NOTES ON FOURIER ANALYSIS (XXXIX):
THEOREMS CONCERNING CESARO SUMMABILITY*®

By
SHIN-1cHI IzZUMI- AND GEN-ICHIRO SUNOUCHI

In this paper it is proved that, if
(1) f @.(u)du = o(t/log ) as t—0,

then the Fourier series of f(t) is summable (C,1) at = x, and if 0<a <1
and

(2) ftq)x(u)du =o(t"*), as t—0,

then the Fourier series of f(£) is summable (C; a) at t=2. These theorems
are known (Wang [7], [8]), but we give two kinds of proof. Each method
is generalized to prove more genéral theorem. We prove that o in (1)
and (2) cannot be replacd by O in these theorems.

§1. Treorem 1. If

(1) ft<p(u)du = o(t/log %), as t—0,
where '
p(u) = p.(u) = {f(z +u) + f(z — u) — 2f(x)}/2,

then the Fourier series of f(t) is summable (C,1) af t=az.

We prove this theorem in two ways, one using Young’s function and
the other using the Fejér kernel, respectively.

Tre ¥irst Proor or THEOREM 1. For a>0,. Young’s function is
defined by (Hobson [2] and Bosanquet [1])

M
Yiw(¥) = f (1 — ¢)® cos tu dt.
6
Then, as is well known, v,,,(u) and its derivative y;,,(u) are bounded
for n=>0 and

(8) maa(n) ~ T2 D cos (u @iy oL )+0<1> (u—>co)

and vy1.4(u) has the behaviour of the demvatlve of the right hand side of
(8) as u—oco. Especially, for 0<a =1,
(4) Traa(u) =O(L0*)  (ureo).

The necessary and sufficient condition that the Fourier series of f(¢)
is summable (C,1) at t==, is that
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(5) o= [Cneup@i=o) (o),

where

by (4). .
Letting 0<r<1/2, we divide the integral (5) into two parts such as

o llmr o
o, = cof va(wu)@(u)du = wf + "’f =1 + I,
2 0 0 llmr

say. Then we have

L= wf,:?z<wu>¢<u>du =o( > f ;%du)
(Lo + 25| [lowlan) = o),

72(u) = O(1w’)  (u—>c0), y(u) = O0(1) (u—0)

Il

and

L= wf”m'yz(wU)?(u)du
0

- [wtyz(w'u)gvl('z,e)]})lw' — mafllwry;(w'u,)¢l(u)du
= ‘TI - J27 '

say, where @,(u)= f Mqz(t)olt. We have
0

Ji = 0(0™*7|@,(1/0")]) = O(w='*r)
and
J, = m?fllm + mﬁfllw.y;(wu)cpl(u)du =K, + K,
0

1w
say, where

K, = o(w2fo”"’0(u/1og %)du) — o(1/log @) = o(1),

o [ )= e )=t

Taking 0<r<1/2, ,=o0(1) and L=J,+0(1)=0(1). Thus we get™ (5),
which is the required.
By this method of proof, we get the following generalization.
TaeoreM 2. If a>0 and
Pult) = 1 f z(1 . ﬁ)“"ga(u)du - 0(1/1ogl)
¢ I'(a)tJ, t t/
then the Fourier series of f(t) is summable (C,a) at t==.
For, putting 8=a >0, the Cesaro mean of the Fourier series of f(t)
of order B is equivalent to (Bosanquet [1])

ol = wf"q),,(t)fl‘j{(wt)dt,
0
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o

where
B0 = (- v 0) o)

as t—oco. Thus we can prove o8=0(1) as the proof of Theorem 1.
TrHE sECOND PROOF OF THEOREM 1. The Cesaro mean of the Fourier
sories of f(t) of the first order is, using the Fejér kernel,

SN Wy AT RS
—_— [/ i S ¥ A e
2z(n-+]) PO g @
smznt/Q
=2 f a1 + o(1)

:%n(‘[o ) (t)sm m/2dt+ o(1)

EL+L+MD
say, where 0<r<1/2. Then we have

1 (4
L= 0 [ Tle@)) = o(1),
and, by the integration by parts,

9 1/n yn" ) sin nt 1 sin® 'nt/2 1
1= 2([" [ oot Luget
=2 -d)t +nqu)%2Jm

1/n

E O A

0

say, where )
() = 20t = [ p(u)du
0
By the hypothesis ®l(t):o(1/log%>, whence
S+ = o(1),

o [ ) ol 1) =t

tlog— Ln

Thus the theorem is proved.

