NOTES ON FOURIER ANALYSIS (XXXV)®

By
SHIN-TcHI IzuMI

Part I. Order of the partial sum of Fourier series.
§1. Mr. F.T. Wang [1] proved that, if
' 1 (" -1y, — of @
(1.1) &) =P(a4)f0¢m(u)(t w)idu = o(1%), t=—0,
then
(1.2) 8, (z) =0(n**?), n—> oo,
where @,(t) =f(#—1) +f(2—t)—2f(x) and s,(z) is the n-th partial sum of
Fourier series of f(t) at t==

Further he proved [2] that in the case a=1, (1 2) cannot be replaced
by

(1.3) 8a(3) = o(n?), mn— oo,
where 0<.8<1/2. 'We prove more precisely that we cannot replace (1.2) by
(1. 4) [8.(2) | <&, n — oo,

(€,) being a given null sequence, even if the condition (1.1) replaced
by that the integral

(1.5) f’Mdu
u
exists in the Cauchy sense. ’

Mr. N. Matsuyama [38] proved that there is an integrable function f(t)
such that

(1.6) f (pfi)du

exists in the Cauchy sense and
(1.7) $u(2) =0 (n)

for 8<1/(2+a). We prove that (1.7) can be replaced by
(1.8) 8, () =€, n'e+®

for any assigned null sequence (&,), and for infinitely many n.
Further we prove that, for any a, there is an integrable function f(f)
satisfying (1.1) and
8,(%) = Em¥+®
for any assigned null sequence (&,) and infinitely many n.
The method of construction of examples is that used by the author in
the previous paper [4].

*)  Received Oct. 20, 1949.
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§2. TuroreM 1. For any sequence (&,) tending to zero, there is an
antegrable function f(t) such that

(2.1) @, (t) = o(t*)
and that there is a sequence (M) such that
(2.2) 8 (3) = E MECH®D  (F=1,2, ).

Proor. Let (A;) be a sequence of disjoint intervals such as
M=(T T T (k=12
ny o M My, :
wheroe (m;) and (n,) are increasing sequences of integers determined later,
and we put
(2.3) f(t) =it sin Mt (tgA)
for k=1,2,... and f(t)=0 in (0,7)— VA, f(t)=f(—t), where (¢;) is a
sequence of positive numbers and (M) an increasing sequence of integers,
both determined later. ILet us suppose
C(2.%) myfny — 0 (k— o0).

Since
2
> f t]sin M| dt < 32%( )
m
f(t) is integrable when o '

(2.5) itfmi < oo
‘We have

8, (0) = 2 f At

f sintMtdt + S, f sin Mt sin Myt dt + o(1),
A A

i=k
x

where the first term is > ¢;/4m, for sufficiently large M, comparing with

my, and
C"f sin Mt sin Mt dt = O( & )
Al |M M |
If we suppose that

sin Mt

oo

(2.6) 2 - ,_! = 0(1)
and E
(2.7) ZE = My (k=1,2,..),
My,

m=Ey,, then we get (2.2).
Let us first confine ourselves to the case 0 <a <1. For ¢ A,, we have

@) = [ () (t = )=
Z[ny+a|my

t
= c’“f wsin Mu(t — u)*'du + qu u sin Mu(t — u)*'d
z[Ny 7,

t=k+1 ny
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where
t
ckf w sin My (¢ — w)* 'du = O(c_’vt)
d zng IM;‘:
an
Cifx,neﬂt,!l;n;sin Mu(t — w)*idy = O(--Ei—(t T )w—l>
7| ng miM my;
which is O(c;t*7'/m,M;), if i=k+1 and
(2.8) T+ T o< T (i=1,2,.).
Th " N 41 My 4q 2n,
us, 1
(2.9) ‘j%s <8t (mfme <t < wings)
and *
(2.10) izmﬁﬂ <&t (rfm S < wml)

for a null sequence (8;), then we have (2.1).
We shall now define (M), (mk), (nx) and (c¢;) such that the conditions

(2.4)—(2.10) are satisfied. Let

o = 2% my = &,
then: (2.5) is satisfied. If we take any null sequence (7,) and put -

