,3),

as is well-known.

PROPOSITION 2.8.

The homomorphism of group A-schemes
p:Gpa =Spec ALX, Y1/(X> +rXY +5Y> —Y)

@)
Ti Tin Ty T
— PGLQ2)4 = SpecA[ o212 22 22}

ATATAT A
is given by
2—rX —2sY 2sX +rsY
<T11 T12> V4 + DY V4 + DY
—
Ty T 2X +rY 241X + (2 =25)Y
V4 + DY V4 + DY
PROOF. The homomorphism of Hopf A-algebras
1
ALX, Y1/(X* +rXY+sY> —Y) — A|U, V, :
[X,Y]/(X"+rXY+s ) —> [ U2~|—rUV~|—sV2:|
uv V2
X — , Y
U2+ rUV +sV?2
gives correspondences

—
U2+ rUV 4+5V?2

UQRU \% VQU 1%
2 X sy JOUFTY) ey Y@
U2+4+rUV 4+5sV2 U2+4+rUV 45sV2

2U +rV)?
4+ DY QU +rV) 7
U2+rUV +rV?
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and therefore
2—rX —2sY 25X +rsY
J&+ DY - VA+DY
2X +rY 24 rX 4+ (2 =25)Y
V4+ DY V4+ DY
U sV
JUTHrOV +sV2E  JUE+rUV +5V2
\% U+rVv
VU +rUV +5sV2  JUZ+rUV +5V2
This implies the commutativity of the diagram

Al B T2 T T2
AT AT AT A

(@3]
o 1
} _nclusion, A|:T11, T2, To1, T2, Z}

Jp
A[X,Y1/(X2+rXY +sY2—Y) —> A[U,V

since

1
’ U2+rUV+sV2i|’
2—rX —2sY
V4 + DY
2X +rY
V4 + DY

25X +rsY
V4 + DY _
2~|—rX~|—(r2—s)Y a
V4 + DY
in A[X, Y]/(X2 +rXY + sY2 — Y). Here the left vertical arrow is defined by

2—rX —2sY

25X +rsY
T Tiz . V4 + DY V4 + DY
T T 2X +rY

241X 4 (> =25)Y

v4+ DY v4+ DY
We obtain the conclusion, noting that the homomorphism y : ] B/A G, B — Gp/a is faith-
fully flat.

REMARK 2.8.1. It appears that the matrix

2—rX —2sY 2sX +rsY
JA+ DY - VAT DY
2X +rY 24 rX + (2 —25)Y
V4 + DY

V4 + DY

does not have the entries in the affine ring A[X, Y]/(X2 +rXY 4+ sY2— Y). However, we
can verify that the image of the Hopf algebra A[T11/A, T12/A, Tr1/A, T/ A1® by f is
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contained in A[X, Y]/(X2 +rXY +sY%— Y), noting that

Q—rX—=25Y)"=(1—=rX—sY) 4+ DY) +r>(X> +rXY +sY>—Y),
Q=—rX=2sY)2X+rY)=X@4+ DY) —2r(X> +rXY +sY>—Y),
QX +rY) 2 =Y@+ DY)+ 4X>+rXY +5Y2—Y).
COROLLARY 2.9. The morphism

t:Gp/a = Spec A[X, Y1/(X> +rXY +sY? —Y) — P, = Proj A[T}, T2]

is given by

T, 2—rX —2sY
T T X+4rr

Moreover, 1 : Gpgja — P}4 is an open immersion with image Pk — V(T12 +rThT, + sT22),
and the inverse of the birational map t is given by

T

X —, Y>> —
T2 4+rT +s T2 +rT +5s

PROOF. Combining Proposition 2.8 and Remark 2.7.1, we obtain the first assertion.

Put now A = le + rT1T> + sTZ, and let A[Tl/A~, T2/A~](2) denote the subring of
A[T1/A, T»/ A] generated by the fractions T;Tj/A. Then Spec A[T/A, T/ A1 is isomor-
phic to the open subscheme P}L‘ — V(Tl2 +rTr + stz). Moreover, it is verified without
difficulty that

T2+ rTTo+sT} T2 +rTiTh +sTS

—A[ T T» T22 :|
O+ sTE TR T+ sTE ]

and that
T\T» ;7
= , Y
T2 +rTiTh + sT? T2 +rTiTh + 5T}

induces an isomorphism of rings

X

T, T22 :|
T2+ rTTa+sT} TE+rTiT+sT7 ]

This implies the second assertion. m|

ALX, Y1/ (X>+rXY +5Y2—Y) —> A[

REMARK 2.9.1. Let R be a local A-algebra. Then the map p : Gp/a(R) —
PGL(2, A) is given by

(@.b) > <2 —ra— 2sb —2sa —rsb )

2a +rb 2+ra+ (r*=2s)b
and the map ¢ : Gpya(R) — P (R) by
(a,b)y—~ 2—ra—2sb:2a+rb).
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2.10. The homomorphism of group A-schemes.
@:Gpja=Spec A[X,Y1/(X2+rXY +rY?—Y)
— Upya = Spec A[U, V1/(U? +rUV +sV* — 1)
defined by
U 1—rX—-2sY, V—2X+rY

is birational, since « induces an isomorphism over A[1/D], as remarked in 2.3. Then we
obtain rational maps

