NOTES ON FOURIER ANALYSIS (XXX¥I):
ON CERTAIN APPLICATIONS OF WIENER’S
TAUBERIAN THEOREMS*

By

GEN-ICHIRO ‘SUNOUCHI

In this note the author gives two applications of Wiener’s theorem.
The general convergence theorem and its converse are discussed in §1.
Partial solution of the problem of Cheng [4] is also given. In §2 the
Cesaro summability problem of multiple Fourier series is discussed, to
which the quasi-Tauberian theorem is applied. §1 and §2 are closely
related but may be read independently.

1. A general convergence theorem and ifs converse.

We shall begin to state one of the fundamental theorem of Wiener.

TarorEM 1. Let @(N) be a function of bounded total wvariation over
every interval (&,1/€) where 0<E, and let

(1) f Mildg()[SC (0 <u < o).
Let AN,(\) be a continuous function for which

(2) 2 max )\.]N()\.)]<oo
k=—co k< <
and let ==
(3) lim = [N Yo tw) = A [ N
Apea(0) N A 0
Let for any real u
(4) f "N, (VA" £ 0.
20
Then if AN,(\) is any continuous function for which
(5) 2 max MN)[< e,
we have T
(6) lim 1 Nz( )dq) p) =4 f Ny(p) dps.
Ao N o

This theorem ds a tfra,nsfonnatlon of Theorem IX of Wiener {10] (p.
26). To see this it is sufficient to put

*) Received March 26, 1950.
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E=log,  f§) = [Wdp(h), Ku(f) = Na(h)

o g=—lgk, f(§) = [Ap(N), Ku() = AN,.0).
Trrorem 1.1. Let f(t) be integrable (0, B) and let

(7) %qu[f(tHdth, Jor all T>0, (g¢>0).
0
Let t*K(t) be a cintinuous function for which
(8) > max #K(t)| < co.
ka—oo ko, ok+1

Then T

) 1 — b T >
(9) T;%T,ff(t) 1 T) dt = I0(ct + 1), for some a =0,
implies

. I'(q + a)f q-1

10 lim L f 0 K( L )at = K(t)t-dt,
(10)  dim [T K( ) O

Proor. Put
A

) [ rwd = o),
‘then N

I e I Oy VO

by (7). Thus the condition (1) of Theorem 1 is valid.
Put
(13) N = {7‘“"(1 —NT(a+1), if 011, (a>0)
0 if 1<,
then we have

(14) 2 ‘max RN (7\; C > max A(1 —2A)% < oo,

k=—co 2k§)\§2k+1

(15) lim ,,,Wl__.. ”NZ(_;_)dq»(,u)

e A (@ + 1),
”f(#)/# AV
ALM(O))»P(CX-I—l)f e l\x ( x)d"

. ﬁlﬁf?é)m;fo f(t=EYdu=1, (by (9))

1 L u T'(g + iu)
16 “““"*f A1 — A)OAGN = -+ 0.
(16) Mla+1)J, - ( ) I'(q + a+iu+1)

Thus the conditions (2), (3) and (4) of Theorem 1 are valid. Putting
Ny(A) = ATK(N),

we get the theorem.
TueEOREM 1.2. Let n be a positive integer, p>0 and 0 <q<n(wp+1/2).
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Let, in addition to (7),

. 1 [T
17 lim L f Bt = 1
(17) Jim [ 0@ =1,
then we hawve P

Ju(Rt) = (Jult)) "

18 B qu tJ AAAAA dt:lf Ju(t)) jargy,
(18) m B 70| s 7/ {‘tﬂ }

Proor. In Theorem 1.1, put «=0, and
(19) K(t) = {J.(t) 4"

Since,

Oo(t+) as p—0

J.(t) = 4 ’

w(t) {O(t'”z), as  pu—> oo,
we have

(20) > max #9K(t)| < oo,
=='e0 k§'<==2 +1 ‘
if 0<q<n(u+1/2). ’
Taeorem 1.83. Let p>0 and 0<q<p+1/2. Let in addition to (7),

1m a J(Rt) T'(q + a) Ju(t) ) 0
(1) Ji Rff(t) Ty =gk fo{ W)

then we ha've

(22) T})lﬂlﬂnff(t) 1— Jf) dt =0(a +1), (a>0).

