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Part I. Order of the partial sum of Fourier series.
§ 1. Mr. F. T. Wang [1] proved that, if

(1.1) ΦΛ(t) - - f - Cψx{n){t - U)*-Idύ - o(Γ), t-> 0,

then
(1.2) βH(aj)=o(w / c l + β ) ) , n-*oo,

where <px(t)=f(tt—t) +/(a —t)+-2f(x) and sn(x) is the n-th partial sum of
Fourier series of f(t) at £=#.

Further he proved [2] that, in the case a=l, (1. 2) cannot be replaced
by

(1.3) sn(x) = o(nδ), n->oo,
where 0<δ<l/2. ΛVβ prove more precisely that we cannot replace (1. 2) by

(1.4) \*n{x)\^nriβ, ^->OO,

(£n) being a given null sequence, even if the condition (1.1) replaced
by that the integral

(i.5) Γ'?Mdrt
Jo u

exists in the Cauchy sense.
Mr. N. Matsuyama [3] proved that there is an ίntegrable function f(t)

such that
(1.6)

exists in the Cauchy sense and

(1.7) sn

for δ<l/(2 + Λ). ΛVe prove that (1.7) can be replaced by

(1.8) sn(x)^Snn^^

for any assigned null sequence (£w), and for infinitely many n.
Further we prove that, for any a, there is an integrable function/(ί)

satisfying (1.1) and
β»(s) ^ ^ + i )

for any assigned null sequence (£w) and infinitely many n.
The method of construction of examples is that ufeed by the author in

the previous paper [4].

*) Received Oct. 20, 1949.
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§2. THEOREM 1. For any sequence (£Λ) tending to zero, there is an
integrable function f(t) siuϊh that

(2.1) Φa(t) = o(t«)
and that there is a sequence (Mk) such that

(2. 2) 8χk(x) ^ £MiMZκl+:«' (h = 1 , 2 , . . . ) •
PKOOF. Let (Δfc) be a sequence of disjoint intervals such as

£ = 1,2,...),

t\wi Mkt\dt

nk nk mk >
where (mk) and (nk) are increasing sequences of integers determined later,
and we put

(2.3) f(t) ΞΞΞ c^sin Mkt (t€Δk)
for lc=l,2, ... and f(t)=ώ in (ϋ,τt)-\/'Δk, f(t)~f(-t), where (ck) is a
sequence of positive numbers and (Mk) an increasing sequence of integers,
both determined later. Let us suppose

(2. 4) ^fc/% —> 0 (& —> oo).

Since

f(t) is integrable when
(2,5)

Λ¥Θ have
/n\ 2 Γ*-/.\ sin Md ,, , /̂ v

«Jr.(0) = ̂  I /(<) —Mί + 0(1)

sin3ifj.^ + 2-*Ci i sin Iζί sili Mkt dt + o(l).

Δ Λ «** ^ Δ ,

where the first term is ;> cfc/4m& for sufficiently large Mk comparing with
mk> and

c{ I sii

If we suppose that

sin MJL sin Jlftί dί θ(

and

(2.7). ^>ηkM%ι<1+»\ ( k . = l, 2 , : . . ) ,

ηk=εMjΰ, then we get (2.2).
Let us first confine ourselves to the case 0 < α : < l . For t£Δk} we have

Φ«(0= ffWit-uy-'du

- u)«-ιdu + 2
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where

ck I usinMku(t — u)a~ιdu••=
v ηt\nk

and

u sin MιU(t - u)«-Ύdu = θ(~^-(t - — V )

which is •0,(c(ί"-
1/mijl!f1),/if i > ^ + l and

(2.8) ^ H - ^ - ^ ^ (i=l,2/...)..

Thus, if

(2.9) ^ ^ δ ^ " 1 {φtStSπln^)

and

(2.10) 2 -Λz ^ δ^ (aV"*"̂  ί S ̂ K-i)
u * i mifeζ

for a null sequence (δfe)? then we have (2.1).
We shall now define (Mk), (mfc), (nk) and (cfc) such that the conditions

(2.4)—(2.10) .are satisfied. Let
llvΊc —yllvΊc

then (2.5) is satisfied. If we take any null sequence (ηk) and put

then we get (2.6) and (2.7). Further taking (δfc) such as
(kVky+* = δfc

and (ujc) such as
nfc = 2(fc+1)2,

we get (2.9) and (2.10). The conditioiαs (2.4) and (2.8) are evident
by the construction. Thus we get the required.