—1 ~
Up/a N Gp/a LN PGL(2)a
and
ot L 1
Up/ja — Gpja — Py,
which we also denote by p and ¢, respectively.
PROPOSITION 2.11. The rational maps
p: Upsa = Spec A[U, V1/(U> +rUV +5sV? — 1)

@
Ti Tia Ty T
— PGL(2)4 = Spec A| L 112 21 12
AT AT AT A
and
L:Upgja = Spec A[U, V1/(U? +rUV +sV? — 1) — P} = Proj A[T1, T»]

are given by

1+U sV
Ty Tio . V242U +rV V242U +rV
Ty Tn Vv 1+U+rV ’

242U +rV o 2420 +1V
and
T, 1+U rU+sV
= — > =
T \% 1-U

respectively. Moreover, v : Up/a — P}L‘ induces an open immersion over A[1/D], and the

T

3

inverse of the birational map t is given by

T2 — 2T +r
R > -
T2 +rT +5s T2 +rT +5s
PROOF. We can conclude the assertion immediately from the definitionof o : U4 —
PGLQ2)g and ¢ : Ugja — P }4, referring to Proposition 2.8 and Corollary 2.9, and noting
that the birational maps a1 Up/a — Gpsaanda : Gpja — Upya are given by
r—rU —2sV 242U +rV
Y ———

Xt — 0
D D

U
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and
U 1—rX-2sY, Ve=2X+rY,
respectively.

REMARK 2.11.1. Let R be a local A-algebra. Then the map p : Ugs/a(R) —

PGL(2, A) is given by
14+u —2sv
(a,b)r—)( v 1+u+rv)’

and the map ¢ : Gg/a(R) — P (R) by
V) A4+u:v)=0u+sv:1—u),
if defined.

REMARK 2.12.1. We have a commutative diagram with exact rows of group schemes
over A[1/D]

1 1o s UB/A square UB/A 1

| b s

1l — py 4 —> SLQ)x —> PGL(Q2Q)x —> 1.
REMARK 2.12.2. Define an automorphism

o : P4 =Proj B[Ty, o] — P4 = Proj B[T}, T»]
by
(T, )= (I, T + (r —e)T7) .
Then we have a cartesian square of B-schemes
Gp/a®s B — Pl
o] lz o
g»  —> P},

where the horizontal arrow below is defined by the inclusions

G» = SpecB[T } C Spec B[T]1C Py =ProjB[T1, T2], T=Ti/T>.

AT +1
REMARK 2.12.3. Define a rational map

s : PL =Proj B[T, To] - PL = Proj B[T}, T2]
by
(T, T2) = (T1 + T2, Ty + (r —&)T>) .
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Then we have a commutative diagram of birational maps

Up/a ®4 B AN Pll_'?

Gu.B —_— P}g,
L

where the horizontal arrow below is defined by the inclusions

1
G,..p = Spec |:T, ?:| C Spec B[T] C P}; =ProjB[T1,T»], T=T/T».

3. Twisted Kummer theory. In this section, we fix an integer n > 3 and a primitive
n-th root of unity ¢.

3.1. Letn be an integer > 3 and ¢ a primitive n-th root of unity. Putw = ¢ 4+ ¢! and
D= —¢H% Let A= Z[w] and B = Z[¢]. Then B is isomorphic to A[r]/(t*> — wt + 1),
and therefore, we have a commutaive group scheme over A

Up/a = Spec A[U, V1/(U? + @UV + V? — 1)
with the multiplication
U—»UQU—-VRV, Vi VU+UQV+oVeV.

The group scheme Up/a ®4 A[1/D] is a torus of dimension 1 over A[1/D] as remarked in
2.2.

REMARK 3.1.1. Assume that n is odd. Then —¢ is a primitive 2n-th root of unity.
Moreover, U +— U, V — —V gives rise to an isomorphism

Spec A[U, V]/(U* + UV + V? — 1) —> Spec A[U, V]/(U* —oUV + V* —1).

REMARK 3.1.2. Itis well-known that

(H ifn=2", (D)ZP2 = (4)in A,

(2) ifn = p" orn=2p" (pisanoddprime), (D)P~DP""'/2 = (p) in A, that is, (D)
is a prime ideal of A, totally ramified over p;

(3) otherwise, D is invertible in A.

On the other hand, it holds that

() ifn=4,w0=0;

2) ifn=2"(r =3), (a))zrf2 = (2) in A, that is, (w) is a prime ideal of A, totally
ramified over 2;

(3) otherwise, w is invertible in A.

The assertions follow from the following well-known formulae on the cyclotomic poly-
nomial &, (1):
p n=p",where pisaprimeandr > 1,

P, (1) = {

1 nisnota prime power,
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and
p n=2p",where pisaprimeandr > 1,
B, (1) = { P

1 nisnot twice a prime power .

