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Abstract. Kobayashi-Ochiai’s theorem states that the set of dominant rational maps
from a complex variety to a complex variety of general type is finite. Kazuya Kato conjectured
a similar result in the category of log schemes. Our main theorem of this paper is a solution to
his conjecture.

Introduction. In the paper [6], Kobayashi and Ochiai proved that the set of dominant
rational maps from a complex variety to a complex variety of general type is finite. This result
was generalized to the case over a field of positive characteristic by Dechamps and Menegaux
[2]. Furthermore, Tsushima [13] established finiteness for open varieties over a field of char-
acteristic zero. With these foregoing results, Kazuya Kato conjectured a similar result in the
category of log schemes. As we know, logarithmic geometry is a general framework to cover
compactification and singularities in degeneration. The most typical example of these mixed
phenomena is a logarithmic structure on a semistable variety (cf. Conventions and termi-
nology 9 below). Actually, we deal with a log rational map on a semistable variety with a
logarithmic structure. The following finiteness theorem is our solution to Kato’s conjecture:

THEOREM A (Finiteness theorem). Let k be an algebraically closed field and Mk a
fine log structure on Spec(k). Let X and Y be proper semistable varieties over k, endowed
with fine log structures MX andMY over Mk , respectively, such that

(X,MX)→ (Spec(k),Mk) and (Y,MY )→ (Spec(k),Mk)

are log smooth and integral. We assume that (Y,MY ) is of log general type over (Spec(k),
Mk), that is, det(Ω1

Y/k(log(MY /Mk))) is a big line bundle on Y (see Conventions and termi-
nology 10 below). Then the set of all log rational maps

(φ, h) : (X,MX) ��� (Y,MY )

over (Spec(k),Mk) with the following properties (1) and (2) is finite:
(1) φ : X ��� Y is a rational map defined over a dense open setU with codim(X\U) ≥

2, and (φ, h) : (U,MX|U)→ (Y,MY ) is a log morphism over (Spec(k),Mk).
(2) For any irreducible component X′ of X, there is an irreducible component Y ′ of

Y such that φ(X′) ⊆ Y ′ and the induced rational map φ′ : X′ ��� Y ′ is dominant and
separable.
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As an immediate consequence of the above theorem, we have the following corollary.

COROLLARY B. Let X be a proper semistable variety over k, endowed with a fine log
structure MX over Mk , such that (X,MX) → (Spec(k),Mk) is log smooth and integral. If
(X,MX) is of log general type over (Spec(k),Mk), then the set of automorphisms of (X,MX)

over (Spec(k),Mk) is finite.

Let us explain how we can obtain the main results of [2] and [13] from Theorem A.
Let (X,MX) → (Spec(k),Mk) and (Y,MY ) → (Spec(k),Mk) be log smooth and integral
morphisms to a fine log scheme (Spec k,Mk). Assume that X and Y are proper semistable
varieties and (Y,MY ) is of log general type over (Spec(k),Mk). If we suppose further that
MX, MY and Mk are trivial log structures, then Theorem A is nothing but [2, Thèorém 2]. In
virtue of Hironaka’s resolution of singularities ([3]) and Nagata’s compactification theorem
([9]), the result [13, Theorem] follows from Theorem A in the case whenX and Y are smooth
over the field k of characteristic zero, MX (resp. MY ) is a fine log structure arising from a
normal crossing divisor DX ⊂ X (resp. DY ⊂ Y ) and Mk is a trivial log structure. The main
advance of Theorem A relative to [2] and [13] is that we can allow X and Y to have a cer-
tain kind of singularities. Since our work is partly motivated by logarithmic compactification
problems for moduli spaces, a semistable varietyX endowed with a smooth log structureMX

is a quite natural object to study. Roughly speaking, our proof of Theorem A except analyses
of log structures is technically a modification of the algebraic proof in [2] (see also [13, page
96–98]). Since (X,MX) and (Y,MY ) behave as if they are smooth objects in the category of
log schemes (for example, their log differential sheave are locally free), the argument in [2]
works in our situation. Let us give a sketch of the proof of Theorem A. For this purpose, we
need to consider the following two problems:

(i) The finiteness of the underlying rational maps.
(ii) How many do log morphisms exist for a fixed underlying rational map?

As mentioned above, the first problem is closely related to the classical case, that is, the case
where Mk = k×, and X and Y are smooth over k. In this case, we can use similar arguments
as in [2]. Actually, we prove it under weaker conditions (cf. Theorem 7.1). In this sense, from
the viewpoint of logarithmic geometry, the second problem is crucial for our consideration.
The following rigidity theorem of log morphisms over a fixed scheme morphism, which is
one of the main results of this paper, is our answer to the second problem.

THEOREM C (Rigidity theorem). Let X and Y be semistable varieties over k, en-
dowed with fine log structures MX and MY over Mk , respectively, such that (X,MX) and
(Y,MY ) are log smooth and integral over (Spec(k),Mk). Let Supp(MY /Mk) be the union of
Sing(Y ) and the boundaries of the log structure of MY overMk , that is,

Supp(MY /Mk) = {y ∈ Y | Mk ×O×Y,ȳ → MY,ȳ is not surjective} .
Let φ : X→ Y be a morphism over k such that φ(X′) �⊆ Supp(MY /Mk) for any irreducible
component X′ of X. If (φ, h) : (X,MX)→ (Y,MY ) and (φ, h′) : (X,MX)→ (Y,MY ) are
morphisms of log schemes over (Spec(k),Mk), then h = h′.
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For the proof of the rigidity theorem, we have to determine a local description of a log
structure. Indeed, we have the following theorem, which is a generalization of results in [4,
Theorem 1.3 and (1.8)] and [12, Theorem 2.7].

THEOREM D (Local structure theorem). Let X be a semistable variety over k, which
is endowed with a fine log structure MX of X over Mk such that (X,MX)→ (Spec(k),Mk)

is log smooth and integral. Let us take a fine sharp monoid Q with Mk = Q × k×. For a
closed point x ∈ X, there is a good chart (Q→ Mk, P → MX,x̄ , Q→ P) of (X,MX)→
(Spec(k),Mk) at x, namely,

(a) Q→ Mk/k
× and P → MX,x̄/O×X,x̄ are bijective,

(b) the diagram

Q −−→ P� �
Mk −−→ MX,x̄

is commutative,
(c) k ⊗k[Q] k[P ] → OX,x̄ is smooth.

Moreover, using the good chart (Q → Mk,P → MX,x̄,Q → P), we can determine the
local structure in the following manner:

(1) If the multiplicity of X at x is equal to 1, thenQ→ P splits and P 	 Q×N r for
some r .

(2) If the multiplicity of X at x is equal to 2, then we have one of the following:
(2.1) If Q→ P does not split, then P is of semistable type overQ.
(2.2) IfQ→ P splits, then char(k) �= 2 and there is a submonoidN of P such that

P 	 Q× N and N is isomorphic to the momoid arising from the monomials
of k[T1, T2, . . . , Ta]/(T 2

1 − T 2
2 ) for some a ≥ 2.

(3) If the multiplicity of X at x is greater than or equal to 3, then Q → P does not
split and P is of semistable type over Q.

For the definition of a monoid of semistable type, see §2.

To verify the existence of the good charts above, we use a general result of good charts
due to Ogus (cf. [10, Theorem 2.13]). It is however currently difficult to obtain the preprint
[10]. By this reason, we show the well-known result of good charts for the benefit of readers
in Appendix.

Acknowledgement. We would like to express our sincere thanks to Professor Kazuya
Kato for informing us of the fantastic finiteness problem. We also want to thank the referee
for his careful reading and helpful suggestions.

CONVENTION AND TERMINOLOGY. Here we fix some of our convention and termi-
nology in this paper.

1. Throughout this paper, we work within the logarithmic structures in the sense of
J.-M Fontaine, L. Illusie and K. Kato. For the details, we refer to [5]. All log structures on
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schemes are considered with respect to the étale topology. We often denote the log structure
on a scheme X by MX and the quotient MX/O×X by M̄X.

2. We denote by N the set of natural integers. Note that 0 ∈ N . For I = (a1, . . . , an) ∈
Nn, we define Supp(I) and deg(I) to be

Supp(I) = {i | ai > 0} and deg(I) =
n∑
i=1

ai .

The i-th entry of I is denoted by I (i), i.e., I (i) = ai . For I, J ∈ Nn, a partial order I ≥ J
is defined by I (i) ≥ J (i) for all i = 1, . . . , n. The non-negative integer g with gZ =
ZI (1)+ · · · + ZI (n) is denoted by gcd(I).

3. Here let us briefly recall some generalities on monoids. All monoids in this paper
are commutative with the unit element. The binary operation of a monoid is often written
additively. We say a monoid P is finitely generated if there are p1, . . . , pn ∈ P such that
P = Np1 + · · · + Npr . Moreover, P is said to be integral if whenever x + z = y + z for
elements x, y, z ∈ P , we have x = y. An integral and finitely generated monoid is said to be
fine. We say P is sharp if whenever x + y = 0 for x, y ∈ P , then x = y = 0. For a sharp
monoid P , an element x of P is said to be irreducible if whenever x = y+z for y, z ∈ P , then
either y = 0 or z = 0. It is well known that if P is fine and sharp, then there are only finitely
many irreducible elements and P is generated by irreducible elements (cf. [11, Lemma 3.9]).
If k is a field and P is a sharp monoid, then MP = ⊕

x∈P \{0} k · x forms the maximal ideal
of k[P ]. ThisMP is called the origin of k[P ]. An integral monoid P is said to be saturated if
nx ∈ P for x ∈ P gp and n > 0, then x ∈ P , where P gp is the Grothendieck group associated
with P . A homomorphism f : Q→ P of monoids is said to be integral if f is injective and
an equation f (q)+ p = f (q ′)+ p′ (p,p′ ∈ P , q, q ′ ∈ Q) implies that p = f (q1)+ p′′ and
p′ = f (q2)+ p′′ for some p′′ ∈ P and some q1, q2 ∈ Q with q + q1 = q ′ + q2. Moreover,
we say an injective homomorphism f : Q → P splits if there is a submonoid N of P with
P = f (Q) × N . Finally, let us recall a congruence relation. A congruence relation on a
monoid P is a subset S ⊂ P × P which is both a submonoid and a set-theoretic equivalence
relation. We say that a subset T ⊂ S generates the congruence relation S if S is the smallest
congruence relation on P containing T . Let S be an equivalence relation on P . It is easy to
see that P → P/S gives rise a structure of a monoid on P/S if and only if S is a congruence
relation.

4. Let P and Q be integral monoids and let f : N → P and g : N → Q be homo-
morphisms with p = f (1) and q = g(1). Let P ×N Q be the pushout of f : N → P and
g : N → Q in the category of integral monoids:

N −−→ Q� �
P −−→ P ×N Q.
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Namely, P ×N Q = P ×Q/∼, where

(p, q) ∼ (p′, q ′)⇐⇒ (p, q)+ (f (x), g(y)) = (p′, q ′)+ (f (y), g(x)) for some x, y ∈ N .

We denote this pushout P ×N Q by P ×(p,q) Q.
5. Let k be a field and let R be either the ring of polynomials of n-variables over

k, or the ring of formal power series of n-variables over k, that is, R = k[X1, . . . , Xn] or
k[[X1, . . . , Xn]]. For I ∈ Nn, we denote the monomial XI(1)1 · · ·XI(n)n by XI .

6. Let P be a monoid, p1, . . . , pn ∈ P and I ∈ Nn. For simplicity,
∑n
i=1 I (i)pi is

often denoted by I · p.
7. Let (X,MX) be a log scheme and α : MX → OX the structure homomorphism.

Then, α(MX) \ {zero divisors of OX} gives rise to a log structure because

O×X ⊆ α(MX) \ {zero divisors of OX} .
α(MX) \ {zero divisors of OX} is called the underlying log structure of MX and is denoted
by Mu

X. Let f : (X,MX) → (Y,MY ) be a morphism of log schemes such that one of the
following conditions is satisfied:

(1) X→ Y is flat.
(2) X and Y are integral schemes and X→ Y is a dominant morphism.

Then we have the induced morphism f u : (X,Mu
X)→ (Y,Mu

Y ).
8. Let X and Y be reduced noetherian schemes. Let φ : X ��� Y be a rational map.

We say φ is dominant (resp. separably dominant) if for any irreducible component X′ of X,
there is an irreducible component Y ′ of Y such that φ(X′) ⊆ Y ′ and the induced rational map
φ′ : X′ ��� Y ′ is dominant (resp. dominant and separable). Moreover, we say φ is defined
in codimension one if there is a dense open set U of X such that φ is defined over U and
codim(X \ U) ≥ 2.

Let f : X → T and g : Y → T be morphisms of reduced noetherian schemes. A
rational map φ : X ��� Y is called a relative rational map if there is a dense open set U
of X such that φ is defined on U , φ : U → Y is a morphism over T (i.e., f = g · φ) and
Xt ∩ U �= ∅ for all t ∈ T .

9. Let k be an algebraically closed field and X a reduced algebraic scheme over k
(i.e., reduced algebraic scheme of finite type over k). We say X is a semistable variety if
for any closed point x ∈ X, the completion ÔX,x at x is isomorphic to a ring of the type
k[[X1, . . . , Xn]]/(X1 · · ·Xl).

10. Let k be an algebraically closed field. Let X be a proper reduced algebraic scheme
over k and H a line bundle on X. We say H is very big if there is a dense open set U
of X such that H 0(X,H) ⊗ OX → H is surjective on U and the induced rational map
X ��� P (H 0(X,H)) is birational to the image. Moreover,H is said to be big if H⊗m is very
big for some positive integer m.

1. Existence of a good chart on a polysemistable variety. Let k be an algebraically
closed field and X an algebraic scheme over k. We say X is a polysemistable variety if, for
any closed point x ofX, the completion ÔX,x of OX,x is isomorphic to a ring of the following
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type:

k[[T1, . . . , Te]]/(T A1, . . . , T Al ) ,

where A1, . . . , Al are elements of N e \ {0} such that Ai(j) is either 0 or 1 for all i, j (cf.
Convention and terminology 2 and 5). Note that a polysemistable variety is a reduced scheme
(cf. Lemma 1.5).

Let Mk and MX be fine log structures on Spec(k) and X, respectively. We assume that
(X,MX) is log smooth and integral over (Spec(k),Mk). Since the map x �→ xn on k is
surjective for any positive integer n, the projection Mk → M̄k splits (for the definition of M̄
of a log structure M , see Convention and terminology 1). Thus, there is a fine sharp monoid
Q together with a chart πQ : Q→ Mk such that Q→ Mk → M̄k is bijective.

Next, let us choose a closed point x of X. In the case where X is a polysemistable
variety, we would like to construct a chart πP : P → MX,x̄ together with a homomorphism
f : Q → P such that P → MX,x̄ → M̄X,x̄ is bijective, the natural morphism X →
Spec(k)×k[Q] Spec(k[P ]) is smooth and the following diagram is commutative:

Q
f−−→ P

πQ

� �πP
Mk −−→ MX,x̄ .

Then, the triple (Q → Mk,P → MX,x̄,Q → P) is called a good chart of (X,MX) →
(Spec(k),Mk) at x. For this purpose, we need to see the following theorem.

THEOREM 1.1. Let µ : (X,MX)→ (Y,MY ) be a log smooth and integral morphism
of fine log schemes. Let x ∈ X and y = µ(x). Let k be the algebraic closure of the residue

field at x and η : Spec(k) → X
µ−→ Y the induced morphism. If X ×Y Spec(k) is a

polysemistable variety over k, then the torsion part of Coker(M̄gp
Y,ȳ → M̄

gp
X,x̄) is a finite group

of order invertible in OX,x̄ .

PROOF. We denote X ×Y Spec(k) by X′. Then we have the following commutative
diagram:

X
η̃←−− X′

µ

� �µ′
Y

η←−− Spec(k) .