M, = ( 1 )(1%@/@'2(“,“)762/“,

T Nk,

then we get (2.6) and (2.7). Further taking (8,) such as
(km)‘“": =g,

and (nk) Such as
2
Ny == Qk+1) s

we get (2.9) and (2.10). The conditions (2.4) and (2.8) are evident
by the construction, Thus we get the required.
§3. We will next consider the case 1<a<2. We have

ftusin. Mou(t — uw)*'du = 0( by " + 1 )

I Mf nkMk .-Ml?.l-l
Hence, in this case, (2.9) must be replaced by
3.1 O et < gt B g
(o ) Mg* kY« ) nkﬂ’[k_ k:M+1_L
for m/n, <t < mny_,. Condition (2.8) is not needed.

We take " "
c, =227, my, = k2%,

then (2.5) is satisfied. If we take a null sequence (7%) and put

l+a l+a _._,]c2
Mktz (kne) © 2°
then we get (2.6) and (2.7). Supposing
(3.2) me = 18,
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we put

= —8’“__>¢1T1 ot
P < ( kﬂk)H—a 2
where 8, = 1/k*®. Then the other conditions are all satisfied.

Now, (8.2) is equivalent to

&y, < ¢/loglog M.

For more slowly decreasing (&,), it is sufficient  to take higher power
numbers as my, ¢, etc, For example m, = k2“2k , and so on.

We can treat the case n<a<n+1(n=2,8, ...) similarly. The integral
case is also similarly proved.

§4. In the case a=1, Theorem 1 may be generalized in the following
form.

TrHEOREM 2. For any sequence (&,) tending to zero, there is an infegrable
Sfundtion f(t) such that the integral

(4.1) f “‘Zf;‘*_')du
1} 8
converges in the Cauchy sense and that theve is & sequence (M) such as
Si(2) = €, ML

Proor, Let us take a function deﬁued by (2.3), where we_ suppose
that m, and n, divide M, and M /m; and M/n, are even. Then the
integral (4.1) exists and equals to zero. Then it is required the conditions
(2.4)—(2.7). Hence, modifying the example in § 2, we get the required.

TueoreM 3. For any sequence (&,) tending to zero, there is an integrable
Sunction f(t) such that the fénteg'ral

. P (u)
converges in the Cauchy sense cmd that theve is a sequence (M) such as
(4.3) Sar, () = &y M,

Proor. Let us take a function defined by (2.3). Then it is sufficient
to take (M), (mu), (mx) and (c;) such that (2.4), (2.5). (2.6) are
satisfied and

(4.4) b 2 g M,
k
< Ck’n,?'
(4.5) kz; i < oo
If we take , . ,
e = 2%, my, =k2Y, n,=k2%
and
1 2
JMk 2(2‘.4)&
(kq )2+w

then the conditions except (4.5) are all satisfisfied. If
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(4.6) M = 1/,
then (4.5) is also satisfied. (4.6) is equivalent to
(4.7) &y, < ¢/ (log M),

2

If we take ¢, = 27", ete., then the condition (4. 7) is replaced by
&y, < cf (loglog My )*2.

Thus proceeding we get the theorem for any slowly tending to zero
sequence.

Part II. On Zygmund’s Method of summation

§1. A.Zygmund [5] has introduced the following method of summation.
Let >a, be a given series. If

n=1

0.

lim.2 * sin nt dt —
(1) ii?n?: L 2tgg

the series being supposed to be convergent, then the series >a, is said to
. n=1
be (K,1) summable to s. And, if

(2) lim2 S, f st/ o

@50 77 n=1 n sin? 2

the senes being supposed to be convergent, the series Ean is said to be
(K, 2) summable. In this part we find necessary and Sufficient conditions
for (K,1)- and (K, 2)-summabilities of Fourier series and get the relations
between. these and the Riemann summabilities.

