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1. Introduction. The present paper deals with some algebraic-topological

methods in the theory of Fourier analysis, especially with the so-called

"Tauberian Theorems" of N. Wiener :>. Our point of stand is that of the

theory of normed rings, recently developped 2> by I. Gelfand, A. Kolmogoroff,

D. Raikov, M.-S. Krein and others, where the Fourier transformations are

considered as the ring-isomorphic representants of original functions. The

topological commutative groups are taken as the field of our analysis; it is

rather inevitable to reconsider the Pontrjagin topology of character grou-

ps 3>.

The author is grateful to Prof. S, Izumi, Prof. K. Yosida for their kind

criticisms and encouragements, to which the present paper owes very much.

2. The Ring L. Let G be a commutative topological group, locally

bicompact or separable. There exists the (unique up to the constant factor)

invariant Lebesgue measure4* m(Aj on G, which has the following pro-

perties:

(a) The outer measure m(A) is defined for all subsets AcG, and 0<;

*)Received Oct. 5th, 1942.

**) Read before the Annual Meeting of the Math.-Phys. Soc. of Japan. July, 1942.
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I. Gelϊand, Uber absoJut konvergente trigonometrische Reihen und Integrale,
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I. Gelfand-A. Kolmogoroff, On rings of continuous functions on topological

sjace, C.R.URSS, 23(1939).
3) L.Pontriagin, Topological Groups, Princeton, 19 *9; especially; Chapt. V.
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(b) If ACΣAH, then m( ;)^Σm(A») (the sum being finite or enumerable);

Cc) For the empty set /., m(/l)=0.

Following Caratheodory's definition of the measurability and the mea-

sure, the latter being denoted by m(Ά)\

(ά) All open sets O are measurable and m(O)>0; all bicompact (closed)

sets C are.of finite measure;

(e) m(^4) = inf m{.B), where B are open sets covering A;

(f) The measure is invariant: in(_A+g)~nι(A) for all A and for all gG;

(g) The measure is symmetric: m(—A) = rn(A) for all A;

(h) The measure is continuous with respect to translations, that is,

mCA-i-g) is a continuous function on G;

(i) There exit the sets En,n-l,2y- , each of finite measure and G=Σ£,?.

It is possible to define for complex valued functions on G (i) a notion of

measurability,, (ii) a notion of summability, (iii) an integral / x(g)dg; all the
*) G

formal properties of these notions hold good as in the usual Lebesgue theory

of integration on the real axis.

The set L, of all summable complex-valued functions on G forms a

commutative normed ring, defined by Mazur and Gelfand2). where we und-

erstand the following:

(1) The addition is the usual, function-addition: x+y(g)-x(g)-l-y(g);

(2) The product of two elements A, y is the "convolution product (Fait-

ung)":

x cy(g)= I z(g—h)y(h) dh=y o χ(g),
J G

where the integral exists for almost all g in virtue of Fubini's theorem;

(3) The norm is defined and denoted by

\"Λg)\dg.

Generally, two cases are possible: (i) Every point gsG has a positive

measure, in which case the group is discrete, and Lι has an unit element e :

4) A.Haar, Der Massbegriff in deτ<Theorie tier konthmierlic'hen Gruppen, Annals

of Math., 34(1^933);

J.von Neumann, Zum Haarschen MBSS in Topologischen Gruppen, Comp. Math.,

1(1934);

A. Weil, I/integration/ dans les groupes tόpoiogiqαe et ses applications.. Actu-

alite 863, Paris. 1940.
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e(g) — l or 0 according as g=Q or not: (ii) Every point has the measure 0,in

which case LΛ has not the unit, but by formally adjoining the unit element e,

we may consider the extended ring L in stead of Lj.

In L, the generic element is of the form z-ae+x(g) with the norm || z \\

= | a \ + I] x (g)% where a is any complex number and x (g) is any element

Of L:

The following considerations are carried out for the ring L, but they

remain valid wtih corresponding modifications also in the case (i), when the

group G is discrete and L, has an unit element5).