Note that the natural morphism η′ : Spec(k) → X′ gives rise to a section of µ′ : X′ →
Spec(k). Let x ′ be the image of η′. We consider the natural commutative diagram:

M̄X,x̄ −−→ η̃∗(MX)X′,x̄ ′ −−→ η′∗(η̃∗(MX))� � �
M̄Y,ȳ −−→ η∗(MY ) η∗(MY ) .
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Notice that

M̄Y,ȳ → η∗(MY ) and η̃∗(MX)X′,x̄ ′ → η′∗(η̃∗(MX))

are bijective. Moreover, since η′∗(η̃∗(MX)) = (η̃ · η′)∗(MX), the composition

M̄X,x̄ → η̃∗(MX)X′,x̄ ′ → η′∗(η̃∗(MX))

is also bijective. Thus, we can see that

M̄X,x̄ → η̃∗(MX)X′,x̄ ′

is an isomorphism. Moreover, (X′, η̃∗(MX)) → (Spec(k), η∗(MY )) is smooth and integral.
Thus, we may assume that Y = Spec(k),X is a polysemistable variety over k and x is a closed
point of X.

Clearly, we may assume that p = char(k) > 0. We can take a fine sharp monoid Q with
Mk = Q× k×. Let f : Q→ MX,x̄ and f̄ : Q→ M̄X,x̄ be the canonical homomorphisms.

Let us choose t1, . . . , tr ∈ MX,x̄ such that d log(t1), . . . , d log(tr ) form a free basis of
Ω1
X/k,x̄(log(MX/Mk)). Then, in the same way as in [5, (3.13)], we have the following:

(i) If we set P1 = N r ×Q and a homomorphism π1 : P1 → MX,x̄ by

π1(a1, . . . , ar , q) = a1t1 + · · · + ar tr + f (q) ,
then there is a fine monoid P such that P ⊇ P1, P gp/P

gp
1 is a finite group of order invertible

in OX,x̄ and that π1 : P1 → MX,x̄ extends to the surjective homomorphism π : P → M̄X,x̄ .
Moreover, P gives a local chart around x. Here we have the natural homomorphism h : Q→
P1 ↪→ P . Then the following diagram is commutative:

Q
h−−→ P� �π

Mk −−→ MX,x̄ .

(ii) The natural morphism g : X→ Spec(k)×Spec(k[Q]) Spec(k[P ]) is étale around x.
Let p̄1, . . . , p̄l be all irreducible elements of M̄X,x̄ not lying in the image Q → M̄X,x̄ .

Let us choose p1, . . . , pl ∈ MX,x̄ such that the image of pi in M̄X,x̄ is p̄i . Let α : MX →
OX be the canonical homomorphism. We set zi = α(pi) for i = 1, . . . , l. Since ÔX,x 	
(k ⊗k[Q] k[P ])∧g(y) and p̄i �∈ h(Q \ {0})+ P , we can see that zi �= 0 in OX,x̄ for all i.

Note that MX,x̄ is generated by p1, . . . , pl , O×X,x̄ and the image of Q in MX,x̄ , so that,
from now on, we always choose t1, . . . , tr from elements of the following types:

piu (u ∈ O×X,x̄, i = 1, . . . , l) and v (v ∈ O×X,x̄) .
We set xi = α(ti ) for i = 1, . . . , r .

CLAIM 1.1.1. (a) x
a1
1 · · · xarr �= 0 for any non-negative integers a1, . . . , ar .

(b) If xa1
1 · · · xarr = x

a′1
1 · · · xa

′
r
r for non-negative integers a1, . . . , ar , a

′
1, . . . , a

′
r , then

(a1, . . . , ar) = (a′1, . . . , a′r ) .



488 I. IWANARI AND A. MORIWAKI

PROOF. Let Ti be an element of k⊗k[Q] k[P ] arising from ei = (0, . . . , 1, . . . , 0) ∈ N r

(i-th standard basis of N r ), namely, Ti = 1 ⊗ ei . Let us choose u1, . . . , ua ∈ P such
that the kernel of P gp → M̄

gp
X,x̄ is generated by u1, . . . , ua . Let P ′ be the submonoid of

P gp generated by ±e1, . . . ,±er ,±u1, . . . ,±ua and P . Since the map k[Q] → k[π̄(P ′)]
is flat, thus f̄ : Q → π̄(P ′) is integral by [5, Proposition (4.1)]. By using this fact, we
can easily observe that the natural injective homomorphism ν : Q × Zr → P ′ given by
ν(q, I) = f (q)+ I · e is also integral. Therefore, by [5, Proposition (4.1)], k[P ′] is flat over
k[Q× Zr ]. Moreover, since

k ⊗k[Q] k[P ′] 	 (k ⊗k[Q] k[Q× Zr ])⊗k[Q×Zr ] k[P ′] ,
the following diagram

Spec(k ⊗k[Q] k[P ′]) −−→ Spec(k[P ′])� �
Spec(k ⊗k[Q] k[Q× Zr ]) −−→ Spec(k[Q× Zr ])

is Cartesian. Therefore,

Spec(k ⊗k[Q] k[P ′])→ Spec(k ⊗k[Q] k[Q× Zr ]) = Spec(k[Zr ])
is flat. In particular,

β : k[Zr ] = k ⊗k[Q] k[Q× Zr ] → k ⊗k[Q] k[P ′]
is injective because k[Zr ] is a integral domain. Further, β(Yi) = Ti for i = 1, . . . , r , where
k[Zr ] = k[Y±1 , . . . , Y±r ].

Let U be an étale neighborhood at x and V a non-empty open set of Spec(k⊗k[Q] k[P ])
such that V = g(U) and g : U → V is étale. Moreover, we set W = Spec(k ⊗k[Q] k[P ′]).
Then,W is an open set of Spec(k ⊗k[Q] k[P ]), i.e.,

W = {t ∈ Spec(k ⊗k[Q] k[P ]) | Ti(t) �= 0 for all i and (1⊗ uj )(t) �= 0 for all j } .
Let W̄ be the closure of W . Note that

Spec(k ⊗k[Q] k[P ])
= W̄ ∪ {T1 = 0} ∪ · · · ∪ {Tr = 0} ∪ {1⊗ u1 = 0} ∪ · · · ∪ {1⊗ ua = 0} .

Moreover, if we set y = g(x̄), then (1 ⊗ uj )(y) �= 0 for all j because π(uj) ∈ O×X,x̄ . Note
that the local ring (k ⊗k[Q] k[P ])y is reduced, since g∗ : (k ⊗k[Q] k[P ])y → OX,x̄ is étale.
Therefore, if y �∈ W̄ , then Ti = 0 in (k ⊗k[Q] k[P ])y . This contradicts the fact that zi �= 0 in
OX,x̄ for all i because g∗(Ti) = xi . Thus, y ∈ W̄ . Let us consider

γ : k[Zr ] β−→ OW −→ OW∩V
g∗−→ Og−1(W∩V ) .

Then, γ (Yi) = xi . Further, γ is injective, since β and g∗ are injective and k[Zr ] is an integral
domain. Thus, we get the claim. �

Fix t1, . . . , tr ∈ MX,x̄ with the following properties:



DOMINANT RATIONAL MAPS IN LOG SCHEMES 489

(1) ti is equal to either pju (u ∈ OX,x̄) or a unit v for all i.
(2) d log(t1), . . . , d log(tr ) form a free basis of Ω1

X/k,x̄(log(MX/Mk)).

(3) If we replace the non-unit ti �∈ O×X,x̄ by a unit t ′i ∈ O×X,x̄ , then

d log(t1), . . . , d log(t ′i ), . . . , d log(tr )

do not form a free basis of Ω1
X/k,x̄(log(MX/Mk)).

CLAIM 1.1.2. For a non-unit ti and u ∈ O×X,x̄ ,

d log(t1), . . . , d log(tiu), . . . , d log(tr )

form a free basis of Ω1
X/k,x̄(log(MX/Mk)).

PROOF. We set d log(u) = f1d log(t1)+ · · · + frd log(tr ). If fi ∈ O×X,x̄ , then d log(ti)
belongs to a submodule generated by

d log(u), d log(t1), . . . , d log(ti−1), d log(ti+1), . . . , d log(tr ) .

Thus, d log(u), d log(t1), · · · , d log(ti−1), d log(ti+1), · · · , d log(tr ) form a basis, so that fi
belongs to the maximal ideal of OX,x̄ . Therefore,

d log(tiu) = (1+ fi)d log(ti)+
∑
j �=i

fj d log(tj ) ,

and 1+ fi ∈ O×X,x̄ . Thus, we get the claim. �

Renumbering t1, . . . , tr , we may assume that

{t1, . . . , ts} = {ti | ti is not a unit} .
CLAIM 1.1.3. Let a1, . . . , as, a

′
1, . . . , a

′
s be non-negative integers such that either ai

or a′i is zero for all i. For u ∈ O×X,x̄ , if

x
a1
1 · · · xass = ux

a′1
1 · · · xa

′
s
s ,

then a1 = · · · = as = a′1 = · · · = a′s = 0 and u = 1.

PROOF. Assume the contrary. Let us choose a non-negative integer k such that ai =
pkbi and a′i = pkb′i for all i and that

gcd(b1, . . . , bs, b
′
1, . . . , b

′
s)

is prime to p. Then, by Lemma 1.3, there is v ∈ O×X,x̄ with

x
a1
1 · · · xass = vp

k

x
a′1
1 · · · xa

′
s
s .

Moreover by our construction, replacing v by v−1 if necessarily, we can find b′i prime to

p. Thus, there is v′ ∈ O×X,x̄ with v′b
′
i = v. Hence, if we replace ti by v′ti , then we have

x
a1
1 · · · xass = x

a′1
1 · · · xa

′
s
s . Therefore, by Claim 1.1.1 and Claim 1.1.2, a1 = a′1, . . . , as = a′s ,

which implies that a1 = · · · = as = a′1 = · · · = a′s = 0. This is a contradiction. �

CLAIM 1.1.4. t1, . . . , ts are linearly independent over Z in Coker(Qgp → M̄
gp
X,x̄).
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PROOF. We assume that a non-trivial relation a1t1 + · · · + asts = 0 (a1, . . . , as ∈ Z)
holds in Coker(Qgp → M̄

gp
X,x̄). Let t̄i be the class of ti in M̄X,x̄ . Then, a1 t̄1 + · · · + as t̄s =

f̄ (q) for some q ∈ Qgp. Renumbering t1, . . . , ts , we may assume that a1, . . . , al > 0 and
al+1, . . . , as ≤ 0. Thus, we have

b1t̄1 + · · · + bl t̄l + f̄ (q1) = bl+1t̄l+1 + · · · + bs t̄s + f̄ (q2)

for some q1, q2 ∈ Q, where b1 = a1, . . . , bl = al and bl+1 = −al+1, . . . , bs = −as . Since
f̄ is integral, there are q3, q4 ∈ Q, x ∈ MX,x̄ and u, u′ ∈ O×X,x̄ with


q1 + q3 = q2 + q4 ,

b1t1 + · · · + bltl = f (q3)+ x + u ,
bl+1tl+1 + · · · + bsts = f (q4)+ x + u′ .

Thus, if q3 �= 0, then xb1
1 · · · xbss = 0, which contradicts to Claim 1.1.1. Therefore, q3 = 0. In

the same way, q4 = 0. Thus, we get

b1t1 + · · · + bltl = bl+1tl+1 + · · · + bsts + v0

for some v0 ∈ O×X,x̄ . Hence xb1
1 · · · xbll = v0x

bl+1
l+1 · · · xbss . Therefore, by Claim 1.1.3, b1 =

· · · = bl = bl+1 = · · · = bs = 0. This is a contradiction. �

Let λ : P gp → M̄
gp
X,x̄ be the natural surjective homomorphism and

λ′ : Coker(Qgp→ P gp)→ Coker(Qgp → M̄
gp
X,x̄)

the induced homomorphism. Then, by using Claim 1.1.4, if we set

T = Coker(Zt1 ⊕ · · · ⊕ Ztr → Coker(Qgp→ P gp))

and

T ′ = Coker(Zt1 ⊕ · · · ⊕ Zts → Coker(Qgp → M̄
gp
X,x̄ )) ,

then we have the following commutative diagram:

0 −−→ Zt1 ⊕ · · · ⊕ Ztr −−→ Coker(Qgp → P gp) −−→ T −−→ 0�projection

�λ′ �
0 −−→ Zt1 ⊕ · · · ⊕ Zts −−→ Coker(Qgp → M̄

gp
X,x̄) −−→ T ′ −−→ 0� � �

0 0 0 .
Here T is a torsion group of order prime to p. Therefore, we get our assertion. �

LEMMA 1.2. Let R be a ring and f : Q → P a homomorphism of commutative
monoids with the unity. Then, the kernel of the induced ring homomorphism R[Q] → R[P ]
by f is generated by elements of type [q] − [q ′] with f (q) = f (q ′).

PROOF. The proof of this is left to the reader. �
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LEMMA 1.3. Let X be a polysemistable variety over an algebraically closed field k of
characteristic p > 0 and x a closed point of X. Let OX,x̄ be the local ring at x in the étale

topology. Let H and G be elements of OX,x̄ and u ∈ O×X,x̄ . If Hpku = Gp
k
, then there is

v ∈ O×X,x̄ with (Hv)p
k = Gpk .

PROOF. By Artin’s approximation theorem, it is sufficient to find v in ÔX,x̄ . Since X is
a polysemistable variety, we can set

ÔX,x̄ = k[[T1, . . . , Te]]/(T A1, . . . , T Al ) ,

where A1, . . . , Al ∈ Ne \ {0}. We set

Ω =
l⋃
i=1

(Ai +Ne), Σ = Ne \
l⋃
i=1

(Ai +Ne) and Σk = {I ∈ Σ | pk |A(i) for all i} .

Then, any elements of ÔX,x̄ can be uniquely written in a form∑
I∈Σ

αI T
I .

We set u =∑
I∈Σ aIT I and H =∑

I∈Σ bIT I . Moreover, we set

u′ =
∑
I∈Σk

aI T
I and u′′ =

∑
I �∈Σk

aIT
I .

Then, u = u′ + u′′ and there is a unit v with vp
k = u′. Thus, Hpku′′ = (G − Hv)pk .

Therefore,

(G−Hv)pk =
( ∑
I∈Σ

b
pk

I T
pkI

)( ∑
I �∈Σk

aIT
I

)
.

Even if we delete the terms T J with J ∈ Ω , the left hand side of the above equation consists
of the terms T J with J ∈ Σk and the right hand side does not contain the terms T J with
J ∈ Σk . Thus, (G−Hv)pk = 0. �

As a corollary of Theorem 1.1, we have the following existence of a good chart of a log
morphism.

COROLLARY 1.4. LetX be a polysemistable variety over an algebraically closed field
k. Let Mk and MX be fine log structures on Spec(k) and X, respectively. We assume that
(X,MX) is log smooth and integral over (Spec(k),Mk). Let Q be a fine sharp monoid with
Mk 	 Q × k× and πQ : Q → Mk the composition of Q → Q × k× (q �→ (q, 1)) and

Q× k× ∼−→ Mk . Moreover, let x be a closed point of X. Then, there is a fine sharp monoid
P together with homomorphisms πP : P → MX,x̄ and f : Q→ P such that a triple (πQ :
Q→ Mk, πP : P → MX,x̄, f : Q→ P) is a good chart of (X,MX)→ (Spec(k),Mk) at
x, namely, the following properties are satisfied:
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(1) The diagram

Q
f−−→ P

πQ

� �πP
Mk −−→ MX,x̄

is commutative.
(2) The homomorphism P → MX,x̄ → M̄X,x̄ is an isomorphism.
(3) The natural morphism g : X → Spec(k) ×Spec(k[Q]) Spec(k[P ]) is smooth in the

usual sense.

PROOF. This is a corollary of Theorem 1.1 together with Proposition A.1 and Proposi-
tion A.2. �

Finally, let us consider the following lemma, which is in use to show that a poly-
semistable variety is a reduced scheme.