§2. Tueorem 3. In Theorem 1, 0 in (1) cannot be replaced by O.
Proor. It is sufficient to construct a function f(t) such that the
Fourier series is not summable (C,1) at t== and

(6) fo.t?p(u)du = O(t/log%),

Let (¢x) be a sequence of positive numbers and (M), (m;), (ng) be
increasing sequences of integers, which will be determined later. Let us
take a sequence of intervals

(7) IkE(f_,z-l-L) ‘(k=1,2,...)
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which are disjoint mutually. Let f(¢) be an even periodic function such
that

(8) F(t) = (= 1)’“ck[teos Mt + ~]‘17sin MktJ

in I;(k=1,2,...) and f(t)=0 in (0,7)—\/I,. Supposing z=0, p(u)=
@o(u)=f(1) and

.meﬁ=%£

k

1 ..
t cos Myt + —Msm Mg\ dt

< O Cr
T oemy, M,

If we suppose that

(9) mi| My | M, (B =1,2, ),
in order that f is integrable, it is sufficient that
10 .
(10) k=1 1 < e
We have also
ff(t) dt = _7‘}_15 sin Mkt] _1::: " 0,
and then t
ff(u)du = f(u)dn = % tsin Myt
0 1([nk M
for ¢ in I,. Taking
(11) myfn, =0 (k— o),
(6) is satisfied when ‘
(12) ¢ log my/ My, — a = 0.

Tet us now consider the Fourier series of f(¢) and o, be its Cesaro
mean of the first order. Then,

—ff(t)@i’/}duo(i)

_ fq)l(t)sm m’dt _ f ®,(1) sm ﬂt/.ddt +0(1)
0 t nw

— T+ d o+ o(1) =, + o(1),

d. (t) = &(_tz = ;1‘ ‘

(1) = 240 = 2 [ f(u)an
Ty fﬂq)l(t)sin g ifq)n(t)sin nt g,
8 0 t i=1Jy, t

Putting n=M, and dividing the above sum into three parts,

—J—2+ +§1 K + K, + K,

i=k+1

say, where

say. We have
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—1kK:ifSin2Mktdt: i <_1__eos2Mkt dt
(=1 MJ, t 2M, t )

_ Cx 10 (1 -_._ fZ(mnk+7(/mk)Mk cos t
= g(1+ dt
2M, m,c 2M,c 2edIn

= G qog My 0(“”’“) + o(1).

2M, My M?
If we suppose that
(13) n,=mp (k=1,2..),
then log ™ —log m,, whence (— 1)*K,— /2 by (12). Concerning K,
R

k-1 R .
K, = 2(_ 1)t [ & Sm Mt sin Myt ;.
I‘M t
— 2( — )i
[ng
= 2( 1)5 cr’{f(ﬂ/mﬂlmowk Wi)—oi?jdt f(ﬂln‘+1t/'mika+M‘) oS tdt}
i=1

2M n( My~ My g w(Myp+MpDng t

[ Ng+n]my

[eos (M, — M)t + cos(M, + M)tﬁ

- o a5

If we suppose that (M) is convex and
k-1 :