In particular, it follows that, if n is not a prime power nor twice a prime, Up/ 4 is a torus
over A.

REMARK 3.1.3. If n = p", p being an odd prime, Up, is smooth over A. More
precisely, Up/a ® A[1/p]is atorus over A[1/p]. Putnow Ao = A/(D). Then Up/a ®4 Ao
is isomorphic to G, x p,. Indeed,

Ug/a ®4 Ag = Spec AolU, V1/(U? + @UV + V? — 1)
= Spec Ao[U, V1/((U + (w/2)V)* — 1),

and U + (w/2)V is a group-like element of Ag[U, V]/((U + (w/2) V)2 — 1), and therefore
T +— U + (w/2)V defines a homomorphism

7 Ugja ®4 Ao = Spec AolU, V1/((U + (0/2)V)* — 1)

— My, ay = Spec Ao[T1/(T? = 1).

Moreover, U +— 1 — (w/2)S, V +— S defines a homomorphism
Ga, 4, = Spec Ao[S1 — Upya ®a Ao = Spec AolU, V1/(U + (0/2)V)* — 1),

and we have obtain an exact sequence of group schemes

0 —> Gany — Upja ®a Ao —> pty 4y —> 0.

Moreover, U — T, V +> 0 defines a homomorphism
s © 2,4, = Spec Ao[T1/(T? — 1)
— Upya ®a Ao = Spec AolU, V1/((U + (@/2)V)* — 1).

It is easily verified that s : o4, = U/a ®a Ao isasectionof w : Ugja ®a Ag — Ko Ay

THEOREM 3.2 (twisted Kummer theory). The homothety by n on Ug;a ® A[l/n] is
finite and étale with the kernel isomorphic to the constant group scheme Z/nZ.

PROOF. The homothety by n on Upya ®a A[1/D] is finite and flat with the kernel
locally isomorphic to the group scheme u,,, since the group scheme Up;a ®4 A[1/D]is a
torus of dimension 1 over A[1/D]. It follows that the homothety by n on Ug/a ®a A[l/n]
is finite and €tale. Furthermore, Ker[n : Ugja — Up;a] ®a A[1/n] is isomorphic to the
constant group scheme Z/nZ, since the A-valued point of Up,4 defined by (U, V) — (0, 1)
is of order n.

REMARK 3.2.1. The theorem can be restated as follows. The isogeny of commutative

group schemes n : Ug/a ®4 A[1/n] — Upy/a ®4 A[l/n] is an étale covering with Galois
group Z/nZ, whose generator is givenby U - —V,V = U + oV.
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We shall call the exact sequence of group schemes over Z[w, 1/n]
0— Z/nZ — Up/a BN Ug/ja — 0

the twisted Kummer sequence.

COROLLARY 3.3. Let R be a local Z[w, 1/n]-algebra. If n is odd, H (R, Z/nZ) is
isomorphic to U a(R)/n.

PROOF. From the twisted Kummer sequence over Z[w, 1/n]
0 —> Z/nZ —> Upja —> Upja — 0,
we obtain a long exact sequence
Up/a(R) = Up/a(R) —> H'(R,Z/nZ) —> H'(R,Up/a) — H'(R,Up/a).

By Proposition 2.6, H'(R, Up/4) is annihilated by 2. Then the homothety by n on
Hl(R, U/ 4) is bijective, since n is odd.

COROLLARY 3.4. Let R be a local Z|w, 1/n]-algebra and S an unramified cyclic
extension of R of degree n. If n is odd, there exists a morphism Spec R — Upja such that the

square
Spec S —— Upja
| [
SpecR —— Up/a
is cartesian.

We can give a more concrete description of the statement mentioned above.

LEMMA 3.5. Letl be an integer > 2. The homothety by | on the commutative group
scheme Ug; 4 = Spec A[U, V]/(U2 +wUV + V2% — 1) is given by
UV U VY U+ = WU+ vy
U+ — , Vi — .
=z {—=¢
PROOF. Let/ denote the ring endomorphism of A[U, V]/(U2 +wUV +V2—1) which
defines the homothety by / on Up/a. As remarked in 2.2,

1
T—U+¢V, ?+—>U+§’1V

defines an isomorphism of group schemes over B[1/n]

1 1
s :Upja ®a B[—} = SpecBI:—i|[U, V1/(U?> + wUV + V> —1)
n n

~ 1 1
— Gm,B[l/n] = SpeCBI:;:| [T, ?:| .
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Then we obtain
[(U+tV)y=WU+V, [+ 'vy=W+c 'V,

which implies the assertion.
Combining Corollay 3.4 with Lemma 3.5, we obtain:

COROLLARY 3.6. Let R be a local Z|w, 1/n]-algebra and S an unramified cyclic
extension of R of degree n. If n is odd, there exist u, v € R such that u> + ouv + v> = 1 and
that S is isomorphic to

TNU+ v —cU + ¢ty (U+cvy'— U +¢7 vy
¢ - {1 A

R[U, V]/(

Moreover, the map
U -V, Vi=U-+oV
vields a generator of Gal(S/R).