LEMMA 1.5. Let k[[T1, . . . , Te]] be the ring of formal power series over k. LetA1, . . . ,

Al be elements of Ne \ {0} such that Ai(j) is either 0 or 1 for all i, j . Let I be an ideal of
k[[T1, . . . , Te]] generated by T A1 , . . . , T Al . Then, I is reduced, i.e.,

√
I = I .

PROOF. We prove this by induction on e. If e = 1, our assertion is obvious, so that we
assume that e > 1. Let f ∈ √I . Then, there is n > 0 with f n ∈ I . It is easy to see that there
are a1, . . . , ae ∈ k[[T1, . . . , Ti−1, Ti+1, . . . , Te]] and b ∈ k[[T1, . . . , Te]] with

f = a1 + T1a2 + · · · + T1 · · · Ti−1ai + · · · + T1 · · · Te−1ae + T1 · · · Teb .
Then, f (0, T2, . . . , Te) = a1 ∈ k[[T2, . . . , Te]]. If 1 ∈ Supp(Ai) for all i, then

f (0, T2, . . . , Te)
n = 0 .

Thus, a1 = 0. In particular, a1 ∈ I . Otherwise,

an1 = f (0, T2, . . . , Te)
n ∈

∑
1 �∈Supp(Ai)

T Ai k[[T2, . . . , Te]] .

Thus, by induction hypothesis , a1 ∈ I . Therefore, (f − a1)
n ∈ I . Note that (f − a1)(T1, 0,

T3, . . . , Te) = T1a2. Thus, in the same way as before, we can see that T1a2 ∈ I . Hence,
(f − a1 − T1a2)

n ∈ I . Proceeding with the same argument, T1 · · · Ti−1ai ∈ I for all i. On
the other hand, T1 · · · Te ∈ I . Therefore, f ∈ I . �

REMARK 1.6. It is very natural to ask a generalization of Theorem 1.1 to the case
of idealized log schemes. However we do not use idealized log schemes in this paper. This
problem is left to the reader.

2. Monoids of semistable type. In this section, we consider a monoid of semistable
type. First of all, let us give its definition. Let f : Q → P be an integral homomorphism of
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fine sharp monoids with Q �= {0}. We say P is of semi-stable type

(r, l, p1, . . . , pr , q0, bl+1, . . . , br)

overQ if the following conditions are satisfied:
(1) r and l are positive integers with r ≥ l, p1, . . . , pr ∈ P , q0 ∈ Q \ {0}, and

bl+1, . . . , br are non-negative integers.
(2) P is generated by f (Q) and p1, . . . , pr . The submonoid ofP generated by p1, . . . ,

pr in P , which is denoted byN , is canonically isomorphic to N r , namely, the homomorphism
N r → N given by (t1, . . . , tr ) �→∑

i tipi is an isomorphism.
(3) We set ∆l,B ∈ N r as follows:

∆l = (1, . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
r−l

) and B = (0, . . . , 0︸ ︷︷ ︸
l

, bl+1, . . . , br) .

Then, ∆l · p = f (q0)+ B · p, i.e., p1 + · · · + pl = f (q0)+∑
i>l bipi (cf. Convention and

terminology 6).
(4) If we have a relation

I · p = f (q)+ J · p (I, J ∈ N r )

with q �= 0, then I (i) > 0 for all i = 1, . . . , l (cf. Convention and terminology 2).

REMARK 2.1. Under the assumption as above, let U ⊂ P (resp. V ⊂ P ) be the
submonoid of P generated by p1, . . . , pl (resp. f (Q) and pl+1, . . . , pr ). According to (3),
there is a natural map

U ×(∆l ·p, f (q0)+B·p) V → P .

See Convention and terminology 4 for the definition of U ×(∆l ·p, f (q0)+B·p) V .

REMARK 2.2. In the case where l = 1, by using (2) of the following proposition, we
can see P = f (Q) × Np2 × · · · × Npr . Conversely, if P has a form f (Q) × N r−1 and
Q �= {0}, then P is of semistable type in the following way: Let q0 be an irreducible element
of Q and p1 = f (q0). Let ei be the standard basis of N r−1. We set pi = (0, ei−1) for i =
2, . . . , r . Then, since Q is sharp, Np1 	 N . Thus, the submonoid generated by p1, . . . , pr

in P is isomorphic to N r . Finally, let us consider a relation
∑
i aipi = f (q)+

∑
i cipi with

q �= 0. Then,

f (a1q0)+
∑
i≥2

aipi = f (q + c1q0)+
∑
i≥2

cipi .

Thus, a1q0 = q + c1q0. Hence, if a1 = 0, then q = 0. Therefore, a1 > 0.

First, let us see elementary properties of a monoid of semistable type.

PROPOSITION 2.3. Let f : Q → P be an integral homomorphism of fine sharp
monoids. We assume that P is of semi-stable type

(r, l, p1, . . . , pr , q0, bl+1, . . . , br)

overQ. Then we have the following:
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(1) Let I · p = f (q)+ J · p (I, J ∈ N r ) be a relation with q �= 0. Then, q = nq0 for
some n ∈ N . Moreover, if Supp(I) ∩ Supp(J ) = ∅, then I = n∆l and J = nB.

(2) Let us consider two elements

f (q)+ T · p and f (q ′)+ T ′ · p
of P such that there are i and j with 1 ≤ i, j ≤ l and T (i) = T ′(j) = 0. If f (q)+ T · p =
f (q ′)+ T ′ · p, then q = q ′ and T = T ′.

(3) Let U (resp. V ) be the submonoid of P generated by p1, . . . , pl (resp. f (Q) and
pl+1, . . . , pr ) (cf. Remark 2.1). Then, U 	 N l , V 	 Q × N r−l and the natural homomor-
phism

U ×(∆l ·p, f (q0)+B·p) V → P

is bijective.

PROOF. (1) First we assume that Supp(I) ∩ Supp(J ) = ∅. We set

n = min{I (1), . . . , I (l)} and I ′ = I − n∆l .
Then, I ′(i) = 0 for some i with 1 ≤ i ≤ l and I · p = n∆l · p + I ′ · p. Thus,

f (nq0)+ (nB + I ′) · p = f (q)+ J · p .
Therefore, since f : Q → P is integral, there are q1, q2 ∈ Q and T ∈ N r such that
nq0 + q1 = q + q2,

(nB + I ′) · p = f (q1)+ T · p and J · p = f (q2)+ T · p .
Note that (nB + I ′)(i) = 0 for some i (1 ≤ i ≤ l). Thus, q1 = 0 by Property (4). Moreover,
since {1, . . . , l} ⊆ Supp(I), we have Supp(J ) ⊆ {l + 1, . . . , r}, so that q2 = 0 by Property
(4). Therefore, q = nq0 and (nB + I ′) · p = J · p. In particular, nB + I ′ = J . Note that
(nB + I ′)(i) = I ′(i) and J (i) = 0 for i = 1, . . . , l. Thus, I ′(1) = · · · = I ′(l) = 0. We
assume that Supp(I ′) �= ∅. Let us choose i ∈ Supp(I ′). Then, i > l and J (i) = 0. Thus,
nB(i)+I ′(i) = 0, which implies I ′(i) = 0. This is a contradiction. Hence, I ′ = 0. Therefore,
q = nq0, I = n∆l and J = nB.

Next let us consider the general case. We define T ∈ N r by T (i) = min{I (i), J (i)}, and
we set I ′ = I−T and J ′ = J −T . Then, I ′ ·p = f (q)+J ′ ·p and Supp(I ′)∩Supp(J ′) = ∅.
Thus, q = nq0 for some n ∈ N .

(2) Since f : Q → P is integral, there are q1, q2 ∈ Q and h ∈ Np1 + · · · + Npr

such that T · p = f (q1) + h, T ′ · p = f (q2) + h and q + q1 = q ′ + q2. Here T (i) = 0
for some i = 1, . . . , l. Thus, q1 = 0. In the same way, q2 = 0. Therefore, q = q ′. Hence
T · p = T ′ · p.

(3) By (2), it is easy to see thatU 	 N l and V 	 Q×N r−l . Let us choose I, I ′, J, J ′ ∈
N r such that Supp(I),Supp(I ′) ⊆ {1, . . . , l} and Supp(J ),Supp(J ′) ⊆ {l + 1, . . . , r}. It is
sufficient to see that if

I · p + f (q)+ J · p = I ′ · p + f (q ′)+ J ′ · p
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for some q, q ′ ∈ Q, then

(I · p, f (q)+ J · p) ∼ (I ′ · p, f (q ′)+ J ′ · p)
in U ×(∆l ·p, f (q0)+B·p) V . We set

n = min{I (1), . . . , I (l)} and n′ = min{I ′(1), . . . , I ′(l)} .
Moreover, we set T = I − n∆l and T ′ = I ′ − n′∆l . Then

(T + J + nB) · p + f (q + nq0) = (T ′ + J ′ + n′B) · p + f (q ′ + n′q0) .

Thus, by (2), T + J + nB = T ′ + J ′ + n′B and q + nq0 = q ′ + n′q0. In particular, T = T ′
and J + nB = J ′ + n′B. Therefore, since (∆l · p, 0) ∼ (0, f (q0)+ B · p),

(I · p, f (q)+ J · p) = ((T + n∆l) · p, f (q)+ J · p)
∼ (T · p, f (q + nq0)+ (J + nB) · p)
= (T ′ · p, f (q ′ + n′q0)+ (J ′ + n′B) · p)
∼ ((T ′ + n′∆l) · p, f (q ′)+ J ′ · p)
= (I ′ · p, f (q ′)+ J ′ · p) . �

REMARK 2.4. By using a result of congruence relations [12, Lemma 2.8 (3)], we can
prove Proposition 2.3 in more direct way.

REMARK 2.5. By the properties above, k ⊗k[Q] k[P ] is canonically isomorphic to

k[X1, . . . , Xr ]/(X1 · · ·Xl) .
The converse of the above remark holds under a kind of assumptions of P .

PROPOSITION 2.6. Let k be a field and f : Q → P an integral homomorphism of
fine sharp monoids with Q �= {0}. Let R be the completion of k ⊗k[Q] k[P ] at the origin and
m the maximal ideal of R, where the homomorphism k[Q] → k = k[Q]/MQ is given by the
origin MQ of k[Q]. We assume the following:

(1) f : Q→ P does not split, i.e., there is no submonoidN of P with P = f (Q)×N .
(2) Let R′ = R[[T1, . . . , Te]] be the ring of formal power series of e-variables over R

and m′ the maximal ideal of R′. Then, R′ is reduced, dimk m
′/m′2 = dimR′ + 1

and dimR′/K ′ = dimR′ for all minimal primes K ′ of R′.
Let p1, . . . , pr be all irreducible elements of P which are not lying in f (Q). Let l be the
number of minimal primes of R. Then, after renumbering p1, . . . , pr , P is of semi-stable type

(r, l, p1, . . . , pr , q0, bl+1, . . . , br)

overQ for some q0 ∈ Q \ {0} and bl+1, . . . , bl ∈ N .

PROOF. Let us consider the natural homomorphism

H : Q×N r → P
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given by H(q, T ) = f (q) + T · p. Since f : Q→ P is integral, the system of congruence
relations of H is generated by

{Iλ · p = f (qλ)+ Jλ · p}λ∈Λ ,
where for each λ ∈ Λ, qλ ∈ Q and Iλ, Jλ ∈ N r with Supp(Iλ) ∩ Supp(Jλ) = ∅. Let
φ : k[[X1, . . . , Xr ]] → R be the homomorphism arising from

k[Nr ] = k ⊗k[Q] k[Q×N r ] → k ⊗k[Q] k[P ] .
Then, by Lemma 1.2, the kernel of φ is generated by

{XIλ − β(qλ)XJλ}λ∈Λ ,
where β is given by

β(q) =



1 if q = 0 ,

0 if q �= 0 .

Let m be the maximal ideal of R. By Assumption (2), it is easy to see that R is reduced,
dimk m/m

2 = dimR + 1 and dimR/K = dimR for all minimal primes K of R. Let M be
the maximal ideal of k[[X1, . . . , Xr ]]. Here pi’s are irreducible. Thus, deg(Iλ) ≥ 2 if qλ �= 0,
and deg(Iλ) ≥ 2 and deg(Jλ) ≥ 2 if qλ = 0. Hence, Ker(φ) ⊆M2. Therefore,

dimk m/m
2 = dimk M/(M

2 + Ker(φ)) = dimk M/M
2 = r ,

which implies that r = dimR + 1. Since R is reduced, Ker(φ) = √Ker(φ). Thus, we have a
decomposition

Ker(φ) = K1 ∩ · · · ∩Kl
such that Ki are prime, Ki �⊆ Kj for all i �= j and each Ki corresponds to a minimal prime
of R. Note that dim k[[X1, . . . , Xr ]]/Ki = r − 1 for each i. Here k[[X1, . . . , Xr ]] is a UFD.
Thus, each Ki’s are generated by an irreducible element, so that we can see that there is
f ∈ k[[X1, . . . , Xr ]] with Ker(φ) = (f ). Here we claim the following.

CLAIM 2.6.1. There is λ ∈ Λ with qλ �= 0.

We assume the contrary. Let N be a submonoid of P generated by pi’s. Let us see that

f (q)+ n = f (q ′)+ n′ (q, q ′ ∈ Q,n, n′ ∈ N) �⇒ q = q ′, n = n′ .
Since f : Q → P is integral, there are q1, q2 ∈ Q and n′′ ∈ N such that n = f (q1) + n′′,
n′ = f (q2)+n′′ and q+q1 = q ′ +q2. If qλ = 0 for all λ ∈ Λ, then q1 = q2 = 0. We can see
q1 = q2 = 0. Thus, n = n′ = n′′ and q = q ′. This observation shows us that P = Q × N ,
which contradicts to our assumption.

By the claim above, Ker(φ) contains an element of the form XIλ . Note that f is a factor
of XIλ , R is reduced and R contains l minimal primes. Thus, after renumbering p1, . . . , pr ,
we can set f = X1 · · ·Xl = X∆l . Next we claim the following.

CLAIM 2.6.2. qλ �= 0 for all λ ∈ Λ.
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We assume that there is λ ∈ Λ with qλ = 0. Then, X1 · · ·Xl divides XIλ −XJλ . This is
impossible because Supp(Iλ) ∩ Supp(Jλ) = ∅.

By the claim above, we can see that N is isomorphic to N r . Moreover, Ker(φ) is gener-
ated by

{
XIλ

}
λ∈Λ. Thus, there is λ ∈ Λ with Iλ = ∆l . Hence, we have a congruence relation

∆l · p = f (q0)+ B · p.
Finally, let us consider a relation

I · p = f (q)+ J · p
with q �= 0. Then, XI is an element of Ker(φ). Thus, I (i) > 0 for all i = 1, . . . , l. �

3. Local structure theorem on a semistable variety. The purpose of this section
is to prove the following local structure theorem of a smooth log structure on a semistable
variety. Classification results of log structures on a semistable variety have been already ob-
tained in several important cases. F. Kato studied the local description of a log structure on
a log smooth and integral morphism with relative dimension one [4, Theorem 1.3 and (1.8)].
M. Olsson investigated the local description of a log structure on a log smooth, vertical and
integral morphism [12, Theorem 2.7]. (A morphism (φ, h) : (X,MX) → (Y,MY ) is said to
be vertical if Coker(h : φ∗MY → MX) is a sheaf of groups.) We consider local structures
of a log structure on a log smooth and integral morphism on a semistable variety without the
assumptions of dimension and verticalness.