3. The Rίemann-Lefoesgue lemma. We consider the maximal ideals of L.

Let Mo be any maximal ideal of L. The number, into which the generic

element z passes under the homomorphism L-^>LIM, we shall denote by

O,Mo). The set of all maximal ideals of L will be denoted by M.

The maximal ideals of L are closely connected with the continuous

characters of G; in fact, I. Gelfand and D. Raikov6> proved the following

Therem 1. Every maximal ideal M Φ L 1 ? induces certain continuous cha-

racter of G, i.e.

(1) χ ( A ) = ί Λ ^ ^ ^ . > A φ being any element of Lx;

and conversely, every continuous (or even measurable) character X(g) induces

certain maximal ideal of L, i.e.

(2) (z,M)-(ae+ x(g), M)=a+f x(gjXCg) dg.

(1) and (2) are involutery; the correspondence between the maximal

ideals, =j= L\, and φ e continuous characters is one-to-one.

In what follows, we shall denote by X the charcter group, in the sence

of Pontrjagin, hence X is also a commutative group, locally bicompact or

separable. For every bicompact set FCZG, and for every £>0 every subset

constitute the neighborhood system IT of the unit element

5) D.Raikov, Positive definite function^ on commutative groups with an invariant

measure, C.R.TJRSS., 28(1940), pp. 7-Π.

ΊD.Raikov, Positive definite functions on discrete commutative SΊΌUΌS, C.R.UR^S.,

27 (1940), pp. 324-328.

β) I.Gelfand-D. Raikov, On the theory of character? of commutative topologίcal

groups, C.R.URSS 28(194(0;

I. Gelfand, Zur Theorie der -Characters der Abe'ichen topologischen Gruppen.
Recneil math, de Moscou, 9(51)(194]).
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in X

By Theorem 1, the set M— (Li) is identical with the set X, hence a group.

However, we may define the weak topology on M—(Xi)7\ in teams of L, and

we prove that the so defined topological space M—(Lj) is homeomorphic to X

At first, we prove

Lemma 1. (Generalistion of Riemann-Lebesgue lemma) If %(g)sLγ, then

lim f χ(g)X(g)dg=0,

where the sign lim are taken in the sense that, for every £>0, there exists

a bicompact set FdK, such that

ί X(g)X(g) dg \<β, for all XεF
J a I

Proof, we have

f χ(g)X(gχdg\sf \χ(g+h)-x(g)\ dg,
J G J G

and

and, for appropriately chosen neighborhood F(with bicompact V) of the unit

element of G,

J I x(g+ h)-x(g) I dg<ε*, for all h*V,

hence if we put H=\χl ί x(g)X(q) dg[ ^& I, then

\X(h}-l I <ε for all X*H, for all faV,
that is.

Ec.\x/:\x(V)-i\<el

and, since the right-hand side has bicompact closure, this proves the lemma.

In the course of the above proof, we have

Lemma 2. (Raikov) 8) Every bicompact set F of characters forms the

7) I, Gelfand-G. Silov, loc. cit.;

- A. Tychonoff, Uber einen Funktionenraum, Math; Ann, 111(1935);

S. Kakuίani, Weak Topology, Bicompact set and the Principle of Duality,

Proc. Imp. Acad. Japan, 16(1940).

8) D.Kaikov, Positive definite, function^ on commutative group with an invariant

measure, C.R.UKSS, 28(1940).
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set of equi-uniformly continuous characters, that is, for every £>0, there

exists a neighborhood F(with bicompact closure) of the unit element of Gr

such that

Sup IX (g+h)-X(g) I <β, for all heV, for all XtF.

In what follows, we shall use the space X instead of X.

The space X is the bicompact Hausdorff space obtained by adjoining an

ideal point, (Xo), to X, and by defining its system of neighborhoods as the

totality of sets X— JJ , where U denotes arbitrary neighborhood (with bicom-

pact closure) of X=0. Those continuous functions which have the proper-

ties indicated in Lemma 1 can be continuously extended over X by defining

the value at (λ^) to be equalto 0, so we have

Lemma 3. Every function I χ{g) X(g) dg, with x (g)eLι, is continuous
J <r

over X.

Proof. Evident.