Hereafter we establish a one-parameter version of Corollaries 3.4 and 3.6, using the
equivariant compactification ¢ : Ugja — P%.
3.7.  Asis shown in Proposition 2.8 and Corollary 2.9, the rational maps

p:Up/a = Spec AU, VI/(U* +wUV + V- 1)

(2)
T; T T T
N ch@)A:specA[i Tio T _}

AT AT AT A
and
L:Ug/a = Spec A[U, V1/(U? + @UV + V? — 1) — P = Proj A[T, T»]
are defined by
14+U Vv
T T\, 2+2U+ w0V V242U oV
Ty T 1% 1+ U+ oV
V242U + oV V242U +oV
and
T\ 14U wU+V
T = — > = s
T \% 1-U
respectively. The inverse of the birational map ¢ : U4 — Pk is given by
T2 -1 2T
U % ro

> -, > -
T?+ ol +1 T?+ T +1
Let R be a local A-algebra. Then the map o : U a(R) — PGL(2, R) is given by

(u,v)r—>(1+u - )
v 14+u+ owv
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and¢: Ug/a(R) — PL(R) by
) A4+u:v)=(wu+v:1—u),
if defined.

PROPOSITION 3.8. The rational map p : Up/a — PGL(2)4 is defined

(1) everywhere if n is not a prime power nor twice a prime power,

(2) outside the locus defined by the ideal (2 +2U + oV, p) ifn = p”" or2p”, where p
is an odd prime;

(3) outside the locus defined by the ideal (2) ifn = 2".

PROOF. By the definition, the rational map p : Ug/a — PGL(2)4 is defined outside
the locus defined by the ideal (D). If n is not a power of a prime nor twice a power of a prime,
D is invertible, which implies the assertion (1). In the cases (2) and (3), the rational map
p :Upja — PGL(2)4 is defined outside the locus defined by the ideal (p) by Remark 3.1.2.
Moreover, the rational map p is defined outside the locus defined by the ideal (2+2U + V),
which follows from the description of p mentioned in 3.7.

REMARK 3.8.1. Letn = p" or2p", where p is an odd prime, and put A9 = A/(D).
Then Up/4 ®4 Ao is a disjoint union of Spec Ao[U, V1/(2+2U + wV) and Spec Ao[U, V1/
(2 —2U — wV). Also Spec Ap[U, V]/(2 — 2U — V) is isomorphic to the additive group
scheme Gg 4, as remarked in 3.1.3. The restriction of 6 : Upa — PGL(2)a to
Spec Ao[U, V]/(2 —2U — wV) C Up/a ®4a Ap is given by

14+U \%

(Tn le) . 2 2
Iy T 1% 14+U+wV

2 2

PROPOSITION 3.9. The birational map v : U s — P}L‘ is defined
(1) outside the locus defined by the ideal (U — 1, V,2) if n is a power of 2;
(2) everywhere otherwise.

PROOF. By the definition, the rational map ¢ : Ug/a — Pk is defined outside the locus
defined by D. If n is not a power of a prime nor twice a power of a prime, D is invertible.
Hence ¢ is defined everywhere.

By the assertion in 3.7, we can conclude that the rational map ¢ : Ug;a — P}4 is defined
outside the locus (1 — U, V). The locus (1 — U, V) is nothing but the unit section of the group
A-scheme Upya. It follows from Proposition 3.8 that, if n = p” or 2p” (p is an odd prime),
the rational map ¢ : Ug/a — Pk is defined outside the locus (2 4+ 2U + wV, p). Hence it is
sufficient to note that (2 + 2U + oV, p) is disjoint with the unit section of Upg,4 over A.

If n = 2", the rational map ¢ : Ug/a — Pk is defined outside the locus (2), which
implies the first assertion.

REMARK 3.10. Let K be a field. Assume that 1/n € K and w € K. Komatsu [6]
established the twisted Kummer theory, introducing a commutative group Tx = P'(K) —



206 N. SUWA

{¢, ¢~} with the multiplication
, ' —1
& t)—» ——.
t+t —ow
Itis easily verified that (#, v) = —(1 + u)/v gives rise to an isomorphism Upg,(K) = Tk,
On the other hand, the rational map ¢ : Ug/4 — P}4 defines a map U4 (K) — PY(K)
by (#,v) — (1 +u)/v, and «(K) = PI(K) —{-¢, —;‘1}. Under this identification, the
multiplication of PYK) —{—¢, -1} is given by
' —1
t,t .
@y t+t'4+ow

LEMMA 3.11. Define a rational map v : Proj A[T1, T»] — Proj A[T1, T>] by
(M) =M+ (M +¢D)" — (T + ;‘%)“)
t7l—¢ ’ t7l—¢ '

