# NOTES ON FOURIER ANALYSIS (XXXV)*) 

By<br>Shin-ichi Izumi

## Part I. Order of the partial sum of Fourier series.

§ 1. Mr. F. T. Wang [1] proved that, if

$$
\begin{equation*}
\Phi_{\alpha}(t) \equiv \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \phi_{x}(u)(t-u)^{\alpha-1} d u=o\left(t^{\alpha}\right), \quad t \rightarrow 0 \tag{1.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\varepsilon_{n}(x)=o\left(n^{\alpha /(1+\alpha)}\right), \quad n \rightarrow \infty, \tag{1.2}
\end{equation*}
$$

where $\boldsymbol{\phi}_{x}(t)=f(x-t)+f(x-t)-2 f(x)$ and $s_{n}(x)$ is the $n$-th partial sum of Fourier series of $f(t)$ at $t=x$.

Further he proved [2] that, in the case $\alpha=1,(1.2)$ cannot be replaced by

$$
\begin{equation*}
s_{n}(x)=o\left(n^{\delta}\right), \quad n \rightarrow \infty, \tag{1.3}
\end{equation*}
$$

where $0<\delta<1 / 2$. We prove more precisely that we cannot replace (1.2) by

$$
\begin{equation*}
\left|s_{n}(x)\right| \leqq \varepsilon_{n} n^{1 / 2}, \quad n \rightarrow \infty, \tag{1.4}
\end{equation*}
$$

$\left(\varepsilon_{n}\right)$ being a given null sequence, even if the condition (1.1) replaced by that the integral

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\boldsymbol{\varphi}(u)}{u} d u \tag{1.5}
\end{equation*}
$$

exists in the Cauchy sense.
Mr. N. Matsuyama [3] proved that there is an integrable function $f(t)$ such that

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\varphi(u)}{u^{1+a}} d u \tag{1.6}
\end{equation*}
$$

exists in the Cauchy sense and

$$
\begin{equation*}
s_{n}(x) \neq o\left(n^{\delta}\right) \tag{1.7}
\end{equation*}
$$

for $\delta<1 /(2+\alpha)$. We prove that (1.7) can be replaced by

$$
\begin{equation*}
s_{n}(x) \geqq \varepsilon_{n} n^{1 /(2+\infty)} \tag{1.8}
\end{equation*}
$$

for any assigned null sequence $\left(\varepsilon_{n}\right)$, and for infinitely many $n$.
Further we prove that, for any $\alpha$, there is an integrable function $f(t)$ satisfying (1.1) and

$$
s_{n}(x) \geqq \varepsilon_{n} n^{\alpha(1+\alpha)} .
$$

for any assigned null sequence $\left(\varepsilon_{n}\right)$ and infinitely many $n$.
The method of construction of examples is that used by the author in the previous paper [4].

[^0]§2. Theoren 1. For any sequence ( $\varepsilon_{n}$ ) tending to zero, there is an integrable function $f(t)$ such that
\[

$$
\begin{equation*}
\Phi_{\alpha}(t)=o\left(t^{\alpha}\right) \tag{2.1}
\end{equation*}
$$

\]

and that there is a sequence $\left(M_{k}\right)$ such that

$$
\begin{equation*}
s_{M_{k}}(x) \geqq \varepsilon_{M_{k}} M_{k}^{\alpha /(1+\alpha)} \quad(k=1,2, \ldots) \tag{2.2}
\end{equation*}
$$

Proof. Let $\left(\Delta_{k}\right)$ be a sequence of disjoint intervals such as

$$
\Delta_{k} \equiv\left(\frac{\pi}{n_{k}}, \frac{\pi}{n_{k}}+\frac{\pi}{m_{k}}\right) \quad(k=1,2, \ldots)
$$

where $\left(m_{k}\right)$ and $\left(n_{k}\right)$ are increasing sequences of integers determined later, and we put
(2.3) $\quad f(t) \equiv c_{k} t \sin M_{k} t \quad\left(t_{\varepsilon} \Delta_{k}\right)$
for $k=1,2, \ldots$ and $f(t) \equiv 0$ in $(0, \pi)-\vee \Delta_{k}, f(t) \equiv f(-t)$, where $\left(c_{k}\right)$ is a sequence of positive numbers and $\left(M_{k}\right)$ an increasing sequence of integers, both determined later. Let us suppose

$$
\begin{equation*}
m_{k} / n_{k} \rightarrow 0 \quad(k \rightarrow \infty) . \tag{2.4}
\end{equation*}
$$

Since
$f(t)$ is integrable when

$$
\sum c_{k_{k}} \int_{\Delta_{k}} t\left|\sin M_{k} t\right| d t \leqq 3 \sum c_{k}\left(\frac{\pi}{m_{k}}\right)^{2}
$$

$$
\begin{equation*}
\sum c_{k} / m_{k}^{2}<\infty \tag{2.5}
\end{equation*}
$$

We have

$$
\begin{aligned}
s_{X_{k}}(0) & =\frac{2}{\pi} \int_{0}^{\pi} f(t) \frac{\sin M_{k^{\prime}} t}{t} d t+o(1) \\
& =c_{k} \int_{\Delta_{k}} \sin ^{2} M_{k} t d t+\sum_{i \neq k} c_{i} \int_{\Delta_{i}} \sin M_{i} t \sin M_{k} t d t+o(1)
\end{aligned}
$$

where the first term is $\geqq c_{k} / 4 m_{k}$ for sufficiently large $M_{k}$ comparing with $m_{k}$, and

$$
c_{i} \int_{\Delta i} \sin M_{i} t \sin M_{k} t d t=O\left(\frac{c_{i}}{\left|M_{k^{\prime}}-M_{i}\right|}\right)
$$

If we suppose that

$$
\begin{equation*}
\sum_{\substack{i=1 \\ i \neq k}}^{\infty} \frac{c_{i}}{\left|M_{k}-M_{i}\right|}=O(1) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{c_{k}}{m_{k}} \geqq \eta_{k} M_{k}^{\alpha /(1+\alpha)} \quad(k=1,2, \ldots) \tag{2.7}
\end{equation*}
$$

$\eta_{k} \equiv \varepsilon_{M t_{k}}$, then we get (2.2).
Let us first confine ourselves to the case $0<\alpha<1$. For $t_{\varepsilon} \Delta_{k}$, we have

$$
\begin{aligned}
\Phi_{a}(t) & =\int_{0}^{t} f(u)(t-u)^{\alpha-1} d u \\
& =c_{k} \int_{\pi / \mid n_{k}}^{t} u \sin M_{k} u(t-u)^{\alpha-1} d u+\sum_{i=k+1}^{\infty} c_{i} \int_{\pi ; i_{i}}^{\dot{\pi}\left|n_{i}+\pi\right| m_{i}} u \sin M_{i} u(t-u)^{\alpha-1} d u
\end{aligned}
$$

where

$$
c_{k} \int_{\boldsymbol{z} \mid n_{k}}^{t} u \sin M_{k} u(t-u)^{\alpha-1} d u=O\left(\frac{c_{k} t}{M_{k}^{\alpha}}\right)
$$

and

$$
c_{i} \int_{\pi \mid n_{i}}^{\pi i n_{i}+\pi \mid m_{i}} u \sin M_{i} u(t-u)^{\alpha-1} d u=O\left(\frac{c_{i}}{m_{i} M_{i}}\left(t-\frac{\pi}{m_{i}}\right)^{\alpha-1}\right)
$$

which is $O\left(c_{i} t^{\alpha-1} / m_{i} M_{i}\right)$, if $i \geqq k+1$ and

$$
\begin{equation*}
\frac{\pi}{n_{i+1}}+\frac{\pi}{m_{i+1}} \leqq \frac{\pi}{2 n_{i}} \quad(i=1,2, \ldots) . \tag{2.8}
\end{equation*}
$$

