ON THE COMPUTATIONS OF THE INDICES OF THE GROUP OF NORM RESIDUES AND OF THE GROUP OF POWER RESIDUES WITHOUT EMPLOYING LOGARITHM*>

By

CHITOSE YAMASHITA

1. Let K be a relatively cyclic algebraic number field over k of degree n and s be a generating substitution of the Galois group of K/k. And we assume that the prime ideal \mathfrak{p} in k resolves in K as $\mathfrak{p}=\mathfrak{P}^{e}$, where $\mathfrak{P}^{s}=\mathfrak{P}$.

The computation of the norm residue index in the class field theory is, as it is well known, reduced to the proof of the following equality in the above case;

$$(\alpha:\alpha_0 N_{K/k} \mathbf{A}) = e,$$

i.e., under the group α/α_0 of residue classes modulo \mathfrak{p}^{λ} , for sufficiently large λ , the index of the subgroup of classes represented by the norms of numbers A of K is equal to e.

In the computation of this paper we introduce, for simplicity, the p-adic number field as usual, but we do not employ the logarithm, nor the group of *n*-th powers of numbers.

We can take *n* numbers $s_i \Theta$ (i=1, 2, ..., n) in the \mathfrak{P} -adic field $K_{\mathfrak{P}}$ which are conjugate with respect to $k_{\mathfrak{P}}$, and are linearly independent in $k_{\mathfrak{P}}$. In the sequel we use such numbers $s^i \Theta$, which are known as normal basis of $K_{\mathfrak{P}}/k_{\mathfrak{P}}$.

2. Without loss of generality we may assume that the numbers $s^t \Theta$ which constitute the normal basis are integers in $K_{\mathfrak{p}}$ and that the trace of Θ is an element of the prime ideal \mathfrak{p} , namely

$$\operatorname{Sp}\Theta = \sum s^i \Theta = \theta \in \mathfrak{p}.$$
 (1)

If $\lambda \geq 2$ and β be an integer in $k_{\mathfrak{p}}$, we can take an integer γ in $k_{\mathfrak{p}}$ such that

$$\mathbf{1} + \boldsymbol{\theta}^{\lambda+1}\boldsymbol{\beta} = N\mathbf{A} \quad \text{and} \quad \mathbf{A} = \mathbf{1} + \boldsymbol{\theta}^{\lambda}\boldsymbol{\gamma}\boldsymbol{\Theta}, \tag{2}$$

where NA is the norm of a number A in $K_{\mathfrak{P}}/k_{\mathfrak{p}}$.

PROOF. If we denote the *m*-th elementary symmetric function of *n* numbers $s^i \Theta$ with θ_m , from the equation

^{*)} Received Oct. 6, 1949.

C. YAMASHITA

$$1+\theta^{\lambda+1}\beta=N(1+\theta^{\lambda}\gamma\Theta),$$

we have

$$1+\theta^{\lambda+1}\beta=1+\theta^{\lambda}\gamma\theta+(\theta^{\lambda}\gamma)^{2}\theta_{2}+\ldots+(\theta^{\lambda}\gamma)^{n}\theta_{n},$$
 at is.

that is,

 $(\theta \gamma + \theta^{\lambda-2} \theta_2(\theta \gamma)^2 + \theta^{2\lambda-3} \theta_3(\theta \gamma)^3 + \ldots + \theta^{(n-1)\lambda-n} \theta_n(\theta \gamma)^n = \theta \beta.$

This is an algebraic equation in $\theta\gamma$ of degree *n* with integral coefficients in $k_{\mathfrak{p}}$, where the coefficient of $\theta\gamma$ is unity. Solving formally we get

$$heta \gamma = heta eta - heta^{\lambda - 2} heta_2 (heta eta)^2 + \ldots,$$

which is an infinite series of $\theta\beta$ with integral coefficients in $k_{\mathfrak{p}}$. Since $\theta \in \mathfrak{p}$, the infinite series converges as a \mathfrak{p} -adic number, and the sum is an element of the ideal (θ) in $k_{\mathfrak{p}}$, so that we can take an integer γ in $k_{\mathfrak{p}}$, which satisfies the relation (2).