THEOREM 3.1. Let k be an algebraically closed field and Mk a fine log structure of
Spec(k). Let X be a semistable variety over k and MX a fine log structure of X. We assume
that (X,MX) is log smooth and integral over (Spec(k),Mk). For a closed point x ∈ X,
let (Q → Mk,P → MX,x̄,Q → P) be a good chart of (X,MX) → (Spec(k),Mk) at
x, that is, Q → M̄k and P → M̄X,x̄ are bijective homomorphisms of fine sharp monoids,
k ⊗k[Q] k[P ] → OX,x̄ is smooth and the following diagram

Q −−→ P� �
Mk −−→ MX,x̄

is commutative. Then, we have the following:
(1) If the multiplicity of X at x is equal to 1, that is, x is a regular point, then Q→ P

splits and P 	 Q×N r for some r .
(2) If the multiplicity of X at x is equal to 2, then we have one of the following:

(2.1) If Q→ P does not split, then P is of semistable type overQ.
(2.2) IfQ→ P splits, then char(k) �= 2 and there is a submonoidN of P such that

P 	 Q× N and N is isomorphic to the momoid arising from the monomials
of k[X1,X2, . . . , Xa]/(X2

1 − X2
2) for some a ≥ 2. In particular, ÔX,x is

canonically isomorphic to

k[[X1, . . . , Xr ]]/(X2
1 − X2

2) .
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(3) If the multiplicity of X at x is greater than or equal to 3, then Q → P does not
split and P is of semistable type over Q.

(4) If x is a singular point ofX and P gp is torsion free, thenQ→ P does not split and
P is of semistable type over Q.

In particular, if MX is saturated, then, for all x ∈ X, P is a monoid of semistable type
overQ.

In order to prove the above theorem, we need several preparations. First, let us consider
a log smooth monoid on a smooth variety.

PROPOSITION 3.2. Let k be a field and f : Q → P an integral homomorphism of
fine sharp monoids (note thatQ might be {0}). Let R be the completion of k⊗k[Q] k[P ] at the
origin and R[[T1, . . . , Te]] the ring of formal power series of e-variables over R, where the
homomorphism k[Q] → k = k[Q]/MQ is given by the originMQ of k[Q]. If R[[T1, . . . , Te]]
is regular, then there are a nonnegative integer r and a homomorphism g : N r → P such
that the homomorphism

h : Q×N r → P

given by h(q, x) = f (q)+ g(x) is bijective.

PROOF. First of all, note that R is regular. Let p1, . . . , pr be all irreducible elements
of P which are not lying in f (Q). Then, we have a homomorphism g : N r → P given
by g(n1, . . . , nr ) = ∑r

i=1 nipi . Thus, we get h : Q × N r → P as in the statement of our
proposition. Clearly, h is surjective. Then, since f : Q → P is integral, the congruence
relation is generated by a system

{Iλ · p = f (qλ)+ Jλ · p}λ∈Λ ,
where qλ ∈ Q and Iλ, Jλ ∈ N r with Supp(Iλ) ∩ Supp(Jλ) = ∅ for each λ. Then, by
Lemma 1.2, the kernel K of

k[[X1, . . . , Xr ]] → R

is generated by
{XIλ − β(qλ)XJλ}λ∈Λ ,

where β is given by

β(q) =



1 if q = 0 ,

0 if q �= 0 .

Using the fact that pi ’s are irreducible, we can see that K ⊂ M2, where M is the maximal
ideal of k[[X1, . . . , Xr ]]. Let m be the maximal ideal of R. Then,

m/m2 = M/(M2 +K) = M/M2 .

Thus, dimk m/m
2 = r . On the other hand, if we have a congruence relation, then K �= {0}.

Thus, dimR < r . Therefore, K = {0}, which means that h is injective. �

In order to proceed with our arguments, let us see elementary facts of the ring

k[[X1, . . . , Xn]]/(XI0 −XJ0) .
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PROPOSITION 3.3. Let k be a field and k[[X1, . . . , Xn]] the ring of formal power series
of n-variables over k. Let I0 and J0 be elements of Nn such that Supp(I0) ∩ Supp(J0) = ∅,
I0 �= (0, . . . , 0) and J0 �= (0, . . . , 0). Consider the ring

R = k[[X1, . . . , Xn]]/(XI0 −XJ0) .

The image of XI on R is denoted by xI . Then, we have the following:
(1) The multiplication of Xi in R is injective.
(2) For I, J ∈ Nn and h ∈ R, if xI = xJ h and I �≥ J , then either I ≥ I0 or I ≥ J0

(cf. Convention and terminology 2).
(3) Let u and v be units of R. For I, J ∈ Nn, if xIu = xJ v, then u = v and xI = xJ .
(4) For I, J ∈ Nn, set I = I ′ + aI0 + bJ0 and J = J ′ + a′I0 + b′J0 such that

a, b, a′, b′ ∈ N and that I ′ �≥ I0, I ′ �≥ J0, J ′ �≥ I0 and J ′ �≥ J0. If xI = xJ , then I ′ = J ′
and a + b = a′ + b′.

(5) If gcd(I0) and gcd(J0) are coprime, thenXI0−XJ0 is irreducible in k[[X1, . . . , Xn]]
(cf. Convention and terminology 2).

PROOF. The proof of (1), (2), (3) and (4) is elementary, so we left it to the reader. �

We only give a proof of (5). The following proof is due to the referee.

LEMMA 3.4. Let k be a field and f a polynomial in k[X1, . . . , Xn]. Assume that there
exists a non-trivial weight such that f is homogeneous with respect to it. Then f is irreducible
in k[[X1, . . . , Xn]] if and only if f is irreducible in k[X1, . . . , Xn].

PROOF. The “only if" direction is clear. To see the “if" direction, assume that there
exists a decomposition f = gh in k[[X1, . . . , Xn]] such that both g and h are not invertible
elements in k[[X1, . . . , Xn]]. By taking account of the (weighted) degrees of f , g and h, we
can easily see that f is not irreducible in k[X1, . . . , Xn]. Thus we conclude the claim. �

Return to the proof of (5). By an easy observation, we see that XI0 − XJ0 is irreducible
in k[X1, . . . , Xn]. Thus XI0 −XJ0 is irreducible in k[[X1, . . . , Xn]] by Lemma 3.4. �

COROLLARY 3.5. We assume that k is algebraically closed. Let I0 and J0 be elements
of Nn such that deg(I0) ≥ 1, deg(J0) ≥ 1 and Supp(I0) ∩ Supp(J0) = ∅. We set g =
gcd(gcd(I0), gcd(J0)), I0 = gI ′0 and J0 = gJ ′0. Then,

XI0 − XJ0 = (XI ′0 −XJ ′0)(XI ′0 − ζXJ ′0) · · · (XI ′0 − ζ g−1XJ
′
0)

is the irreducible decomposition of XI0 −XJ0 , where ζ is a g-th primitive root of the unity.

PROOF. It is sufficient to show that XI
′
0 − ζ iXJ ′0 is irreducible. Changing coordinates

X1, . . . , Xn by c1X1, . . . , cnXn, we can make XI
′
0 − XJ ′0 of XI

′
0 − ζ iXJ ′0 . Thus, by (5) of

Proposition 3.3, we have our corollary. �

COROLLARY 3.6. We assume that k is algebraically closed. Let I0 and J0 be elements
of Nn such that deg(I0) ≥ 1, deg(J0) ≥ 1 and Supp(I0) ∩ Supp(J0) = ∅. If

k[[X1, . . . , Xn]]/(XI0 −XJ0)
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is isomorphic to a ring of the type k[[T1, . . . , Te]]/(T1 · · · Tl) (l ≥ 2), then char(k) �= 2 and
there are i, j ∈ {1, . . . , n} such that i �= j and XI0 − XJ0 = X2

i −X2
j .

PROOF. We set g = gcd(gcd(I0), gcd(J0)), I0 = gI ′0 and J0 = gJ ′0. Then, by the
above corollary,

XI0 − XJ0 = (XI ′0 − XJ ′0)(XI ′0 − ζXJ ′0) · · · (XI ′0 − ζ g−1XJ
′
0)

is the irreducible decomposition of XI0 − XJ0 , where ζ is a g-th primitive root of the unity.
Since k[[X1, . . . , Xn]]/(XI0−XJ0) is reduced, char(k) does not divide g . Here k[[T1, . . . , Tn]]/
(T1 · · · Tl) has l-minimal primes, so that g = l. Moreover, since every irreducible component
is regular, either XI

′
0 or XJ

′
0 is linear. Clearly, we may assume that XI

′
0 is linear, namely,

XI
′
0 = Xi for some i. Let m be the maximal ideal of k[[X1, . . . , Xn]]/(XI0 −XJ0). Let V be

the vector subspace of m/m2 generated by Xi − XJ ′0 ,Xi − ζXJ ′0, . . . , Xi − ζ l−1XJ
′
0 . Then

we must have dimk V = l, since

k[[X1, . . . , Xn]]/(XI0 −XJ0) 	 k[[T1, . . . , Tn]]/(T1 · · · Tl) .
If deg(J ′0) ≥ 2, then dimk V = 1. This contradict to the fact l ≥ 2. Thus, deg(J ′0) = 1, so

that XJ
′
0 = Xj for some j . In this case, dimk V ≤ 2. Therefore, g = l = 2. �

PROPOSITION 3.7. Let k be a field, N a fine sharp monoid, and k[[N]] the completion
of k[N] at the origin. Let α : N → k[[N]] be the canonical homomorphism. Let p1, . . . , pr

be the irreducible elements of N and h : N r → N the natural homomorphism given by
h(a1, . . . , ar) =∑r

i=1 aipi . Let φ : k[[X1, . . . , Xr ]] → k[[N]] be the homomorphism induced
by h. Let R′ = k[[N]][[X1, . . . , Xe]] be the ring of formal power series of e-variables over
k[[N]] andm′ the maximal ideal ofR′. We assume thatR′ is reduced, dimk m

′/m′2 = dimR′+
1 and dimR′/K ′ = dimR′ for all minimal primes K ′ of R′. Then, we have the following:

(1) The kernel of φ is generated by an element of the formXI0−XJ0 such that I0, J0 ∈
N r , deg(I0) ≥ 2, deg(J0) ≥ 2, Supp(I0) ∩ Supp(J0) = ∅ and gcd(gcd(I0), gcd(J0)) is not
divisible by char(k).

(2) Renumbering of p1, . . . , pr , we assume that

Supp(I0) ⊆ {1, . . . , l} and Supp(J0) ⊆ {l + 1, . . . , r} .
Let U (resp. V ) be the submonoid of N generated by p1, . . . , pl (resp. pl+1, . . . , pr ). Then,
U 	 N l , V 	 N r−l and the natural homomorphism

U ×(I0·p, J0·p) V → N

is bijective (cf. Convention and terminology 4).

PROOF. (1) Let us consider all relations

{Iλ · p = Jλ · p}λ∈Λ
in N , where Iλ, Jλ ∈ N r and Supp(Iλ) ∩ Supp(Jλ) = ∅ for all λ. Then, the kernel of φ is
generated by

{XIλ −XJλ}λ∈Λ .
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Let m be the maximal ideal of k[[N]]. Then, it is easy to see that k[[N]] is reduced,
dimk m/m

2 = dim k[[N]] + 1 and dim k[[N]]/K = dim k[[N]] for all minimal primes K of
k[[N]]. LetM be the maximal ideal of k[[X1, . . . , Xr ]]. Since pi’s are irreducible, deg(Iλ) ≥ 2
and deg(Jλ) ≥ 2. Thus, Ker(φ) ⊆ M2. Therefore,

m/m2 = M/(Ker(φ)+M2) = M/M2 .

Then, in the same way as in the proof of Proposition 2.6, there is f ∈ k[[X1, . . . , Xr ]] with
Ker(φ) = (f ). We setXIλ −XJλ = f uλ for all λ ∈ Λ. If uλ is not a unit for any λ ∈ Λ, then
XIλ −XJλ ∈ f ·M . Thus, there is λ ∈ Λ such that uλ is a unit. Hence we get (1).

(2) By using (4) of Proposition 3.3, it is easy to see that U 	 N l and V 	 N r−l . Let
I, I ′, J, J ′ ∈ N r such that

Supp(I), Supp(I ′) ⊆ {1, . . . , l} and Supp(J ), Supp(J ′) ⊆ {l + 1, . . . , r} .
It is sufficient to see that if I ·p+ J ·p = I ′ ·p+ J ′ ·p, then (I ·p, J ·p) ∼ (I ′ ·p, J ′ ·p)
in U ×(I0·p, J0·p) V . We set I = T + aI0, I ′ = T ′ + a′I0, J = S + bJ0 and J ′ = S′ + b′J0

such that a, a′, b, b′ ∈ N and T �≥ I0, T ′ �≥ I0, S �≥ J0 and S′ �≥ J0. Then, by (4) of
Proposition 3.3, we can see that T + S = T ′ + S′ and a + b = a′ + b′. In particular, T = T ′
and S = S′. Therefore, since (I0 · p, 0) ∼ (0, J0 · p),

(I · p, J · p) = ((T + aI0) · p, (S + bJ0) · p) ∼ (T · p, (S + (a + b)J0) · p)
= (T ′ · p, (S′ + (a′ + b′)J0) · p) ∼ ((T ′ + a′I0) · p, (S′ + bJ0) · p)
= (I ′ · p, J ′ · p) . �

Let us start the proof of Theorem 3.1. This is a consequence of all results in §2 and §3.
Indeed, if x �∈ Sing(X), then our assertion holds by Proposition 3.2. Thus, we may assume
that x ∈ Sing(X).

We assume that Q→ P split, so that P 	 Q× N for some N . Then,

k ⊗k[Q] k[P ] 	 k[N] .
Since k[N] → OX is smooth, k[[N]][[X1, . . . , Xe]] is isomorphic to the ring of the type
k[[T1, . . . , Tn]]/(T1 · · · Tl). Thus, by Corollary 3.6 and Proposition 3.7, char(k) �= 2 and
l = 2. Moreover, if P gp is torsion free, then Ngp is torsion free. Thus, k[[N]] is an inte-
gral domain by Lemma 3.8 below. This is a contradiction. Therefore, if P gp is torsion free,
then Q→ P does not split.

If Q→ P does not split, then we get our assertion by Proposition 2.6. �

LEMMA 3.8. Let T be a fine sharp monoid such that T gp is torsion free. Then k[T ]
and the completion k[[T ]] at the origin are integral domains.

PROOF. First of all, it is well known that if σ is a finitely generated cone in Qn with
σ ∩ (−σ) = {0}, then there is an isomorphism φ : Qn → Qn such that φ(σ) ⊆ Qn

≥0.
Thus, we can find an injective homomorphism ψ : T gp → Zn such that Coker(ψ) is finite
and ψ(T ) ⊆ Nn, where n = rk(T gp). Therefore, k[T ] ↪→ k[Nn] = k[X1, . . . , Xn] and
k[[T ]] ↪→ k[[Nn]] = k[[X1, . . . , Xn]]. �
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4. Rigidity of log morphisms. In this section, we consider a uniqueness problem of
a log morphism for a fixed scheme morphism, which is one of main results of this paper.

THEOREM 4.1. Let k be an algebraically closed field and Mk a fine log structure of
Spec(k). LetX and Y be semistable varieties over k, andMX andMY fine log structures ofX
and Y , respectively. We assume that (X,MX) and (Y,MY ) are log smooth and integral over
(Spec(k),Mk). We set

Supp(MY /Mk) = {y ∈ Y | Mk ×O×Y,ȳ → MY,ȳ is not surjective} .
Let φ : X→ Y be a morphism over k such that φ(X′) �⊆ Supp(MY /Mk) for any irreducible
component X′ of X. If (φ, h) : (X,MX)→ (Y,MY ) and (φ, h′) : (X,MX)→ (Y,MY ) are
morphisms of log schemes over (Spec(k),Mk), then h = h′.