Now, we can prove the following Theorem 2, another proof of which

may be obtained by use of Theorem 3.

Theorem 2. M and X are homomorphic.

Proof. As indicated in Theorem 1,(1) and (2), M—(Lj) and X correspond

in an one-to-one manner. We make to correspond the point (X^) to the point

(Li). Now this correspondence is one-to-one between M and X Since both 31

and X are bicompact H-space, it is sufficient to prove that the mapping X->

M ^ continuous, and this is already proved implicitly in Lemma 3, and we

have our theorem.

4. Lemmas on the Fourier integral. Many Russian authors <J> have

recently treated the Fourier analysis on G. The Bochner's theorem, the

9) D. Raikov, Joe. cit.;

A, Powzner, TJeber positive FunktionaJv n aυf elner Abelschen Gruppe, O.K.

UKSS, 28(1940);

M, Krein, On a special ring of functions, C.R.URSS, 29(1940);

M. Krein* A ring of functions on ft topologieal group, ibidem.;

M. Krein, .On almost periodic functions on a topological group, ibidem,

SO'1941);

M. Krein, On positive functional on almost periodic function^, ibidem;

M. Krein, Sur une generalisation du theoreme de Plane here! au cas des

inre^rales de Fourier sur ίes groupes topologiques commutatiίs. ibidem.
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ParcevaΓs theorem and the PlanchereΓs theorem were proved, which we

use.

Lemma 4. For every neighborhood W^W^W^W,, of the unit element

of X , there exists a function u(X) satsfying the conditions:

(i) «QO=0, for XϊWii =1, for XtWύ

(ii) Ogw(%)^l for all XfX;

(iii) «(%)= Γ U(g)X(g) dg where U(g)tt,.
J G

Proof. In order to construct u(X), it is sufficient to take a neighborhood

Vι of the unit element such that Wz—VΊ—ViCZWi and to put

= u^Wi(X) = ^(γ-y ] Ψv,{X-X^

where \\λ — W2—Vι, and ΨvτOQ, cPv2(X) denote the characteristic function of

V]f V* respectively.

Now, (i) is evident. In order to see (ii), we notice that Ψvλ(X),Ψv«(X) is

the functions of class Lz on X, whence the Fourier integral U(g) of u(X) is

the function of LΎ on G by ParsevaΓs relation, and we have, by PlanchereΓs

theorem,

«(*)= f U(g)X(g) dg
J G

under the appropriate normalization of the meisuire on X

Lewima 5. For every X0€X, and for every pair of neighborhood W{, W-J,
Wi^W./, of Xo, there exists the function u(X) = uWl',w.<XXi) satisfying the
conditions (i), (ii) in Lemma 4, and u — u(X.)εL.

Proof. Case (a), when Xϋ^(Xoo), we put Wι = X—W'^X-WΊ, and apply

Lemma 4 for %~0, then u = l—uwuw2, (%) is the required one.

Case(b), when %0 = (0), Lemma 4.

Case (c), when %0=^(0), (%«). If we write W\'= W\+'7Co, W^W.Λ-X^

and put tiXti-uXQ(X) = u(X+X0), where u is the function in Lemma 4, then

uXi) is the required one.

Lemma 6. Let OiClO^cO^Z be the sequence of bicompact open sets

on X such that

(1) Um-^mWn+XlθOa), for all χsX">\

10) Y.Kawada, WeiJ / Mass T Λ Abel »-^>f ^y^Hβlh l t f^βSί . >238
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and let us put

1 Γ _ 3

λ C )̂ dX i .

If K(g) is any function of L{, then, for any given number <?>0, we can find

an integer nt) such that

(3) / ! K(g)- I K(g-h)F7t(h). dh dg<S; for all n>n0

Proof. It is earsily seen, by Plancherel's theorem, that

C4) (i)

and (iii)

(5)

Hence, by the assumption and the continuity of m ( O « θ ( O w + # ) ) Cwith

respect to %), we have: for any £>0, and for any given neighborhood. V of

g-Q, there exists an integer n0 and a neighborhood VidV such that

(6) / Fn(g) dg<£, for all

By (4) and (6), following the usual device in the Lebesgue theory of integ-

ration, we have (3).