Then the diagram of rational maps

(T1, o) — (

Ugp/a - Pk

1
Ug/ja —> Py
L
Is commutative.

PROOF. We have a commutative diagram of birational maps

®1
Up/a @4 B =8 P]l_,;

slz lz s
Gu.B —_— P]l_,; ,
L

as remarked in 2.12.3. Here the birational map s : P }3 — P }3 is defined by
(T1. Ta) > (T1 + ¢ To. Ty + ¢ ' Ty) : B[T1, To] — BITy. T].
Then the birational map s~ : P}B — P}B is given by
(7'M —¢h T —Tz)
¢t o=

(T, 1) (
Defining the morphism n : P }3 — P}B by
(T, o) — (1", T;) : B[T\, T2] — B[T1, 1],

3 —1
we can verify that the composite of rational maps P}B N P}B N P}B N P}B is given by

NI+ —¢(To+¢7' )" (To+¢T)" — (To + ¢ ' Ty)"
1—¢ T 1—¢ '

(To, T1) = (
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Hence we have gotten a commutative diagram of rational maps

-1
Ugja®s B —> Gnp — PL > Pl

ln ln ln lu@ls
Upa® B —> Gup — P, — PL.
s—1

This implies the commutativity of the diagram

Up/a LN P}4

Up/a —> Pl
'

since B is faithfully flat over A.

COROLLARY 3.11.1. The rational map v : Pk — Pk is defined
(a) everywhere if n is not a prime power nor twice a prime power,
(b) outside the locus defined by the ideal (Ty + T», p) if n = p”", where p is a prime;
(c) outside the locus defined by the ideal (T1 — Tz, p) if n = 2p", where p is a prime.

PROOF. By the definition, the rational map s~! : P}B — P }3 is defined outside the
locus defined by the ideal (D). Hence the rational map v : P ix — P}4 is defined outside
the locus defined by the ideal (D). If n is not a prime power nor twice a prime power, D is
invertible in A. Hence the rational map v : P }4 — P }{ is defined everywhere. If n = p” or
n=2p" (pisaprime), v : P}4 — P}4 is defined outside the locus defined by the ideal (p).
We obtain the second and third assertions from the following congruence relations:

NN+ )P (T + ¢ )
c—l —-¢

Jj— Jj+1 L ,
Zg = 155 (l;)T{"JTgE(TlJrTz)P mod p,
j=0

P ~1pyp P i i o
(T +¢T7) 71(T1+§ 1) _ Cili <p.>T1"’T2’zo mod p
=< st =<
and
;NI 4 TP — (T + ¢ )
¢l—¢

A B R | 2p" P '
%( : )T{“’T; = (T1 = T)*”" mod p,
' —¢ J

Jj=0
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Ty + T — (T + 7' )2 R ed =i (2pr\
(Th +¢T) (I +¢ 1) _ L(p)]‘ln ]TZJEO mod p.

¢h—¢ ¢h=¢ \j

Jj=1
COROLLARY 3.11.2. The morphism v : P}&[l/D] — P}m/D] is finite flat, and un-

ramified outside the locus defined by (le + o Th + T22). Moreover, the finite covering
v le‘\[l/Dl — P}AII/D] is cyclic of degree n, and the Galois group of v is generated by

(M, )= (I —T, T + (1 +w)T2).

PROOF. The morphismn : P}ﬂl/D] — P}M 1/D] is finite flat and unramified outside the
locus defined by (7 7>). Hence the morphism v =s ' onos : P113[1/D] — P}BH/D] is finite
flat, and unramified outside the locus defined by (T1+¢ 12)(T1+¢ -1 ) = (T12~|—a)T1 T2+T22).
We obtain the first assertion, since B is faithfully flat over A.

Furthermore, under the identification Ker[n : Upja — Up;al ®a A[1/D] = Z/nZ, the
commutative diagram

multiplication
Upja xaUp/ja —— Upya

o |

PGL(2)4a xa P, —— Pl

action
yields over A[1/D] a commutative diagram

multiplication

Z/nZ x4 Up/ja ——> Upya

o }

Z/nZ x4 P — Pl
actu

It follows that the rational map v : P ix — P }4 is isomorphic to the canonical surjection
P!, — P./(Z/nZ) over A[1/D].
Now, let & denote the A-valued point of Up, 4 defined by (U, V) > (0, 1). Then & is of

order n, and we have
- 1 —1

It follows that the Galois group of v is generated by (T, T2) +— (T1 — T2, T1 + (1 + @) T>).

COROLLARY 3.12. Let R be a local Z|w, 1/n]-algebra and S an unramified cyclic
extension of degree n. If n is odd, there exists a morphism Spec R — P}4 such that the square
of rational maps

Spec S — Pk

l L

SpecR — Pk
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is cartesian. More precisely, there exists ¢ € R such that S is isomorphic to

-1 n__ —1\n n__ —1\n
Rm/<; T+ 5@ 4 (T (T 4 >>.
T =g {7 =¢
Moreover,
T -1
T—» ——M
T+ (1+w)

defines a generator of Gal(S/R).