() Z— o, 0 =11y = "

then K,=o0(1). Similarly K,=o0(1), when
- Gilly —
(15) zzﬂ(ﬂfM) = o(1).
Thus o, does not converge when (M), (m;) and (n,) satisfy the conditions
(9), (10), (11), (12), (13), (14) and (15).
Let us define the sequence (M), (my), (n) sa.tlsfymg__, the required
conditions. Firstly, let
M, = 2, ny = 2,y = 2, ¢, = 2°/(2 log 2).
Taking w, such as u;>2n,
M, = p, my = piyny = s, ¢, = /U'Z/(2 log w,).
Further, taking p, such as p;>2n, M, ms, ny ¢; will be defined as above.
In general, if M,_;, my_;, m_y and ¢, are defined, then we take u,. such
as pp>2n;_; and put
My = iy My = iy nyy = iy € = pif (2 log ).
Thus (M), (m), (%) and (c;) are completely defined and, as easily may
be verified, satisfy the required conditions.
§3. Turorem 4. If 0<a<l and

(2) fo ‘@ (u)du = o(),
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then the Fourier series of f(t) is summable (C,a) at t=z.

We will also give two proofs.
THE FIRST PROOF OF THEOREM 4. The necessary and sufficient condi-

tion that the Fourier series of f(¢) is summable (C, a), is that
(16) 0% = %’ffw'ylw(wu)tp(u)du =0(1) (@— c0).
0

Let 0<r<1 and Y=V (w) tend to oo sufficiently slowly. Dividing the
integral (16) into two parts,

©o \[llu)r oo
Tormu[Tmu [ hu["onan,
2 0 0 _\P/wr
say, where

(17) L=wﬁiwm4wwwwm

o
— 0{0%(w<1+w¢.-<1+w) + Zﬁ)[}hjwdu}

— O(w—m+’1+a)r,\!f—(1+¢)) — O(w-u+(l+¢)r)

and

ylo”
I = wf Visa(@U)P(w)du
0

yla” ylo
== w[vm(wu)%(u)] — o’ f Viea{@U) @) (w)du
0 0
= Jl + JZ: .
say. Since rpl(u)zfuqz(t)dt:o(u‘/“), we have
0

Jl — ww—(1+u)w(1+w)r¢—(1+a~)¢l(,\P‘/wr)
— 0(m-w+(l+u)r(\[,\1/w—l—w/wr,'u) )
We can suppose that
Pei-sfarie = o(1) (@ - oo).
Thus
(18) J1 — O(w-w+(1+w)'r).
Concerning J, we put

1o Yl
h=o [Tre ["=K+ K
0 1w
Then.

(19) K, = w’fllwo(u”“)du — o(w-1%) = o(1).

If we take X=X(u) such as X(u) tends to zero and

pu(1) = o(uex),
then

r
K, = o* f P amarmy-ara (e (u) ) du

1w
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r

= O(wl‘“xl(w_rlz) He u‘l‘“‘”"du)
1w ’

= o(w"a-Cla=ary (@=ri)flls-a),
X (0P (@) = 0(1) (@ > o0),

which is always possible, then -
(20) K'“ — O(Q(I—w)——(llw—w)r).
Let us take r=a/(1+a). Then, by (17), (18) (19) and (20),
50‘”—1 + L= (L +L)+ 1L
= (J+ K+ K) + L= o(1).
Thus the theorem is completely proved.
Remark. Hsiang [3] has proved that if

(*) tim [ (u) uedu

exists, then the Fourier series is summable (C, 1), but not summable (C,
B) for 0<B<a. Since

f ‘o (u)du = e f P gy - % f Wi f 2(v) g,
0 t u i

(*) implies (2). Hence Theorem 4 shows that if (*) holds, then the
Fourier series is summable (C, a), Theorem 4 has early proved by Wang

[7]. But by the method used here, we can generalize the Wang theorem
in the following form.