As far as the relation (2) is concerned, the integers $s^{t}\Theta$ need not constitute a normal basis, but they need only satisfy the relation (1).

In general let us represent the units in $K_{\mathfrak{p}}$ and $k_{\mathfrak{p}}$ (the integers which are prime to \mathfrak{p}) by A and α respectively. By α_0 we understand the units α which satisfy the congruence $\alpha \equiv 1$ (\mathfrak{p}), where $\mathfrak{p} \subset (\theta^3)$. Then from (2) we have, as groups of numbers, $\{\alpha_0\} \subset \{NA\}$. Hence we have, as an index relation,

$$(\alpha: \alpha_0 NA) = (\alpha: NA). \tag{3}$$

3. As in the preceding section we take the fixed set of normal basis $s^{t}\Theta$, and we represent the set of numbers

$$\Gamma = \sum_{i=1}^{n} \beta_{i} \vartheta^{i} \Theta \tag{4}$$

by $\{\Gamma\}$, where β 's run through integers in $k_{\mathfrak{p}}$. $\{\Gamma\}$ is a subgroup of the additive group $\{B\}$ of whole integers in $K_{\mathfrak{p}}$, and $\Gamma^{s} \in \{\Gamma\}$. Here we have $\beta\Gamma \in \{\Gamma\}$ and $\beta\theta = \sum \beta s^{i} \Theta \in \{\Gamma\}$, where β represents an integer in $k_{\mathfrak{p}}$.

If $(1-s)\Gamma=0$, then we have $\Gamma=\beta\theta$, (5) and if $\operatorname{Sp}\Gamma\in(\theta^{\lambda})$, then we have

$$\Gamma = (1-s)\Gamma' + \theta^{1-1}\beta\Theta, \qquad (6)$$

where $\lambda \geq 1$ and Γ' is a number of $\{\Gamma\}$.

Proof of (5). From (4) we have

$$(1-s)\Gamma = \sum_{i=1}^{n} (eta_i - eta_{i-1}) s^i \Theta, ext{ where } eta_0 = eta_n.$$

As *n* numbers $s^i \Theta$ are linearly independent in $k_{\mathfrak{p}}$ and $\sum (\beta_i - \beta_{i-1}) s^i \Theta = 0$ by the assumption, we have $\beta_i = \beta_{i-1} (i=1, 2, ..., n)$. Hence we can put $\beta_i = \beta$ and then from (4) we have $\Gamma = \sum \beta s^i \Theta = \beta \theta$.

PROOF OF (6). From (4) we have Sp $\Gamma = \sum \beta_i \theta$, and by the assumption $\sum \beta_i \theta \in (\theta^{\lambda})$. Hence we have $\sum \beta_i = \theta^{\lambda-1}\beta$. If we put $\beta'_0 = \beta'_n = 0$ and $\beta_1 + \beta_2 + \ldots + \beta_i = \beta'_i$ (i < n), we have $\beta_i = \beta'_i - \beta'_{i-1}$ $(i = 1, 2, \ldots, n-1)$ and

280

 $\beta_n = \beta_n + \beta_1 + \beta_2 + \ldots + \beta_{n-1} - \beta'_{n-1} = -\beta'_{n-1} + \sum \beta_i = \theta^{\lambda-1}\beta - \beta'_{n-1} = \beta'_n - \beta'_{n-1} + \beta_{n-1} + \beta_{n \theta^{\lambda-1}\beta$ since $\beta'_n = 0$. Therefore we have $egin{aligned} \Gamma &=& \sum_{i=1}^n (eta'_i - eta'_{i-1}) s^i \Theta + heta^{\lambda-1} eta s^n \Theta \ &=& (1-s) \Gamma' + heta^{\lambda-1} eta \Theta, \end{aligned}$

where $\Gamma' = \sum \beta_i s^i \Theta \in \{\Gamma\}$, because $\beta_0' = \beta_n'$.

