TOPOLOGICAL METHOD FOR TAUBERIAN
THEOREM.»*®

By
Masanori Fukamiya.

1. Introduction. The present paper deals with some algebraic-topological
methods in the theory of Fourier analysis, especially with the sb-called
“Tauberian Theorems” of N. Wiener . Our point of stand is that of the
theory of normed rings, recently developped » by I. Gelfand, A. Kolmogoroff,
D. Raikov, M.-S. Krein and others, where the Fourier transformations are
considered as the ring-isomorphic representants of original functions. The
topological commutative groups are taken as the field of our analysis; it is
rather inevitable to reconsider  the Pontrjagin topology of character grou-
Ps 9.

The author is grateful to Prof. S, Izumi, Prof. K. Yosida for their kind
criticisms and encouragements, to which the present paper owes very much.

2. The Ring L. Let G be a commutative topological group, locally
bicompact or separable. There exists the (unique up to the constant factor)

_invariaht Lebesgue measure” m(A) on G, which has the following pro-
perties:

(a) The outer measure m(A) is defined for all subsets ACG, and 0<
w(A)=+oo;

*)Received Oct. Hth, 1942.
*x) Read before the Annual Meeting of the Math.-Phys. Soc. of Japan. July, 1942,
1) N.Wiener. Tauberian Theosrems, Anmals.of Math.,, 33 (1982); The Fourier
Integral and certain of its Applications, Cambridge, 1933; especially. Chap. II.
N. Wiener-R.E.A.C. Paley, Fourier Transiorms in the Complex Domain, 1934.
2) L Gelfand, Normierte Ringe, Recueil Math. de Moscou, 9(51) (1941);
I. Gelfand-G. Silov, Uber verschiedene Methoden der Einfuhrung der Topo-
logie in die Menge der Maximalen Ideale eines normierten Ringes, ibidem,.
1. Gelfand, Uber absolut konvergente trigonometrische Reihen und Integrale,
ibidem;
1. Gelfand-A. Kolmogoroff, On rings of continuous functions on topological
srace, C.R.URSS, 23(1939). : -
3) L.Pontriagin, Topological Groups, Princeton, 1939; especially; Chapt. V.
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(b) If ACS A., then m( :)<3Im(A,) (the sum being finite or enumerable);

(c) For the empty set . , m(A)=0.

Following Caratheodory’s .definition of the measurability and the mea-
sure, the latter being denoted by m(A);

(d) All open sets O are measurable and m(0)>0; all bicompact (closed)
sets C are,of finite measure;

(e) m(A)=inf m(B), where B are open sets covering A;

(f) The measure is invariant: m(A+g)=m(4) for all 4 and for all g-G;

(g) The measure is symmetric: m(—A)=m(A4) for all A;

(h) The measure is continuous with respect to translations, that is,
m(A+g) is a continuous function on G;

(i) There exit the sets E,,n=12,--, each of finite measure and G=3E,.

It is possible to define for complex valued functions on G (i) a notion of
measurability, (ii) a notion of summability, (iii) an integral f (:r(g)dg,' all the

formal properties of these notions hold good as in the usual Lebesgue theory
of integration on the real axis. '

The set L, of all summable complex-valued functions on G forms a
commutative normed ring, defined by Mazur and Gelfand®», where we und-
erstand the following: _

(1) The addition is the usual. function-addition: x+y(g) =x(g)+y(2);

(2) The product of two elements z, y is the “convolution product (Falt-
ung)’™

x oy(g)=f(, 1(g—h)y(h) dh=y > 2(.

where the integral exists for almost all g in virtue of Fubini’s theorem;
(3) The norm is defined and denoted by

@l =/ |zl dz

Generally, two cases are possible: (i) Every point g:G has a positive
measure, in which case the group is discrete, and L, has an unit element e :

4> A.Haar, Der Massbegriif in derTheorie der kontinuierlichen Gruppen, Annals
of Math., 34(1933),

J.von Neumanu, Zum Haarschen Mass in Topologischen Gruppen, Comp. Math.,.
1(1934);

A. Weil, L'intégrationj dans les groupes to.po‘.ogique et ses applications. Actu-
alité 863, Paris. 194(.



s

TAUBERIAN THEOREM 79

e(g)=1 or 0 according as g=0 or not: (ii) Every point has the measure 0,in
which case L, has not the unit, but by formally adjoining the unit element e,
we may consider the extended ring L in stead of L,.