§3. We will next consider the case l<t f <2. We have

Hence, in this case, (2. 9) must be replaced by

for τr/nfc ̂  t ̂  rc\nk_Ύ. Condition (2.-8.) is not needed.

ΛVe take
2 2

then (2.5) is satisfied. If we take a null sequence (ηk) and j>ut

then we get (2. 6) and (2. 7). Supposing

(3.2) % ^ l / * f ,
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we put

A
where δfc == 1/F~*. Then the other conditions are all satisfied.

Now, (8. 2) is equivalent to

For more slowly decreasing (£w), it is sufficient to take higher power
fc2

numbers as mfc, ck, etc. Wax example m^ =Ξ h2r 9 and so on.
We can treat the case n<a<n + l(n=2, 8, ...) similarly. The integral

case is also similarly proved.
§ 4> In the case a=l, Theorem 1 may be generalized in the following

form.
THEOREM 2. ]?or any sequence (£n) tending to zem, there is an integrable

function f(t) such that the integral

(4.1) f**&du

converges in the Cauchy sense and that th®?e is & dequmce- (M%) mch as

PROOF, L$t us tevke & ftmetioa defined by (2,3), where we. suppose
that mk and nk divide M^ and Mkfmk and Mk/nk are even. Then the
integral (4.1) exists and equals to zero. Then it is required the conditions
(2.4)—(2. 7) He»ce, modifying the example in § 2, we g^t the required.

THEOREM 3. For any sequence (Sn) tending to zero, there is an integrable
function f(t) such that the integral

converges in the Cauchy sense and that there is a sequence (Mk) such as
(4.3) sMk{x)^ZMjMf^«\

PROOF. Let us take a function defined by (2,3). TJieu it is sufficient
to take (Mk), (mk), (nk) and (ck) such that (2.4), (2.5). (2.6) are
satisfied and

(4.4) ^ M
mk

(4.5) i
If we take

ek^ψ\ m,
and

then the conditions except (4. 5) are all satisfisfied. If
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(4.6) η*
then (4. 5) is also satisfied. (4. 6) is equivalent to

(4.7) ^ $Mk^ el (log Mky
!\

If we take cfc = 22'2fc, etc., then the condlition (4. 7) is replaced by

Thus proceeding we get the theorem for any slowly tending to zero

sequence.

Part IL On Zygmund's Method of summation

§ 1. A. Zygmund [δ] has introduced the followiug method of summation.

Let 2 α w be a given series. If

( 1 ) lim—2Λ(

\hβ series being supposed to be convergent, then thq series ^an is said to

be ( i ζ l ) summable to s. And, if

( 2 ) k m — Z Λ . t

l

Mdt = s,
Λ>0 7Γ n l J ^ S l ^ ί/g7Γ n = l

the series being supposed to be convergent, the series *Σan is said to be

"(Jζ'2) summablθ. In this part we find necessary and sufficient conditions

for (K, 1)- and ( iζ 2)-summabilities of Fourier series and get the relations

between these and the Biemann summabilities.

§ 2. Let us put

Then

ϊtgi/2

** sin Nt

2tgί/2

JΛ 2 sin-ι n

If we suppose that sN~o(N), th^n the sum in (1) becomes

Moreover, when
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/ o \ "s? Bin net

n
converges and tends to zero as α-»0, (1) equals to

sin net

Thus we get

THEOREM 1. If sn=o(n) and (3) converges and tends to zero as oc->%
then the series summable ( iζ 1) is (Rx) $ummable and conversely,

It is known that there is a series summable (RL) and (3) diverges
for a null sequence (#*), and conversely, whence there is a sequence (Rτ)
summable but not ( iζ 1) summable, and conversely.

Let us consider an integrable function/(£) and its Fourier series

ŵ cos nt + bn sin nt).