PROOF. This is a local question. Let us take a fine sharp monoidQwithMk = Q×k×.
Let x be a closed point of X and y = f (x). Let us choose étale local neighborhoods U and
V at x and y, respectively, with f (U) ⊆ V . Moreover, shrinking U and V enough, by
Corollary 1.4, we may assume that there are good charts

(Q→ Mk, π : P → MX|U, f : Q→ P)

and

(Q→ Mk, π
′ : P ′ → MY |V , f ′ : Q→ P ′)

of (X,MX) → (Spec(k),Mk) and (Y,MY ) → (Spec(k),Mk) at x and y, respectively. Let
π̃ : P ×O×X,x̄ → MX,x̄ and π̃ ′ : P ′ ×O×Y,ȳ → MY,ȳ be the natural homomorphisms induced

by π and π ′. Note that π̃ and π̃ ′ are isomorphisms. Let H : P ′ × O×Y,ȳ → P × O×X,x̄ and

H ′ : P ′×O×Y,ȳ → P×O×X,x̄ be homomorphisms of monoids such that the following diagrams
are commutative:

P ′ ×O×Y,ȳ
H−−→ P ×O×X,x̄

π̃ ′
� �π̃

MY,ȳ
h−−→ MX,x̄

α′
� �α

OY,ȳ
φ∗−−→ OX,x̄ ,

P ′ ×O×Y,ȳ
H ′−−→ P ×O×X,x̄

π̃ ′
� �π̃

MY,ȳ
h′−−→ MX,x̄

α′
� �α

OY,ȳ
φ∗−−→ OX,x̄ .

Here α and α′ are the canonical homomorphism. By abuse of notation, α · π̃ and α′ · π̃ ′ are
also denoted by α and α′. Then, α(p, u) = α(π(p)) · u and α′(p′, u′) = α′(π ′(p′)) · u′.

Note the following two claims.

CLAIM 4.1.1. H(0, u) = H ′(0, u) for all u ∈ O×Y,ȳ .

PROOF. It is obvious because h(OY,ȳ) ⊆ O×X,x̄ . �

CLAIM 4.1.2. H(f ′(q), 1) = H ′(f ′(q), 1) for all q ∈ Q.
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PROOF. Since π : P → MX|U and π ′ : P ′ → MY |V are good charts at x̄ and ȳ,
respectively, and all homomorphisms are lying over Mk , thus our claim is clear. �

From now on, we consider the following four cases:
(A) f : Q→ P splits and f ′ : Q→ P ′ splits.
(B) f : Q→ P does not split and f ′ : Q→ P ′ splits.
(C) f : Q→ P splits and f ′ : Q→ P ′ does not split.
(D) f : Q→ P does not split and f ′ : Q→ P ′ does not split.
By Theorem 3.1, if f : Q→ P (resp. f ′ : Q→ P ′) splits, then x̄ (resp. ȳ) is either a

smooth point or a singular points étale locally isomorphic to

Spec k[x1, x2, . . . , xr ]/(x2
1 − x2

2) (resp. Spec k[y1, y2, . . . , yr ′ ]/(y2
1 − y2

2)) .

Moreover, if f : Q → P (resp. f ′ : Q → P ′) does not split, then P (resp. P ′) is of
semistable type over Q.

For each case, let U1, · · · , Ul and V1, · · · , Vl′ be all irreducible components of U and V ,
respectively. Here, since Sing(Y ) ⊆ Supp(MY /Mk) and φ(Uj ) �⊆ Supp(MY /Mk) for each
j , there is a unique i with φ(Uj ) ⊆ Vi . We denote this i by σ(j). Note that we have a map
σ : {1, . . . , l} → {1, . . . , l′}. In the following, we give irreducible elements p1, . . . , pr ∈ P
(resp. p′1, . . . , p′r ′ ∈ P ′) for each case (A), (B), (C) and (D) such that P (resp. P ′) is generated
by f (Q) and p1, . . . , pr (resp. f ′(Q′) and p′1, . . . , p′r ′ ). The last claim is the following

CLAIM 4.1.3. H(p′i, 1) = H ′(p′i , 1) for all i = 1, · · · , r ′.
For this purpose, we fix common notation for all cases. We denote α(pj , 1) by xj and

α′(p′i , 1) by yi . Here we set

H(p′i , 1) = (f (qi)+ Ii · p, ui) and H ′(p′i , 1) = (f (q ′i )+ I ′i · p, u′i ) ,(4.1.4)

where Ii , I ′i ∈ N r , qi, q ′i ∈ Q and ui, u′i ∈ O×X,x̄ . Then, since α(H(p′i , 1)) = φ∗(α′(p′i , 1))
and α(H ′(p′i , 1)) = φ∗(α′(p′i , 1)), we have

φ∗(yi) = β(qi) · xIi · ui = β(q ′i ) · xI
′
i · u′i .(4.1.5)

Let us begin with Case A.

CASE A. In this case, there are submonoids N and N ′ of P and P ′, respectively, such
that P = f (Q) × N and P ′ = f ′(Q) × N ′. Let p1, . . . , pr (resp. p′1, . . . , p′r ′ ) be all
irreducible elements of N (resp. N ′). By Theorem 3.1,

Supp(MY /Mk) = {y1 = 0} ∪ · · · ∪ {yr ′ = 0}
around ȳ. Thus, we have

φ∗(yi)|Uj = β(qi) · xIi · ui |Uj = β(q ′i) · xI
′
i · u′i |Uj �= 0

for all j . In particular, qi = q ′i = 0 for all i = 1, . . . , r ′. Therefore,

xIi · ui = xI ′i · u′i
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for all i. Thus, by (3) of Proposition 3.3, ui = u′i and xIi = xI
′
i . Note that the natural

homomorphism k[N] → OX,x̄ is injective. Hence, we get Ii · p = I ′i · p.

CASE B. In this case, there is a submonoid N ′ of P ′ such that P ′ = f ′(Q) × N ′.
Let p′1, . . . , p′r ′ be all irreducible elements of N ′. Moreover, by Proposition 2.6, P is of
semistable type

(r, l, p1, . . . , pr , q0, bl+1, . . . , br )

overQ. Renumbering U1, . . . , Ul , we may assume that Uj is defined by xj = 0. By the same
argument as in (Case A), we have

φ∗(yi)|Uj = β(qi) · xIi · ui |Uj = β(q ′i ) · xI
′
i · u′i |Uj �= 0

for all j . In particular, qi = q ′i = 0 and Ii(j) = I ′i (j ) = 0 for j = 1, . . . , l. Further, since
OUj ,x̄ is a UFD, we can see that Ii = I ′i . Moreover, ui |Uj = u′i |Uj for all j . Thus, ui = u′i .
Therefore, H(p′i, 1) = H ′(p′i , 1) for all i = 1, . . . , r ′.

CASE C. There is a submonoid N of P such that P = f (Q) × N . Let p1, . . . , pr be
all irreducible elements of N . Moreover, by Proposition 2.6, P ′ is of semistable type

(r ′, l′, p′1, . . . , p′r ′ , q
′
0, b
′
l+1, . . . , b

′
r )

over Q. Renumbering V1, . . . , Vl′ , we may assume that Vi is defined by yi = 0. Note that

Supp(MY /Mk) = Sing(Y ) ∪ {yl′+1 = 0} ∪ · · · ∪ {yr ′ = 0}
around ȳ. Therefore, if i �= σ(j), then φ∗(yi)|Uj �= 0. Thus, we can see qi = q ′i = 0 for
i �= σ(j).

First, we consider the case where σ(1) = · · · = σ(l) = s. Note that s ≤ l′. Then, for
i �= s, qi = q ′i = 0. Thus, xIi · ui = xI ′i · u′i for all i �= s. Therefore, in the same way as in
Case A, we can see

Ii · p = I ′i · p and ui = u′i
for all i �= s. On the other hand, we have the relation p′1 + · · · + p′l′ = f ′(q ′0)+

∑
i>l′ b

′
ip
′
i .

Therefore, we have H(p′s, 1) = H ′(p′s , 1).
Hence, we may assume that #(σ ({1, · · · , l})) ≥ 2. In this case, we can conclude that

qi = q ′i = 0 for all i. Therefore, in the same way as in Case A, we can see

Ii · p = I ′i · p and ui = u′i
for all i.

CASE D. By Proposition 2.6, P and P ′ are of semistable type

(r, l, p1, . . . , pr , q0, bl+1, . . . , br ) and (r ′, l′, p′1, . . . , p′r ′ , q
′
0, b
′
l′+1, . . . , b

′
r ′)

over Q. Renumbering U1, . . . , Ul and V1, . . . , Vl′ , we may assume that Uj is defined by
xj = 0 and Vi is defined by yi = 0. Note that

Supp(MY /Mk) = Sing(Y ) ∪ {yl′+1 = 0} ∪ · · · ∪ {yr ′ = 0}
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around ȳ. Therefore, if i �= σ(j), then φ∗(yi)|Uj �= 0. Thus, we can see qi = q ′i = 0 and
Ii(j) = I ′i (j ) = 0. Moreover, since OUj ,x̄ is a UFD, considering φ∗(yi)|Uj , we can see that

Ii = I ′i and ui |Uj = u′i |Uj .
Gathering the above observation, we get the following: For all i = 1, . . . , r ′ and j = 1, . . . , l
with i �= σ(j), 



qi = q ′i = 0 ,

Ii (j) = I ′i (j ) = 0 ,

Ii = I ′i ,
ui |Uj = u′i |Uj .

(4.1.6)

Let us see that for all i > l′,
qi = q ′i = 0 , ui = u′i , Ii = I ′i .

Note that if i > l′, then i �= σ(j) for all j = 1, . . . , l. Thus, we get qi = q ′i = 0 and Ii = I ′i .
Moreover, ui |Uj = u′i |Uj for all j = 1, . . . , l. Hence, ui = u′i . Therefore,

H(p′i, 1) = H ′(p′i , 1) for all i > l′ .(4.1.7)

First, we consider the case where σ(1) = · · · = σ(l) = s. Then, for i �= s,
qi = q ′i = 0 , Ii = I ′i .

Moreover, for all j = 1, . . . , l and i �= s, ui |Uj = u′i |Uj . Therefore, ui = u′i for i �= s. Thus,
H(p′i , 1) = H ′(p′i , 1) for all i �= s. On the other hand, we have the relation p′1 + · · · + p′l′ =
f ′(q ′0)+

∑
i>l′ b

′
ip
′
i . Therefore, we have H(p′s, 1) = H ′(p′s, 1).

Hence, we may assume that #(σ ({1, · · · , l})) ≥ 2. In this case, we can conclude that

qi = q ′i = 0 , Ii = I ′i
for all i. Moreover, ui |Uj = u′i |Uj if i �= σ(j). Since p′1 + · · · + p′l′ = f ′(q ′0)+

∑
i>l′ b

′
ip
′
i ,

H(p′1 + · · · + p′l′ , 1) = H ′(p′1 + · · · + p′l′ , 1) .

Thus, considering the O×X,x̄-factor, we find

u1 · · · ul′ = u′1 · · ·u′l′ .
Moreover, if we set Si = {1, . . . , l} \σ−1(i), then Si ∪Si′ = {1, . . . , l} for all i �= i ′. Further,
if we set vi = ui/u′i , then

v1 · · · vl′ = 1 and vi |Uj = 1 for all j ∈ Si and i = 1, . . . , l′ .
Therefore, using the following Lemma 4.2, we have vi = 1 for i = 1, . . . , l′. Hence, we can
see H(p′i, 1) = H ′(p′i , 1) for i = 1, . . . , l′. �

LEMMA 4.2. Let k be a field, R = k[[X1, . . . , Xn]]/(X1 · · ·Xl) and Λ = {1, . . . , l}.
Let πj : R→ R/XiR be the canonical homomorphism for j ∈ Λ. Let S1, . . . , Ss be subsets
of Λ with Si ∪ Si′ = Λ for i �= i ′. Moreover, let u1, . . . , us be units in R. If u1 · · · us = 1
and, for each i, πj (ui) = 1 for all j ∈ Si , then u1 = · · · = us = 1.
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PROOF. If Si0 = ∅ for some i0, then Si = Λ for all i �= i0. Thus, ui = 1 for all i �= i0,
since

π1 × · · · × πl : R→ R/X1R × · · · × R/XlR
is injective. Then, ui0 = 1. Therefore, we may assume that Si �= ∅ for all i.

For a monomial Xa1
1 · · ·Xann , the support with respect to Λ is given by

SuppΛ(X
a1
1 · · ·Xann ) = {i ∈ Λ | ai > 0} .

For a subset S of Λ, let ΓS be the set of formal sums of monomials Xa1
1 · · ·Xann with

SuppΛ(X
a1
1 · · ·Xann ) = S. Note that Γ∅ = k[[Xl+1, . . . , Xn]]. Then,

k[[X1, . . . , Xn]] =
⊕
S⊆Λ

ΓS .

Moreover, the natural map
⊕

S�Λ ΓS → R is an isomorphism as k-vector spaces. We denote

the image of ΓS in R by Γ̄S . For fS ∈ Γ̄S and fS ′ ∈ Γ̄S ′ , fS · fS ′ ∈ Γ̄S∪S ′ if S ∪ S′ � Λ, and
fS · fS ′ = 0 if S ∪ S′ = Λ.

Here we set ui =∑
S�Λ fi,S , where fi,S ∈ Γ̄S . Then, for all j ∈ Si ,

πj (ui) =
∑

j �∈S�Λ

fi,S = 1 .

Thus, fi,∅ = 1 and fi,S = 0 for all S �= ∅ with j �∈ S. Therefore, setting

∆i = {S � Λ | Si ⊆ S} ,
we can write

ui = 1+
∑
S∈∆i

fi,S .

Since Si ∪ Si′ = Λ (i �= i ′), for S ∈ ∆i and S′ ∈ ∆i′ with i �= i ′, we can easily see (1)
S ∪ S′ = Λ and (2) S �= S′. Thus, using the above (1), we obtain

u1 · · · us = 1+
s∑
i=1

∑
S∈∆i

fi,S .

Moreover, using the above (2), we can find fi,S = 0. Thus, we get ui = 1 for all i. �

REMARK 4.3. If we do not assume the condition

“φ(X′) �⊆ Supp(MY /Mk) for any irreducible component X′ of X”

in Theorem 4.1, then the assertion of the theorem does not hold in general. For example, let
us consider A1

k = Spec(k[X]). Let M be a log structure associated with α : N ×N → k[X]
given by

α(a, b) =


Xb if a = 0 ,

0 if a �= 0 .

Further, let f : N → N ×N be a homomorphism defined by f (a) = (a, 0). Then, (A1
k,M)

is log smooth and integral over (Spec(k),N × k×). Here let us consider a morphism φ :
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A1
k → A1

k induced by a homomorphism ψ : k[X] → k[X] given by ψ(X) = 0. Then,
φ(A1

k) = Supp(M/N × k×). Moreover, we consider a homomorphism

h : N ×N → N ×N

defined by h(1, 0) = (1, 0) and h(0, 1) = (a0, b0) (a0 > 0). Then, it is easy to see that the
following diagrams are commutative:

N ×N
h−−→ N ×N

f

� �f
N N ,

N ×N
h−−→ N ×N

α

� �α
k[X] ψ−−→ k[X] .

Thus, (φ, h) : (A1
k,M)→ (A1

k,M) is a log morphism over (Spec(k),N). On the other hand,
we have infinitely many choices of a0 and b0.

5. Log differential sheaves on a semistable variety. Here, let us consider a log
differential module on a semistable variety.

PROPOSITION 5.1. Let k be an algebraically closed field and Mk a fine log structure
on Spec(k). Let X be a semistable variety over k and MX a fine log structure of X. Assume
that (X,MX) is log smooth and integral over (Spec(k),Mk). Let ν : X̃ → X be the nor-
malization of X and MX̃ the underlying log structure of ν∗(MX), that is, MX̃ = ν∗(MX)

u

(cf. see Convention and terminology 7). Then, (X̃,MX̃) is log smooth over (Spec(k), k×) and
Ω1
X̃
(log(MX̃/k

×)) is isomorphic to ν∗Ω1
X(log(MX/Mk)).

PROOF. First of all, there is a fine sharp monoidQ withMk = Q×k×. Let α : MX →
OX and α′ : ν∗(MX) → OX̃ be the canonical homomorphisms. For a closed point x ∈ X̃,
let (πQ : Q → Mk, πP : P → MX,ν(x), f : Q → P) be a good chart of (X,MX) →
(Spec(k),Mk) at ν(x). Here we have three cases:

(A) ν(x) is a smooth point of X.
(B) ν(x) is a singular point of X and f : Q→ P splits.
(C) ν(x) is a singular point of X and f : Q→ P does not split.