PROOF. Combining Corollary 3.4 with Lemma 3.11, we obtain the first assertion. Now,
take an R-valued point (u, v) € Up;4(R) such that the square

Spec S —— Upja

l L

Spec R —— Up/a

is cartesian. Let m denote the maximal ideal of R. If v € R — m, we can take ¢ = (1 4+ u)/v.
Assume now that 1 +u € A —mand v € m. We have (—1,0) = (0, —1)" in Ug,4(R), since
n is odd. Hence, replacing (u, v) by (—u, —v), we can take ¢ = (—wu — v)/(1 +u). The last
assertion follows from Corollary 3.11.2.

REMARK 3.13. Replacing T by —7, we obatian the generic polynomial for cyclic
extensions of degree n

T =" =T =Y = Y{(T—0)"— (T —¢~H")
¢1—¢ ’

discovered by Rikuna [7].

REMARK 3.14. Kida [5] established Kummer theories for norm tori over a field. It is
not so difficult to generalize the arranged arguments in [5] as is done here.

4. Twisted Kummer-Artin-Schreier theory. In this section, we fix an odd prime p
and a primitive p-th root of unity ¢.

4.1. Let p be a prime number > 2 and ¢ a primitive p-th root of unity. Put o =
¢+< “l. Let A =Z[w]and B = Z[¢]. Then we have a commutative group scheme

Gp/a = Spec A[X, Y]/(X* + oXY +Y* —Y)
with the multiplication
X XQI+10X -—0X®X -2XQY —2Y®@X —oY®Y,
Y>YQRI+41Q0Y+ (@0 -2)YQY+wX®Y +oY @ X +2X®X.

Put now

h=¢-c!
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and
O(T) = (pil:)/z (I’)(_1)iTp—z,~ _
i=0 !
Then we have
WwW=0@-0¢.
Furthermore, put
0=0(), B=A[0lCB
and
®="Trga0 =O@) +0¢™"), 7=Nrpa6=0)OC¢ ).

Then B = A[f] is a quadratic extension of A defined by 2 — @@ + 7j = 0. Then we have a
commutative group scheme

G a = SpecAlX, Y1/(X? 4+ &XY +7Y> —Y)
with
(a) the multiplication

A X X@1+10X —0X®X —21XQY -2 @ X oY ® Y,
NY > YR14+1QY+ (@ -2V QY +0XQY +aY @ X +2X® X,

(b) the unit

e X0,
1Y~ 0,

(c) theinverse

S- X —-X—-aY,
1Y Y.

THEOREM 4.2 (twisted Kummer-Artin-Schreier theory). A homomorphism of group
A-schemes

W :Gp/a = Spec A[X, Y1/(X* + oXY +Y* —Y)
— G4 = Spec A[X, Y1/(X> + &XY +iY? - ¥)
is defined by
1
X— EX,Y)= ATp[—@(é“*l)(l FAX VNP + o — O —MX +¢7'Y)P,
1
Y= T(X,Y)= ATP[(1+A(X+§Y))”—2+(1 - MX 4¢P,

Moreover, ¥ is finite and étale, and Ker ¥ is isomorphic to the constant group scheme Z/pZ.
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PROOF. Define homomorphisms of group schemes

0 :Gpja®a B =Spec B[X,Y1/(X* +wXY +Y>—Y)

1
- gW =5 B|T, ———
g pec [,1 )\i|

and
& :Gpy®a B=SpecBIX,Yl/(X* +dXY +iY* —Y)
*") — SpecB| T, ————
-G pec |:’1+APT:|
by
T X+0CY, - X+ Yy
=X +e T+ X+e0)
and

T X +600)Y, 1= APX +ee hy),

1+ ArPT

respectively. Then o and & are isomorphisms, as remarked in 2.4. Moreover we have gotten
a commutative diagram of group schemes over B

VB
Gp/a®rB — Gp,,®a B

| Jis

G» R g

Here the homomorphism

1
YUp . g(M = Spec B[T, i|—> gW’> = Spec B[ —i|

Ta
I+ AT I +aPT

is defined by
AT + 1P —1
- —_—
AP
The homomorphism ¥p : cn gW’> is surjective and Ker[¥p : e{ RN gW’)] is iso-
morphic to the constant group scheme Z/pZ, as recalled in 1.4. Hence ¥ : G4 — G /A
is finite and étale, since B is faithfully flat over A. Moreover, the map (X, Y) +— (0, 1) de-

fines an A-valued point of Ker[¥ : Gpa — Gj / 41> which is of order p. It follows that
Ker[¥ : Gpja — GE/A] is isomorphic to Z/pZ.

T

REMARK 4.2.1. The theorem can be restated as follows. The isogeny ¥ : Gg/a —
Gp /A is an étale covering with Galois group Z/pZ, whose generator is given by

Xt>-—-X—-wY, Y l4+0X+ @ —-1)Y.
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We shall call the exact sequence of group schemes over Z[w]
0 — Z/pZ —> Gpja —> Gy — 0
the twisted Kummer-Artin-Schreier sequence.
REMARK 4.2.2. Define homomorphisms of group schemes over A
@:Gpa = Spec A[X, Y1/(X* + wXY + Y2 —Y) — A[U, V]/(U? + 0UV + V* 1)
and
@: Gy, = Spec A[LX, YI/(X2+&XY +7Y2—Y) > AU, V1/(U> +oUV + V> — 1)
by
U—1-wX-2Y, V2X+oY
and
U 1—DPDPux — =D lo@) +cog Y,
Vs 2DWP=D2x 4 pr-D/25y
respectively. Then we have a commutative diagram with exact rows of group schemes over A
0 — Z/pZ — Gpja LN GB/A —> 0
l Lok
0 —> mpa — Uspja 7) Up/a — 0.