We can suppose αo=O and bn=0 '(n==l,2, ...) without loss of generality.
Then the partial sum sn=o(n) and the series

CO

2 — sm™%

converges and tends to zero as a^>Q. Thus, by Theorem 1, we get
THEOREM 2. 'For Fourier series,, the (K, 1) summability is equivalent

to the (jRi) summability.
For Fourier series (i2x)-and (R} l)-summabilities are mutually exclusive

[7], whence ( iζ l )-and (jR,*i)-summabilities are also. After Hardy and
Eogosinski [7] we get the following theorem.

THEOREM 3. The Fourier serie ,of[f(t) is (K 1) summable to f(x) at
t=χ if and only if

where φ(x, u) =f(χ+u) + / ( « - u)-2f(x).
THEOREM 4. Let f£]Lp(p>l). The necessary qua sufficient condition

that the Fourier series of f(t) is ( iζ 1) summable at t~x, is the existence

of the integral

where Y(t) is the conjugate function of f(t).

ΛVe will now give a direct proof of the last theorem. Let the Fourier

series of fit) be

bnsinnt) =
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We can suppose that a0 = Λ ΞΞΞ 0: We have
1 Γ27t

An(x) — -— I f(x + u) cos nudu.
π J{)

Hence
a 2 ̂ i A , \ C * sin nt

ίa; + it) oosnudu

/ \ ̂  Γwoos M sin nί 7,ix + u)du \ -—-dt.

Let 8$ be the modified partial fum of 8 [6]. Then

ul-

τr2 J o ^ v 7

o Λ 2 tg (< + u)/2 2 tg ί/2
If we put

jf(ί) •-= coti/2 in (ά ? τr),

Ξ 0 in (— 7r, αc)

and g(t)=Ξg(t + 2π) for all ί. Then the inner integrals of the last double
integrals converge to the conjugate function at IF=U and t=— u, respectively.

«->oo 7T j 0 Jό 2tgί/2

where the inner integral is taken in the Lebesgμe sense and ψ(u, t)

Now, let DΛ be the domain in (0, n:.;. 0, 2τr) such that
]lt — • v| > 2^, J2πr — (w + v) > 2«.

Then we have^ by an easy caleutatiόn,

S=*-f (fix + u) β0 8*/2 dίdu + o(l)

sm - — — sin - -

- i r Γ
nlj"

.2 2j
oos (φ + w)'/4Q

iJ . to

2 • .2

dw

By jDα)/3 we denote the domain in (0, n 0? 2τr) s\ich that'
.~-«|> 2Λ, |2τr - (u + v)\ > 2/3.
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For the existence of the limit lim 8, it is necessary and sufficient that the

limit

iim r_*L. r±(^±^
sin — p em

4 4

exists. Since by the hypothesis we can invert the integral of v and lim,

(5) is equivalent to

lim I ϋ—~—L Â_ ^dv,
* sin —

4
Thus the theorem is proved.

§3. THEOREM.5. If the integral

( 6 )
converges, then the necessary and sufficient condition thai the Fourier series
of f(t) is summable (JKΓ, 2) at t=xr is that the integral

( 7 ) Γ f Γφ(x + u, ί)log/_J_-Λd
V • a I2'

converges, where
φ(x, t) =,/(«.+ ί) + f(x - ί) - 2/(a;).

PROOF. Using the notations in the proof of Theorem 1 and putting

we have

S = —

Let Sn be the n-ίh. partial sum of S. Then

Now
cos ί it sin2λί/2 = cos to (1 — cσs

= {2 cos to — cos h(u — t) — cos ifc(̂  4- t) }/4.
and, for 0<ί<2τr,

^ cos
k

2 ° ^ = - l o g (2 sin A

< Ail + log-1 + log-^—V
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where A is an absolute constant35. Thus (6) and (7) give us

8 = lim Sn = — + u) Γ - log (2 sin—)

+ log sin + log ̂ 2 sin UU~ \\ \du

- 2f(x + u)]log (2 sin ^ W

Thus the theorem is proved.
The necessary and sufficient condition for (R2) summability is

( 8 ) lim
t- a

dt = 0,

where φτ(x, t)= I φ(x,u)duS). Since (7) and (8) are exclusive, ( i ζ 2 )

and (i?2)-summabilities are exclusive.
Part III. Cesaro summability theorems.