Thus, if

$$
\begin{equation*}
\frac{c_{k}}{M_{k}^{\alpha}} \leqq \delta_{k} t^{\alpha-1} \quad\left(\pi / n_{k} \leqq t \leqq \pi / n_{k-1}\right) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=k+1}^{\infty} \frac{c_{i}}{m_{i} M_{i}} \leqq \delta_{k} t \quad\left(\pi / n_{k} \leqq t \leqq \pi / n_{k-1}\right) \tag{2.10}
\end{equation*}
$$

for a null sequence $\left(\delta_{k}\right)$, then we have (2.1).
We shall now define $\left(M_{k}\right),\left(m_{k}\right),\left(n_{k}\right)$ and $\left(c_{k}\right)$ such that the conditions (2.4)-(2.10) are satisfied. Let

$$
c_{k} \equiv 2^{2 k^{2}}, m_{k}=k_{2}^{k^{2}}
$$

then (2.5) is satisfied. If we take any null sequence $\left(\boldsymbol{\eta}_{k}\right)$ and put

$$
M_{k} \equiv\left(\frac{1}{k \eta_{k}}\right)^{(1+\alpha) / \alpha} 2^{(1+\alpha) k^{2} j \alpha}
$$

then we get (2.6) and (2.7). Further taking $\left(\delta_{k}\right)$ such as

$$
\left(k \eta_{k}\right)^{1+\alpha}=\delta_{k}
$$

and ( $n_{k}$ ) such as

$$
n_{k}=2^{(k+1)^{2}},
$$

we get (2.9) and (2.10). The conditions (2.4) and (2.8) are evident by the construction. Thus we get the required.
§ 3. We will next consider the case $1<\alpha<2$. We have

$$
\int_{\pi \mid n_{k}}^{t} u \sin M_{k} u(t-u)^{\alpha-1} d u=O\left(\frac{t}{M_{k}^{\alpha}}+\frac{t^{\alpha-1}}{n_{k} M_{k}}+\frac{1}{M_{k}^{\alpha+1}}\right)
$$

Hence, in this case, (2.9) must be replaced by

$$
\begin{equation*}
\frac{c_{k}}{M_{k}^{\alpha}} \leqq \delta_{k} t^{\alpha-1} ;, \frac{c_{k}}{n_{k} M_{k}} \leqq \delta_{k} t, \frac{c_{k}}{M_{k}^{\alpha+1}} \leqq \delta_{k} t^{x} \tag{3.1}
\end{equation*}
$$

for $\pi / n_{k} \leqq t \leqq \pi / n_{k-1}$. Condition (2.8) is not needed.
We take

$$
c_{k} \equiv 2^{2.2^{k^{2}}}, \quad m_{k} \equiv k 2^{2^{k^{2}}},
$$

then (2.5) is satisfied. If we take a null sequence $\left(\eta_{k}\right)$ and put

$$
M_{k_{\mathrm{\varepsilon}}} \equiv\left(k \eta_{k}\right)^{\frac{1+\alpha}{\alpha}} 2^{\frac{1+\alpha}{\alpha} \cdot 2^{k^{2}}}
$$

then we get (2.6) and (2.7). Supposing

$$
\begin{equation*}
\eta_{k} \leqq \mathbb{1} / k^{2} \tag{3.2}
\end{equation*}
$$

we put

$$
n_{k} \equiv\left(\frac{\delta_{k}}{\left(k \eta_{k}\right)^{1+\infty}}\right)^{\frac{1}{\alpha-1}} \cdot 2^{2^{k^{2}}}
$$

where $\delta_{k} \equiv 1 / k^{3-\alpha}$. Then the other conditions are all satisfied.
Now, (3.2) is equivalent to

$$
\varepsilon_{\kappa_{k}} \leqq c / \log \log M_{k}
$$

For more slowly decreasing $\left(\varepsilon_{n}\right)$, it is sufficient to take higher power numbers as $m_{k}, c_{k}$, etc. For example $m_{k} \equiv k 2^{2^{2^{2}}}$, and so on.

We can treat the case $n<\alpha<n+1(n=2,3, \ldots)$ similarly. The integral case is also similarly proved.
§4. In the case $\alpha=1$, Theorem 1 may be generalized in the following form.

Theorem 2. For any sequence ( $\varepsilon_{n}$ ) texding to zera, there is an integrable function $f(t)$ such that the integral

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\mathscr{P}(u)}{u} d u \tag{4,1}
\end{equation*}
$$

converges in the Cauchy sense and that there is a sequence $\left(M_{k}\right)$ such as

$$
s_{M_{k} k}(x) \geqq \varepsilon_{M_{k}} M_{k}{ }^{\prime 2} .
$$

Proof, Let us take a function defined by (2,3), where we suppose that $m_{k}$ and $n_{k}$ divide $M_{k}$, and $M_{k} / m_{k}$ and $M_{k} / n_{k}$ are even. Then the integral (4.1) exists and equals to zero. Then it is required the conditions (2.4)-(2.7). Hence, modifying the example in § 2 , we get the required.

Theorem 3. For any sequence $\left(\varepsilon_{n}\right)$ tending to zero, there is an integrable function $f(t)$ such that the integral

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\varphi(u)}{u^{1+\infty}} d u \tag{4.2}
\end{equation*}
$$

converges in the Cauchy sense and that there is a sequence $\left(M_{k}\right)$ such as

$$
\begin{equation*}
s_{M_{k}}(x) \geqq \varepsilon_{M_{k}} M_{k}^{\prime}(2+\alpha) . \tag{4.3}
\end{equation*}
$$

Proof. Let us take a function defined by (2.3). Then it is sufficient to take $\left(M_{k}\right),\left(m_{k}\right),\left(n_{k}\right)$ and $\left(c_{k}\right)$ such that (2.4), (2.5). (2.6) are satisfied and

$$
\begin{gather*}
\frac{c_{k}}{m_{k}} \geqq \eta_{k} M M_{k}^{1 /(2+\alpha)},  \tag{4.4}\\
\sum_{k=1}^{\infty} \frac{c_{k} n_{k}^{\alpha}}{M_{k}}<\infty . \tag{4.5}
\end{gather*}
$$

If we take

$$
c_{k} \equiv 2^{2 k^{2}}, \quad m_{k} \equiv k 2^{k^{2}}, \quad n_{k} \equiv k^{2} 2^{k^{2}}
$$

and

$$
M_{k} \equiv \frac{1}{\left(k \eta_{k}\right)^{2+\alpha}} 2^{(\alpha+\alpha) \hbar^{2}}
$$

then the conditions except (4.5) are all satisfisfied. If

$$
\begin{equation*}
\eta_{k} \leqq 1 / k k^{3} \tag{4.6}
\end{equation*}
$$

then (4.5) is also satisfied. (4.6) is equivalent to

$$
\begin{equation*}
\varepsilon_{N_{k}} \leqq c /\left(\log M_{k}\right)^{3 / 2} \tag{4.7}
\end{equation*}
$$

If we take $c_{k} \equiv 2^{2 \cdot \cdot^{k^{2}}}$, etc., then the condition (4.7) is replaced by $\varepsilon_{M_{k}} \leqq c /\left(\log \log M_{k}\right)^{3 / 2}$.
Thus proceeding we get the theorem for any slowly tending to zero sequence.

## Part II. On Zygmund's Method of summation

§ 1. A. Zygmund [5] has introduced the following method of summation. Let $\sum_{n=1}^{\infty} a_{n}$ be a given. series. If

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \frac{2}{\pi} \sum_{n=1}^{\infty} a_{n} \int_{\infty}^{\pi} \frac{\sin n t}{2 \operatorname{tg} t / 2} d t=s \tag{1}
\end{equation*}
$$

the series being supposed to be convergent, then the series $\sum_{n=1}^{\infty} a_{n}$ is said to be $(K, 1)$ summable to $s$. And, if

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \frac{2}{\pi} \sum_{n=1}^{\infty} a_{n} \int_{\alpha}^{\pi} \frac{\sin ^{2} n t / 2}{n \sin ^{2} t / 2} d t=s, \tag{2}
\end{equation*}
$$

the series being supposed to be convergent, the series $\sum_{n=1}^{\infty} a_{n}$ is said to be $(K, 2)$ summable. In this part we find necessary and sufficient conditions for ( $K, 1$ )- and ( $K, 2$ )-summabilities of Fourier series and get the relations between these and the Riemann summabilities.
§ 2. Let us put

$$
s_{0} \equiv 0, \quad s_{n} \equiv \sum_{k=1}^{n} a_{k}, \quad s_{n}^{*} \equiv s_{n}-\frac{a_{n}}{2} .
$$