§2. Let us put

n
a,
8 =0, a,,zgak, s.,,*ss,,.r,éﬂ_

Then .
2z, r‘” 52 1<sn - of S;“ ;7;
1 Z [smna Sm‘{ﬁjll)ﬂ_] . :;lfg]t\;tgdt
twin({ N _ 1/0
- S, [ = A,

If we suppose that sN-o(N), then the sum in (1) becomes

2 % Sin na
IIr T

Moreover, when
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(3) 2 ”smna

w=1

converges and tends to zero as a—0, (1) equals to

.~ sin
lim >, 25 Y
a>0n=1 n

Thus we get

TrEOREM 1. If s;=o0(n) and (3) converges and tends to zero as a—0,
then the series summable .(K, 1) is (R,) summable and conversely,

It is known that there is a series summable (R,) and (8) diverges
for a null sequence (&;), and conversely, whence there is a sequence (R,)
summable but not (K, 1) suinmable, and conversely.

Let us consider an integrable function f(f) and its Fourier series

ft) ~ %’ + (@, cosnt + b, sin nt).
n=1

We can suppose aO:O and bn=0 (n:l’ 12, ) Without 10SS of generahty
Then the partial sum s,=o(n) and the series

[/
—".8in no
* m=1U

converges and tehds to zero as @—0. Thus, by Theorem 1, we get
~ Turorem 2. For Fourier series, the (K, 1) summability is equivalent
to the (R,) summability.

" For Fourier series (R,)-and (R, 1)-summabilities are mutually exclusive
[7], whence (K, 1)-and (R,’i)-sximmabilitiés are also. After Hardy and
Rogosinski [7] we get the following theorem.

TaroreM 3. - The Fourier serie of f(t) is (K. 1) summable to f(z) at
t=2z if and only if
f’dt f’””‘l’(” -0 (h—0),

-1l
where ¢(x, u)=f(2+u) +f(z—u)— 2f(x)
Tueorem 4. Let foI7(p>1). The necessary qnd. sufficient condition
that the Fourier series of f(t) s (K, 1) summable at t=x, is the existence

of the integral
(4) ja’+@) (w——w)dv
50 v
where f(t) 8 the conjugate function of f(t).
We will now give a direct proof of the last theorem. Let the Fourier
series of f(t) be .

f(t)~ f”" + Z(anoosnt + by sinnt) = EA ().
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We ‘can suppose that a, = 4, = 0. We have
A,(z) = 1 fh}'(ﬂc + u) cos nu du.
T Jy

Hence
2< " sin nt
=>4, S dt
S v 2 g (%) o 21tgt/2
= .~§ 0 ’}(m + u) cos nu du f jjn; Zi)dt'

| I

du f cos nu sin nt g,
ff(”"w) 2te 12
Let s¥ be the modlﬁed partial fum of § [6]. “Then

2w [ sin kt cos ku
= d f ffffff 0= Mt
> fof(“u) v e
¥ "’ ; dt
= %fol Sz + Uw)dufa: {Z*Sm It cos Lu}

, tg 1/2
2 [ "l — cosn(t —u) dt
- "f R A T (R TR

2 1 — cosn(f+u) di
d ot
ff(”“) “f Sig ((+w)2 2tgi/2

If we put
g(t) =cott/2 In (a;7),
0 in (— = a)
and g¢(t)=g(t+27) for all t. Then the inner integrals of the last double
integrals converge to the conjugate function at t=w and {= —u, respectively.
By fsL?,
dt

§=1lm8* =~ f f(& + u)du f [¥(u, 1) +9{— g i

where the inner mtegral_.. is taken in the Lebesgue sense and +(u,t)
=g(u—1t) —g(u+1)[6].
Now, let D, be the domain in (0,7 ; 0,27) such that
i —v> 2a, 27 — (u+v) > 2a.
Then we have; by an easy calcutatlon,
:_fff(a:+u) _ cost/2 Jtdu—l—o(l)
T u—.1 U+
sin 5 §in — T~

2.
fffx+v+ 'w)wdvdw-i- o(1).

sin 2_ sin 1”7
99

e &

L/l

By D,,p we denote the domain in (0,7 ; 0,27) such that
[u— o[> 2a, (27 — (u + v)|> 28.
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For the existence of the limit hm S, it is necessary and sufficient that the

limit
(5) lim f dv “«p(x 00 gy,
@, B0 = w
s1n ——
4

exists. Since by the hypothesm we can invert the integral of v and lim,
B0

(5) is equivalent to
lim [ L@+ = fle~12)y,

a->0

. v
@ sin —
4

Thus the theorem is proved.
§3. Turorem 5. If the integral

z L1
(6) St + 1oL

converges, then the necessary and sufficient condition- that the Fourier series
of f(t) is summable (K, 2) at t=x, 48 that the integral.