§ 1. Let φ(t) be an even periodic function with Fourier series

(1.1) A COS nt, a0 — 0.
0

The tf-th integral of φ(t) is defined by

0)

and the /3-th Cesaro sum of (1.1) is defined by s%(β>—l). Especially
we put s°n == sn.

L. S. Bosanquet [8] has proved that
Φβ(ί) = <>(*>) (<-^0)

implies
(1.2) s% = o(n«) (n-»oo)
for ccyβ, and conversely

sl = o(nβ) (n->oo)
implies

(1.8) Φ.(0 = o(ί-) (ί->0)
for Λ > / 3 + 1. This paper concerns the converse part of the Bosanquet
theorem. Recently Hyslop [9] and the author [10] proved, that, if

(1.4) «2=o(**) (n->oo)
for /3>γ>0 5 then
(1.5) Φa(t)=o(t^-y) (t-+oy
for Λ > l + γ.

Naturally it is required to find such a that (1.3) holds under the
hypothesis (1.4). The solution is given by
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This is proved in Theorem 1.
Secondly we treat the case (1. 4) with some Tauberian condition. The

theorem of this type was considered by Loo [11]. Tauberian condition
used by him is

(1.6) α w =O(l/^- δ ) (n->oo)
for 0<δ<l . Besides this we use a weaker one such as

(1.7) δ~ δ=O(l) (n-»oo).
We prove in Theorem 2 that (1.4) and (1.7) imply (1.3) for

a^l + 7 S / ( / 3 - 7 + δ);
and in Theorem 3 that (1.4) and (1.6) imply (1.3) for

In the latter case we need some restriction concerning /?, γ and δ. These
theorems imply Loo's theorems as special case.

In the proof we do not use Young functions, which were always used
to prove theorems in this direction, but we use a method in the former
paper. This method makes also easy the proof of the converse part of the
Bosanquet theorem stated above.

§ 2. THEOREM 1. If

(2.1) 8Ϊ = o(ri*) (n-^oo),
for /3>γ>0, then

(2.2) ΦΛ(t) =o(t«) (<-*(>)
for a^(β + l):l(β-y + l).

PROOF. Let a==(β + l)l(β—y + l) and WΘ* will prove (2.2) for such
a. Then l < & < l + γ* We distinguish sevearl cases, and begin by the
case l < α < 2 .

T(a)ΦΛ(t) = Γφ(u)(t - u)«-ιdu
Jo

00 ί*t °°' /^(

w=0 Jo n=0 Jo

say, where Δ Gosnu=cosnu—
By the well known formula

have

(2. 3)

J = 2 sn I Δ cos nw(

Γ

and M will be determined later.

n—v
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The inner sum is
M

- Σ

n-vj V 2

cos (m + v)« = iζ(«) -

say. Let us decompose I in (2. 3) such that
M N M

and Ix and I2 such that

)(t - u)«-Ύdu + Σ β f f K2(u)(t - u)«-ιdu
v=0 JQ

= Σ
s J; + ϋ'.

Since

Γ/sin—Y+cos ((v + λ)u + λw)(ί - u)*-\lu =
«7ΰ V 2 /

we have

which is o(tΛ), when
(2.4) NΞ=

By

we have
N

ί' = Σ«
ι»=0

_ iT

*+1(m + v)

Σ (~ l)mfi) Γ Δ COS (m +

if M^>2N. Thus we have I[' = o(ta), whence I1^I[—Iι=c
In order to estimate I2, putting λ=(/8 + l)/2 and using the Lebesgue's

device, we obtain

(2. 5) I /sin—^ + cos ((v + λ)u + XTΓ) (t — u)Λ-ιdu

sin— it -|- ) cos|( v + λ m
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. / ~ \α?-l

du

=4ίΓ"""+f +f":<

for v£ί>l. Honco
M

= 2 ^ f ( s i n γ ) +c

which is o(ία), if
(2.6) Jf ^ iifl

On the other hand, we have

ί Δ cos mx(£ - tή^du = 2 Γ— cos (n + —\u(t - u)«-
Jo c/0 2 V 2 /

du

for nt^>l, and then

(2. 7) Jί' - 2 € Γ | 2 (- l)mff )Δoos (m + v)u\(t - u)- 1

L

^ V ' l
for 0</3<l, which is o(ίΛ), if
(2.8) j|f^i/ί(«-i>/c«-i+o.-7))<p

Thus I2—T2—I!>f=o(toc') when the conditions (2.6) and (2. 7) are satisfied.
Finally