4. If we take any integer B in $K_{\mathfrak{p}}$, then B and s' Θ are linearly dependent. Hence we have a linear relation of integral coefficients in $k_{\mathfrak{p}}$;

$$\partial B + \sum \beta_i s^i \Theta = 0.$$

Since s' Θ are linearly independent, $\beta = 0$, so that we can take some power θ^{\flat} of θ such that θ^{\flat}/β is an integer, for $\theta \in \mathfrak{p}$ in \mathfrak{p} -adic number field. Hence $\theta^{\flat} B = -(\theta^{\flat}/\beta) \cdot \sum \beta_i s^i \Theta \in \{\Gamma\}$. Let θ^i be the highest power of θ among the corresponding θ^{b} , when B represents each element of the absolute basis of the integers in K_{v} with respect to the field of rational *p*-adic numbers. Then we have $\theta^{t} B \in \{\Gamma\}$ for all integers B in $K_{\mathfrak{P}}$, and hence, for ideals in $K_{\mathfrak{p}}$ we have

$$(\theta^t) \subset \{\Gamma\} \subset (1). \tag{7}$$

If we put $A_{\lambda} = 1 + \theta^{\lambda} B$ for each integer λ , the set of numbers $\{A_{\lambda}\}$ is the multiplicative group of the units A of $K_{\mathfrak{P}}$ such that $A \equiv 1 \pmod{(\theta^{\lambda})}$, and as sets of numbers we have

$$\{\mathbf{A}_{\lambda+t}\} \subset \{\mathbf{1} + \theta^{\lambda} \Gamma\} \subset \{\mathbf{A}_{\lambda}\}.$$

In the following we put $\overline{A} = 1 + \theta^{\lambda} \Gamma = 1 + \theta^{\lambda} \sum_{i=1}^{n} \beta_{i} s^{i} \Theta$ for a fixed integer $\lambda \ge t+2$, then we have

$$\{\mathbf{A}_{\mathbf{2}\boldsymbol{\lambda}}\} \subset \{\mathbf{A}_{\boldsymbol{\lambda}+t}\} \subset \{\overline{\mathbf{A}}\} \subset \{\mathbf{A}_{\boldsymbol{\lambda}}\}.$$

 $\{\overline{A}\}$ is a multiplicative group and $\overline{A}^s \in \{\overline{A}\}$.

and

PROOF. The product of two numbers of {A} is also a number of {A} as follows:

 $(1 + \theta^{\lambda} \Gamma)(1 + \theta^{\lambda} \Gamma') = 1 + \ell^{\lambda} (\Gamma + \Gamma' + \theta^{\lambda} \Gamma \Gamma') \in \{A\},\$ because $\theta^{\lambda}\Gamma\Gamma' \in (\theta^{\lambda}) \subset (\theta^{t}) \subset \{\Gamma\}.$

If for $\overline{A}=1+\theta^{\lambda}\Gamma$ we put $\overline{A}'=1-\theta^{\lambda}\Gamma$ and $\overline{A}''=(\overline{A}\overline{A}')^{-1}$, we have $\overline{\mathbf{A}}^{\prime\prime} = (1 - \theta^{2\lambda} \Gamma^2)^{-1} \in \{\mathbf{A}_{2\lambda}\} \subset \{\overline{\mathbf{A}}\}, \quad \overline{\mathbf{A}}^{-1} = \overline{\mathbf{A}}^{\prime} \overline{\mathbf{A}}^{\prime\prime} \in \{\overline{\mathbf{A}}\};$

thus the inverse of any number of $\{\overline{A}\}$ is also the number of $\{\overline{A}\}$.

5. Let us put $\overline{A} = \overline{\alpha}$ if $\overline{A}^{1-s} = 1$, and put $\overline{A} = \overline{A}^*$ if $N\overline{A} = 1$, then, as groups of numbers, we have

$$\{\overline{\alpha}\} = \{NA\}, \qquad (8)$$

 $\{\overline{\mathbf{A}}^*\} = \{\overline{\mathbf{A}}^{1-s}\}, \qquad (9)$ PROOF. Let us put $\overline{\alpha} = \mathbf{1} + \theta^{\alpha} \Gamma$. As $\overline{\alpha}^{1-s} = \mathbf{1}, \ \overline{\alpha} = \overline{\alpha}^s$ and $(1-s)\overline{\alpha} = 0$, we have $(1-s)\Gamma=0$, so that from (5) we have $\Gamma=\beta\theta$ and $\alpha=1+\theta^{\lambda}\cdot\beta\theta$,