(7) f t’.[ Pz + v, t)log{izmn%)

converges, where

P(2,t) =flz+ t) + f(z = t) — 2f(2).
Proor. Using the notations in the proof of Theorem 1 and putting

S”——‘ziAn( )f sin’nt/2 ,,

s 21:/2 ’
wo have

S= —2 }(z + u) cos nu du:/'*sii{‘nt/th

=1y nsin’t/2

f flz + u)clufv gs&qsmnt/ﬁdt,
7T n=1 P

n sin’/2

Let S, be the n-th partial sum of S. Then
S cos ku sin’ni(2
== — 1= df.
S 7 f fla + u)d@_{,f {LEI: I sin®%/2 }

cos ku sin?t/2 = cos ku(1 — cos kt)/2
= {2c0s ku — cos k(u — t) — cos k(u + t)}/4.

2 008 kt — log (2 sin 5 )

k=1

Now

and, for 0<t<2x,

coskt

1 t
4(] ! ].O + 1 ].O +_ ),




NOTES ON FOURIER ANALYSIS (XXXV)

o
O
(SY]

where 4 is an absolute constant®. Thus (6) and (7) give us

S = 1752 S, = 2— " 13’2/2 ,f(x + u) -{— log <2 sin%)
+ log( sin % = D + log( sin ui; tl)]du,

2fsmﬁt/2f [flz +uw +t) + f(z + u—1)
— 9f(x + u)]log (2 sin _;i)du.

Thus the theorem is proved.
The necessary and sufficient condition for (R,) summability is

(8) lim ¢’1(t””t)1ogt+“dt_o

a->0 >0

where @, (2, t):f‘q)(x, w)du®. Since (7) and (8) are exclusive, (K, 2)
0
and (R,)-summabilities are exclusive.

Part III. Cesaro summability theorems.
§1. Let ¢(t) be an even periodic function with Fourier series

(1.1) d(t)~>a, cos nt, a,= 0.
n=0

The a-th integral of ¢(t) is defined by
(1) = ﬂ—)fwu)(t— w)*tdu (@ > 0)

and the B-th Cesaro sum of (1.1) is defined by s3(8>—1). Especially
we put s = s,.

L. S. Bosanquet [8] has proved that

Py(t) = o(#*) (t—>0)
implies
(1.2) 8% = 0(’/1,“) (n— oo)
for a>B, and conversely
sn=o0(nf) (n—> o)

implies
(1.3) ®,(t) =o(t*) (t—0)
for a>B+1. This paper concerns the converse part of the Bosanquet
theorem. Recently Hyslop [9] and the author [10] proved, that, if

(1. 4) si=o(n") (n—> o)
for B8>¢>0, then

(1.5) D, (t)=o0(t**F) (t—>0)
for a>1+v.

Naturally it is required to find such a that (1.3) holds under the
hypothesis (1.4). The solution is given by
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a>(B+1)/(B—~«y+1).
This is proved in Theorem 1.
Secondly we treat the case (1.4) with some Tauberian condition. The

theorem of this' type was considered by Loo [11]. Tauberian condition
used by him is

(1.6) a, = 0(1/n'"?%) (n— o)
for 0 <8<1. Besides this we use a weaker one such as
(L.7) 8= 0(1) (n— ).

We prove in Theorem 2 that (1.4) and (1.7) imply (1.8) for
a=1+03(B—y+9);
and in Theorem 3 that (1.4) and (1.6) imply (1.3) for
a=qB+1))B v+ 9).
In the latter case we need some restriction concerning B,y and 8. These
theorems imply Loo’s theorems as special case.