In L, the generic element is of the form z=ae+1(g) with the norm ||z |
=[a|+ |2 (g7, where a is any complex number and z (g) is any element
of L. ’

The following considerations are carried out for the ring L, but they
remain valid wtih corresponding modifications also in the case (i), when the
group G is discrete and L, has an unit element .

3. The Riemann-Lebesgue lemma. We consider 'the maximal ideals of L.
Let M, be any maximal ideal of L. The number, into which the generic
element z passes under the homomorphism L-L/M, we shall denote by
(z,M,). The set of all maximal ideals of L will be denoted by M.

The maximal ideals of L are closely connected with the continuous
characters of G; in fact, I. Gelfand and D. Raikov® proved the following

Therem 1. Every maximal ideal M=+ L,, induces certain continuous cha-
racter of G, i.e.

(a(g+ ). M)
x(),M)
and conversely, every continuous (or even measurable) character X( 2) induces

, 2(g) being any element of L;;

¢} X(h)=

certain maximal ideal of L, ie.
2 (z,M) = (ae+ x(2), M)=a+f ) 2(@X(g) dg.

(1) and (2) are involutery; the correspondente between the maximal
ideals, + L,, and the continucus characters is one-to-one. »

In what follows, we shall denote by X the charcter group, in the sence
of Pontrjagin, hence X is also a commutative group, ‘ locally bicompact or
separable. For every bicompact set G, and for every &>0 every subset
U=[X/X(F)—1<¢&J constitute the neighborhood system [I of the unit element

5) D.Raikov, Positive definite funetion: on commutative groups with an invariant
measure, C.R.URSS,, 28(1940), pp. 7-11.

D.Raikov, Positive definite functions on diecrete commutative groups, C.R.URSS,,
27 (1940), pp. 324—328.

8) I.Gelfand-D. Raikov, On the theory of characters of commutative 'topological
groups, C.R.URSS 28(1940;

I. Gelfand, Zur Theorie der Charactere der Abe'schen topologischen Gruppen.
Recueil math. de Moscou, 9¢51)(1941>.
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in X.

By Theorem 1, the set M—(L,) is identical with the set X, hence a group.
However, we may define the weak topology on M—(L,)?, in teams of L, and
we prove that the so defined topological space M—(L,) is homeomorphic to X.
At first, we prove

Lemma 1. (Generalistion of Riemann-Lebesgue lemma) If 1(g)sL,, then

im [ 2(9)X(g)dg=0,
X>Xx)d @ )

where the sign lim are taken in the sense that, for every &>0, there exists
X>(X)

a bicompact set FCK, such that
i f X(@X(g dg \<¢&, for all X&F.
@ |

Proof. we have

f | (gt HX(@dg=X(h) f 1(@X(g)dg.
and ‘ ) o

X (1 Hf 29X (g), dg | gf [ 2(g+ ) —(g) | dg
G G

and, for appropriately chosen neighborhoed V (with bicompact V) of the unit
element of G,

f | 4(g+h)—2(g) | dg<e*, for all heV,
(&

hence if we put H:I:X/j: 2(@X(q) dg[ge], then

G
[X(h)—1|<¢& for all XeH, for all AV,
that is,

H:[x/] X(V)—1| <e}
and, since the right-hand side has bicompact closure, this proves the lemma.

In the course of the above proof, we have

Lemma 2. (Raikov)® Every bicompact set F of characters forms the

7) 1, Gelfand-G.. Silov, loc. cit,;
A. Tychonoff, Uber einen Funktionenraum, Math. Ann, 111(1935);
8. Kakutani, Weak Torology, Bicompact set and the Prinziple of Duality.
Proc. Imp. Acad. Japan, 16(1940).
8) D.Raikov, Positive definite, functions on commutative group with an invariant
measure, C.R.URSS, 23(1940).
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set of equi-uniformly continuous characters, that is, for every &3>0, there
exists a neighborhood V(with bicompact closure) of the unit element of G,
such that

Sug [X (g+h)—X(g)| <& for all heV, for all XeF.