Then

$$
\begin{aligned}
& \sum_{n=1}^{N} a_{n} \int_{a}^{\pi} \frac{\sin n t}{2 \operatorname{tg} t / 2} d t=\sum_{n=1}^{N}\left(s_{n}-s_{n-1}\right) \int_{a}^{\pi} \frac{\sin n t}{2 \operatorname{tg} t / 2} d t \\
& \quad=-\sum_{n=1}^{N-1} s_{n} \int_{\alpha}^{\pi_{\sin } n t-\sin (n+1) t} \\
& \quad=\frac{1}{2} \sum_{n=1}^{N-1} s_{n}\left[\frac{\sin n \alpha}{n}+\frac{\sin (n+1) \alpha}{n+1}\right]+s_{N} \int_{\alpha}^{\pi} \frac{\sin N t}{2 \operatorname{tg} t / 2} d t \\
& \quad=\sum_{n-1}^{N-1} s_{n} * \frac{\sin n \alpha}{n}+s_{N} \int_{\alpha}^{\pi \sin N t} \frac{\sin ^{2}(N-1 / 2) t}{2 \tan t / 2} d t
\end{aligned}
$$

If we suppase that $s_{N}=o(N)$, then the sum in (1) becomes

$$
\sum_{n=1}^{\infty} s_{n} * \frac{\sin n \alpha}{n}
$$

Moreover, when

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \frac{\sin n \alpha}{n} \tag{3}
\end{equation*}
$$

converges and tends to zero as $\alpha \rightarrow 0$, (1) equals to

$$
\lim _{\alpha \rightarrow 0} \sum_{n=1}^{\infty} s_{n} \frac{\sin n \alpha}{n}
$$

Thus we get
Theorem 1. If $s_{n}=o(n)$ and (3) converges and tends to zero as $\alpha \rightarrow 0$, then the series summable $(K, 1)$ is $\left(R_{1}\right)$ summable and conversely.

It is known that there is a series summable $\left(R_{1}\right)$ and (3) diverges for a null sequence $\left(\boldsymbol{\alpha}_{i}\right)$, and conversely, whence there is a sequence $\left(R_{1}\right)$ summable but not ( $K, 1$ ) summable, and conversely.

Let us consider an integrable function $f(t)$ and its Fourier serios

$$
f(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)
$$

We can suppose $a_{0}=0$ and $b_{n}=0 \quad(n=1,2, \ldots)$ without loss of generality. Then the partial sum $s_{n}=o(n)$ and the series

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{u} \sin n \alpha
$$

converges and tends to zero as $\alpha \rightarrow 0$. Thus, by Theorem 1, we get
Theorem 2. For Fourier series, the ( $K, 1$ ) summability is equivalent to the $\left(R_{1}\right)$ summability.

For Fourier series $\left(R_{1}\right)$-and $(R, 1)$-summabilities are mutually exclusive [7], whence $(K, 1)$-and $(R, 1)$-summabilities are also. After Hardy and Rogosinski [7] we get the following theorem.

Theorem 3. The Fourier serie of $f(t)$ is ( $K$. 1) summable to $f(x)$ at $t=x$ if and only if

$$
\int_{\rightarrow 0}^{\pi} \frac{d t}{t} \int_{|h-t|}^{h+t} \frac{\phi(x, u)}{\operatorname{tg} u / 2} d u \rightarrow 0 \quad(h \rightarrow 0)
$$

where $\phi(x, u)=f(x+u)+f(x-u)-2 f(x)$.
Theoriem 4. Let $f_{\varepsilon} L^{p}(p>1)$. The necessary and sufficient condition that the Fourier series of $f(t)$ is $(K, 1)$ summable at $t=x$, is the existence of the integral

$$
\begin{equation*}
\int_{\rightarrow 0}^{\pi} \frac{\bar{f}(x+v)-\bar{f}(x-v)}{v} d v \tag{4}
\end{equation*}
$$

where $\bar{f}(t)$ is the conjugate function of $f(t)$.
We will now give a direct proof of the last theorem. Let the Fourier series of $f(t)$ be

$$
f(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{n=0}^{\infty} A_{n}(x)
$$

We can suppose that $a_{0} \equiv A_{0} \equiv 0$ : We have

$$
A_{n}(x)=\frac{1}{\pi} \int_{0}^{2 \pi} f(x+u) \cos n u d u
$$

Hence

$$
\begin{aligned}
S & \equiv \frac{2}{\pi} \sum_{n=1}^{\infty} A_{n}(x) \int_{a}^{\pi} \frac{\sin n t}{2 \operatorname{tg} t / 2} d t \\
& =\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \int_{0}^{22 \pi} f(x+u) \cos n u d u \int_{\alpha}^{\pi} \frac{\sin n t}{2 \operatorname{tg} t / 2} d t \\
& =\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \int_{\infty}^{2 \pi} f(x+u) d u \int_{\alpha}^{n} \frac{\cos n u \sin n t}{2 \operatorname{tg} t / 2} d t .
\end{aligned}
$$

Let $s_{n}^{*}$ be the modified partial fum of $S$ [6]. Then

If we put

$$
\begin{aligned}
S_{n}^{*}= & \frac{2}{\pi^{2}} \sum_{k=1}^{n} \int_{0}^{2 n} f(x+u) d u \int_{\alpha}^{\pi} \frac{\sin k t \cos k u}{2 \operatorname{tg} t / 2} d t \\
= & \frac{2}{\pi^{2}} \int_{0}^{2 \pi} f(x+u) d u \int_{\alpha}^{\pi}\left\{\sum_{k=1}^{n} * \sin k t \cos k u\right\} \frac{d t}{2 \operatorname{tg} t / 2} \\
= & \frac{2}{\pi^{2}} \int_{0}^{2 \pi} f(x+u) d u \int_{\alpha}^{\pi} \frac{1-\cos n(t-u)}{2 \operatorname{tg}(t-u) / 2} \frac{d t}{2 \operatorname{tg} t / 2} \\
& +\frac{2}{\pi^{2}} \int_{0}^{2 \pi} f(x+u) d u \int_{\alpha}^{\pi} \frac{1-\cos n(t+u)}{2 \operatorname{tg}(t+u) / 2} \frac{d t}{2 \operatorname{tg} t / 2^{\circ}}
\end{aligned}
$$

$$
\begin{aligned}
g(t) & \equiv \cot t / 2 & \text { in } \quad(\alpha, \pi), \\
& \equiv 0 & \text { in } \quad(-\pi, \alpha)
\end{aligned}
$$

and $g(t) \equiv g(t+2 \pi)$ for all $t$. Then the inner integrals of the last double integrals converge to the conjugate function at $t=u$ and $t=-u$, respectively. By $f_{\varepsilon} L^{p}$,

$$
S=\lim _{n \rightarrow \infty} S_{n}^{*}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\dot{x}+u) d u \int_{0}^{\pi}[\psi(u, t)+\psi(-u, t)] \frac{d t}{2 \operatorname{tg} t / 2}
$$

where the inner integral is taken in the Lebesgue sense and $\psi(u, t)$ $=g(u-t)-g(u+t)[6]$.

Now, let $D_{\alpha}$ be the domain in $(0, \pi ; 0,2 \pi)$ such that

$$
|u-v|>2 \alpha, 2 \pi-(u+v)>2 \alpha
$$

Then we have, by an easy calcutation,

$$
\begin{aligned}
S & =\frac{1}{\pi} \int_{D_{\alpha}} \int f(x+u) \frac{\cos t / 2}{\sin \frac{u-t}{2} \sin \frac{u+t}{2}} d t d u+o(1) \\
& =\frac{1}{\pi} \int_{D_{\alpha}} \int f(x+v+w) \frac{\cos (v+w) / 4}{\sin \frac{v}{2} \sin \frac{w}{2}} d v d w+o(1)
\end{aligned}
$$

By $D_{\alpha, \beta}$ we denote the domain in $(0, \pi ; 0,2 \pi)$ such that

$$
|u-v|>2 \alpha,|2 \pi-(u+\dot{v})|>2 \beta
$$

For the existence of the limit $\lim _{\alpha \rightarrow 0} S$, it is necessary and sufficient that the limit

$$
\begin{equation*}
\lim _{\alpha, \beta \rightarrow 0} \int_{\alpha}^{\pi} \frac{d v}{\sin \frac{v}{4}} \int_{\beta}^{\pi} \frac{\psi(x+v, w)}{\sin \frac{w}{4}} d w \tag{5}
\end{equation*}
$$

exists. Since by the hypothesis we can invert the integral of $v$ and $\lim _{\beta \rightarrow 0}$, (5) is equivalent to

$$
\lim _{\alpha \rightarrow 0} \int_{\alpha}^{\pi} \frac{f(x+v)-\bar{f}(x-v)}{\sin \frac{v}{4}} d v
$$

Thus the theorem is proved.
§3. Theorem 5. If the integral

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(x+t) \log ^{+} \frac{1}{t} d t \tag{6}
\end{equation*}
$$

converges, then the necessary and sufficient condition that the Fourier series of $f(t)$ is sumniable $(K, 2)$ at $t=x$; is that the integral.