In the proof we do not use Young functions, which were always used
to prove theorems in this direction, but we use a method in the former
paper. This method makes also easy the proof of the converse part of the
Bosanquet theorem stated above.

§2. Tueorem 1. If

(2.1) ss=o(n') (n-—»o0).
for B>v>0, then
(2.2) D,(t) =o(t*) (t—0)

for a=(B+1)/(B—vy+1).

Proor. Let a=(B+1)/(B—y+1) and we will prove (2.2) for such
a. Then 1<a<l+ry. We distinguish sevearl cases, and begin by the
case 1<a<2. .

P(@)@(t) = [ p(u)(t = w)*du

0

> . - .
= Z (179 OOS 'nu(t — u)““du = 2 8, A cos nu(t—u)‘““ldu
n=0 n=0 0

2+2 I+

n=0 n=M+1
say, where A cosnu=-cosnu—cos(n+1)u and M will be determined later.
By the well known formula

o= 21,2 ),

we have
) ¢
I= anf A cos nu(t — u)*'du
n=0
2.3 =3 tZ\. s mu(t—u)*du 3 (—1)*( B )t
(2.3) __Zof cos W 20: )

= és;‘fol{ﬁ( 1)”‘( R )Acosnu}(t — u)*'du.

n=v
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The inner sum is
é( — 1)'"""<n§y>ﬁ COS NU = 25+‘(sin%-)ﬂ+1eos ((v + B ; 1>u + B ; 17r)
_ i (— 1)m<B>A cos (m + v)u = K (u) — K,(u),

m=M-v+1 m

say. Let us decompose I in (2.3) such that
M N M
I= :Z"'ZEIl'I"Iz;

v=0 v=0 v=N+1

and I, and I, such that
N ¢ N .
I, = zsff K (u) (t — w)*du + Zsf‘f Ky() (t — u)*du
v=0 0 v=0 0

=1 + I,
d ¢ e
L= f K (u) (t — u)*du + S f Ky (u) (¢ — u)*du
v=I+1 vyl Yo
’ =1+ Iy,
Since

3 B+1
f(sin%-) cos ((v + MN)u + M) (t — w)*'du = O (t*+F+1),
0
we have N
Il' = (2’97_ tm+ﬁ+1); =0 (Ny+l_tw+ﬁ+l)
v=0

which is o(t*), when

(2. 4) N = [1/t®+DierD7],
By
13 0
f A cos (m + v)u(t — u)*'du = O (,,,,,L,,,),
0 m -+ vy

we have

N o ﬁ "

I = 285 2 (— I)m('m>f Acos (m + v)u(t — u)*'du
=0 M=M-y+l 4 0

N co
t“ )
= Y SO S,
°(2 m:gwlmﬂ”('m )
N

o VY Ny+1)
= — S — [l — et
0<Mv2—-ov(M~v+1)ﬁ> 0(» B+1 o(),
if M=2N. Thus we have I;'=0(t*), whence I,=I—1I,'=0(t*).
In order to estimate I,, putting A= (B8+1)/2 and using the Lebesgue’s

device, we obtain
(2.5) [ (sin ) eos (& Mo+ ra) (¢ = )

0 >

_ l{ ‘/:).L<sin~g>ﬁ+leos((u + N+ M) (E — u)du

2
b7 ) (v+ ) \B+1
— * (sinl<u + i )) cos((v + X)u
2|(V+A) 2\ v+ N
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+ m)(t —u— T >0Hdu}
»

v+
T/Cv+A) 47, (V+)\)
=S

T (v+N) t
_ t8+1 tm-!ﬁ 1 = 1 tﬂ+1
- < Vo + V2 + ﬁ+1> - O( Vo )

for vt=>1. Honco

2 (s1n~2g>ﬁ+1(:os ((v + Mu + A7) (¢ — w)*'du

y=N+1

— 0( 2 psﬁ?) — O(tﬂ+1My+l—-w)
y=N+1 %

which is o(t*), if
(2 6) Mé 1/t(ﬂ+1—w)/c-y+1—m)_
On the other hand, we have

f A cos nu(t — w)*~*du = ‘?f ) cos (n + 1)u(t — uw)*du
0

= O(t/n®
for nt=1, and then (tfn")
(2‘ 7) v%]sﬂ {m gw—l(— 1)"‘(5}}) A cos (m + y) u} (t B u)"“ldu