Taeorem 5. If y>B>1, and

() = s (0 W p()du = o),

then the Fourier series of f(t) is summable (C, B~ (y—RB)/(y—B+1)).
Proor. Put y—B=%>0, then the theorem is equivalent to
t —
(21) wo) =1 [ (1= 4) p(u)du = (),
0 ¢ 0
implies (C, B—n/(1+7))-summability.
Using the formula in the proof of Theorem 2, we have

o*(@) = w£1¢s(t)Jj(wt)dt + o(1)

If we suppose

= I(o) + o(1)
and
oos fo — Z(1 + a + §)
3(g) ~ L(a+1) { 2 }
L) ~ 5571 S -+0;J
‘a8 T ~—>» oo,

If we put 8=8+1, then (21) is equivalent to
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(22) Psia(u) = o(t).
So @s(w) is integrable in the sense of Cauchy-Lebesgue. Put

D(t) = f}t%(u)du,

then by (22), we get
D(t) = o(t*).

1) =o ‘@@ iend=o [* Vi [
0 7 ) "’_r‘l‘
=1+ I

Then

say, Firstly X
I=o f @s(£) 2 (wt) dt

0"y
- {w@(t).lf,(wt)]w_r; mzzfm L 2O

If we assuine
’ E=a—-06>0 and r=¢&/(1+€),

then by applying the second mean value theorem, we have

sin {wt — 325(1 + a + 8)}

I — -&+r(1+8)Y 2 (I) t ) dt 1 )
= olortre0) o oL B +o(1)
1
=o0(1) + wl_sﬂ’r(1+£)‘lf_(l+£)f 1|Sin'{wt — —:)i(l + a + 5)};dt
w70 ~
= 0(1) + O(0 ff{~+®) = o(1).

Next we get

—~T

L=o [" gt si(at)dt
0

— O(w1—8+(1+ﬂ-8)7') — 0(1)"
by the analogous method to the proof of Theorem 4, for the kernel is same
order. The order of summabllity a is determind by '

a=8+1/(1+9) =B—1+1/(1+n)=8—n/(1+n)

e=a—8=1/(1+n).

ReMARK. The order of summability by Wang’s theorem is

B—n(B+1=n)/(n+9),
where n=>y>n—1 and n=>2. Since
1 S 1 ,+ B ——'n
1+ 7 n -+

our theorem is better than Wang’s.

THE sECOND PROOF OF TuEOREM 4. Let the Cesaro mean of Fourier
series of f(¢) of the a-th order o¢f. Then

where

, (forn—8>0, n=>2)
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ot = 1 f P () K50,

K=(t) being Fejér kernel. It is known that
[K%(t)| < Ofnt+* (0t = 1),
(23) {1[Kz<t>1'|§nﬂ,
[Kx(1)T| < Ont-ofie (nt = 1),
C being an absolute constant. This is proved for 1<a<2 by Zygmund
[10, p. 48 and p. 56] using Abel’s transformation twice, but in our case it
is sufficient to use it once. Now

1/n w“wl(]-i-w)
([T [T ke@rena
0 /1m

L ¥ ,nw,/(1+a/) z
+{ oK) | + [ pKa
o Y@ A+
:II+IZ+IS+I47
‘say, where Y=+ (n) increases indefinitely and sufficiently slowly. Using

( ");
I, = o(n"'fl'nt”“dt) = o(n*[n"*V*) = o(1)
o .

‘M.nw/(1+d) o
= ow-e f pla-idt) = o(1)
1n

. Mn“’(l"'d) llag-a-1
I3 = O<[t1/“K%(t)} ) <\lp1/(l+¢) )
AL 0

n oL )=o) - )

Thus we get a3=o0(1).
TaroreM 6. In Theorem 4, o in (2) connot be replaced by O.
Proof runs similarly as Theorem 3. (cf. the succeeding paper, Izumi
[5). | |
Rumark. Theorem 6 is better than the second part of Hsiang’s
theorem [3]. For, if ¢,(u)=0(u"#)(0<B<a), then
tzp(u)d ‘Pl(u) 1 f¢1(u’)
n

ute utle 1/@+1

A

exists as 5—0.
§4. We can now generalize Theorem 5.
Treorem 7.  If 0<B<y and

1 ’ \
@(t)E‘——f t — u)f '@ (u)du = o(tY),
(0 = ggs [ ¢ = WP = o)
then the Fourier series of f(t) 4s (C, &) summable at t=2x, where

a>B/(y—B+1).