In what follows, we shall use the space X instead of X.
The space X is the bicompact Hausdorff space obtained by adjommg an
ideal point, (Xw), to X, and by defining its system of neighborhoods as the

totality of sets [X ~U], where U denotes arbitrary neighborhood (with bicom-

pact closure) of X=0. Those continuous functions which have the proper-
ties indicated in Lemma 1 can be continuously extended over X by defining
the value at (X..) to be equal to 0, so we have

Lemma 3. Every function f x(g) X(g) dg, with 1 (g)¢L,, is continuous
"

over X.

Proof. Evident.

Now, we can prove the following Theorem 2, another -proof of which
may be obtained by use of Theorem 3.

Theorem 2. M and X are homomorphic.

Proof. As mdlcated in Theorem 1,(1) and (2), M—( L;) and X correspond
in an one-to-one manner. We make to correspond the point (X..) to the point
(L)). Now this correspondence is one-to-one between M and X. Since both M
and X are bicompact H-space, it is sufficient to prove that the mapping X—
M i,s—continuous and this is already proved implicitly in Lemma 3, and—_we
have our theorem. :

4. Lemmas on the Fourier mteg ral. - Many Russian authors » have
recently treated the Fourier analysis on G. The Bochner’s theorem, the

9) D. Raikov, loe. cit.;

A, Powzner, Ueber positive Funkhonal n auf einer Abelschen Gruppe, C.R.
URSS, 28(19405;

M, Krein, On a special ring of functions, C.R.URSS, 29(1940);

M. Krein. A ring of functions on a topological group, ibidem.;

M. Krein, .On almost periodic functiops on a topological group, ibidem,
50°1941); ’

M. Krein, On pnsi;nive functionals on aimost periedic functions, ibidem;

M. Krein, Sur une généralisation du théoréme de Plancherel au cas des

imégrales de Fourier sur les groupes topologiques commutatifs. ibidem.
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Parceval's theorem and the Plancherel’s theorem were proved, which we
use.

Lemma 4. For every neighborhood W, W, W,W,, of the unit element
of X , there exists a function #»(X) satsfying the conditions: -

() u(X)=0, for XeW,; =1, for X:W,;

(i) 0=u(X)=<1 for all XeX;

(i) - w(X) = f U(®X(g) dg where U(g):L,.
J o ¥

Proof. In order to construct x(X), it is sufficient to take a neighborhood
V. of the unit element such that W,—V,—V,(CW, and to put

u(X) =y, we(X) = "*’1'"** P (X=X )P, (X))dX,,
m(Vy J . .

where V,=W,—V;, and ¢ (X), ?v,(X) denote the characteristic function of
V,, V., respectively.

Now, (i) is evident. In order to see (ii), we notice that ®,,(x), ®r.(X) is
the functions of class L, on X, whence the Fourier integral U(g) of #(X) is
the function of L, on G by Parseval’s relation, and we have, by Plancherel’s
theorem,

() = f Ulg)X(g) dg

under the appropriate normalization of the meisute on X.

Lemma 5. For every X,¢X, and for every pair of neighborhood W', W.',
W,/ 2oW,/, of X,, there exists the function «(X)=uw,"w. (X,Xp) satlsfymg the
conditions (i), (ii) in Lemma 4, and u=u(X)eL.

Proof, Case (a), when X,=(X.), we put W,=X—W’,=X—-W’,, and apply
Lemma 4 for X =0, then #=1—uw,,m, (X) is the required one.

Case(b), when XU=(6), Lemma 4.

Case (c), when X,=+(0), (X..). If we write W\'=Wi+X,, W,'=W,+X,,
and put u,, =u,(X)=u(X+X,), where x is the function in Lemma 4, then
u,, is the required one. ,

" Lemma 6. Let 0,C0.C0; ... be the sequence of bicompact open sets.
on X such that

(1) limim(On'i' X)@Ou)) for all XeX 0.
1->e0 mOn .

10) Y.Kawada, Wei! / Mass 7 7 Abel = V47, 25K -EEUGEE, 238 (1942).
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and let us put
= 1 | v :
2 E.(g)= mo,. | f . X (g dx E

If K(g) is any function of L;, then,' for any given number 8>0, we can find
an integer », such that

() f ' K(g)—f K(g—h)F,(h). dh l dg<e¢, for all n>m,.
“ G
Proof. It is earsily seen, by Plancherel’s theorem, that
(C)) () F.(0)=m(0O,), (ii)f F.(g) dg=1,
A
and (iii)
2 1 | eV, * 1. -
%) fﬁll—xl(g)i MmO, ‘f”n X(gdx| dg=- 5 m <(Oq,+x)\do,,),

Hence, by the assumption and the continuity of m (0,= (0,+X)) (with ‘
respect to X), we have: for any ¢>0, and for any given neighborhood. V of
g=0, there exists an integer »n, and a neighborhood V,CV such that

(6) f F.(g) dg<é, for all n>un,.
1y .