$$
\begin{equation*}
\int_{\rightarrow 0}^{\pi} \frac{d t}{t^{2}} \int_{0}^{\pi} \varphi(x+u, t) \log \left(\frac{1}{2 \sin \frac{u}{2}}\right) d u \tag{7}
\end{equation*}
$$

converges, where

$$
\varphi(x, t)=f(x+t)+f(x-t)-2 f(x)
$$

Proof. Using the notations in the proof of Theorem 1 and putting

$$
S \equiv \frac{2}{\pi} \sum_{n=1}^{\infty} A_{n}(x) \int_{\alpha}^{\pi} \frac{\sin ^{2} n t / 2}{n \sin ^{2} t / 2} d t
$$

wo have

$$
\begin{aligned}
S & =\frac{2}{\pi} \sum_{n=1}^{\infty} \int_{0}^{2 \pi} f(x+u) \cos n u d u \int_{a}^{\pi} \frac{\sin ^{2} n t / 2}{n \sin ^{2} t / 2} d t \\
& =\frac{2}{\pi} \sum_{n=1}^{\infty} \int_{0}^{2 \pi} f(x+u) d u \int_{\infty}^{n} \frac{\cos n u \sin ^{2} n t / 2}{n \sin ^{2} t / 2} d t .
\end{aligned}
$$

Let $S_{n}$ be the $n$-th partial sum of $S$. Then

$$
S_{n}=\frac{2}{\pi} \int^{2 \pi} f(x+u) d u \int_{\alpha}^{\pi}\left\{\sum_{k=1}^{n} \frac{\cos k u \sin ^{2} n t / 2}{k \sin ^{2} t / 2}\right\} d t
$$

Now

$$
\begin{aligned}
\cos k u \sin ^{2} k t / 2 & =\cos k u(1-\cos k t) / 2 \\
& =\{2 \cos k u-\cos k(u-t)-\cos k(u+t)\} / 4 .
\end{aligned}
$$

and, for $0<t<2 \pi$,

$$
\begin{gathered}
\sum_{k=1}^{\cos k t} \frac{k}{k}=-\log \left(2 \sin \frac{t}{2}\right) \\
\left|\sum_{k-1}^{n} \frac{\cos k t}{k}\right|<A\left(1+\log ^{+} \frac{1}{t}+\log ^{+} \frac{t}{2 \pi-t}\right)
\end{gathered}
$$

where $A$ is an absolute constant ${ }^{3}$. Thus (6) and (7) give us

$$
\begin{array}{r}
S=\lim _{n \rightarrow \infty} S_{n}=\frac{2}{\pi} \int_{\alpha}^{\pi} \frac{d t}{\sin ^{2} t / 2} \int_{\alpha}^{2 \pi} f(x+u) \cdot\left[-\log \left(2 \sin \frac{u}{2}\right)\right. \\
\left.\quad+\log \left(2\left|\sin \frac{u-t}{2}\right|\right)+\log \left(2\left|\sin \frac{u-t}{2}\right|\right)\right] d u \\
=\frac{2}{\pi} \int_{\alpha}^{\pi} \frac{d t}{\sin ^{2} t / 2} \int_{0}^{2 \pi}[f(x+u+t)+f(x+u-t) \\
\quad-2 f(x+u)] \log \left(2 \sin \frac{u}{2}\right) d u
\end{array}
$$

Thus the theorem is proved.
The necessary and sufficient condition for $\left(R_{2}\right)$ summability is

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \int_{\rightarrow 0}^{\pi} \frac{\varphi_{1}(x, t)}{t^{2}} \log \left|\frac{t+\alpha}{t-\alpha}\right| d t=0 \tag{8}
\end{equation*}
$$

where $\varphi_{1}(x, t)=\int_{0}^{t} \varphi(x, u) d u^{3}$. Since (7) and (8) are exclusive, $(K, 2)$ and $\left(R_{2}\right)$-summabilities are exclusive.

## Part III. Cesàro summability theorems.

§ 1. Let $\phi(t)$ be an even periodic function with Fourier series

$$
\begin{equation*}
\phi(t)-\sum_{n=0}^{\infty} a_{n} \cos n t, \quad a_{0}=0 \tag{1.1}
\end{equation*}
$$

The $\alpha$-th integral of $\phi(t)$ is defined by

$$
\Phi_{a}(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \phi(u)(t-u)^{\alpha-1} d u \quad(\alpha>0)
$$

and the $\beta$-th Cesaro sum of (1.1) is defined by $s_{n}^{\beta}(\beta>-1)$. Especially we put $s_{n}^{0} \equiv s_{n}$.
L. S. Bosanquet [8] has proved that
implies

$$
\Phi_{\boldsymbol{\beta}}(t)=o\left(t^{\beta}\right) \quad(t \rightarrow 0)
$$

(1. 2)

$$
s_{n}^{\alpha}=o\left(n^{\alpha}\right) \quad(n \rightarrow \infty)
$$

for $\alpha>\beta$, and conversely

$$
s_{n}^{\boldsymbol{s}}=o\left(n^{\beta}\right) \quad(n \rightarrow \infty)
$$

implies

$$
\begin{equation*}
\Phi_{\alpha}(t)=o\left(t^{\alpha}\right) \quad(t \rightarrow 0) \tag{1.3}
\end{equation*}
$$

for $\alpha>\beta+1$. This paper concerns the converse part of the Bosanquet theorem. Recently Hyslop [9] and the author [10] proved, that, if

$$
\begin{equation*}
s_{n}^{s}=o\left(n^{\gamma}\right) \quad(n \rightarrow \infty) \tag{1.4}
\end{equation*}
$$

for $\beta>\gamma>0$, then

$$
\begin{equation*}
\Phi_{\alpha}(t)=o\left(t^{\alpha+\beta-\gamma}\right) \quad(t \rightarrow 0) \tag{1.5}
\end{equation*}
$$

for $\alpha>1+\gamma$.
Naturally it is required to find such $\alpha$ that (1.3) holds under the hypothesis (1.4). The solution is given by

$$
\alpha \geqq(\beta+1) /(\beta-\gamma+1)
$$

This is proved in Theorem 1.
Secondly we treat the case (1.4) with some Tauberian condition. The theorem of this type was considered by Loo [11]. Tauberian condition used by him is

$$
\begin{equation*}
a_{n}=O\left(1 / n^{1-\delta}\right) \quad(n \rightarrow \infty) \tag{1.6}
\end{equation*}
$$

for $0<\delta<1$. Besides this we use a weaker one such as

$$
\begin{equation*}
s_{n}^{-\delta}=O(1) \quad(n \rightarrow \infty) \tag{1.7}
\end{equation*}
$$

We prove in Theorem 2 that (1.4) and (1.7) imply (1.3) for

$$
\alpha \geqq 1+\gamma \delta /(\beta-\gamma+\delta)
$$

and in Theorem 3 that (1.4) and (1.6) imply (1.3) for

$$
\alpha \geqq \gamma(\beta+1) /(\beta-\gamma+\delta)
$$

In the latter case we need some restriction concerning $\beta, \gamma$ and $\delta$. These theorems imply Loo's theorems as special case.

In the proof we do not use Young functions, which were always used to prove theorems in this direction, but we use a method in the former paper. This method makes also easy the proof of the converse part of the Bosanquet theorem stated above.
§ 2. Theorem 1 . If
(2.1) $\quad s_{n}^{B}=o\left(n^{\gamma}\right) \quad(n \rightarrow \infty)$.
for $\beta>\gamma>0$, then

$$
\begin{equation*}
\Phi_{\alpha}(t)=o\left(t^{\alpha}\right) \quad(t \rightarrow 0) \tag{2.2}
\end{equation*}
$$

for $\alpha \geqq(\beta+1) /(\beta-\gamma+1)$.
Proof. Let $\alpha \equiv(\beta+1) /(\beta-\gamma+1)$ and we will prove (2.2) for such $\alpha$. Then $1<\alpha<1+\gamma$. We distinguish sevearl cases, and begin by the case $1<\alpha<2$.