The Fourier integral of Fn(g) are

where φo(X) denotes the characteristic function of the set O. This function

vanishes except for Xε^On-\-On).

5. Division in abstract rings. Let R be an abstract ring possessing

the unit element e. A subset / of R is called an ideal if x, y ε I and z, z' ε R

imply xΛ-y, zxz' e I. The zero-element set (0) and R are ideals, the other

ideals are called proper. A ring, with the unit, having no proper ideal is

called simple.

If an ideal M is not contained in any other proper ideal, we call M a

maximal ideal. The residue class ring R/M by the maxmal ideal M is simple,

we shall denote it by RM, and the element of R3ί, into which the generic

element x passes under the homomorphism R-+R/M, will be denoted by Λ(M).

The ring R is represented ring-homomorphically by the function of M; for

the isomorphism of this representation it is necessary and sufficient that the
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intersection of all maximal ideals is the zero ideal only, in which case we

call R semi-simple.

A ring, not simple, has at least a maximal ideal. Let M be the totality

of all maximal ideals of R, whose generic element will be denoted by M,

N, , and whose generic subset by A,B,N,0

A maximal ideal M is defined to be a points of contact of A n \ when

MDΛ N; the set of all points of contact to A, is called the closure of A, and

denoted by A, then we have

Lemma 7. Let R be an abstract ring possessing the unit element, and

let M be the totality of its maximal ideals. Then the closure operation

defined above satisfies the conditions:

(1) ACA, (2) A=A, (3) AVB = I v i Γ (4) (M)-CM)
and with this topology I is a bicompact TΓspace.

Proof, We shall prove the relation AVBCΪvΉ and the bicompactness

of M. Let MQ^AVB and M0-?AV-B. Then we have
(i) Mor^AN/\N, and

A B

(ii) For some z, z' ε R, & Mo, zs/\N; & Mo, z'*/\N.
A B

As ZRZ'R(Z/\NANC.MO, and M0+Rz'R=R, we have zs zR=zM0+zRz'RzM0.
A B ^ ^

which contradicts zsMQt and therefore AVBCAVB

Thus M is a T^space.

To prove the bicompactness, let JF* be any family of closed subsets

of M Form the ideal 7Λ - Λ N, and let / be the ideal which consists of all

possible finite sums of elements from each IΛ; moreover, let us suppose that

the intersection of any finite number of these closed sets F α is not empty.

Now, / is contained in a maximal ideal Mfl. For, if 7-i?, a finite set of elem-

ents x ,i~l, 2, n , xt IΛfJ would exist such that Xxi—e, and consequently we

would have Σ/α. ? e, which contradicts the assumption that ΛFΛ. is empty.

It is easy to see that M0?F« for all a, which shows, by the definition,

the bicompactness of M.

11) H.Stone, Application of the theory of Boolean rings to general topology,

Trans. Math. Soc, 41(1937;;;

I. Gelfand-A Kolπiogoroff, loc. cit.;

H. Walllίϊan, Lattices and topological spaces, Annals of Math., 39(1938).
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Now we prove the following simple lemma, due to I. Segal I2>.

Lemma 8. Let R be an abstract ring possessing the unit element, and

semi-simple. Let a mapping of R into R χ-+χn exist, such that, for any M?M,

and for any χ},χ.,, ,xneR, ΣXL Xι eM implies xLsM for all t=l,2, n.

Let / be an ideal, and let N be the totality of M*M, such that M~DΪ, and

let 0 be any open set contairiiug N Then we have

Proof. For any x?R, the sets M/x(3ΐ)=0 form the basis for closed sets,

i,-e, any closed set may be represented by taking finite sums and infinite

(enumerable or not) products of these closed sets, and open sets jff IΛCΛOΦO

cnntaining Mo form the system of neighborhoods of MQ.