—o(3 5 )
v=N+l m= M—v+1m’5“(’m, + y)

= ’ W A‘t > —. _ ¢ )

° (vszzm” JU 0 e y T ('M»w-v—l
for 0<B<1, which is o(#*), if
(2. 8) M > 1/a-Dia-1+@B=y»,
Thus I,=I,—I,=0(t*) when the conditions (2.6) and (2.7) are satisfied.
Finally

J= E f A cos nu(t — u)* 'du
n=M+1

= 0( ST pricen, b ) — ot/ Me-1-viB+)
n*

n=M+1
which is o(t*), if
(2.9) M = 1/fa=Dia-1-yiB+1),
By a=(B+1)/(B—y+1), _
B+1l—a _ a—1 ~ a—1
y+l—a a—-1—-9g/(B+1)"a—-1+ (B—v)
Hence the conditions (2.6), (2.8) and (2.9) are consistent, and it is
sufficient to take M such as .

M= [1 /t(B+1—w}K7+l—-w)] — [1 /t(.3+1)j'y]’
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which is sufficiently larger than N. Thus the theorem is proved for the
case 1<a<2 and 0<B<1.

§3. Let us now consider the case 1<a<2and 1<B8<2. It is enough
to estimate I, only. Using the Abel lemma in the inner sum in (2.7)

61 =3 sffot{m %H(_ 1)m( 1)A2eos(m + 2)ul(t—w)*du

v=N+1

- ENll(— 1)1(—«# f Acos (M + 1)u(t — u)*du
=04,
say, where A’cosnu=A(A cos nu):4(sin%>zcos (n+1)u.
Now

(2,,7 i btzi>

y=N+l m= M—v+1mﬂ(m + v)®

M
_ # _ e
B 'O( 2 (M~ + 1)% ) = (gpiss)

which is evidently o(t*) if a+B—y—2=0. If a+B+y—2<0, it is
sufficient that
(8.2) M < 1/ wle-a-@-m,
Since M is taken such that
M = [1/(6+DIY] = [1/gi@+D]
(8.2) is satisfied when 2/(1+48)=<1, which is the case for 1<B<2.
Secondly, if we use the Abel lemma in i, again, then

iy = {— EM: 1 (— 1)M-.,<:8 — 2)’

v=N+1 14
+ &~ l)M‘N”( B f Acos (M + 1)u(t —u)*'du
M

N PYBI(B+1) Nv _.):

=o(LZ =t Ms-JMd

. t {1 ¥B+DICy+1)

- O(Mm+ﬂ—ﬁy/(ﬁ+2)—-% ; HVM},HA—{*)
where a+B8—y8/(B+1)—2>0 by a<2. Thus i,=0(i*) when
(3.3) M > 1/1Ca-Dia+B-gai(B+1-2)

and
M> 1/t(w—1)+v(ﬂ+1);(y+!)) (a1 f=1),

These are easily verified. Thus tho thoorom is proved in the considering
case.

Let us proceed to the caso 1<a<2 and 2<8 <3. We use the Abel
lemma in (8.1) again. Using it in 1,
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i = ésﬂfo'{ > (- 1)( 2)A3oos-(m+az)u}(,t—‘u)“‘ldu

v=N+1 m=M-y+1

_ S 1) M.: })]{: A% cos (m + v)u(t — u)*-du

p= Va1
= .71 - .72: s .
say, ‘where A®cosnu=A(A%cosnu) = 2? (%) 008 <n»+ %}ﬂ Similarly as 4,

in the former .case

j1=0<2v7 > tA)

y=N+1 m=M-vy +1fm,B l(m + IJ)“

(? = f 1)F- M) (ﬁ‘{:_’s‘)

which is evidently o(t*) if a+B8—y—8=0. I a@+B—y—3<0, it is
sufficient that
(3. 5) Mé 1/,;(3—&)/(3—&—(5-7)).
"This is satisfied when 3/(B+1)<1, which is the case. In j, we use the
Abel lemma once. Then we get the required estimation. Concerning 4,
it is sufficient to use the Abel lemma twice. Thus the theorem is proved
for the case 1<a <2 and 2<B<8.