$$
\begin{aligned}
\Gamma(\alpha) \Phi_{\alpha}(t) & =\int_{0}^{t} \varphi(u)(t-u)^{\alpha-1} d u \\
& =\sum_{n=0}^{\infty} a_{n} \int_{0}^{t} \cos n u(t-u)^{\alpha-1} d u=\sum_{n=0}^{\infty} s_{n} \int_{0}^{t} \Delta \cos n u(t-u)^{\alpha-1} d u \\
& =\sum_{n=0}^{M}+\sum_{n=M+1}^{\infty} \equiv I+J
\end{aligned}
$$

say, where $\Delta \cos n u=\cos n u-\cos (n+1) u$ and $M$ will be determined later. By the well known formula

$$
s_{n}=\sum_{\nu=0}^{n}(-1)^{n-\nu}\binom{\beta}{n-\nu} s_{\nu}^{\beta}
$$

we have

$$
\begin{align*}
I & =\sum_{n=0}^{M} s_{n} \int_{0}^{t} \Delta \cos n u(t-u)^{\alpha-1} d u \\
& =\sum_{n=0}^{M} \int_{0}^{t} \Delta \cos n u(t-u)^{\alpha-1} d u \sum_{\nu=0}^{n}(-1)^{n-\nu}\left(\frac{\beta}{n-\nu}\right) s_{\nu}^{\beta}  \tag{2.3}\\
& =\sum_{n=0}^{M} s_{\nu}^{\beta} \int_{0}^{i}\left\{\sum_{n=\nu}^{M}(-1)^{n-\nu}\binom{\beta-\nu}{n-\nu} \Delta \cos n u\right\}(t-u)^{\alpha-1} d u .
\end{align*}
$$

The inner sum is

$$
\begin{gathered}
\sum_{n=\nu}^{M}(-1)^{n-\nu}\binom{\beta}{n-\nu} \Delta \cos n u=2^{\beta+1}\left(\sin \frac{u}{2}\right)^{\beta+1} \cos \left(\left(\nu+\frac{\beta+1}{2}\right) u+\frac{\beta+1}{2} \pi\right) \\
\quad-\sum_{m=M-\nu+1}^{\infty}(-1)^{m}\binom{\beta}{m} \Delta \cos (m+\nu) u \equiv K_{1}(u)-K_{2}(u)
\end{gathered}
$$

say. Let us decompose $I$ in (2.3) such that

$$
I=\sum_{\nu=0}^{M}=\sum_{\nu=0}^{N}+\sum_{\nu=N+1}^{M} \equiv I_{1}+I_{2}
$$

and $I_{1}$ and $I_{2}$ such that

$$
\begin{gathered}
I_{1}=\sum_{\nu=0}^{N} s_{\nu}^{\beta} \int_{0}^{t} K_{1}(u)(t-u)^{\alpha-1} d u+\sum_{\nu=0}^{N} s_{\nu}^{\beta} \int_{0}^{t} K_{2}(u)(t-u)^{\alpha-1} d u \\
\quad \equiv I_{1}^{\prime}+I_{1}^{\prime \prime} \\
\begin{array}{r}
I_{2}=\sum_{\nu=N+1}^{M} s_{\nu}^{\beta} \int_{0}^{t} K_{1}(u)(t-u)^{\alpha-1} d u+\sum_{\nu=N+1}^{M} s_{v}^{\beta:} \int_{0}^{t} K_{2}(u)(t-u)^{\alpha-1} d u \\
\\
\equiv I_{2}^{\prime}+I_{2}^{\prime \prime} .
\end{array}
\end{gathered}
$$

Since

$$
\int_{0}^{t}\left(\sin \frac{u}{2}\right)^{\beta+1} \cos ((\nu+\lambda) u+\lambda \pi)(t-u)^{\alpha-1} d u=O\left(t^{\alpha+\beta+1}\right)
$$

we have

$$
I_{1}^{\prime}=o\left(\sum_{\nu=0}^{N} \nu^{\gamma} \cdot t^{\alpha+\beta+1}\right)=0\left(N^{\gamma+1} \cdot t^{\alpha+\beta+1}\right)
$$

which is $o\left(t^{\alpha}\right)$, when

$$
\begin{equation*}
N \equiv\left[1 / t^{(\beta+1)(\gamma+1)}\right] . \tag{2.4}
\end{equation*}
$$

By

$$
\int_{0}^{t} \Delta \cos (m+\nu) u(t-u)^{\alpha-1} d u=O\left(\frac{t^{\alpha}}{m+\nu}\right)
$$

we have

$$
\begin{aligned}
I_{1}^{\prime \prime} & =\sum_{\nu=0}^{N} s_{\nu}^{\beta} \sum_{m=M-\nu+1}^{\infty}(-\mathbf{I})^{m}\binom{\beta}{m} \int_{0}^{t} \Delta \cos (m+\nu) u(t-u)^{\alpha-1} d u \\
& =o\left(\sum_{\nu=0}^{N} \nu^{\gamma} \sum_{m=M-\nu+1}^{\infty} \frac{t^{\alpha}}{m^{\beta+1}(m+\nu)}\right) \\
& =o\left(\frac{t^{\alpha}}{M} \sum_{\nu=0}^{N} \frac{\nu^{\nu}}{(M-\nu+1)^{\beta}}\right)=o\left(t^{\alpha} \frac{N^{\gamma+1}}{M^{\beta+1}}\right)=o\left(t^{\alpha}\right)
\end{aligned}
$$

if $M \geqq 2 N$. Thus we have $I_{1}^{\prime \prime}=o\left(t^{\alpha}\right)$, whence $I_{1}=I_{1}^{\prime}-I_{1}^{\prime \prime}=o\left(t^{\alpha}\right)$.
In order to estimate $I_{2}$, putting $\lambda \equiv(\beta+1) / 2$ and using the Lebesgue's device, we obtain

$$
\begin{align*}
& \int_{0}^{t}\left(\sin \frac{u}{2}\right)^{\beta+1} \cos ((\nu+\lambda) u+\lambda \pi)(t-u)^{\alpha-1} d u  \tag{2.5}\\
& =\frac{1}{2}\left\{\int_{0}^{t}\left(\sin \frac{u}{2}\right)^{\beta+1} \cos ((\nu+\lambda) u+\lambda \pi)(t-u)^{\alpha-1} d u\right. \\
& \\
& \quad-\int_{\pi(\nu+\lambda)}^{t+\pi /(\nu+\lambda)}\left(\sin \frac{1}{2}\left(u+\frac{\pi}{v+\lambda}\right)\right)^{\beta+1} \cos ((v+\lambda) u
\end{align*}
$$

$$
\begin{aligned}
& \left.\quad+\lambda \pi)\left(t-u-\frac{\pi}{\nu+\lambda}\right)^{\alpha-1} d u\right\} \\
& =\frac{1}{2}\left\{\int_{0}^{\pi /(\nu+\lambda)}+\int_{\pi(\nu+i)}^{i}+\int_{t}^{+\pi i(\nu+\lambda)}\right\} \\
& =O\left(\frac{t^{\beta+1}}{\nu^{\alpha}}+\frac{t^{\alpha+\beta-1}}{\nu^{2}}+\frac{t^{\alpha-1}}{\nu^{\beta+1}}\right)=O\left(\frac{t^{\beta+1}}{\nu^{\alpha}}\right)
\end{aligned}
$$

for $\nu t \geqq 1$. Honco

$$
\begin{aligned}
I_{z}^{\prime} & =\sum_{\nu=N+1}^{M} s_{\nu}^{s} \int_{0}^{t}\left(\sin \frac{u}{2}\right)^{\beta+1} \cos ((\nu+\lambda) u+\lambda \pi)(t-u)^{\alpha-1} d u \\
& =o\left(\sum_{\nu=N+1}^{M} \nu^{\delta} \frac{\delta^{\beta+1}}{\nu^{\alpha}}\right)=o\left(t^{\beta+1} M^{\gamma+1-\alpha}\right)
\end{aligned}
$$

which is $o\left(t^{\alpha}\right)$, if

$$
\begin{equation*}
M \leqq 1 / t^{(\beta+1-\alpha) /(\gamma+1-\alpha)} \tag{2.6}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
\int_{0}^{t} \Delta \cos n u(t-u)^{\alpha+1} d u & =2 \int_{0}^{t} \frac{u}{2} \cos \left(n+\frac{1}{2}\right) u(t-u)^{\alpha-1} d u \\
& =O\left(t / n^{\alpha}\right)
\end{aligned}
$$

for $n t \geqq 1$, and then

$$
\begin{align*}
I_{2}^{\prime \prime} & =\sum_{\nu=N+1}^{M} s_{\nu}^{\beta} \int_{0}^{t}\left\{\sum_{m=M-\nu+1}^{\infty}(-1)^{m}\binom{\beta}{m} \Delta \cos (m+\nu) u\right\}(t-u)^{\alpha-1} d u  \tag{2.7}\\
& =o\left(\sum_{\nu=N+1}^{M} \nu^{\gamma} \sum_{m=M-\nu+1}^{\infty} \frac{t}{m^{\beta+1}(m+\nu)^{\alpha}}\right) \\
& =o\left(\sum_{\nu=N+1}^{M} \nu^{\gamma} \cdot \frac{t}{M^{\alpha}(M-\nu+1)^{\beta}}\right)=o\left(\frac{t}{M^{\alpha+\beta-\gamma-1}}\right)
\end{align*}
$$

for $0<\beta<1$, which is $o\left(t^{\alpha}\right)$, if

$$
\begin{equation*}
M \geqq 1 / t^{(\alpha-1) /(\alpha-1+(\beta-\gamma))} \tag{2.8}
\end{equation*}
$$