Hence

0 —> Z/pZ —> Gp/a —> Gya — 0)®a A[l/D]
is isomorphic to the twisted Kummer sequence

(0 —> Z/pZ —> Upja —> Up/a —> 0) ®a4 A[1/D].
On the other hand,

(0 —> Z/pZ —> Gpja —> G,y —> 0) @4 A/(D)
is isomorphic to the Artin-Schreier sequence

0—> Z/pZ —> Gur, = Gur, — 0.

PROPOSITION 4.3. Let R be a local Z[w]-algebra. Then H (R, Z | pZ) is isomorphic
to Coker[¥ : Gp/a(R) — GB/A(R)]'

PROOF. We obtain the assertion from the exact sequence
v v
Gp/a(R) — Gy 4 (R) — HY(R,Z/pZ) — H'(R, Gp/a) — H'(R, Gg/a)

noting that Hl(R, G /a) is annihilated by 2.
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COROLLARY 4.4. Let R be alocal Z|w]-algebra and S an unramified cyclic extension
of degree p. Then there exists a morphism Spec R — G 5 /A such that the square

Spec S — Gp/a

l v

SpecR —— GB/A
is cartesian. More precisely, there exist a, b € R such that a> + wab + b*> = b and that S is
isomorphic to
RIX,Y]/(E(X,Y)—a,T(X,Y)—D).
Moreover, the map
X —-X—oY, Yi> 14+ 00X+ (0 —1)Y
vields a generator of Gal(S/R).

EXAMPLE 4.5. Let p = 3. Then we have

1473

w=—1,
2

¢
and therefore
Gp/a = Spec A[X, Y1/(X> = XY + Y2 —7Y)
with multiplication
X~ XQ14+1X+X®X-2XQ®Y -2YRX+YQY,
Y—>YQI+I®Y-YY—-X®@Y-VYeX+2X®X.

On the other hand, we have

5-3v-3
9=@(;)=TJ_

, o=5, n=13,
and therefore

Gi,, =Spec A[X,Y]/(X>+5XY +13Y> —Y)

B/A
with multiplication

X~ XQR14+13X-5X@X-26®Y -2y X —-65Y®Y,

Y>YQR1+1IQY-YQ®Y+5XQY+5Y X +2X®X.
Moreover, the homomorphism
W :Gpja =SpecA[X, Y]/(X? — XY +Y>—7Y)
— G, = Spec A[X, Y1/(X?>+5XY +13Y%2—Y)

is defined by

X > =X —2Y +4XY +3Y2 -3XY> - v}, Y v -2r*4+7v3,
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A generator of the Galois group of the étale covering ¥ : Gp/a — Gz /A is given by
X——-X+4+Y, Y—1-—-X.

Hereafter we establish a one-parameter version of Corollary 4.4, using the equivariant
compactificationt : Gg/a — P}q.
LEMMA 4.6. Define a morphism ¥ : Proj A[Ty, T1] — Proj A[Ty, T1] by
O N(TMo+¢T)? —O@)(To+ TP (To+¢T)P — (To + ;1T1>P>
P& —¢h ’ P& —¢h '
Then the diagram of A-schemes

(To, T1)f—>(

L
Gp/ja — P};
o e
- 1
GB/A o P,
is cartesian.

PROOF. We have a commutative diagram

®1
Gp/a®a B N P]l_,;

o] le
1
as remarked in 2.12.2. Here the open immersion
t:Gp/a = Spec A[X, Y1/(X* + wXY + Y? —Y) — Pl =Proj A[Ty, T>]
is defined by

Tt 2-wX-2Y

T = —
> 2X + wY

s

and the automorphism o : P}B — P }3 is given by
(T1, T2) v (T, Ty + ¢ ' Ta) @ BTy, To] — BITy, T»].

Moreover, we have a commutative diagram

(®Ip 1
GE/A®AB — PB

&ll lz o
AP 1
Here the open immersion

t: Gy 4 =Spec ALX, Y1/(X? + &XY +7Y? = Y) — P}, = Proj A[Ty, 1]
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is defined by
T 2 —oX -2nY
T'=—t —F——"7—
T 2X + oY
and the automorphism & : P}B — P}B is given by
(T1, T2) > (T2, T + ©(¢ ") T2) : BIT1, T2] — B[T1, Ta].
Then the automorphism & ! : P}g — P}g is defined by
(T, 1)~ (—OC NI+ T, Th).
Define now a morphism ¥p : P}g — P}g by

0T+ )P —T)
AP

(T, ) — ( ,T2p> : B[Th, T;] — B[T1, T»].