By (4) and (6), following the usual device in the Lebesgue theory of integ-
ration, we have (3).
The Fourier integral of F,(g) are

1
m,f_‘. Po, (XX )P0, (X)) dX,,

where #0(X) denotes the characteristic function of the set 0. This function
vanishes except for Xe O,+0,). '
5. Division in abstract rings. Let R be an abstract ring possessing
the unit element ¢. A subset 7 of R is called an ideal if x, yéland z, 2 € R
vimply a+y, zaz’ ¢ I. The -zero-element set (0) and R are ideals, the other
ideals are ‘called proper. A ring, with the unit, having no proper ideal is
called simple.
If an ideal M is not contained in any other proper ideal, we call M a
maximal ideal. The residue class ring R/M by the maxmal ideal M is simple,
~we shall denote it by Ry, and the element of Ry, into which the generic
element 1 passes under the homomorphism R— R/M, will be denoted by «(M).
The ring R is represented ring-homomorphically' by the function of M; for
the isomorphism. of this representation it is necessary and sufficient that the
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intersection of all maximal ideals is the zero ideal only, in\ which case we
call R semi-simple.

A ring, not simple, has at least a maximal ideal. Let M be the totality
of all maximal ideals of R, whose generic element will be denoted by M,
N,..... and whose generic subset by A,B,N,0. ...

A maximal ideal M is defined to be a points of contact of A !, when
MDN/E\A N; the set of all points of contact to A, is called the closure of A, and
denoted by A, then we have

Lemma 7. Let R be an abstract ring possessing the unit element, and
let M be the totality of its maximal ideals. Then the closure operation
defined above satisfies the conditions:

(1) ACA, () A=A, 3) AVB=AVEB, 4 (M=(M)
and with this topology M is a bicompact T,-space.

Proof. We shall prove the relation AVB7-AV B and the bicompactness
of M. Let MgAVE and M¢ AVB. Then we have

(i) MODQN/B\N’ and

(ii) For some z, 2 ¢ R, z: M, ZS/AN; 2 M, z'é/B\N.
As zRZRC AN /\BNCMO, and M,+ RZR=R, we have zs zR=zM,+2RzZ R =M,
A

which  contradicts z:M,, and therefore AV BCAV B.
Thus M is a T,-space.

To prove the bicompactness, let {F,,‘» be any family of closed subsets
of M. Form the ideal I,= A N; and let I be the ideal which consists of all
Fa

possible finite sums of elements from each I,; moreover, let us suppose that
the intersection of any finite number of these closed sets K, is not empty.
Now, [ is contained in a maximal ideal M, For,»if I=R, a finite set of elem-

would have 31, ? e, which contradicts the assumption that AF, is empty.

It is easy to see that MK, for all a, which shows, by the definition,
the bicompactness of M.

11) H.Stone, App}ication of the theory of Boolean rings to general topology,
Trans. Math. Soc., 41(1937);
I. Geifand-A. Kolmogoroff, loc. cit.;
H. Wallftan, Lattices and topological spaces, Annals of Math., 39(1938).
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Now we prove the following simple lemma, due to I. Segal .

Lemma 8. Let R be an abstract ring possessing the unit element, and
semi-simple. Let a mapping of R into R x—x" exist, such that, for any MeM,
- and for any x,%,,......,x,eR, 3x; ;i eM implies A;’,;EM for all z/':1,2, ...... .

Let I be an ideal, and let N be the totality of MM, such that DI, and
let 0 be any open sét containiug N. Then we have

IDAN.
NeQ

Proof. For any x<R, the sets[ Mx(M )=0] form"the basis for closed sets,
i,e, any closed set may be represented by taking finite sums and infinite
(enumerable or not) products of these closed sets, and open sets[ J[lx( M ):i:O]

cnntaining }/, form the system of neighborhoods of J/,.
Since N is closed, thus bicompact, we can select a finite number of 7,
M., ... , M,N and a finite number of elements xy,, Xi,....., %R such that

if y=Swpnar, then y(N)=0 for all NeM—0Q), and y(N)=0 for all NeQ,, where

0, is any open set 0,cCQ and NCOQ,. Now, M—0Q, is closed and does not
contain N; hence, for each M¢eM—0; an element xy-] exists and satisfies

1x(N)=0, and 2y(N)=0 for all NeN.
As‘ the set [N [ xxu(N) ;tO-‘ is open, and M—Q),, is bicompact, we can find a

finite number of N,,N.  N,<M—0,, such that if y'=S xy,x¥, then y'(N)+(

i=1
for all NsM—0,.