281

thus from (2) we get $\alpha = NA$, $A = 1 + \theta^{\lambda} \gamma \Theta \in \{1 + \theta^{\lambda} \Gamma\} = \{\overline{A}\}$. Therefore we have the relation $\overline{\alpha} \in \{N\overline{A}\}$. Conversely, as $(N\overline{A})^{1-s} = 1$ and $N\overline{A} = \Pi(s^{t}\overline{A}) \in \{\overline{A}\}, N\overline{A} \in \{\overline{\alpha}\},$ so that the relation (8) is proved.

Now let us put $\overline{\mathbf{A}^*} = 1 + \theta^{\lambda} \Gamma$. As $1 = N\overline{\mathbf{A}^*} = 1 + \theta^{\lambda} \operatorname{Sp} \Gamma + (\theta^{3\lambda})$, we have $\operatorname{Sp}\Gamma \in (\theta^{\lambda})$, so that from (6) we have

$$\Gamma = (1-s)\Gamma^{1} + \theta^{\lambda-1}\beta\Theta.$$

Here let us put $\overline{A}' = 1 + \theta^{A} \Gamma'$ and $\overline{A}^{*} \overline{A}'^{s-1} = A$, then

$$egin{aligned} \mathrm{A} &= (1+ heta^{\lambda}\Gamma)(1+ heta^{\lambda}\Gamma')^{s-1} \ &\equiv (1+ heta^{\lambda}\Gamma)(1- heta^{\lambda}(1-s)\,\Gamma') \quad ((heta^{2\lambda})) \ &\equiv 1+ heta^{\lambda}(\Gamma-(1-s)\Gamma') \quad ((heta^{2\lambda})) \ &= 1+ heta^{2\lambda-1}eta\Theta \equiv 1, \quad ((heta^{2\lambda-1}), \ \mathrm{A}^{1+s+\dots+s^{i}} \equiv 1 \quad ((heta^{2\lambda-1})). \end{aligned}$$

Next let us put

 $\mathbf{B} = \mathbf{\Theta} + \mathbf{A}s\mathbf{\Theta} + \mathbf{A}^{1+s}s^{2}\mathbf{\Theta} + \ldots + \mathbf{A}^{1+s+\ldots+s^{n-2}}s^{n-1}\mathbf{\Theta},$

where $s^{i}\Theta$ are the normal basis, then we get $B^{s}A=B$, because $A^{1+s+\ldots+s^{n-1}}=NA=N(\overline{A}*\overline{A}'^{s-1})=1$.

From $B - \theta = B - \Theta - s\Theta - s^2\Theta - \dots - s^{n-1}\Theta$ $= (A - 1)s\Theta + (A^{1+s} - 1)s^2\Theta + \dots$ $\in (\theta^{2\lambda-1}) \subset (\theta^{\lambda+1+t}) \subset \{\theta^{\lambda+1}\Gamma\}$

(because $\lambda \geq t+2$ and by (7)), we can put $\mathbf{B}-\theta=\theta^{*+1}\Gamma^{\prime\prime}$ and $\overline{\mathbf{A}}^{\prime\prime}=\mathbf{B}/\theta=1+\theta^{*}\Gamma^{\prime\prime}\in\{\overline{\mathbf{A}}\}$, so that we have $\overline{\mathbf{A}}^{\prime\prime_{1-s}}=\mathbf{B}^{1-s}=\mathbf{A}=\overline{\mathbf{A}}^{*}\overline{\mathbf{A}}^{\prime_{s-1}}$, $\overline{\mathbf{A}}^{*}=(\overline{\mathbf{A}}^{\prime\prime}\overline{\mathbf{A}}^{\prime})^{1-s}\in\{\overline{\mathbf{A}}^{1-s}\}$. On the contrary, as $N(\overline{\mathbf{A}}^{1-s})=1$ and $\overline{\mathbf{A}}^{1-s}\in\{\overline{\mathbf{A}}\}$, $\overline{\mathbf{A}}^{1-s}\in\{\overline{\mathbf{A}}^{*}\}$, so that the relation (9) is proved.