CLAIM 5.1.1. (X̃,MX̃)→ (Spec(k), k×) is log smooth at x.

CASE A. In this case, ν(x) = x. Then, by Theorem 3.1, P = f (Q) × N r . Let ei be
the i-th standard basis of N r and Ti = 1⊗ei in k⊗k[Q] k[P ]. Then, k[T1, . . . , Tr ](T1,...,Tr ) →
OX,x̄ is smooth. Therefore, adding indeterminates Tr+1, . . . , Tn, we see that

h : k[T1, . . . , Tr , Tr+1, . . . , Tn](T1,...,Tn)→ OX,x̄

is étale. Set ti = α(πP (ei)) for i = 1, . . . , r . Then, t1, . . . , tr form a part of local parameters
of OX,x̄ , since h(Ti) = ti for i = 1, . . . , r and h is étale. Moreover, MX̃,x̄

is generated by

t1, . . . , tr and O×X,x̄ . Thus, we get our assertion.
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CASE B. In this case, by Theorem 3.1, char(k) �= 2, P = f (Q)×N andN is a monoid
such that

k[N] = k[T1, . . . , Tr ]/(T 2
1 − T 2

2 ) .

Moreover, after adding indeterminates Tr+1, . . . , Tn+1,

h : k[T1, . . . , Tr , Tr+1, . . . , Tn+1](T1,...,Tn+1)/(T
2
1 − T 2

2 )→ OX,ν(x)

is étale. Set ti = α(πP (T̄i)) for i = 1, . . . , r . Changing the sign of πP (T̄2), we may assume
that X̃ at x is the component corresponding to t1 = t2. Note that h(T̄i ) = ti for i = 1, . . . , r .
Thus,MX̃,x̄ is generated by t2, . . . , tr and O×X,x̄ , and t2, . . . , tr form a part of local parameters
of OX̃,x̄ . This shows the assertion.

CASE C. In this case, by Theorem 3.1, P is of semistable type

(r, l, p1, . . . , pr , q0, cl+1, . . . , cr )

over Q. Then, we have

k ⊗k[Q] k[P ] 	 k[T1, . . . , Tr ]/(T1 · · · Tl)
via the correspondence 1⊗pi ←→ Ti . After adding indeterminates Tr+1, . . . , Tn+1, we have

k[T1, . . . , Tr , Tr+1, . . . , Tn+1](T1,...,Tn+1)/(T1 · · · Tl)→ OX,ν(x)

is étale. We denote α(πP (pi)) by ti for i = 1, . . . , r . Renumbering p1, . . . , pr , we may
assume that the component X̃ at x is given by t1 = 0. Note that h(T̄i) = ti for i = 1, . . . , r .
Thus,MX̃,x̄

is generated by t2, . . . , tr and O×X,x̄ , and t2, . . . , tr form a part of local parameters
of OX̃,x̄

. Hence, we get our assertion.
Next we claim the following:

CLAIM 5.1.2. For a ∈ MX̃,x̄ , there is b ∈ ν∗(MX)x̄ with α′(b) = a. Moreover, b ⊗ 1

is uniquely determined in ν∗(MX)
gp
x̄ ⊗Z OX̃,x̄

.

The existence of b is obvious, so that we consider only a uniqueness of b. We use the
same notation as in Claim 5.1.1 for each case.

CASE A. Set a = u · ta1
1 · · · tarr (u ∈ O×X,x̄ and a1, . . . , ar ∈ N ). In order to see the

uniqueness of b, we set b = (f (q), b1, . . . , br, v) (q ∈ Q, b1, . . . , br ∈ N and v ∈ O×X,x̄).

Then, α′(b) = β(q) · v · tb1
1 · · · tbrr , where β is given by

β(q) =



1 if q = 0 ,

0 if q �= 0 .

Thus, q = 0, v = u and (b1, . . . , br ) = (a1, . . . , ar ).

CASE B. We can set a = u · ta2
2 · · · tarr (u ∈ O×

X̃,x̄
and a2, . . . , ar ∈ N ). Moreover,

we set b = (f (q), T̄
b1

1 · T̄ b2
2 · · · T̄ brr , v) (q ∈ Q, b1, . . . , br ∈ N and v ∈ O×

X̃,x̄
). Then,

α′(b) = β(q) · v · tb1+b2
2 · tb3

3 · · · tbrr . Thus,

q = 0 , v = u , a2 = b1 + b2 and (b3, . . . , br ) = (a3, . . . , ar ) .
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Therefore, for b′ = (f (q ′), T̄ b′11 · T̄
b′2

2 · · · T̄ b
′
r

r , v
′), if α′(b) = α′(b′) = a, then

b = b′ + (0, (T̄2/T̄1)
c, 1)

in ν∗(MX)
gp
x̄ for some c ∈ Z. Here char(k) �= 2 and (T̄2/T̄1)

2 = 1. Hence, b⊗ 1 = b′ ⊗ 1 in
ν∗(MX)

gp
x̄ ⊗Z OX̃,x̄ .

CASE C. Set a = u · ta2
2 · · · tarr (u ∈ O×

X̃,x̄
and a2, . . . , ar ∈ N ). Let us see the

uniqueness of b. Let us set b = (f (q) +∑r
i=1 bipi, v) (q ∈ Q, b1, . . . , br ∈ N and v ∈

O×
X̃,x̄

). Then, α′(b) = β(q) · v · tb1
1 · · · tbrr . Thus, q = 0, v = u, b1 = 0 and (b2, . . . , br ) =

(a2, . . . , ar ).
By Claim 5.1.2, there is a natural homomorphism

γ : Ω1
X̃
(log(MX̃/k

×))→ Ω1
X̃
(log(ν∗(MX)/Mk)) .

Moreover, we have a natural homomorphism

γ ′ : ν∗(Ω1
X(log(MX/Mk)))→ Ω1

X̃
(log(ν∗(MX)/Mk)) .

CLAIM 5.1.3. γ and γ ′ are isomorphisms.

CASE A. In this case, γ ′ is an isomorphism around x. Set tj = h(Tj ) for j = r +
1, . . . , n. Then, d log(t1), . . . , d log(tr ), dtr+1, . . . , dtn form a basis of Ω1

X̃,x̄
(log(MX̃/k

×)).
Moreover, d log(e1), . . . , d log(er ), dtr+1, . . . , dtn form a basis of Ω1

X̃,x̄
(log(ν∗(MX)/Mk)).

On the other hand, γ (d log(ti)) = d log(ei) for i = 1, . . . , r and γ (dtj ) = dtj for j =
r + 1, . . . , n. Thus, γ is an isomorphism around x.

CASE B. Set tj = h(T̄j ) for j = r + 1, . . . , n+ 1. Then,

d log(t2), . . . , d log(tr ), dtr+1, . . . , dtn+1

form a basis of Ω1
X̃,x̄
(log(MX̃/k

×)). Moreover, γ (d log(ti )) = d log(T̄i) for i = 2, . . . , r

and γ (dtj ) = dtj for j = r + 1, . . . , n + 1. Let N ′ be the submonoid of N generated by
T̄2, . . . , T̄r . Then, we can see that Ngp = N ′gp × 〈T̄1/T̄2〉, (T̄1/T̄2)

2 = 1 and N ′ 	 N r−1.
Thus, if we set M ′ = f (Q)×N ′ ×O×

X̃,x̄
, then the natural homomorphism

Ω1
X̃,x̄
(log(M ′/Mk))→ Ω1

X̃,x̄
(log(ν∗(MX)/Mk))

is an isomorphism because char(k) �= 2. Moreover, M ′ is log smooth over Mk . Therefore,
Ω1
X̃,x̄
(log(ν∗(MX)/Mk)) is a free OX̃,x̄

-module whose basis is given by

d log(T̄2), . . . , d log(T̄r ), d log(tr+1), . . . , d log(tn+1) .

Thus, γ is an isomorphism. On the other hand, we can choose

d log(T̄2), . . . , d log(T̄r ), d log(tr+1), . . . , d log(tn+1)
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as a basis of ν∗Ω1
X(log(MX/Mk))x̄ . Thus, γ ′ is also an isomorphism.

CASE C. Set tj = h(T̄j ) for j = r + 1, . . . , n+ 1. Then,

d log(t2), . . . , d log(tr ), dtr+1, . . . , dtn+1

form a basis of Ω1
X̃,x̄
(log(M

X̃
/k×)). Moreover, γ (d log(ti)) = d log(pi) for i = 2, . . . , r

and γ (dtj ) = dtj for j = r+1, . . . , n+1. Let P ′ be the submonoid of P generated by f (Q)
and p2, . . . , pr . Then, since

p1 = −(p2 + · · · + pl)+ f (q0)+
∑
i>l

cipi ,

we have P ′gp = P gp. Thus, if we set M ′ = P ′ ×O×
X̃,x̄

, then the natural homomorphism

Ω1
X̃,x̄
(log(M ′/Mk))→ Ω1

X̃,x̄
(log(ν∗(MX)/Mk))

is an isomorphism. Moreover, since P ′ = f (Q) × N r−1, we can see M ′ is log smooth over
Mk . Therefore,Ω1

X̃,x̄
(log(ν∗(MX)/Mk)) is a free OX̃,x̄-module whose basis is given by

d log(p2), . . . , d log(pr), d log(tr+1), . . . , d log(tn+1) .

Thus, γ is an isomorphism. On the other hand,

d log(p2), . . . , d log(pr), d log(tr+1), . . . , d log(tn+1)

is a basis of ν∗Ω1
X(log(MX/Mk))x̄ . Thus, γ ′ is also an isomorphism. �

6. Geometric preliminaries.
6.1. Relative rational maps. Let k be an algebraically closed field, X and Y proper

algebraic varieties over k, and T a reduced algebraic scheme over k. Let Φ : X ×k T ���
Y ×k T be a relative rational map over T . Recall that this means that there is a dense open set
U of X ×k T such that Φ is defined over U , Φ : U → Y ×k T is a morphism over T and for
all t ∈ T , U ∩ (X × {t}) �= ∅. In this subsection, we prove the following proposition.

PROPOSITION 6.1.1. Let k, X, Y , T and Φ : U → Y ×k T be as above. Then the
following holds.

(1) {t ∈ T | Φ|X×{t} is dominant} is closed.
(2) {t ∈ T | Φ|X×{t} is separably dominant} is locally closed.
(3) Assume thatX is normal. LetDX andDY be reduced divisors onX and Y , respec-

tively. For a rational map φ : X ��� Y , we denote by Xφ the maximal open set over which φ
is defined. Then,

{t ∈ T | (Φ|X×{t})−1(DY ) ⊆ DX on XΦ|X×{t} }
is constructible.

(4) Let Z be a subvariety of Y . Then, {t ∈ T | Φ|X×{t}(X) ⊆ Z} is closed.
(5) Let h : F → G be a homomorphism of locally free sheaves on X ×k T such that

ht : Ft → Gt is not zero for every t ∈ T . Then,

{t ∈ T | the image of ht : Ft → Gt is rank one}
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is closed.

PROOF. (1) Let Z be the closure of Φ(U) and p : Z → T the projection induced by
Y ×k T → T . Since Z is proper over T , it is well known that the function T → Z given by
t �→ dimZt is upper semicontinuous. Moreover, dimZt ≤ dimY and the equality holds if
and only if Zt = Y . Thus, we get (1).

(2) By virtue of (1), we may assume thatΦ|X×{t} is dominant for all t ∈ T . In this case,
we note that it is open. Indeed, this can be easily checked by Lemma 6.1.2 and the following
fact: Let L be a finitely generated field over a field K . Then, by [8, 4.4.2], dimL Ω

1
L/K ≥

tr. degK(L) and the equality holds if and only if L is separable over K .
(3) First assume that T is normal. We may assume that U is maximal. Then, since

X ×k T is normal, by applying Zariski main theorem to each fibre, we see that codim(X ×
{t} \ U) ≥ 2 for all t ∈ T . Thus, (Φ|X×{t})−1(DY ) ⊆ DX on XΦ|X×{t} if and only if
(Φ|(X×{t})∩U)−1(DY ) ⊆ DX. Here we set W = Φ−1(DY ×k T ) \ DX ×k T on U . Let
q : W → T be the projection induced by X ×k T → T . Then, t �∈ q(W) if and only if
(Φ|(X×{t})∩U)−1(DY ) ⊆ DX , which proves our assertion by Chevalley’s lemma.

Next we consider the general case. Let π : T̃ → T be the normalization of T . Then,

{t ∈ T | (Φ|X×{t})−1(DY ) ⊆ DX on XΦ|X×{t} }
= π({t̃ ∈ T̃ | (Φ|X×{t̃})−1(DY ) ⊆ DX on XΦ|X×{t̃ } }) .

Thus, we get (3).
(4) Let W be the Zariski closure of Φ−1(Z ×k T ). Then, Φ|X×{t}(X) ⊆ Z if and only

if X × {t} = Wt . Since W is proper over T , it is well known that the function T1 → Z given
by t �→ dimWt is upper semicontinuous. Moreover, dimWt ≤ dimX and the equality holds
if and only if Wt = X. Thus, we obtain (4).

(5) Let K be the function field of X. Let us consider homomorphisms F ⊗k K →
G⊗k K . Since ht �= 0 for all t ∈ T , we have (5) by Lemma 6.1.2. �

LEMMA 6.1.2. Let K[X1, . . . , Xr ] be the r-variable polynomial ring over a field
K and k an algebraically closed subfield of K . Let I be an ideal of k[X1, . . . , Xr ] and
A(X1, . . . , Xr ) an n×m-matrix whose entries are elements of

K[X1, . . . , Xr ]/IK[X1, . . . , Xr ] .
Then the function given by

kr ⊇ V (I) � (t1, . . . , tr ) �→ rkA(t1, . . . , tr ) ∈ Z

is lower semi-continuous, where

V (I) = {(x1, . . . , xr ) ∈ kr | f (x1, . . . , xr) = 0 for all f ∈ I } .
PROOF. Clearly, we may assume that I = {0}. Considering minors of the matrix

A(X1, . . . , Xr ), it is sufficient to see the following claim:
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CLAIM 6.1.2.1. For f1, . . . , fl ∈ K[X1, . . . , Xr ], the set

{(x1, . . . , xr) ∈ kr | f1(x1, . . . , xr) = · · · = fl(x1, . . . , xr ) = 0}
is closed.

Replacing K by a field generated by coefficients of f1, . . . , fl over k, we may assume
that K is finitely generated over k. Since k is algebraically closed, K is separated over k.
Thus, there are T1, . . . , Ts of K such that T1, . . . , Ts are algebraically independent over k
and K is a finite separable extension over k(T1, . . . , Ts). By taking the Galois closure of
K over k(T1, . . . , Ts), we may assume that K is a Galois extension over k(T1, . . . , Ts). For
f = ∑

I aIX
I ∈ K[X1, . . . , Xr ] and σ ∈ Gal(K/k(T1, . . . , Ts)), we denote

∑
I σ (aI )X

I

by f σ . Here, we set

Fi =
∏

σ∈Gal(K/k(T1,...,Ts ))

f σi

for i = 1, . . . , l. Then, F1, . . . , Fl ∈ k(T1, . . . , Tl)[X1, . . . , Xr ] and, for (x1, . . . , xr) ∈ kr ,
Fi(x1, . . . , xr ) = 0⇐⇒ fi(x1, . . . , xr ) = 0

for i = 1, . . . , l. Indeed, if Fi(x1, . . . , xr) = 0, then f σi (x1, . . . , xr ) = 0 for some σ ∈
Gal(K/k(T1, . . . , Ts)), which implies that

0 = σ−1(f σi (x1, . . . , xr )) = fi(x1, . . . , xr ) .