Proor. Put, in Theorem 1,
P(\) = f “f(t) jred,
N(A) = a4, ()»)/7\M J, (x)x pra=1

and
N(\) = {M-l(l —MT(a+1), 0<A<1 (a>0)
s otherwise.
Since .
(23) mel(X)hi“dX= fm’li(};)y\'%iu—ldx
0 0
T{(q + iu)/2}

=0,
T 9@ — (g + w)j2 + 1)

(0 <gqg<p+1/2). (Watson [9], p. 391).
Other conditions of Theorem 1 are evident.

Theorem 1.1 is one of the so-called general convergence theorem and
many writers have discussed conditions of validity. The condition of our
theorem is the best possible one in a sense. Theorem 1.2 is proved by Cheng
[4] by direct calculation. The special case of n=2, u=1/2 is Jacob’s
generalization of Wiener’'s formula. Littauer [7] has applied the Tauberian
method in this case, but his proof is elliptical, since his R(£) is not
integrable over (—oo, o) for a¢=0. In the case a=0 of Theorem 1.3,
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more stringent condition is required.
THEOREM 2. Let, in addition to the conditions of Theorem 1,

A
(24) o) = [ g(w)dn
Ag
and
(25) g(A) =0, for all A>0,
then
tim L (Vg (u)dp = 4
AS0() N

Proof is the repetition of \Viener’s argument ([10], p. 31).
TuroreM 2.1. Let f(t) be integrable (0, B) and let, in addition to (7)
and (8) where t*K(t) is continuous,
f(ty=0, forall t>0

and
(26) f K(t)ttdt + 0, for alt real .

Then ’

! 1 =1 K(t)t-'dt
0 e e
vmplies
(9) lim ff(t)dt =L

T-yen(0, T4

Proor. Since

w, 0K )= [5G ) )

gity = fF(O) 1" = O,
N, (t) =t K(¢),
then (7) implies (1) and we get the theorem.
Since in the problem of Cheng [4] K(t)={J.(t)/t*}", if p>0 and
0<g<n(p+1/2), then (8) is valid, for
J,(t) =
«(1) {O(t-lﬂ) as 1 —> oo,
Consequently the validity of the conjeeture depends only on non-vanishing

e
i

for all real u. Espeeially the cases n=1 and n=2 are evident. For, in
the ease n=1 by (23), and in. the case n=2, by

(97) f %p. (,I:-I(hi)iu)+1d

we put

and

of
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(34

_ Q-2 — (k+ q+du) + 1§ (k4 q+iu) /2}
T ol{[2p— (k+q+iu) + 112+ 12T {p+ [2p— (k+q+iu) +1]/2+ 12}
(2u +1>2— (kE+q) +1>0). (Watson [9] p. 397).
Thus we get
TrEOREM 2.2. Let 0<q<(p+1/2). Let

(28) %ITV(t)’!dtg_M for all T> 0
o

and

(29) f(t) =0, for all t.

Then

(30) lim R »Lf 0! T(R’f) f ") oy
B30(e0)

implies

31) lim L f F(tydt =1

(3 5T/ )

TrrEoREM 2.3. Let 0<q<2(p+1/2) and let (28), and (29). Then

. o [ J.(Rt))? (> (S ()20

32 lim R )4 dt =1 LA e A {7

) g [T e [T50)

implies (31).

Put £=0 in (27), then we get the theorem,

TueorEM 2.4. Let 1—2u<q<2 and suppose (28) and (29). Then
(33) lim Rt [ (R‘) dt = qu £, (t) re-2d

R 0

implies (31).