Proor. Tt is known that
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8, = O(nYIB+D)
(F. T. Wang [9]) and
a0 = (1) (£ 0)
(F.T. Wang [7] and Hyslop [4]). Thus by Riesz’s convexity theorem [6],
we get the theorem.
Taeorem 8. If 0<B<y,B<14(y—B) and

By(1) = o(1),
then the Fourier series of f(t) is summable (C,B/(y—B+1)) at t=x.

Remark. It is conjectured that the condition B8<1+ (y—8) is super-
fluous, that is, may be taken such as

a=B(y—-B+1)
in Theorem 7. We could prove this for integreal 8.

Proor. We will begin by the case 0<C8<1. This case is contained
in the next case, but the proof of this case suggests that of the general
case. Let us consider the Cesaro mean of Fourier series of f(t) order a,
which we denote by ¢%. We have, putting a=p8/(y—B8+1),

ot = lf’q;(t)Kw(t)dt
T
n®I(1+a)
_ (R + 1f K
T Jy @/(1+
1

n/n‘”/(l""’)
== L[ e oEsm T + o(1),
T Jy
as in the proof of Theorem 4. If we denote the last integral by I, then

I= f o OM)[K'”(t)]’dt f ®y(u) (¢ — v)-Pdu

" (1+w)
_fdtfdu+f' ]du—I+I
(22)

ln
I—vOnf fu*(t—u) Bdu)

= o f "rBndt) = O(wFmP) = O(1u7?)
=o0(1).

Concerning I,

q,/n"’/(”“") ¢
I,= f [K:(t)]’dtf ®p(w) (t — u)~*du
1/n 0 :

g @A+ @) u+1n L pym®larad gy Y@ (1+a)
= du f dt + f du f dt
1jn u+lin .
u,+1/n y/n®/ (1) u+ln
f duf f duf dt
1n anl(ud)_lm anl(l-x»a)

say. By

o
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£
W

EJ1+J2+J3’—"]4’

wn“l(l""” u+l/n
o(f u’/duf e RS (A u)""dt)
1/n u
Yin@!(+a) u+1n
= o(n““f‘ w'” “‘-‘duf (t——u)'ﬁdt)
1/n u
- & (1+a)
— O('n’l wf‘l‘l?% . ,ul‘y—w—-ld,ul> — O(nﬂna-ﬁ!a(y—.m)>
n'~A 1/n

= 0(1),
for y>a and (1+a)(B—a)—a(y—a)=0. Now

\P/‘n“ (1+N>_1/,,,, ¢ /n I(A+e)
J, = f @ (u)du f [KE(6)T (¢ — w) Pt
1 u+1l/n

n

n®iA+8)_q s Ara)  ay,@l0se)
f‘“ @B(n)du K‘;;(t)(t—u)‘ ] f K3(0) (1 — w) ).

1jn ~u+ln +1/n

By (21), we have

YA+ np-o 1/ ¥ s
z O[ 1n v (u + 1/n)¢+1 + - ’\I"MH ml(1+u) u

LA e gy H

say. By (23)
i

I

nﬂb ar1jn tw+l(t lb)B+1
§n®IA+a) 1 yn®lQ+a) .
= o(n"“‘ f w=*du 4 —— w(———‘l' = u) du
1n 1}r“+1 pea+a)

1 an,’(l-q—m) .
b L[ i)
" n

= o(nﬂ aefyre o 1 Ty : )

&+1 y-8 P
‘P\ n ne+izgY-%-p

=o(1).
Since J;+J,;=0(1), we get I,=o(1), and then I=0(1). Thus the theorem
is proved for the case 0<B<1. "

Let us now turn to the case 0<a=pB/(y—B+1)<1. There is an
integer k>1 such that k—1<B<k We suppose that k—1<B<k, for the
case 8=k can be easily deduced by the following argument. As we have
already seen,