Since N is closed, thus bicompact, we can select a finite number of Mi,

M±, , M,,N and a finite number of elements xMϊ, xM^ , XvjR such that

if y=j,xmxv; then y(Λ/Γ)=0 for all ΛfcM-O, and y(N)±0 for a l l i e d , where

0] is any open set OiCO and NCOi Now, M~Oi is closed and does not

contain N; hence, for each MtUL—Oi an element χM?I exists and satisfies

and Λ.v(iV)=0 for all

As the set] N/XVXV(N)ΦO is open, and M—Oj, is bicompact, we can find a

finite number of N7lN.. MΛ*M—Oi, such that if / = 2ΛΛΓ/Λ> then /(iV)4=o

for all iVίM-Oj.
Let zf./\N. As fl -L / is not contained in any maximal ideal M, it holds

that e = u(y-i-y')v for some M, VSR, and that

for all M^M- By the semi-simplicity of R, we have z — zuy'υ F I, which proves

the lemma.

ί>. The -topology of character groups of locally bicompact commuta-

tive groups. As an immediate consequence of the preceeding considerations,

we obtain the formal algebraic deduction of the Pontrjagin topologe of

the character group, which is equivalent to the measure-using deduction

due to A. Weil in our commutative case.

12) I.E.Segal, The group-ring of a locally compact group I, Proc. Nat. Acad.

Sci., 27:1941).
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Instroduce the topology in M by the Stone's method^of the preceeding

section, then M becomes a bicompact T-space. We prove

Theorem 3. M and X are homeomorphic; for any zsL, z(M) is continu-

ous over M.

Proof. M and X^ are both bicompact TΓspace, and X is a H-space. The

function of L is continuous over X by Lemma 3, The mapping defined in

Theorem 2 is one-to-one. We shall prove that this mapping is continuous,

thence the homeomorphism of this correspondence automatically fol/ows by

a well-known theorem in the set theory 13>.

For this, it is sufficient to see whether there exists an open set U on M

for arbitraryly chosen neighborhood O in X, such that U(Zθ and this could

be seen easily from our Lemma 4 and 5, and by the definition of open sets

on M- Therefore, M arid Xare homeomorphic, and hence every function z{M)

of L is continnuous on M.

7. The general tauberian theorem. From Theorem 3 and Lemma 8 foll-
ows

Lemma 9. Let Kγig) and K^g) belong to L\ on G, and let F{ be the set

= J KιCgyxCg)dg=θ\ and let us suppose that **(*)= ί K2(gyX(g)dg

vanishes an open set containing F, on X. Then kj.(χ)/kι(X) is the Fourier

transform of a function of L{.

Note, when k^ j Kλ{g)Xig)dg^r^ except for %=λΌo, we can take the set

(%oo) and an arbitrary open neighborhood O of (ΛΌ ) for the above Fj and the

open neighborhood of Fx. If K >(g) is any function of Lx such that k^(χ)~0

for all XsO, then k>,(χ)/kι(X) is the Fourier transform of some function of Lλ.

Now, we prove

Theorem 4. Let K}(g) belong to L,γ on G, and let us suppose that

= / Kλ(g)X(g) except for %-%„ on X.

Then the principal (closed) ideal generated by KL, L<-Kj), is identical with Lj.

Proof. By Lemma 8 or 9 and the above remark it is only to prove that

any; function K(g) of Lx can be arbitrarily approximated in the norm by the

functions of Lx whose Fourier transforms vanish over open neighborhood of

% = %co, for, L (K.)CL, and all functions of the type stated form the ideal of

Aΐex.mdn- ff-Hopf, Topoiogic , p. 95, Satz III.
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Lj, and is contained in L(K}). By Lemma 6, we have our theorem.

Theorem 5. If the closed ideal / is contained only in the maximal ideal,

Lu then /=£,,.

Theorem 6. Let 5 be the subset of Lλ, and let us suppose that for any

XsX, a function ίΓ=/fx*Σ exists for which/ Kx(g)X(g) dg^Q. Then the

J fr

closed Meal generated by Σ is identical with Lλ.

Theorem 4 and 6 are the general tauberian theorems stated by N.

Wiener. Various types of theorems shall be stated in some analogous way,

but it is omitted here. Theorem 5 states that L, is a primary ideal of L, and

on the primarity of ideals of L in general we shall discuss on another occa-

sion.
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