6. Let us represent the units in $K_{\mathfrak{P}}$ (integers in $K_{\mathfrak{P}}$ which are prime to \mathfrak{P}) by A in general, and put $A=A^*$ if NA=1, then we have the relation of the index

$$(A^*: A^{1-s}) = e. (10)$$

PROOF. By Hilbert's lemma, for each A^* we can take a number B in $K_{\mathfrak{P}}$ such that $A^* = B^{1-s}$. If we take an integer Π in $K_{\mathfrak{P}}$ such that the exponential \mathfrak{P} -adic value $O(\Pi) = 1$, $E = \Pi^{1-s}$ is an unit in $K_{\mathfrak{P}}$ and NE = 1, so that $E \in \{A^*\}$. If O(B) = m (positive or negative rational integer or zero), $A = B\Pi^{-m}$ is an unit, so that $B = \Pi^m A$, $A^* = B^{1-s} = E^m A^{1-s}$, hence $A^* \in \{E^m A^{1-s}\}$. Conversely $E^m A^{1-s} \in \{A^*\}$, so that we have

$$(A^*: A^{1-s}) = (E^m A^{1-s}: A^{1-s}).$$

It is thus sufficient to show that the condition $E^m \in \{A^{1-s}\}$ is equivalent to the divisibility of m by e. In fact, if $\Pi^{m(1-s)} = E^m = A^{1-s}$, then $(\Pi^m/A)^{1-s} = 1, \Pi^m/A$ is a number in k_p , so that $m = O(\Pi^m/A)$ is divisible by e, because $\mathfrak{p} = \mathfrak{P}^e$ in $K_{\mathfrak{p}}/k_p$. Conversely, if m is divisible by e, we can take a number ρ in $k_{\mathfrak{p}}$ such that $O(\rho) = m$. Then $A = \Pi^m/\rho$ is an unit in $K_{\mathfrak{p}}$. so that $E^m = \Pi^{m(1-s)} = A^{1-s}$.

7. From (3) we can see that the index $(\alpha : NA) = (\alpha : \alpha_0 NA) = a$

is a finite number. From (10) we have

$$\frac{(\mathbf{A}^*:\mathbf{A}^{1-s})}{(\alpha:N\mathbf{A})} = \frac{e}{a}.$$

 $N(A^{1-s}) = (NA)^{1-s} = 1$, $A = A^*$ if and only if NA = 1 and $A = \alpha$ if and only if $A^{1-s} = 1$, so that we can apply Herbrand's lemma in (11). In place of the group $\{A\}$ of units, we take its subgroup $\{\overline{A}\}$, then, since $\{A_{\lambda+t}\} \subset \{\overline{A}\} \subset \{A\}$ and so the index $(A:\overline{A}) \leq (A:A_{\lambda+t})$ is finite, we have

$$\frac{(\mathbf{A}^*:\mathbf{A}^{1-s})}{(\overline{\alpha}:N\overline{\mathbf{A}})} = \frac{e}{a}$$

Now, from (8) and (9) we have $(\overline{\alpha}: N\overline{A}) = 1$ and $(\overline{A}^*: \overline{A}^{1-s}) = 1$ respectively, so that a=e. Thus, for the index of the group of the norm residues, it is proved in $K_{\mathfrak{P}}/k_{\mathfrak{p}}$ that

$$(\alpha : \alpha_0 NA) = (\alpha : NA) = e.$$

8. Now let us compute the index of the group of power residues. Let n be a natural number and \mathfrak{p} be a prime ideal in an algebraic number field k. It is also well known that, under the group of residue classes of numbers in k modulo \mathfrak{p}^{λ} , for sufficiently large λ , the index of the subgroup of those which are represented by the *n*-th powers of numbers in k, that is, the index of the group of residues of *n*-th powers, is

$$(\alpha : \nu) = n'' N_k \mathfrak{p}^t, \ n' \leq n'' \leq n;$$

where \mathfrak{p}^{t} is the \mathfrak{p} -component of n, and the number of the n-th roots of unity in k is n', (and the number of those in the \mathfrak{p} -adic number field $k_{\mathfrak{p}}$ is n'').