J = 2 ^ 1 Δooβnuίt — uY~ιdu

= o ( 2 )
which is o(ίΛ), if
(2.9)

+ 1 — tf __ a — 1 > α: — 1
7. + 1 - Λ Λ - 1 - y[(β + 1) ^ Λ - 1 + (β - γ)

Hence the conditions (2.6), (2.8) and (2.9) are consistent, and it is
sufficient to take M such as .

M =
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which is sufficiently larger than N. Thus the theorem is proved for the
case l < α : < 2 and 0</3<l.

§ 3. Let us now consider the case 1 <a <2 and 1 <β<2. It is enough
to estimate I2 only. Using the Abel lemma in the inner sum in (2. 7)

(5.1) Γ2' = Σ.βf Γ { Έ ( - l ) ^ ~ 1)Δ2cos(m + v)u\(t-u)-Ύdu

~SJ- V'MM^ ϊ). f ΔOOB (ilί + 1 )<« - u>Λ" l d u

sin— j cos

Now

ii = o ( 2 v1 2 —^ —

=

which is evidently o(^) if α: + /3-γ-2;>0. If Λ + /S + γ - 2 ^ 0 , it is
sufficient that
(3.2) M^iι#z-*)K*-*-ζβ-y>y

Since M is taken such that

(3.2) is satisfied when 2/(l-f/3)^l, which is the case for l</3<2.
Secondly, if we use the Abel lemma in i2 again; then

^ +

Ύ + ί
^ - i (Λf _ v)β-χ ΛfP-M

where α: + /3-γy8/(^ + l ) - 2 > 0 by tf<2. Thus i 2 =o(ί α ) wlion
(3 3 )(

and

These are easily verified. Thus the theorem is proved m the considering
case.

Let us proceed to the caso l < t f < 2 and 2</3<3. ΛVe use the Abel
lemma in (3.1) again. Using it in iX9



:2&8 s. I Z U M I

*i = 2 *? Γ ί 2 ( - l)m(β ~ 2 ) Δ3 oos (m + ^
v = N+l ./Q (m.rJf-iH-1 \ ' ϊ l J

M

- 2 ί?(- l)*" f M-~ ̂  ΓΔSCOS (m + *)«(« - uy-'du

say, where Δ3cosm6=Δ(Δ2*cosm6) = 23ί — j oΘsί^ ϊf- — W Similarly as ixin the foa'xner vc

" = o ( Έ »y Έ

ίi (if - v )
which is evidently o(t«) if α+.^9-γ-3>0. IF α+yS-γ-3^0, it is
sufficient that
(3.5) j|f^i/^-)/c»- -tf-γΛ
This is satiafied wlâ n 3/(/3 + l)^Ξl, which is the ĉage. In j2 we use the
Abel lemma once. Then we get the required estimation. Concerning i2,
it is sufficient to use the Abel lemma twice. Thus the theorem is proved
for the case l<α:<2 and 2<y8<3.

Thus proceeding we can complete the proof of the theorem for ίhe case
l < α < 2 , since the integral case of a is trivial.

§4. Let us consider the case 2<α<3. In this case/3>l. We have

= 2 sn I Δ OOBnu(t •
ί* = 0 JQ

= 2tS« \

say. By the formula

we have

I=Έ$ I \Έ(-l)n~v(P ) Δ 2 c o s m 6 l i t - u)«-ιdu,

wτhere the inner sum is
M
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. Πeuce, similarly as in §2, we decompose /such that

Defining N by (1.4), I{=o(t«) and

= o [ zy Z> r,

Now, fcy the twice application of Lebesgue's deviee, we get
/»t/ „. \β+l

j I sin -^ J cos ((v + λ)t6 + \π) (ί - w ) " " 1 ^

for v ί^ l . Thus, if the condition (2.6) is satisfied, then we obtain

Iί' = έ «? f Ί Σ ( - l ) m (^ ~ ^ Δ ooβ (m + v)

may be esitimated similarly as the case l < α : < 2 ) dividing the cases

Finally

J"= 2 s» / Δ3cosn^(ί — u)a~ιdu
n=M+ι Jo

= o( y*

where α-l-2γ/(/8 + l ) > 0 by ay % Hence J=o(t*), if

Since
/S + 1 — α: _ α: — 2

γ
(2.6) and (4.1) are consistent.