Thus $I_{2}=I_{2}^{\prime}-I_{2}^{\prime \prime}=o\left(t^{\alpha}\right)$ when the conditions (2.6) and (2.7) are satisfied. Finally

$$
\begin{aligned}
J & =\sum_{n=M+1}^{\infty} s_{n} \int_{0}^{t} \Delta \cos n u(t-u)^{\alpha-1} d u \\
& =o\left(\sum_{n=M+1}^{\infty} n^{\gamma /(\beta+1)} \cdot \frac{t}{n^{\alpha}}\right)=o\left(t / M^{\alpha-1-\gamma /(\beta+1)}\right)
\end{aligned}
$$

which is $o\left(t^{\alpha}\right)$, if

$$
\begin{equation*}
M \geqq 1 / t^{(\alpha-1) /(\alpha-1-\gamma /(\beta+1))} \tag{2.9}
\end{equation*}
$$

By $\alpha=(\beta+1) /(\beta-\gamma+1)$,

$$
\frac{\beta+1-\alpha}{\gamma+1-\alpha}=\frac{\alpha-1}{\alpha-1-\gamma /(\beta+1)} \geqq \frac{\alpha-1}{\alpha-1+(\beta-\gamma)} .
$$

Hence the conditions (2.6), (2.8) and (2.9) are consistent, and it is sufficient to take $M$ such as

$$
M=\left[1 / t^{(\beta+1-\alpha) /(\gamma+1-\alpha)}\right]=\left[1 / t^{(\beta+1) / \gamma}\right],
$$

which is sufficiently larger than $N$. Thus the theorem is proved for the case $1<\alpha<2$ and $0<\beta<1$.
§ 3. Let us now consider the case $1<\alpha<2$ and $1<\beta<2$. It is enough to estimate $I_{2}$ only. Using the Abel lemma in the inner sum in (2.7)

$$
\begin{align*}
I_{2}^{\prime \prime}= & \sum_{\nu=N+1}^{M} s_{\nu}^{\beta} \int_{0}^{t}\left\{\sum_{m=M-\nu+1}^{\infty}(-1)^{m}\binom{\beta-1}{m} \Delta^{2} \cos (m+\nu) u\right\}(t-u)^{\alpha-1} d u  \tag{5.1}\\
& -\sum_{\nu=N+1}^{M}(-1)^{M-\nu_{s_{\nu}^{s}}^{\beta}}\binom{\beta-1}{M-\nu} \int_{0}^{t} \Delta \cos (M+1) u(t-u)^{\alpha-1} d u \\
& \equiv i_{1}-i_{2}
\end{align*}
$$

say, where $\Delta^{2} \cos n u=\Delta(\Delta \cos n u)=4\left(\sin \frac{u}{2}\right)^{2} \cos (n+1) u$.
Now

$$
\begin{aligned}
i_{1} & =o\left(\sum_{\nu=N+1}^{M} \nu^{\nu} \sum_{m=M-\nu+1}^{\infty} \frac{t^{2}}{m^{\beta}(m+\nu)^{\alpha}}\right) \\
& =o\left(\sum_{\nu=N+1}^{M} \nu^{\nu} \frac{t^{2}}{(M-\nu+1)^{\beta-1} M^{\alpha}}\right)=o\left(\frac{t^{2}}{M^{\alpha+\beta-\delta-2}}\right),
\end{aligned}
$$

which is evidently $o\left(t^{\alpha}\right)$ if $\alpha+\beta-\gamma-2 \geqq 0$. If $\alpha+\beta+\gamma-2 \leqq 0$, it is sufficient that

$$
\begin{equation*}
M \leqq 1 / t^{(2-\alpha) /(2-\alpha-(\beta-\gamma))} \tag{3.2}
\end{equation*}
$$

Since $M$ is taken such that

$$
M=\left[1 / t^{(\beta+1) / \gamma}\right] \fallingdotseq\left[1 / t^{\alpha /(\alpha+1)}\right]
$$

(3.2) is satisfied when $2 /(1+\beta) \leqq 1$, which is the case for $1<\beta<2$.

Secondly, if we use the Abel lemma in $\dot{i}_{2}$ again, then

$$
\begin{aligned}
i_{2}= & \left\{-\sum_{\nu=N+1}^{M} s_{\nu}^{\beta-1}(-1)^{M-\nu}\binom{\beta-2}{M-\nu}\right. \\
& \left.+s_{N+1}^{\beta}(-1)^{M-N+1}(M-N+1)\right\} \cdot \int_{0}^{t} \Delta \cos (M+1) u(t-u)^{\alpha-1} d u \\
= & o\left(\left\{\sum_{\nu=N^{+1}}^{M} \frac{\nu^{\gamma \beta \beta(\beta+1)}}{(M-\nu)^{\beta-1}}+\frac{N^{\gamma}}{M^{\beta-1}}\right) \frac{t}{M^{\alpha}}\right) \\
= & o\left(\frac{t}{M^{\alpha+\beta-\beta \gamma}(\beta+2)-2}+\frac{t^{1-\gamma(\beta+1)(\gamma+1)}}{M^{\alpha+\beta-1}}\right)
\end{aligned}
$$

where $\alpha+\beta-\gamma \beta /(\beta+1)-2>0$ by $\alpha<2$. Thus $i_{2}=o\left(i^{\alpha}\right)$ when

$$
\begin{equation*}
M \geqq 1 / t^{((\alpha-1) /(\alpha+\beta-\xi \beta ;(\beta+1)-2)} \tag{3.3}
\end{equation*}
$$

and

$$
M \geqq 1 / t^{(\alpha-1)+\gamma(\beta+1)(\gamma+1)) \cdot(\alpha-\beta-1)}
$$

These are easily verified. Thus the thoorom is proved in the considering case.

Let us proceed to the caso $1<\alpha<2$ and $2<\beta<3$. We use the Abel lemma in (3.1) again. Using it in $i_{\downarrow}$,

$$
\begin{aligned}
i_{1}= & \sum_{\nu=N+1}^{M} s_{\nu}^{\beta} \int_{0}^{t}\left\{\sum_{m=M-\nu+1}^{\infty}(-1)^{m}(\beta-2) \Delta^{3} \cos (m+\nu) u\right\}(t-u)^{\alpha-1} d u \\
& -\sum_{\nu=N^{\prime}+1}^{M} s_{\nu}^{\beta}(-1)^{M-\nu}\binom{\beta-1}{M-\nu} \int_{0}^{t} \Delta^{3} \cos (m+\nu) u(t-u)^{\alpha-1} d u \\
& \equiv j_{1}-j_{2},
\end{aligned}
$$

say, where $\Delta^{3} \cos n u=\Delta\left(\Delta^{2} \cdot \cos n u\right)=2^{3}\left(\frac{u}{2}\right)^{3} \cos \left(n+\frac{3}{2}\right) u$. Similarly as $i_{1}$ in the former case

$$
\left.\begin{array}{rl}
j_{1} & =o\left(\sum_{\nu=N+1}^{M} \nu^{\nu} \sum_{m=M-\nu+1}^{\infty} \frac{t^{3}}{\beta-1}(m+\nu)^{\alpha}\right.
\end{array}\right)
$$

which is evidently $o\left(t^{\alpha}\right)$ if $\alpha+\beta-\gamma-3 \geqq 0$. If $\alpha+\beta-\gamma-3 \leqq 0$, it is sufficient that

$$
\begin{equation*}
M \leqq 1 / t^{(3-\alpha)(3-\alpha-(\beta-\gamma))} \tag{3.5}
\end{equation*}
$$

This is satisfied when $3 /(\beta+1) \leqq 1$, which is the case. In $j_{2}$ we use the Abel lemma once. Then we get the required estimation. Concerning $i_{2}$, it is sufficient to use the Abel lemma twice. Thus the theorem is proved for the case $1<\alpha<2$ and $2<\beta<3$.