For the proof it is sufficient to put £=2p—1 in (27),

Remark. In Theorem 2.1 (consequently in its corollaries), if K(t)=0
for all t>0 and K(t)— M==0 as t — 0, then we can dispense with

%&fﬂf(t)[dt <C, forall T>0, (¢>0).
0

Proor. We prove the case K(t)=§J.(z)/z"}* for the sake of simplieity.
Put

(34) g(t) = {f(t)’ if t<N} for some fixed N then we have

0, if t=N|

o 1 [ _

(35) tim 1 [o0i = o,

and
— J(Rt) . J(Rt)
lim R =1

(36)  lim f (t){(Rt) at 1meft) (Rt)F

< lim ME* [ f(1) |

Consequently, if we put
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(87) f(t) = g(t) + h(?),
then it is sufficient to prove the theorem for h(¢), which vanishes near to
the origin. As the integrand is non-negative for any 0<RE<n we have

o > [z S
>MR"f h(t)dt,

for lim {J (x)} =M=0,
>0 :I}
that is, for 7>1/5, we have"
lfﬁmmga

But, by (34) and (37), we have
------ h(t)dt =0, for 0<T<N.
Thus
1 fTh(t)dt < const
T} A = )
uniformly in 7.
2. Cesaro summability of multiple Fourier series.
Quasi-Tauberian theorem of Wiener ([10], p.77) reads as follows.

TrrorEM 3. Let K(x) be bounded and continuous over every finite
interval. Let f(x) be:of bounded variation over every finite interval. Let

(39) tim K (y — 2)df(x) = Afzn@m
(40) | /“;dgzr 2)e <O

and as Xx—>—co

(41) Ki(a)~de (> 0), (A=0)
holds. Let k,(u) and ky(u) be defined by

(42) b(w) = [ Ki(x)eda

and -

(48) ko(u) = f "K,(z)e*da.

Let K (x) belong L,(—oo,c0) and let ky(w)/k,(u) be analytic over
—E<R(u)N+E, and let it belong to L, over every ordinate in that strip.
Then we have

(44) tim [y = 0)f() = 4 [ Ky

Let f(x)=f(w,, ..., 7) be a function of the Lebesgue class L, periodic in
each of the k-variables, and having the period 27, and put (cf. Bochner
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(1] and Chandrasekharan [2])
e T(E[2)
(45) ¢($, t) - ¢(t) - ‘6(;)‘,0/_2 . f(xl + {{'], sy T + tf)\:)da‘g,
where do; denotes (k£ — 1)-dimenisonal volume element of the unit sphere.
If n>0, we define

9 3
N = 2 2\r-1gk-1 ’
(46) ¢n(x;t/ = B(n’ k/g)t2"+k"2£ (t 8) s ¢(S)d8
_ ¢ 1(1 _ Sl n_l(,§_>k~] (\d
t [. t2> ;) Plods
where
(47) ¢=2/B(n, /2).

@a(z,t)=@,(t) is called the spherical mean of order n of the function f(x).
Then . s
t 2\ N~ 41—
(48) palat)fe = 0 [ (1= 5)7 (22 as
0

e/ ¢ 8
and put t=e"?, and s=e™%, then (48) is

(49) o [Texpl(k + 1) (y = 2)}1 — exp(2A(y — )} p(e)e

In Theorem 3, we put

" (rc-w)x(l - ez:a)n-l <0 (,n > 0)
(50) K™(z) = {“ ’ ) =
0, z >0,
then.
(51) K" () ~ce®*™ as z—>— oo, (k+ v >0).
Let
(52) Vi(z) = Ju(2) /2%,
then 0
r oo (0(1), as v —0,
(53) Vu(z) = {m""‘””), s 2 oo

If we denote by o™(R,z) the m-th spherical Riesz mean of the
Fourier series of f(z), then
(54) o™(R,x)=0™(R) = 2"T'(m + 1)R’“f @ (2, ) V2 (PR dt