=1
Then it is verified that the composite of morphisms P, > P} b PL % PLisgivenby
OC¢ H(To+eT)? =@ To+¢ ' TP (To+¢T)P — (T0+§_1T1)p)
pc—=¢h ’ P —=¢h '

Hence we obtain a commutative diagram

(To, T1)'—>(

—1
Gpa®sB - ¢» - pL 25 pl

J{W@IB J,WB J{lI/B lw®13

Gpa®a B —> G¥) — Pp — Py,
o L o~

which implies the commutativity of the diagram

GB/A LN Pk

since B is faithfully flat over A.

COROLLARY 4.6.1. The morphism ¥ : Pi‘ — Pi‘ is finite flat, and unramified out-
side the locus defined by (Tl2 + o Tr + ﬁTzz). Moreover, the finite covering ¥ : Pk — P}L‘
is cyclic of degree p, and the Galois group of W is generated by

(T, )= (M =T, T1 + (1 +)T2).

PROOF. The morphism ¥ : P ix — P }4 is finite flat, and unramified outside the locus
defined by (777>). Hence the morphism ¥ ® Ip = o loWgoo : P}; — P}; is finite flat, and
unramified outside the locus defined by (77 + @ (¢)T>2)(T1 + (H)(g“_l)Tg) = (T12 + T\ T +
ﬁTzz). We obtain the first assertion since B is faithfully flat over A.
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Furthermore, under the identification Ker[¥ : Gp/a — G / 41 = Z/pZ, the commuta-
tive diagram presented in 2.7

multiplication
Gpja xa Gpja ——— Gpja

o |

PGL(2)a xa P}, — Pl

action
yields a commutative diagram

multiplication

Z/pZ x4 Gpja ———> Gpja

o !

Z/pZxs P, —— PL.

action

It follows that the morphism ¥ : P}L1 — Pk is isomorphic to the canonical surjection P}x —
P,/(Z/pZ).
Now, let & denote the A-valued point of G/ defined by (X, Y) > (0, 1). Then & is of

order p, and we have
- 1 -1
o=l 7).

It follows that the Galois group of ¥ is generated by (71, T2) — (T1 — T2, T1 + (1 + o) T7).

COROLLARY 4.7. Let R be alocal Z|w]-algebra and S an unramified cyclic extension
of degree p. Then there exists a morphism Spec R — P }4 such that the square

Spec S — Pk
l v
SpecR — Pk

is cartesian. In particular, if the extension S/ R does not split completely at the maximal ideal
of R, there exists ¢ € R such that S is isomorphic to

o (r—1 ny -1 _ -1
R[T]/(O(C YT +8)P —O@)T +¢7 )P C(T+§)1’ (T +¢ )p>.

P& —¢7h p& —¢7h
Moreover,
T -1
T— —m—
T+ (1+w)
defines a generator of Gal(S/R).
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PROOF. Combining Corollary 4.4 with Lemma 4.6, we obtain the first assertion. Now,
take an R-valued point (a, b) € G / 4 (R) such that the square

SpecS —— Gpja

l L

SpecR — GB/A

is cartesian. Let m denote the maximal ideal of R. If the extension S/R does not split com-
pletely at m, we have 2a + ¥b € A — m. Hence we can take ¢ = (2 — ®a — 21b)/(2a + ®).
The last assertion follows from Corollary 4.6.1.

REMARK 4.8. By a slight modification, we obtain again the everywhere generic poly-
nomial for cyclic extensions of degree p
T —0P @ —¢H YT - P = (T —¢~H7)
p&t=9) ’

discovered by Komatsu [6].
EXAMPLE 4.9. Let p = 3. Then the morphism ¥ : P}x — P}L‘ is defined by
(To, T1) > (T3 + TTy — 4ToTE + T}, T3T — ToTY) .
Moreover, a generator of the Galois group of finite covering ¥ : P% — Pk is given by
(To, Th) = (To — T, To) .

REMARK 4.10. In[12, Ch. VI], Serre formulated the existence of a normal basis in a
Galois extension of a field in the framework of algebraic groups, deducing the Kummer theory
and Artin-Schreier-Witt theory. At the end of Section 9, he remarked:

Lorsqu’on ne suppose plus que k contienne &, la théorie de Kummer ne s’applique plus.
Toutefois, on peut encore, dans certains cas, réduire la dimension de G(N). Lorsque n = 3
par exemple, on peut prendre pour quotient de G(N) le groupe orthogonal G pour la forme
quadratique x> —xy-y?; on voit facilement que ce groupe contient un sous-groupe N cyclique
d’ordre 3 formé de points rationnels sur le corps premier, et que I’isogénie G — G /N vérifie
la propriété universelle de la prop. 7.

It is possible also to formulate the twisted Kummer and twisted Kummer-Artin-Schreier
theory in the manner of [12], as done for the Kummer-Artin-Schreier-Witt theories of degree
p and p? in [9] and [10].
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