Thus proceeding we can complete the proof of the theorem for the case $1<\alpha<2$, since the integral case of $\alpha$ is trivial.
§4. Let us consider the case $2<\alpha<3$. In this case $\beta>1$. We have

$$
\begin{aligned}
\Gamma(\alpha) \Phi_{\alpha}(t) & =\int_{0}^{t} \phi(u)(t-u)^{\alpha-1} d u \\
& =\sum_{n=0}^{\infty} s_{n} \int_{0}^{t} \Delta \cos n u(t-u)^{\alpha-1} d u \\
& =\sum_{n=0}^{\infty} s_{n}^{1} \int_{0}^{t} \Delta^{2} \cos n u(t-u)^{\alpha-1} d u \\
& =\sum_{n=0}^{M}+\sum_{n=M+1}^{\infty} \equiv I+J
\end{aligned}
$$

say. By the formula

$$
s_{n}^{1}=\sum_{\nu=0}^{n}(-1)^{n-\nu}\binom{\beta-1}{n-\nu} s_{\nu}^{\beta},
$$

we have

$$
I=\sum_{n=0}^{M} s_{\nu}^{\beta} \int_{0}^{i}\left\{\sum_{n=\nu}^{M}(-1)^{n-\nu}\binom{\beta-1}{n-\nu} \Delta^{2} \cos n u\right\}(t-u)^{\alpha-1} d u
$$

where the inner sum is

$$
\begin{aligned}
& \sum_{n=\nu}^{M}(-1)^{n-\nu}\binom{\beta-1}{n-\nu} \Delta^{2} \cos n u=2^{\beta+1}\left(\sin \frac{u}{2}\right)^{\beta+1} \cos \left(\left(v+\frac{\beta+1}{2}\right) u+\frac{\beta+1}{2} \pi\right) \\
& -2 \sum_{m=M-\nu+1}^{\infty}(-1)^{m}(\beta-1) \Delta^{2} \cos (m+\nu) u,
\end{aligned}
$$

say. Hence, similarly as in $\S 2$, we decompose $I$ such that

$$
I=I_{1}+I_{2}=\left(I_{1}^{\prime}+I_{1}^{\prime \prime}\right)+\left(I_{2}^{\prime}+I_{2}^{\prime \prime}\right)
$$

Defining $N$ by (1.4), $I_{1}^{\prime}=o\left(t^{\alpha}\right)$ and

$$
\begin{aligned}
I_{1}^{\prime \prime} & =o\left(\sum_{\nu=0}^{N} \nu^{\gamma} \sum_{m=M-\nu+1}^{\infty} \frac{t^{\alpha+1}}{m^{\beta}(m+\nu)}\right) \\
& =o\left(\frac{t^{\alpha+1}}{M} \sum_{\nu=0}^{N} \frac{\nu^{\nu}}{(M-\nu+1)^{\beta-1}}\right) \\
& =o\left(t^{\alpha+1} N^{\gamma+1} / M^{\beta}\right)=o\left(t^{\alpha}\right) .
\end{aligned}
$$

Now, by the twice application of Lebesgue's device, we get

$$
\begin{aligned}
\int_{0}^{t}\left(\sin \frac{u}{2}\right)^{\beta+1} \cos ((\nu & +\lambda) u+\lambda \pi)(t-u)^{\alpha-1} d u \\
& =O\left(\frac{t^{\beta+1}}{\nu^{\alpha}}+\frac{t^{\alpha+\beta-2}}{\nu^{3}}+\frac{t^{\alpha-1}}{\nu^{\beta+2}}\right)=O\left(\frac{t^{\beta-1}}{\nu^{\alpha}}\right)
\end{aligned}
$$

for $\nu t \geqq 1$. Thus, if the condition (2.6) is satisfied, then we obtain $I_{2}^{\prime}=o\left(t^{\alpha}\right)$.

$$
I_{2}^{\prime \prime}=\sum_{\nu=N+1}^{M} s_{\nu}^{\beta} \int_{0}^{t}\left\{\sum_{m=M-\nu+1}^{\infty}(-1)^{m}(\beta-1) \Delta^{2} \cos (m+\nu) u\right\}(t-u)^{\alpha-1} d u
$$

may be esitimated similarly as the case $1<\alpha<2$, dividing the cases $n<\beta<n+1(n=1,2, \ldots)$.

Finally

$$
\begin{aligned}
J & =\sum_{n=M+1}^{\infty} s_{n}^{1} \int_{0}^{t} \Delta^{2} \cos n u(t-u)^{\alpha-1} d u \\
& =o\left(\sum_{n=M+1}^{\infty} n^{s \gamma /(\beta+1)} \frac{t^{2}}{n^{\alpha}}\right)=o\left(\frac{t^{2}}{M^{\alpha-1-2 \gamma /(\beta+1)}}\right)
\end{aligned}
$$

where $\alpha-1-2 \gamma /(\beta+1)>0$ by $\alpha>2$. Hence $J=o\left(t^{\alpha}\right)$, if

$$
\begin{equation*}
M \geqq 1 / t^{(\alpha-2) /(\alpha-1-2 \gamma /(\beta+1))} \tag{4.1}
\end{equation*}
$$

Since

$$
\frac{\beta+1-\alpha}{\gamma+1-\alpha}=\frac{\alpha-2}{\alpha-1-2 \gamma /(\beta+1)}=\frac{\alpha}{\alpha-1}
$$

(2.6) and (4.1) are consistent.

Thus the theorem is proved for the case $2<\alpha<3$. The proof of the case $n<\alpha<n+1(n=3,4, \ldots)$ is now in hand. Since the proof for integral $\alpha$ is easy, we have completed the proof of the theorem.
§ 5. Theorem 2. If

$$
\begin{equation*}
s_{n}^{-\delta}=O(1) \quad(n \rightarrow \infty) \tag{5.1}
\end{equation*}
$$

for $0<\delta<1$ and
(5.2) $\quad s_{n}^{\beta}==o\left(n^{\gamma}\right) \quad(n \rightarrow \infty)$
for $\beta>\gamma>0$, then

$$
\begin{equation*}
\Phi_{\alpha}(t)=o\left(t^{\alpha}\right) \quad(n \rightarrow \infty) \tag{5.3}
\end{equation*}
$$

for $\alpha \geqq 1+\gamma \delta /(\beta-\gamma+\delta)$.

Proof of this theorem follows the similar lines of that of Theorem 1. In our cace, (5.1) and (5.2) imply

$$
s_{n}=o\left(n^{\delta \gamma /(\beta+\delta)}\right), \quad s_{n}^{1}=o\left(n^{(1+\delta) \gamma /(\beta+\delta)}\right), \ldots
$$

This attributes to the estimation of $J$. In the case $1<\alpha<2, J=o\left(t^{\alpha}\right)$ if

$$
\begin{equation*}
M \geqq 1 / t^{(\alpha-1) /(\alpha-1-\delta \gamma /(\beta+\delta))} . \tag{5.4}
\end{equation*}
$$

(2.6) and (5.4) are consistent when

$$
\frac{\beta+1-\alpha}{\gamma+1-\alpha} \geqq \frac{\alpha-1}{\alpha-1-\delta \gamma /(\beta+\delta)}
$$

which gives $\alpha \geqq 1+\gamma \delta /(\beta-\gamma+\delta)$. In this case $M=\left[1 / t^{(\beta+\delta) / \gamma}\right]$. For such $M$, it is easy to verify the conditions (3.2), (3.3) and so on.

In the case $2<\alpha<3$, we obtain, $J=o\left(t^{\alpha}\right)$ if

$$
\begin{equation*}
M \geqq 1 / t^{(\alpha-2)) /(\alpha-1-(1+\delta) \gamma /(\beta+\delta)) .} \tag{5.5}
\end{equation*}
$$

(2.6) and (5.5) are consistent when

$$
\frac{\beta+1-\alpha}{\gamma+1-\alpha} \geqq \frac{\alpha-2}{\alpha-1-(1+\delta) \gamma /(\beta+\delta)}
$$

which gives also $\alpha \geqq 1+\gamma \delta /(\beta-\gamma+\delta)$. Thus the remaining estimation is the same as that of the former case.