Thus proceeding we can complete the proof of the theorem for the case
1<a<?2, since the integral case of a is trivial.

§4. Let us consider the case 2<a<3. In this case 8>1. Wpe have

T(@)®,(t) = f "b(u) (t — u)*1du

= Z snfLA cos nu(t — u)*du

2 ,‘,f A? os nu(t — u)*'du
n=0

=2 +xu=I1+

n=0 n=M+l

say. By the formula
== 157 e,

we have y " o
I= ”20 f {2( 1)"""( 1>A’cm nu‘,(t — u)* 'du,

where the inner sum is

%( 1) ( 1)A‘ COS NU = 23“(3111 g )ﬂ“cos ((v + B+ 1)u + B+ 1,,)

n=y 2 2
—2 > (- 1)"{(3 - 1)Aﬂeos.(m + o),

m=M-v+1
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say. Hence, similarly as in §2, we decompose I such that
I=1 + L=+ 1) + (I; + I).
Defining N by (1.4), I o(t’”) and

B3, B )
! ° vzozy m= Mz—v+1 mﬂ‘(m + v)
. [ +1 N y'y )
O(MERM_V+1V1
— O(t¢+1N'ly+1/Mﬂ) — O(t“)
‘Now, by the twice application of Lebesgue’s deviece, we get

/:<sin %)B“Oos ((v + N + A7) (8 — w)*'du

O(tﬁ+1 ta+B -2 tw 1) (tB 1)
v

for vt=1. Thus, if the condition (2. 6) is -sablsﬁed, then we obtain
I;=o0(t%).
M

Iy = >'s ‘/0.{ 2 (=-1) ('B 1) A?cos (m + u)u}(t — u)*'du

v=N+1 m=M-y+1

oo

may be esitimated similarly as the case 1<a <2, dividing the cases
n<B<n+1(n=1,2,...).
Finally
hd t
J = 2 8}”‘[ A% cos nu(t — u)*'du

n=M+1

=0 Z 4?/<5+1)t e '
n=M+1 Me-1-2v/(B+1

where a—1—2y/(8+1)>0 by a>2. Hence J=o(t*), if
(4' 1) ]y[z 1/tcw-2)l(m—1—2w(ﬁ+l)).
Since
B+1l—a _ a—2 . a
y+1l-a aV—1—2'y/(:3+1,)_a~1’
(2.6) and (4.1) are consistent.

Thus the theorem is proved for the case 2<<a<3. The proof of the case
n<a<n+1(n=3,4,...) is now in hand. Since the proof for integral a
is easy, we have completed the proof of the theorem.

§5. Tueorem 2. If

(5.1) 8. = 0(1) (n— o)
for 0<8<1 and

(5.2) sh=o(n) (n— o0)
for B>4>0, then

(5.38) @,(t) = o(t*) (n— o)

for a=1+8](B—y+3).
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Proof of this theorem follows the similar lines of that ot Theorem 1.
In our cace, (5.1) and (5.2) imply
Sn P O(ns'ﬂ(ﬁ"‘s))’ S}'b — 0(n(1+8)w(5+8)),

This attributes to the estimation of J. In the case 1<a< 2, J=o(t*) if

(5. 4) Mz l/t(u—l)I(w—l—SW(ﬂw))'

(2.6) and (b.4) are consistent when
B+1l—a > a—1
y+l—a a—1—28y/(B+9)

which gives a>1+48/(B—y+6). In this case M=[1/t®+»/]. For such M,
it is easy to verify the conditions (3.2), (3.3) and so on.
In the case 2<a <3, we obtain, J=o(t*) if

(5_ 5) Mz 1/t(w—Z)I(a—l—(l+6)yl(ﬁ+8)).
(2.6) and (5.5) are consistent when
B+l—a_ a—2

v+l—a=a—1-(1+8)(8+9)
which gives also a=1++v8/(B—vy+d). Thus the remaining estimation is
the same as that of the former case.