Let 22AN. As ~L++ is not contained in any maximal ideal 1/, it holds
~NeQ

that e=u(y-+y)v for some u, v:R, and that z( M) = Czuvu+zuy'v)(M) =zuy'v(M)
for all M/eM. By the semi-simplicity of R, we have z=zuv'v ¢ I, which proves
the lemma.

6. The topology of character groups of locally bicompact commuta-
tive groups. As an immediate consequence of the preceeding considerations,
we obtain the formal algebraic deduction of the Pontrj:clgin topologe of
the character group, which is equivalent to the measure-using deduction
due to A. Weil in our commutative case.

12) 1.E.Sega!, ‘The group-ring of a locally compact group I,Proc. Nat. Acad.
Sei., 2771941).
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Instroduce the topology in M by the Stone’s method of the preceeding
section, then M becomes a bicompact T-space. We prove

Theo’rel»n 3. M and X are homeomorphic; for any 2¢L, 2( M) is continu-
ous over M. B - _

Proof. M and X are both bicompact T,-space, and X is a H-space. The
function of L is c;ntinuous over X by Lemma.-3. The—mapping defined in
Theorem 2 is one-to-one. We shall prove that this mapping is continuous,
thence the homeomorphism of this correspondence automatically follows by
a well-known theorem in the set theory .

For this, it is sufficient to see whether there exists an open set U/ an M
for arbitraryly chosen néighborhood O in X, such that UCO and this could
be seen easily from our Lemma 4 and 5, and by the definition of open gets
on M. Therefore, M and X are hom::omorphic, and hence every function ( M)
of L is continnuous on M. ’

7. The gelieral tauberian theorem. From Theorem 3 and Lemma 8 foll-
ows '

Lemma 9. Let K,(g) and K,(g) belong to L; on G, and let F, be the set

[X/k;(‘X)i f K,(g)%(g)dgso], and let us suppose that k,(X)= f K(9X(g)dg
@ . . «

vanishes an open set containing F| on X. Then k.(X)/ki(X) is the Fourier
transform of a function of L,.

Note. when &, = f K,(9)X(g)dg+0 except for X=X, We can take the set
«

(X..) and an arbitrary open neighborhood O of (X..) for the above F, and the
open neighborhood of F,. If K,(g) is any function of L, such that k,(x)=0
for all X0, then k.(X)/k(X) is the Fourier transform of some function of L,.
Now, we prove
Theorem 4. Let K;(g) belong to L, on G, and let us suppose that

k.(X):f K\(@)X(g) dg+0, except for X=X, on X.’

Then the principal (closed) ideal generated by K;, L(K,), i$ identical with L,.

Proof. By Lemma 8 or 9 and the above remark it is only to prove that
any function K(g) of L, can be arbitrarily approximated in the norm by the
functions of L, whose Fourier transforms vanish over open neighhorhood of
X=X, for, L (K,)CCL, and all functions of the type stated form the ideal of

13)  Alex . ndrofi =Hopf, Topolozie, p. 95, Satz TIL.
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L,, and is contained in L(K,). By Lemma 6, we have our theorem.
Theorem 5. If the closed ideal I is contained only in the maximal ideal,
L,, then I=1L,.
Theorem 6. Let S be the subset of L,, and let us suppose that for any

X ¢ X, a function K=K,¢S exists for which f Kx(@©X(g) dg+0. Then the
(&

closed ideal generated by 3, is identical with L,.

Theorem 4 and 6 are the general tauberian theorems stated by N.
Wiener. Various types of theorems shall be stated in some analogous way,
but it is omitted here. Theorem 5 states that L, is a primary ideal of L, and
on the primarity of ideals of L in general we shall discuss on another occa-
sion,

Mathematical Institute,
Osaka Imperial University.
July 1942.