0
— dR* f 2 (£) Vs (tR)
0

where
d=2"T'(m + 1).
Since

(55) lim R* f "B () Vs (ER)dt = O(R-m++r),
oo 1

we can neglect this term in the following lines. Put

(56) R'o™(R) = dR™* f B0 (8) Ve (tR) e

0
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1
—dR f D) (LR) 1V un(tR) d,
0

and let R=e", t=e"", respectively, then (56) becomes

(57) d f: exp (k + ) (4 — 2)}Vmera( ) p (=) & "ds.
Comparing with Theorem 3, we put
(58) MEK(2) = de** ™V, (e,
then
(59) MWE(z) ~0(e**™) =0, as x— — oco(k + 7> 0)
by (53).
K™ (%) € L,(— o0, 00), but ™K{(z)€ L,(— o0, o), if and only if
(60) m >+ (k—1)/2,

by (53). The Mellin transform of K™(z) is
(61) Fu(u) = choe"’“'”"(l — &) dx

:_gflt(’”'*“"z”z(l _t)ndt:c]f‘{(’c-p:r_)_ u)/Q}I’(n+1){
2 J,y 2 (k+r+uw)/2 +n+ 1)

and the transform of ™K(z) is

(62) Ln(u) = d f T, ) de
0

—d f Terun (1) dE
0

— dfme_,_k/z(t)t(r+k+u_1_m_k/2)dt.
0

—  dT{(r + F + w)/2}
mklz=r=u1lm + 1 — (v + u)/2}
In this case u-is imaginary, the condition of validity of (62) is
0<r+ k< m+ k24 3/2
and this is contained in (60). Then we have
o Im(w) _ T$k + v+ 20 + 2 + u)/2}
(63) Kn((u)) = const - I{‘{(2m w1
~ const. | (u) |Reo+ren-mekiz
as |3(u)|—>co. From Theorem 3, if

(Watson [9] p. 391).

(64) m>n+ (k+1)/2 + 7,

then

(65) lim [ KOy — a)p(e?)edn = 4 [ TR (w)d
i —

implies ’

(66) lim f WKy — o)p(e") e dn = A f “wK () ds,
e, e
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and if

(67) n>m—r— (k—1)/2

then (66) implies (65). In the latter case, the condition of analyticity

of k,(u)/l.(u) is contained in (60). Thus we get the follwing theorem.
TueoreM 3.1. Let r>—k. (a) If m>n+(k—1)/24+r, (n=1) then

hmrpn(t)/t’—s implies hmR’o-(’")(R)——ls and (b) if n>m—r—(k—38)/2

and m>r+ (E—1)/2, then lim Brg ™ (R) =3 imjlics lim g, (t) ' =sfl, where

[ = 2%-D2-m-r{ (Ic + 9~)/2 + 0}l (m — r/2 + 1)I‘(n)} 1

The special case r=0 and k=1, is the well known theorem of Bosanquet-
Paley-Wiener. The case (b) where k=1, and s=0 is solved by Hyslop
[5] under some restrictions and the complete solution is due to Izumi [6].
Most general case (a) is given by Chandrasekharan [2] and the case (b)
is new. This indicates that the order condition of the theorem is best
possible in a sense.

TueoreM 4. Under the hypothesis of Theorem 3,

/ e f “Ki(y — %)df(x)

Sl [ TRy = )

<y
This is due to the author [8]. Corresponding to Theorem 3.1, we get
TureorEM 4.1. Let v>—k. (a) If @,(t)/t" is of bounded variation
in 0<t<loco, then R'ac™(R) is of bounded wvariation in 0<R<oo, for
m>n+ (k—1)/2+r, (n=1), and (b) if R'e™(R) is of bounded wariation
in Q<R oo, then @,(t)[t" is of bounded variation in 0<t<co for
n>m—r—(k—3)/2 and m>r+ (k—1)/2.
The case r=0 is given by Chandrasekharan [3] with direct caleulation.

< oo

mplies
< oo,
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