We are now easy to prove the cases $n<\alpha<n+1(n=3,4, \ldots)$.
§ 6. Theorem 3. If

$$
\begin{equation*}
a_{n}=O\left(1 / n^{1-\delta}\right) \quad(n \rightarrow \infty) \tag{6.1}
\end{equation*}
$$

for $0<\delta<1$, and

$$
\begin{equation*}
s_{n}^{\beta}=o\left(n^{\gamma}\right) \quad(n \rightarrow \infty) \tag{6.2}
\end{equation*}
$$

for $\beta>\gamma \geqq 0$ and further if
(6.3) $\quad \delta(\beta-1) \leqq 2(\beta-\gamma), 1-\delta \leqq \beta$
(that is, $\beta \leqq 1$ or $\delta \leqq 2(\beta-\gamma) /(\beta-1))$, then

$$
\begin{equation*}
\Phi_{\alpha}(t)=o\left(t^{\alpha}\right) \quad(t \rightarrow 0) \tag{6.4}
\end{equation*}
$$

for $\alpha \geqq \max (1, \delta(\beta+1) /(\beta-\gamma+\delta))$.
We have

$$
\begin{aligned}
\Gamma(\alpha) \Phi_{\alpha}(t) & =\sum_{n=0}^{\infty} a_{n} \int_{0}^{t} \cos n u(t-u)^{\alpha-1} d u \\
& =\sum_{n=0}^{M}+\sum_{n=M+1}^{\infty} \equiv I+J
\end{aligned}
$$

say. Estimation of $I$ is similar as that in $\S 2$. By the formula

$$
a_{n}=\sum_{\nu=0}^{n}(-1)^{n-\nu}\binom{\beta+1}{n-\nu} s_{\nu}^{\beta},
$$

we have

$$
\begin{aligned}
I & =\sum_{n=0}^{M} a_{n} \int_{0}^{\iota} \cos n u(t-u)^{\alpha-1} d u \\
& =\sum_{\nu=0}^{M} s_{\nu}^{B} \int_{0}\left\{\sum_{n=\nu}^{M}(-1)^{n-r}\binom{\beta+1}{n-\nu} \cos n u\right\}(t-u)^{\alpha-1} d u,
\end{aligned}
$$

where the inner sum is •

$$
2^{\beta+1}\left(\sin \frac{u}{2}\right)^{\beta+1} \cos ((\nu+\lambda) u+\lambda \pi)-\sum_{m=M-\nu+1}^{\infty}(-1)^{m}\binom{\beta+1}{m} \cos (m+\nu) u .
$$

Hence, similarly as in $\S 2$, we put

$$
\begin{aligned}
I & =\sum_{\nu=0}^{M}=\sum_{\nu=0}^{N}+\sum_{\nu=N+1}^{M}=I_{1}+I_{2} \\
& =\left(I_{1}^{\prime}+I_{1}^{\prime \prime}\right)+\left(I_{2}^{\prime}+I_{2}^{\prime}\right) .
\end{aligned}
$$

Defining $N$ by (2.4), we get $I_{1}^{\prime}=o\left(t^{\alpha}\right)$ and

$$
\left.\begin{array}{rl}
I_{1}^{\prime \prime} & =\sum_{\nu=0}^{N} s_{\nu}^{\beta} \sum_{m=M-\nu+1}^{\infty}(-1)^{m}(\beta+1 \\
m
\end{array}\right) \int_{0}^{t} \cos (m+\nu)(t-u)^{\alpha-1} d u t .
$$

for $t M \geqq 1$. We have $I_{2}^{\prime}=o\left(t^{\alpha}\right)$ by (1.6). Since we can suppose $\alpha \leqq 2$, by (6.3),

$$
\begin{aligned}
I_{2}^{\prime \prime} & =\sum_{\nu=N+1}^{M} s_{\nu}^{\beta} \int_{0}^{t}\left\{\sum_{m=M-\nu+1}^{\infty}(-1)^{m}\binom{\beta+1}{m} \cos (m+\nu) u\right\}(t-u)^{\alpha-1} d u \\
& =\sum_{\nu=N+1}^{M} s_{\nu}^{\beta} \int^{t}\left\{\sum_{n=M-\nu+1}^{\infty}(-1)^{m}\binom{\beta}{m} \cos (m+\nu) u\right\}(t-u)^{\alpha-1} d u \\
& -\sum_{\nu=N+1}^{M} s_{\nu}^{\beta}(-1)^{M-\nu}(M-\nu) \int_{0}^{t} \cos (M+1) u(t-u)^{\alpha-1} d u \\
& \equiv i_{1}-i_{2},
\end{aligned}
$$

say. If we suppose $0<\beta<1$, then

$$
\begin{aligned}
i_{1} & =o\left(\sum_{\nu=N+1}^{M} \nu^{\nu} \sum_{m=M-\nu+1}^{\infty} \frac{t}{m^{\beta+1}(m+\nu)^{\alpha}}\right) \\
& =o\left(\frac{t}{M^{\alpha}} \sum_{\nu=N+1}^{M} \frac{\nu^{\gamma}}{(M-\nu+1)^{\beta}}\right)=o\left(\frac{t}{M^{\alpha+\beta--1}}\right)
\end{aligned}
$$

which is $o\left(t^{\alpha}\right)$, if

$$
\begin{equation*}
M \geqq \mathbf{1} / t^{(\alpha-1) /(\beta+\beta-\gamma-1)} . \tag{6.5}
\end{equation*}
$$

By the Abel lemma

$$
\begin{aligned}
i_{2} & =\sum_{\nu=N}^{M} s_{\nu}^{\beta-1}(-1)^{M-\nu}\binom{\beta-1}{M-\nu}+s_{N+1}^{8}(-1)^{M-N-1}(M-N-1) \\
& =o\left(\sum_{\nu=N}^{M} \nu^{\nu(\beta-1+\delta) /(\beta+\delta)} /(M-\nu)^{\alpha+\beta}\right)+o\left(N^{\gamma} / M^{\gamma+\beta}\right) \\
& =o\left(1 / M^{\alpha+\beta-1-\gamma+\gamma /(\beta+\delta)}\right)+o\left(N^{\gamma} / M^{\alpha+\beta}\right)
\end{aligned}
$$

which is $o\left(t^{\alpha}\right)$ if

$$
\begin{equation*}
M \geqq 1 / t^{\alpha /(\alpha+\beta-\gamma-1+\gamma(\beta+\delta))} . \tag{6.6}
\end{equation*}
$$

$$
\begin{equation*}
M \geqq 1 / t^{(\alpha-\gamma(\beta+1) /(\gamma+1)) /(\alpha+\beta)} . \tag{6.7}
\end{equation*}
$$

Finally

$$
\begin{aligned}
J & =\sum_{n=M+1}^{\infty} a_{n} \int_{0}^{t} \cos n u(t-u)^{\alpha-1} d u \\
& =O\left(\sum_{n=M+1}^{\infty} \frac{1}{n^{\alpha+1-\delta}}\right)=O\left(\frac{1}{M^{\alpha-\delta}}\right)
\end{aligned}
$$

which is $O\left(t^{\alpha}\right)$ if

$$
M \geqq 1 / t^{\alpha /(\alpha-\delta)}
$$

Now the condition (6.8) implies (6.5), (6.6) and (6.7), (6.8) and (2.4) are consistent when

$$
\alpha \geqq \delta(\beta+1) /(\beta-\gamma+\delta)
$$

Thus we have proved (6.4) with $O$ instead of $o$, for the case $0<\beta<1$. We can replace $O$ by $o$ by the ordinary method. The general case $n<\beta<n+1(n=1,2, \ldots)$ may be proved similarly as in $\S 3$.

## Tôhoku University, Sendai.

## References

[1] F.T. Wang, Tôhoku Univ. Science Reports, 24 (1936).
[2] F. T. Wang, Tôhoku Math. Journal, 42 (1936).
[3] N. Matsuyama, in the press.
[4] S. Izumi, Notes on Fourier Analysis (XXVI): Negative examples in the theory of Fourier series, Tôhoku Math. Journ., (2) 1 (1950).
[5] Zygmund, Studia Math., X (1945).
[6] cf, Zygmund, Trigonometrical series.
[7] Hardy-Rogosinski, Proc. Cambridge Phil. Soc., 43 (1947), 45 (1949).
[8] L. S. Bosanquet, Proc. London Math. Soc. (2), 31 (1930).
[9] J. M. Hyslop, Journ. London Math. Soc., 24 (1949).
[10] S. Izumi, in the press.
[11] C. T. Loo, Transactions Am. Math. Soc., 56 (1949).


[^0]:    *) Received Oct. 20, 1949.