By the above observation, we may assume that K = k(T1, . . . , Ts). By multiplying some
φ(T1, . . . , Tr ) ∈ k[T1, . . . , Ts] to fi , we may further assume that

f1, . . . , fl ∈ k[T1, . . . , Ts][X1, . . . , Xr ] .
We set

fi =
∑
J

ci,J T
J (ci,J ∈ k[X1, . . . , Xr ])

for i = 1, . . . , l. Then, for (x1, . . . , xr ) ∈ kr ,
fi(x1, . . . , xr ) = 0⇐⇒ ci,J (x1, . . . , xr ) = 0 for all J .

Thus,

{(x1, . . . , xr ) ∈ kr | fi(x1, . . . , xr) = 0 for all i}
= {(x1, . . . , xr ) ∈ kr | ci,J (x1, . . . , xr ) = 0 for all i, J } .

Therefore, we get the claim. �

6.2. Geometric trick for finiteness. Let k be an algebraically closed field. Let X be a
proper normal variety over k and Y a proper algebraic variety over k. LetE be a vector bundle
on X and H a line bundle on Y . We assume that there is a dense open set Y0 of Y such that
H 0(Y,H) ⊗k OY → H is surjective over Y0. Let φ : X ��� Y be a dominant rational map
over k. Let Xφ be the maximal open set of X over which φ is defined. We also assume that



DOMINANT RATIONAL MAPS IN LOG SCHEMES 513

there is a non-trivial homomorphism θ : φ∗(H)→ E|Xφ . Then, since codim(X \ Xφ) ≥ 2,
we have a sequence of homomorphisms

H 0(Y,H)→ H 0(Xφ, φ
∗(H))→ H 0(Xφ,E) = H 0(X,E) .

We denote the composition of the above homomorphisms by

β(φ, θ) : H 0(Y,H)→ H 0(X,E) .

Then we have the following.

LEMMA 6.2.1. Let L be the image of

H 0(Y,H)⊗k OX
β(φ,θ)⊗k id−−−−−−→ H 0(X,E)⊗k OX −−→ E .

Then the rank of L is one and the rational map

φ′ : X ��� P (H 0(Y,H))

induced by H 0(Y,H)⊗k OX → L is the composition of rational maps

X
φ

��� Y
φ|H |��� P (H 0(Y,H)) ,

namely, φ′ = φ|H | · φ.

PROOF. Considering the following commutative diagram

H 0(Y,H)⊗k OXφ

β(φ,θ)⊗k id−−−−−−→ H 0(X,E)⊗k OXφ� �
φ∗(H) θ−−→ E|Xφ ,

we can see that θ gives rise to an isomorphism

φ∗(H)|Xφ∩φ−1(Y0)

∼−→ L|Xφ∩φ−1(Y0)
.

Moreover, the rational map Xφ ��� P (H 0(Y,H)) given by H 0(Y,H) ⊗k OXφ → φ∗(H) is
φ|H | ·φ. Thus, the rational map φ′ : X ��� P (H 0(Y,H)) induced byH 0(Y,H)⊗k OX → L

is nothing more than the composition of rational maps

X
φ��� Y

φ|H |��� P (H 0(Y,H)) . �

From now on, we assume that H is very big, that is, the morphism Y0 → P (H 0(Y,H))

induced by H 0(Y,H) ⊗k OY0 → H |Y0 is a birational morphism onto its image. Let C be a
subset of Ratk(X, Y ) (the set of all rational maps of X into Y over k). We assume that for all
φ ∈ C,

(1) φ is a dominant rational map, and
(2) we can attach a non-trivial homomorphism θφ : φ∗(H)→ E|Xφ to φ, where Xφ is

the maximal Zariski open set of X over which φ is defined.
As before, we have a homomorphism

β(φ, θφ) : H 0(Y,H)→ H 0(X,E) .
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We denote the class of β(φ, θφ) in P (Homk(H
0(Y,H),H 0(X,E))∨) by γ (φ, θφ). By abuse

of notation, we often use γ (φ) instead of γ (φ, θφ) .

LEMMA 6.2.2. Let φ,ψ be rational maps in C and let θφ : φ∗(H) → E|Xφ and
θψ : ψ∗(H) → E|Xψ be non-trivial homomorphisms. Then γ (φ, θφ) = γ (ψ, θψ) implies
φ = ψ .

PROOF. By our assumption, there is a ∈ k× with aβ(φ) = β(ψ). Hence we have the
following commutative diagram:

H 0(Y,H)⊗k OX

β(φ,θφ)⊗k id−−−−−−−→ H 0(X,E)⊗k OX −−→ E∥∥∥ �×a �×a
H 0(Y,H)⊗k OX

β(ψ,θψ )⊗k id−−−−−−−→ H 0(X,E)⊗k OX −−→ E .

Let Lφ (resp. Lψ ) be the image of H 0(Y,H) ⊗k OX → E in terms of β(φ, θφ) (resp.
β(ψ, θψ)). Then, the above diagram gives rise to a commutative diagram

H 0(Y,H)⊗k OX −−→ Lφ∥∥∥ �×a
H 0(Y,H)⊗k OX −−→ Lψ .

Let φ′ : X ��� P (H 0(Y,H)) and ψ ′ : X ��� P (H 0(Y,H)) be the rational maps induced
by H 0(Y,H) ⊗k OX → Lφ and H 0(Y,H) ⊗k OX → Lψ , respectively. Then, by the above
diagram, we can see φ′ = ψ ′. Hence we get our lemma by Lemma 6.2.1. �

Next we show the following.

PROPOSITION 6.2.3. Let T be a connected proper normal variety over k, and let

Φ : X ×k T ��� Y ×k T

be a relative rational map over T (cf. Convention and terminology 8). Let f : X ×k T → T

and g : Y ×k T → T be the projections to the second factor, respectively, and let p :
X ×k T → X and q : Y ×k T → Y be the projections to the first factor, respectively.
Assume that there exist a dense open subset T0 of T and a non-trivial homomorphism Θ :
Φ∗(q∗(H))→ p∗(E)|U such that, for all t ∈ T0, Φ|X×{t} ∈ C and the class of β(Φt ,Θt ) in
P (Homk(H

0(Y,H),H 0(X,E))∨) is γ (Φt ,Θt ), where U is the maximal open set over which
Φ is defined. Then there is φ ∈ C such that Φ = φ × idT .

PROOF. Since X×k T is normal, we may assume that codim((X×k T ) \U) ≥ 2. Here
we have a homomorphism

H 0(Y,H)⊗k OT = g∗(q∗(H))→ (f |U)∗(Φ∗(q∗(H))) Θ−→ (f |U)∗(p∗(E)) .
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We claim that the natural homomorphism f∗(p∗(E))→ (f |U)∗(p∗(E)) is an isomorphism.
Indeed, if W is an open set of T , then

(f |U)∗(p∗(E))(W) = H 0(U ∩ (X ×k W), p∗(E)) .
Note that codim((X ×k W) \ U ∩ (X ×k W)) ≥ 2. Thus, H 0(U ∩ (X ×k W), p∗(E)) =
H 0(X ×k W, p∗(E)). Hence we get a homomorphism

β : H 0(Y,H)⊗k OT → H 0(X,E)⊗OT .

Here, T is proper and irreducible. Hence there is β0 ∈ Homk(H
0(Y,H),H 0(X,E)) such

that β = β0 ⊗ id. This means that β(Φt ,Θt ) = β0. Thus, by Lemma 6.2.2, there is φ ∈ C
such that Φt = φ for all t ∈ T0. Therefore, we get our proposition. �

Finally, let us see the following proposition.

PROPOSITION 6.2.4. There exist a closed subset T of

P (Homk(H
0(Y,H),H 0(X,E))∨)

and a relative rational map Φ : X ×k T ��� Y ×k T over T such that if we consider
γ : C→ P (Homk(H

0(Y,H),H 0(X,E))∨), then γ (C) ⊆ T and Φ|X×{γ (φ)} = φ.

PROOF. We set P = P (Homk(H
0(Y,H),H 0(X,E))∨). Then, there is the canonical

homomorphism
Homk(H

0(Y,H),H 0(X,E))∨ ⊗k OP → OP (1) ,

which gives rise to a universal homomorphism

β : H 0(Y,H)⊗k OP (−1)→ H 0(X,E)⊗k OP ,

that is, for all t ∈ P , the class of

βt : H 0(Y,H)⊗k (OP (−1)⊗ κ(t))→ H 0(X,E)

in P coincides with t , where κ(t) is the residue field of OP at t . Here we consider the
composition of homomorphisms

h : H 0(Y,H)⊗k OP (−1)⊗k OX
β⊗id−→ H 0(X,E)⊗k OP ⊗k OX → E ⊗k OP

on X ×k P . Then, by (5) of Proposition 6.1.1, if T1 is the set of all t ∈ P such that the image
of ht is of rank 1, then T1 is closed. Let L be the image of

h|T1 : H 0(Y,H)⊗k OT1(−1)⊗k OX → E ⊗k OT1 .

Then we have the surjective homomorphism

H 0(Y,H)⊗k OX×kT1 → L⊗OX×kT1
OX×kT1(1) .
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Let U1 be the maximal Zariski open set of X ×k T1 such that L is invertible over U1. Here,
note that for all t ∈ T1, U1 ∩ (X ×k {t1}) �= ∅. Thus, we get a relative rational map

Φ1 : X ×k T1 ��� P (H 0(Y,H))×k T1

over T1 (cf. Convention and terminology 8). Let Y1 be the closure of the image of φ|H |(Y ).
By (4) of Proposition 6.1.1, the set

T = {t ∈ T1 | (Φ1)t (X) ⊆ Y1}
is closed. Hence we obtain a relative rational map

Φ2 : X ×k T ��� Y1 ×k T ,
which gives rise to a relative rational map

Φ : X ×k T ��� Y ×k T .
By our construction, this rational map has the following properties: For all t ∈ T , let βt :
H 0(Y,H) → H 0(X,E) be the homomorphism modulo k× corresponding to t ∈ P , and let
Lt be the image of

H 0(Y,H)⊗OX → H 0(X,E)⊗OX → E .

Here, the rank of Lt is one. Thus, we have a rational map φt : X ��� P (H 0(Y,H)) induced
by H 0(Y,H)⊗OX → Lt . Then, φt(X) ⊆ Y1 and the following diagram is commutative:

X
Φ|X×{t} ��

φt ���
��

��
��

� Y

φ|H |����
��

��
��

Y1 .

Therefore, by Lemma 6.2.1, Φ : X ×k T ��� Y ×k T is our desired relative rational map. �

7. Finiteness theorem over the trivial log structure. Let k be an algebraically closed
field and let X and Y be proper normal algebraic varieties over k. Let DX andDY be reduced
Weil divisors on X and Y , respectively. Let MX and MY be fine log structures of X and Y ,
respectively, such that

MX = jX∗(O×X\DX) ∩OX and MY ⊆ jY ∗(O×Y\DY ) ∩OY ,

where jX and jY are natural inclusion maps X \ DX ↪→ X and Y \ DY ↪→ Y , respectively.
Then, for a rational map φ : X ��� Y , φ extends to (X,MX) → (Y,MY ) if φ−1(DY ) ⊆
DX. Throughout this section we assume that (X,MX) and (Y,MY ) are log smooth over
(Spec(k), k×).

Note that if X is smooth over k, then the log smoothness of (X,MX) over (Spec(k), k×)
guarantees that MX = jX∗(O×X\DX) ∩ OX for DX = Supp(MX/O×X) (cf. Theorem 3.1). In
this case, if we assume further that Y is smooth and of general type over k, then the finiteness
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theorem (cf. Theorem 7.1) for such (X,MX) and (Y,O×Y ) follows from the finiteness theorem
in [2].

Suppose that (Y,MY ) is of log general type over (Spec(k), k×), namely,
detΩ1

Y (log(MY /k
×)) is big. Then there is a positive integer m such that detΩ1

Y (log(MY /

k×))⊗m is very big. Here we set

H = detΩ1
Y (log(MY /k

×))⊗m and E = Symm(
∧dimY

Ω1
X(log(MX/k

×))) .

Then, if φ : (X,MX) ��� (Y,MY ) is a rational map, we have a natural homomorphism

θφ : φ∗(H)→ E|Xφ ,
where Xφ is the maximal open set over which φ is defined. Moreover, if φ is separably dom-
inant, then θφ is non-trivial. Let SDRat((X,MX), (Y,MY )) be the set of separably dominant
rational maps (X,MX) ��� (Y,MY ) over (Spec(k), k×).

THEOREM 7.1. SDRat((X,MX), (Y,MY )) is finite.

PROOF. First we need the following lemma.

LEMMA 7.2. Let T be a smooth proper curve over k and Φ : X ×k T ��� Y ×k T
a relative rational map over T (cf. Convention and terminology 8). If there is a non-empty
open set T0 of T such that for all t ∈ T0, Φt is separably dominant andΦ−1

t (DY ) ⊆ DX, then
there is a rational map φ : X ��� Y with Φ = φ × idT .

PROOF. First of all, by Proposition 6.1.1, for all t ∈ T , Φ|X×{t} : X ��� Y is dominant.
Let us take a effective divisor D on X such that

Φ|−1
X×{t}(DY ) ⊆ DX ∪D

for all t ∈ T \ T0. By using de-Jong’s alteration [1], we see that there are a smooth proper
variety X′ and a separable and generically finite morphism µ : X′ → X such that µ−1(DX ∪
D) is a normal crossing divisor onX′. LetDX′ = µ−1(DX∪D) andMX′ = jX′ ∗(O×X′\DX′ )∩OX′ , where jX′ : X′ \DX′ → X′ is the natural inclusion map. Then, (X′,MX′) is log smooth
over (Spec(k), k×). We set Φ ′ = Φ · (µ × idT ). Then, for all t ∈ T , Φ ′|−1

X×{t}(DY ) ⊆ DX′ .
Moreover, for all t ∈ T0, Φ ′|X×{t} is separably dominant. Thus, in order to prove our lemma,
we may assume that for all t ∈ T , Φ|−1

X×{t}(DY ) ⊆ DX.
Let f : X ×k T → T and g : Y ×k T → T be the projections to the second factor,

respectively, and let p : X ×k T → X and q : Y ×k T → Y be the projections to the
first factor, respectively. Let U be the maximal open set over which Φ is defined. Then we
have a rational map (X ×k T , p∗(MX)) ��� (Y ×k T , q∗(MY )) and (X ×k T , p∗(MX)) and
(Y ×k T , q∗(MY )) are log smooth over (T ,O×T ). Thus, there is a non-trivial homomorphism

Θ : Φ∗(q∗(H))→ p∗(E)|U .
Therefore, we get our lemma by Proposition 6.2.3. �
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Let us go back to the proof of Theorem 7.1. If φ ∈ SDRat((X,MX), (Y,MY )), then we
have the non-trivial homomorphism

θφ : φ∗(H)→ E|Xφ .
Thus, by Proposition 6.2.4, there is a closed subset T of

P (Homk(H
0(Y,H),H 0(X,E))∨)

and a relative rational map Φ : X ×k T ��� Y ×k T over T such that if we consider

γ : SDRat((X,MX), (Y,MY ))→ P (Homk(H
0(Y,H),H 0(X,E))∨) ,

then
γ (SDRat((X,MX), (Y,MY ))) ⊆ T

and Φ|X×{γ (φ)} = φ. Note that γ is injective by Lemma 6.2.2. Let T1 be the set of all t ∈ T
such thatΦ|X×{t} is separably dominant andΦ|−1

X×{t}(DY ) ⊆ DX. Then, by Proposition 6.1.1,
T1 is constructible. Let T2 be the Zariski closure of T1. If dimT2 = 0, then we have done, so
that we assume that dimT2 > 0. Then there is a proper smooth curve C and π : C → T2 such
that the generic point ofC goes to T1 via π . Moreover, we have a rational mapΨ : X×kC ���
Y ×k C induced by X ×k T2 ��� Y ×k T2. By our construction, there is an open set C0 of C
such that for all t ∈ C0, Ψ |X×kC0 is separably dominant and Ψ |−1

X×{t}(DY ) ⊆ DX . Thus, by
Lemma 7.2, there is a rational mapψ : X ��� Y withΨ = ψ×id. We choose x1, x2 ∈ C with
π(x1) �= π(x2) and π(x1), π(x2) ∈ T1. Then we have φ1, φ2 ∈ SDRat((X,MX), (Y,MY ))

with γ (φ1) = π(x1) and γ (φ2) = π(x2). Since γ is injective, φ1 �= φ2. On the other hand,
we have

ψ = Ψ |X×k{xi } = Φ|X×k{π(xi)} = φi
for each i. This is a contradiction. �

8. The proof of the finiteness theorem. In this section, let us consider the proof of
the finiteness theorem in general.

THEOREM 8.1. Let k be an algebraically closed field and Mk a fine log structure of
Spec(k). Let X and Y be proper semistable varieties over k, and let MX and MY be fine
log structures of X and Y , respectively. Assume that (X,MX) and (Y,MY ) are integral and
smooth over (Spec(k),Mk). If (Y,MY ) is of log general type over (Spec(k),Mk), then the set
of all separably dominant rational maps (X,MX) ��� (Y,MY ) over (Spec(k),Mk) defined
in codimension one is finite (see Convention and terminology 8).