By the computation of this index, we introduce the \mathfrak{p} -adic number field $k_{\mathfrak{p}}$ as usual, but we do not employ the logarithm this time too.

Let α denote the numbers in $k_{\mathfrak{p}}$ which are prime to \mathfrak{p} and let $\{\alpha\}$ be their multiplicative group. Let us put $\alpha = \alpha_{\lambda}$ if $\alpha \equiv 1$ $(n^{\lambda}\mathfrak{p})$, where λ is any natural number. If $\alpha_{\lambda} = 1 + n^{\lambda}\beta$, β is a number in \mathfrak{p} , and

$$(1 + n^{\lambda}\beta)^n \equiv \mathbf{1}(n^{\lambda+1}\mathfrak{p})$$

so that we have $\alpha_{\lambda}^{n} \in \{\alpha_{\lambda+1}\}$. Conversely if $\alpha_{\lambda+1} = 1 + n^{\lambda+1}\beta$, β is a number in \mathfrak{p} , and we can take a number γ in \mathfrak{p} such that

$$1 + n^{\lambda+1}\beta = (1 + n^{\lambda}\gamma)^n,$$

so that we have $\alpha_{\lambda+1} \in \{\alpha_{\lambda}^n\}$. Therefore, as groups of numbers, we have $\{\alpha_{\lambda}^n\} = \{\alpha_{\lambda+1}\}$.

C. YAMASHITA

If ζ be a primitive *n*-th root of unity,

$$(1-\zeta)(1-\zeta^2)\dots(1-\zeta^{n-1})=n\equiv 0$$
 $(n^{\lambda}\mathfrak{p}),$

so that unity is the only *n*-th root of unity which is included in the group $\{\alpha_{\lambda}\}$.

By the correspondence of numbers $\alpha \rightarrow \alpha^n$, those which correspond to unity are the *n*-th roots of unity in $k_{\mathfrak{p}}$, and their number is n'', while only one of them is included in $\{\alpha_{\lambda}\}$, so that we have the relations between the indices of groups

$$\frac{(\alpha:\alpha_{\lambda})}{n''} = (\alpha^n:\alpha_{\lambda}^n) = (\alpha^n:\alpha_{\lambda+1}) = \frac{(\alpha:\alpha_{\lambda+1})}{(\alpha:\alpha^n)},$$

where $(\alpha : \alpha_{\lambda}) = \varphi(n^{\lambda}\mathfrak{p})$ and $(\alpha : \alpha_{\lambda+1}) = \varphi(n^{\lambda}\mathfrak{p} \cdot \mathfrak{p}^{t}) = \varphi(n^{\lambda}\mathfrak{p}) \cdot N_{k}\mathfrak{p}^{t}$ are finite numbers. Hence we have

$$(\alpha:\alpha^n)=n''N_k\mathfrak{p}^t.$$

Let us now put $\alpha = \alpha^*$ if $\alpha \equiv 1$ (\mathfrak{p}), where $\lambda \geq 2t+1$. As $\alpha^* \equiv 1(n^2\mathfrak{p})$, $\alpha^* \in \{\alpha_2\} = \{\alpha_1^n\} \subset \{\alpha^n\}$, so that we have in $k_{\mathfrak{p}}$

$$(\alpha:\nu) = (\alpha: \alpha^* \alpha^n) = (\alpha: \alpha^n).$$

This is the ratio of the number $(\alpha : \alpha^*) = \varphi(\mathfrak{p}^{\lambda})$ of the cosets of $\{\alpha^*\}$ to the number $(\alpha^n \alpha^* : \alpha^*)$ of those which are represented by the *n*-th powers of numbers in $k_{\mathfrak{p}}$, so that this index in *k* is the same as in $k_{\mathfrak{p}}$. Therefore the index of the group of the residues of *n*-th powers in *k* modulo \mathfrak{p}^{λ} $(\lambda \geq 2t+1)$ is obtained;

$$(\alpha:\nu)=n^{\prime\prime}N_{\iota}\mathfrak{p}^{t}.$$

Tôhoku University, Sendai.

 $\mathbf{284}$