We are now easy to prove the cases n<a<n+1(n=3,4,...).

§6. Turorem 3. If

(6.1) a, = 0(1/n'"?%) (n— o)
for 0<8<1, and
(6.2) sh=o0(n') (n—> o)
for B>y=0 and further if
(6.3) 5B—1)<2(B—v), 1-5=<8
(that is, B<Z1 or 6<2(B—v)/(B—1)), then
(6.4) D, (t) = o(t*) (t—0)
for a=max (1,8(B+1)/(B—v+39)).

We have

I'(a)®,(t) = 20 ‘oon nu(t — u)*'du

=Z+Z=—=I+J,

n=0 n=M+1
say. Estimation of I is similar as that in §2. By the formula

a, —Z( 1) v(,3+ )Sﬂ
we have

M
I= Eanfbcos nu(t — u)*'du
0

n=0

= ﬁjsgfo’{g( 1) (B + )cosnu}(t — u)*du,



NOTES ON FOURIER ANALYSIS (XXXV) 301

where the inner sum is -

oo

2ﬁ+1(sin%)ﬂ+lcos ((v + M)u + M) —m=2 (— 1)m(3 'r_lr;, 1) cos (m + v)u.

M-y+1
Hence, similarly as in § 2, we put

M N M
I=2=2+ 2 =L+1,
v=0 v=0 ° wy=N+1

=L+ L) + (L + L).
Defining N by (2.4), we get I; = o(¢*) and

N o

=2 3 (=070 [eom (m o)t = wpeidu

v=0 m=M-y+1

M
tu-]
= ¥ L
? (Z g m=d—p+1 /mﬂ”(m + ,,))

[t < vY

= B 7)

— (NI = ot (L)) = o(*)
for tM=>1. We have Li=o(t*) by (1.6). Sinhce we can suppose a<2, by
(6.8),

I =

v

co

1

1s§fz{ zw (—~1')'”(5L>cos (ﬂz—f-v)u}(t—u)“’du

N=M-v+1

2 (= 1Y (M— y)fo cos (M + 1)u(t — u)*='du
= 4, — 1y,

say. If we suppose 0<B<1, then

o

%%
. t
— > Y S S
h=0 (v;v;l’/ m=gy+1 mﬁ“(m + v)“)
o

sgf”{m=;z_m(~ (P + 1) cos (m + v)u}(t — w)*idu

14

[ i
M= 2= M=

oS Nt
= <M7v§|-1‘(M —_V + 1)5) 0 ( M’”"’ﬂ“—1>
which is o(t*), if
(6.5) M > 1[ia=DIB+B-y=D,
By the Abel lemma
. ad —1 v -1
=2 () - e ( A )

14
M

— (2 pHB-14iED] (If — u)~+ﬂ) + o( N/ ID+P)

v=N
= o(1/Ma+p-1-v+YIB+®) o ( N/ M*+#)
which is o(t*) if
(6.6) M > 1[tulta+Boy=14vB+8),
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(6' 7) Mg 1/t(4-Y(B+1)I(y+1))l(w+p)_
Finally
J = ngﬂa”A/‘;LOOS nu(t _ u)m—ldu
— O < 1) 1
= 0( 2 m) = 9 (5)
which is O(t*) if
(6.8) M > 1/tsice=b,

Now the condition (6.8) implies (6.5), (6.6) and (6.7), (6.8) and
(2.4) are consistent when
a=3(B+1)/(B—y+3).
Thus we have proved (6.4) with O instead of o, for the case 0<B<1.
We can replace O by o by the ordinary method. The general case
n<B<n+1(n=1,2, ...) may be proved similarly as in §38.

Toéhoku University, Sendai.
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