1 PniA+ed
o=1 o())Ka(t)dt + o(1).
0.
By k time application of integration by parts, the last integral, which we
denote by I’, becomes

¢/n¢/(1+¢) .
I= (=0 " ek o +
0

k-1 ]\I‘ "w,(lq-m)

| o (B K30

h=0 £=0
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= (= )L + 1,
say. Now, since ‘
@,(t) = o(1), Py(t) = o(t"),

®,,,(t) = o(tME-D)
by the M. Riesz theorem [6]. On the other hand, by Zygmund [10, p.
2597, we have

h-o n—s bl
(24) (R = o( T+ M e 3

{@+1 $+1 901 pitirn+l

we have

for nt=1, s being sufficiently large integer and

(25) [Ka(t)]™ = O(n"*)

for all ¢. Since 0<a<1, we have, for =0,
nl-e : 1
i =

Hence we have

(26) [K3(1) 1 = O(nb-efte+?).

Thus

[@01(£) { KE(£) }P), -y msiasor = o([ta2"#1nt=oT, _,  aiara)

= o (yar-e (gl e ) = o(1)
for h=0. Therefore I,=o0(1).

anl(uu,) E
L= " ek
’ yin o/(1+a)

— f LK% (1) Jdt f”cpﬂ(u)(t — w)eEidy
’ .p/n"'i(““) Mnm,’(l-m)

f @, (u)dit f TR O(t — w)E-Ede
0 u

J;/n“’(l"'“) w+1jn anl(1+u)_lln Mnal(luz)
= du dt + du dt
0 vy u+l/n

\p/'n”"ﬂ" “) u+l/n
- f f dt
,,n(l-; @ _1/n q;ln“'/(““')

u+1!n yin@ A+ a) w+lln
J'_f duf f duf dt = K, + K,

say. Then we have, by '(25),

,' o [ 1 1
K, = o(n’“ 1‘/(: u”duﬁktg) = 0(%?5) =o0(1),
and, by (26)

yn®/C1 @) uslin pk-a
K=o wrdu e (E— w)*Pdt
y " t1+m

1/n

I

say, and
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Mn“‘m R u+lijn i
= n‘ "’f v ’dwf (t — u)’”““‘ldt>
1n

u

kew M"wl(l-v-u,) \
’)l/ [
=0 ﬂf wite Jdlb)
Y 1 .

n
= 0(’)LB"”‘1+¢»(V'”>) =o(1).
Hence Ji=o0(1).
Concerning J;, if we usc integration by parts £ times in the inmner
integral, then we have

YA+ ® _ypy YO+
= f By (u)du f L5 ()Tt — w)*~P-dt
0 w1 [N

yln“/(1+“)—1,’n .{1/114“5‘0"'“)
_ f a(u)u (= 1C [ K3 (t) (t — w)-P'du
S uslln

0

k:-J‘ L
+ Z(J’IL{[I(‘,‘LU/)]@")(& —_ u)n—p}
h=0 X

“t=u+l/n

e
a3t

o/C(l+a)

k-1
=1+ >,

=0
say, where C and C), ave constants arising by differentiation.
By (21)

JU+a) a g 1@ L+ a) ;
yin® L2 dt
I = U( [I ’U/‘y(l'l(ff wpiiwlr R J>
Jin w4 l/n 1 (t - ”) M

@ (L)

\(:,n."r‘k

= o( lwf uy "”""‘Wu)
n=y,

n

1 1 _ ]
- O< py-B + w(y- ﬂ+J)/(l+m> + ()(1) = 0(1))

"

and by (26)
h-a ‘¢/lam,'(l.+a’:_) l 4‘/"w,’(l+w)_l,w h-B
T (1 —— 1 ! \II
W= o(‘- _f St uy u) du)

o+1 1
1/n "# + 1/n nd’/( o

= O(Hﬁ—W—i{_‘%W-&) + nﬁ—r%&(‘)w])) — 0(1)
Thus Jy==0(1). Since we have easily Ji=0(1), we got I'=0(1), which is
the required.
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