Thus the theorem is proved for the case 2 <Ca <3. The proof of the case
n < α : < n + l ( n = 3 , 4, ...) is now in hand. Since the proof for integral a
is easy, we have completed the proof of the theorem.

§ 5. THEOREM 2. If

(5.1)
for 0 < δ < l and
(5.2)

for /3>γ>0,
(5.3)

/or α:^
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Proof of this theorem follows the similar lines of that of Theorem 1.
In our cace, (5.1) and (5.2) imply

This attributes to the estimation of J. In the case l<a<^2, J=0(ta) if
(5 4) M :> l/^-υ/(«-i-δγ/cβ+δ^

(2. 6) and (5. 4) are consistent when
β + i - . Λ > a - 1

-δ)
which gives tfΞ>l+.γδ/(/3—γ + δ). In this caseΛf=[l/ί(β+-)/γ]. For such if,
it is easy to verify the conditions (3. 2), (3.3) and so on.

In the case 2<α:<3, we obtain, J—o(tΛ) if

(2.6) and (5.5) are consistent when
β + l-cc > a - 2

- ( l + δ)γ/(/S + δ)
which gives also tfίg:l + γδ/(/3—γ + δ). Thus the remaining estimation is
the same as that of the former case.

We are now easy to prove the cases ^ < ^ < n + l ( n ^ 3 , 4, . . .) .
§ 6. THEOREM 3. If

(6.1)
/or
(6.2) 8g = o(wγ) (n->oo)

for /3>γ^0 and further if
(6. 3) δ(/3 - 1) ^ 2(/8 - γ), 1 - δ ^
(ίfoaί is, /8^1 or δ ^ 2 ( ^ -
(6.4)

/or ^ ^
ΛVe have

ί) = 2 α » / ooBnit(ί — u)«-ιdu

= 2+2^1 + /,
say. Estimation of J is similar as that in § 2. By the formula

we have

I 2 I c o s ^^(ί —

-•= Σ $ f \Έ( - i)n-(β

n t
v=0 JQ (M = V \ l0
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where the inner sum is *

2<J+I(sinJi Y+ cos ((v + \)u + Xπ) - 2 (-l)m(β + * ) cos (TO + v)u.

Hence, similarly as in § 2, we put
•M N M

v=0 v=0 v=i^+l

= (/; + 7Γ) + (ΐ + /;')•
Defining N by (2. 4), we get I{ = o(ί ) and

JT = Σ «? Σ (- l)m(^ ί 1 ) foos (m + v) (t - υ,)-*du

M £i
= oit-W+ΊM1**) = o(t«l(tM)β+i) = o(ί»)

for tM^>l. We have L=o(ta) by (1.6). Since we can suppose α<;2, by

Σ ( - α ^
l \ ϊtb

say. If we suppose 0</3<l, then

fλ —- Λ I yi , >• _j l

= 0(_L± "γ_ ^ - J • t

which is o(ί"), if
(6.5)
By the Abel lemma

β-1-y+yl(P+*>) + o(Ny/MΛ+β)
which is o(ίΛ) if
(6.6) ' M ^ l/ί /c +β-ϊ-
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(6. 7)

Finally

which is 0(1?) if
(6.8)

Now the condition (6.8) implies (6.5), (6.6) and (6.7), (6.8) and
(2. 4) are consistent when

Thus we have proved (6.4) with 0 instead of o, for the case 0</3<l.
We can replace 0 by o by the ordinary method. The general case

= l , 2, ...) may be proved similarly as in §3.

Tόhoku University, Sendai.
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