PROOF. First we prove the following lemma.

LEMMA 8.2. Let Y be a semistable variety over k andH a line bundle on Y . Let Y ′ be
an irreducible component of the normalization of Y and µ : Y ′ → Y the natural morphism.
If H is big, then µ∗(H) is big.
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PROOF. Let m be a positive integer m such that H⊗m is very big. Let V be the image
of H 0(Y,H⊗m)→ H 0(Y ′, µ∗(H⊗m)). Then, we have the following diagram:

Y ′
µ ��

�������������

���
�

�
�

�
�

�
�

�
�

�
� Y ������ P (H 0(Y,H⊗m))

P (V )
��

��

P (H 0(Y ′, f ∗(H⊗m))) .

���
�
�

Let Y1 and Y2 be the image of Y ′ ��� P (V ) and Y ′ ��� P (H 0(Y ′, µ∗(H⊗m))) respectively.
Then,

k(Y ′) = k(Y1) ⊆ k(Y2) ⊆ k(Y ′) .
Thus, Y ′ ��� Y2 is birational. �

Let us go back to the proof of Theorem 8.1. LetX1, . . . , Xr and Y1, . . . , Ys be irreducible
components of the normalizations of X and Y , respectively. Moreover, let fi : Xi → X and
gj : Yj → Y be the canonical morphisms. We set MXi = f ∗i (MX)

u and MYj = g∗j (MY )
u

(cf. Convention and terminology 7). Then, by Proposition 5.1, (Xi,MXi ) and (Yj ,MYj ) are
integral and log smooth over (Spec(k), k×). Further, by Proposition 5.1 again, we see that

Ω1
Xi
(log(MXi )) = f ∗i (Ω1

X(log(MX/Mk)))

and

Ω1
Yj
(log(MYj )) = g∗j (Ω1

Y (log(MY /Mk))) .

Thus, by the above lemma, (Yj ,MYj ) is of log general type over (Spec(k), k×) for every j .
We denote the set of all separably dominant rational maps (X,MX) ��� (Y,MY ) defined in
codimension one over (Spec(k),Mk) by

SDRat((X,MX), (Y,MY )) .

Moreover, the set of all separably dominant rational maps (Xi,MXi ) ��� (Yj ,MYj ) over
(Spec(k), k×) is denoted by

SDRat((Xi,MXi ), (Yj ,MYj )) .

Then, we have a natural map

Ψ : SDRat((X,MX), (Y,MY )) −→
∐

σ∈S(r,s)

r∏
i=1

SDRat((Xi,MXi ), (Yσ(i),MYσ(i) ))

as follows. Here S(r, s) is the set of all maps from {1, . . . , r} to {1, . . . , s}. Let (φ, h) ∈
SDRat((X,MX), (Y,MY )). Then, for each i, there is a unique σ(i) such that the Zariski
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closure of φ(Xi) is Yσ(i). Then we have (φ|Xi , hi) : (Xi,MXi ) → (Yσ(i),MYσ(i) ) (cf. Con-
vention and terminology 7). By Theorem 7.1,

SDRat((Xi,MXi ), (Yj ,MYj ))

is finite for every i, j . Therefore, it is sufficient to see that Ψ is injective. Let us pick
(φ, h), (φ′, h′) ∈ SDRat((X,MX), (Y,MY )) with Ψ (φ) = Ψ (φ′). Then, clearly, φ = φ′.
Thus, by Theorem 4.1, we have h = h′. �

Appendix. In this appendix, we recall several results, which are well-known for re-
searchers of log geometry. It is however difficult to find literatures, so that for the reader’s
convenience, we prove them here. Actually, we consider two propositions concerning the
existence of a good chart of a smooth log morphism (cf. [10]).

PROPOSITION A.1. Let (φ, h) : (X,MX)→ (Y,MY ) be a morphism of log schemes
with fine log structures. Let x ∈ X and y = φ(x). Assume the following:

(1) The homomorphism h̄x : M̄Y,ȳ → M̄X,x̄ induced by hx : MY,ȳ → MX,x̄ is injective
and the torsion part of Coker(h̄gp

x : M̄gp
Y,ȳ → M̄

gp
X,x̄) is a finite group of order invertible in

OX,x̄ .
(2) There is a splitting homomorphism sy : M̄Y,ȳ → MY,ȳ of the natural homomor-

phism py : MY,ȳ → M̄Y,ȳ , that is, py · sy = idM̄Y,ȳ
.

Then there is a splitting homomorphism sx : M̄X,x̄ → MX,x̄ of the natural homomor-
phism px : MX,x̄ → M̄X,x̄ such that px · sx = idM̄X,x̄

and the following diagram is commuta-
tive:

M̄Y,ȳ
h̄x−−→ M̄X,x̄

sx

� �sy
MY,ȳ

hx−−→ MX,x̄ .

PROOF. First of all, note that Coker(O×X,x̄ → φ∗(MY )x̄) = M̄Y,ȳ . Moreover,

s′y : M̄Y,ȳ

sy−→ MY,ȳ → φ∗(MY )x̄

gives rise to a splitting homomorphism of φ∗(MY )x̄ → M̄Y,ȳ .
Let us consider the following commutative diagram with exact rows:

0 −−→ O×X,x̄ −−→ φ∗(MY )
gp
x̄ −−→ M̄

gp
Y,ȳ −−→ 0∥∥∥ � �

0 −−→ O×X,x̄ −−→ M
gp
X,x̄ −−→ M̄

gp
X,x̄ −−→ 0 ,
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which gives rise to

Hom(M̄gp
X,x̄,M

gp
X,x̄ ) −−→ Hom(M̄gp

X,x̄, M̄
gp
X,x̄ )

δ1−−→ Ext1(M̄gp
X,x̄,O×X,x̄ )� �γ1

�λ
Hom(M̄gp

Y,ȳ ,M
gp
X,x̄ ) −−→ Hom(M̄gp

Y,ȳ , M̄
gp
X,x̄)

δ2−−→ Ext1(M̄gp
Y,ȳ ,O×X,x̄)� �γ2

∥∥∥
Hom(M̄gp

Y,ȳ , φ
∗(MY )

gp
x̄ ) −−→ Hom(M̄gp

Y,ȳ , M̄
gp
Y,ȳ )

δ3−−→ Ext1(M̄gp
Y,ȳ ,O×X,x̄) .

By using the diagram

M̄
gp
Y,ȳ

h̄
gp
x−−→ M̄

gp
X,x̄∥∥∥ ∥∥∥

M̄
gp
Y,ȳ

h̄
gp
x−−→ M̄

gp
X,x̄ ,

it follows that γ1(idM̄gp
X,x̄
) = h̄gp

x and γ2(idM̄gp
Y,ȳ
) = h̄gp

x . Note that the exact sequence

0→ O×X,x̄ → φ∗(MY )
gp
x̄ → M̄

gp
Y,ȳ → 0

splits by s′gp
y . Thus,

λ(δ1(idM̄gp
X,x̄
)) = δ2(γ1(idM̄gp

X,x̄
)) = δ2(γ2(idM̄gp

Y,ȳ
)) = δ3(idM̄gp

Y,ȳ
) = 0 .

On the other hand, by our assumption, we have that

Ext1(M̄X,x̄/M̄Y,ȳ , OX,x̄) = 0 .

Thus, we obtain that λ is injective. Therefore, δ1(idM̄gp
X,x̄
) = 0. Hence, we have a splitting

homomorphism s : M̄gp
X,x̄ → M

gp
X,x̄ of Mgp

X,x̄ → M̄X,x̄ .

Here we claim that s(M̄X,x̄ ) ⊆ MX,x̄ . Indeed, let us choose a ∈ M̄X,x̄ . Then there is
b ∈ MX,x̄ with px(b) = a. Since px(s(a)) = a, there is c ∈ O×X,x̄ such that s(a) = b + c in

M
gp
X,x̄ . Here b, c ∈ MX,x̄ , which implies s(a) ∈ MX,x̄ .

Therefore, we get a diagram

M̄Y,ȳ
h̄x−−→ M̄X,x̄

sy

� �s
MY,ȳ

hx−−→ MX,x̄ .

It should be noted that the above diagram is not necessarily commutative. By our assumption,
for all a ∈ M̄Y,ȳ , there is a unique u ∈ O×X,x̄ such that s(h̄x(a))+ u = hx(sy(a)). We denote

this u by µ(a). Thus, we have a homomorphism µgp : M̄gp
Y,ȳ → O×X,x̄ . Here we consider an

exact sequence
0→ M̄

gp
Y,ȳ → M̄

gp
X,x̄ → M̄

gp
X,x̄/M̄

gp
Y,ȳ → 0 ,
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which gives rise to

Hom(M̄gp
X,x̄,O×X,x̄)→ Hom(M̄gp

Y,ȳ ,O×X,x̄ )→ Ext1(M̄gp
X,x̄/M̄

gp
Y,ȳ ,O×X,x̄) = {0} .

Thus, there is ν ∈ Hom(M̄gp
X,x̄,O×X,x̄) with ν · h̄gp

x = µgp. Here we set sx = s + ν. Then it
holds that

sx(h̄x(a)) = s(h̄x(a))+ ν(h̄x(a)) = s(h̄x(a))+ µ(a) = hx(sy(a)) .
Thus, we get our desired sx . �

PROPOSITION A.2. Let (φ, h) : (X,MX) → (Y,MY ) be a smooth morphism of log
schemes with fine log structures. Fix x ∈ X and y = φ(x). Assume that there are (a) étale
neighborhoods U and V of x and y, respectively, (b) charts πP : P → MX|U and πQ : Q→
MY |V , and (c) a homomorphism f : Q→ P with the following properties:

(1) φ(U) ⊆ V ,
(2) The induced homomorphisms P → M̄X,x̄ andQ→ M̄Y,ȳ are bijective.
(3) The following diagram is commutative:

Q
f−−→ P

πQ

� �πP
MY |V h−−→ MX|U .

Then the canonical morphism g : X→ Y ×Spec(Z[Q]) Spec(Z[P ]) is smooth around x in the
classical sense.

PROOF. We consider the natural homomorphism

α : Coker(Qgp → P gp)⊗Z OX,x̄ → Ω1
X/Y,x̄(log(MX/MY )) .

First we note the following.

CLAIM A.2.1. α is injective and gives rise to a direct summand of

Ω1
X/Y,x̄(log(MX/MY )) .

In the same way as in [5, (3.13)], we can construct a chart πP ′ : P ′ → MX,x̄ and an
injective homomorphism f ′ : Q→ P ′ with the following properties:

(i) The torsion part of Coker(Qgp → P ′gp
) is a finite group of order invertible in

OX,x̄ .
(ii) The following diagram is commutative:

Q
f ′−−→ P ′

πQ

� �πP ′
MY,ȳ −−→ MX,x̄ .
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(iii) The natural homomorphism

α′ : Coker(Qgp → P ′gp
)⊗Z OX,x̄ → Ω1

X/Y,x̄(log(MX/MY ))

is an isomorphism. Moreover, there are t1, . . . , tr ∈ P ′ such that a subgroup generated by
t1, . . . , tr in Coker(Qgp → P ′gp

) is a free group of rank r and its index in Coker(Qgp →
P ′gp

) is invertible in OX,x̄ . In particular,

d log(πP ′(t1)), . . . , d log(πP ′(tr ))

form a free basis of Ω1
X/Y,x̄(log(MX/MY )).

Considering the commutative diagram

Q
∼−−→ M̄Y,ȳ

∼←−− Q

f ′
� h̄x

� �f
P ′ −−→ M̄X,x̄

∼←−− P ,

we have a surjective homomorphism λ : P ′ → P with λ ·f ′ = f . Thus, we obtain the natural
surjective homomorphism

β : Coker(Qgp → P ′gp
)⊗Z OX,x̄ → Coker(Qgp→ P gp)⊗Z OX,x̄ .

Hence we have the following commutative diagram:

Coker(Qgp → P ′gp
)⊗Z OX,x̄

∼
α′

��

β

��

Ω1
X/Y,x̄(log(MX/MY ))

Coker(Qgp → P gp)⊗Z OX,x̄ .

α

�������������������

In order to see the claim, it is sufficient to see that γ = β · α′−1 · α is an automorphism on
Coker(Qgp → P gp)⊗Z OX,x̄ , because (β ·α′−1

) · (α ·γ−1) = id. Here we set πP ′(ti ) = piui
(pi ∈ P , ui ∈ O×X,x̄) for i = 1, . . . , r . Let us consider the natural surjective homomorphism

θ : Ω1
X/Y,x̄(log(MX/MY ))⊗Z κ(x̄)→

Coker(M̄gp
Y,ȳ → M̄

gp
X,x̄)⊗Z κ(x̄) 	 Coker(Qgp → P gp)⊗Z κ(x̄)

given by d log(a) �→ a ⊗ 1 as in [5, (3.13)]. This is nothing more than (β · α′−1
) ⊗ κ(x̄).

Indeed, we see that 

(β · α′−1

)(d log(πP ′(ti))) = β(ti) = pi ,
θ(d log(πP ′(ti ))) = ti = pi mod O×X,x̄ .

On the other hand, we have the natural map

α ⊗ κ(x̄) : Coker(Qgp→ P gp)⊗Z κ(x̄)→ Ω1
X/Y,x̄(log(MX/MY ))⊗Z κ(x̄)

given by a ⊗ 1 �→ d log(a), which is a section of θ . Therefore, γ ⊗ κ(x̄) = id. Thus, by
Nakayama’s lemma, γ is surjective, so that γ is an isomorphism by [7, Theorem 2.4].
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Set X′ = Y ×Spec(Z[Q]) Spec(Z[P ]). Let ψ : X′ → Spec(Z[P ]) be the canonical
morphism and MP the canonical log structure on Spec(Z[P ]). Set MX′ = ψ∗(MP ). Let o
the origin of Spec(Z[P ]) and x ′ = (y, o) ∈ X′. Then, MX′,x̄ ′ = O×

X′,x̄ ′ × P . Here, Ω1
X′/Y,x̄ ′

is generated by {d(1⊗ x)}x∈Z[P ]ō . Thus, there is a natural surjective homomorphism

Coker(Qgp → P gp)⊗Z OX′,x̄ ′ → Ω1
X′/Y,x̄ ′(log(MX′/MY )) .

Therefore, we have a surjective homomorphism

Coker(Qgp→ P gp)⊗Z OX,x̄ → g∗(Ω1
X′/Y,x̄ ′(log(MX′/MY ))) .

Thus, by the claim,

g∗(Ω1
X′/Y,x̄ ′(log(MX′/MY )))→ Ω1

X/Y,x̄ (log(MX/MY ))

is injective and g∗(Ω1
X′/Y,x̄ ′(log(MX′/MY ))) is a direct summand of

Ω1
X/Y,x̄(log(MX/MY )) .

Therefore, by [5, Proposition (3.12)], g is a smooth log morphism. Moreover, note that
g∗(MX′) = MX. Thus, g is smooth in the classical sense. �
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