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IDEAL THEOREMS

BY

TADAO TANNAKA

In this paper I present a detailed account of the results previously
announced in the Proceedings of the Academy of Tokyo, and which
constitute the arithmetic complement to Terada's paper in this same
volume. Concerning the historical note we refer to the above previous
note and the preface in Terada's paper.

In the paragraph 6 of this paper I give a proof of original principal
ideal theorem, which is in substance that of Iyanaga's paper [1], but
which does not depend on the concept of " order ideal". § 7 contains
further remark in this direction.

2.

Mr, Terada has proved recently the following generalization of Furt-
wangler's principal ideal theorem:

THEOREM 1. Let K be the absolute class field over h, and Ω a, cyclic
intermediate field of K/k, then all the ambigous ideal classes of Ω will
become principal in K.

This Theorem was suggested by the special case JSΓ=ίl, where no
essential difficulty occurs. We can prove that special case for instance by
the principal genus theorem, which asserts that iVJC /fcα~l implies α-^B1"*
for some ideal 6, s being a generator of the Galois group G(K/Jc). We see
namely that in our case the correspondence α-xi1"* leads to an isomorphism
of the ideal classes, and the required proof is at hand.

I will show in the following line in what manner Iyanaga's principal
ideal theorem [2] for " ray class fields" (Strahlklassenkόrper) can be
generalized, and that this amounts to

THEOREM 2. Let K be the ray class field mod f(K/k) over Jc, and ίl
a cyclic intermediate field of K/k, Let also m denote the ideal Max {f ( JK/Ω) ?

^y(Ω/k)\ in Ω. If a is an ideal in ambigous class modulo m, then a lies
in the ray modulo $(K/k), when considered as an ideal in K. Thereby

*) Received Sept. 28, 1949.
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$ means the " Geschleehtermodid ", whose construction is given in the below.

3.

Let K/k be an arbitrary normal field with the Galois group G=G(K/k),
and ίl a normal subgroup which corresponds to the subgroup g of G.
Let φ be a prime ideal in i ζ which has θt(i=l, 2, ...) as Hubert's
ramification subgroups of order (G^—Nt respectively, that is, Gt may
consists of all the Galois substitutions σ with

.A* = A mod ψ (A in K).
Corresponding subgroups for KjSl are gi = (jtiC\g, with the order nt

(sometimes also n(i) when it is convenient in writing) respectively, and
the ramification subgroups γ« for Ω/Jc were determined by J. Herbrand in
the following form.

If the subgroups rYi=(g9Gi)/g satisfy the relations

and if
γ ( l ) — 7(2) = ... = 7(^1)

> 7(*i + 1} = 7(*2 + 2) = ... = y(i2)

then we have the equalities (putting e—n(l))r

eiλ = n(ί) + n(2) + ... + n(%),

and the isomorphisms

γ(i,)^-/(*;) (7=1,2, . . ) ,
by which y(i) are completely determined.

As for the infinite spots, we have entirely same results. Readers may
compare wτith a paper due to Mr. Iyanaga [3], In the following considera-
tion we will confine ourselves exclusively to the case of finite spots.

4.

By the Basse's formula for the conductor of the abelian field K/k we
have

r

i = l +

and wrhich we write for the sake of convenience

Conversely if we define the conductor of the arbitrary normal field
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Kjk by this formula, formal properties obviously remain true.
From this formula, applied to the field Ω/k, and the Herbrand's in

the preceding section we have easily (cf. [6])

We have also an analogous formula for the Gesehlectermodul
which is defined by the formula

(4. 3) [$(q Ω/i)] = Σ l (summed over Ύt Φ 1)

where φ/q, q in Ω, and the corresponding formula to (4.2) is

(4.4) ©(%;»/*)] = Σ ( Λ ) (ftΦ?).
Next we define an ideal f ( iζΩ, &) in Ω, which unifies the concepts of
" conductor " and " Geschlechtermodul ", and which is given by the formula

(4.5) [f(Φ;ίΓ,O,*)] = Σ(G ί*nί?) (G.=*=l)..
We see immediately, that it follows
(4.6) _ \{K,K,k)=%{Klk), \{K,l,l)=\{Kjk)
respectively. More generally we can prove the

THEOREM 3. f(Jζ Ω, *) = Max{f (JK/Ω), f?(Ώ/*)}..
PROOF. We distinguish two cases according to the behavior of ramifica-

tion groups.
CASE I. There is a groupGrsΦl with GiCg. In this case the condition

6r£Φl coincides with the condition ^<=Gr<nflr=*=l> s 0 ^at we have

CASE II. There is no group' G f φ i with Gidg. In this case the
right-hand side of the equality (4.5) coincides with that of the equality
(4.4), we have accordingly

^ [ f O P ; JBΓ/Ω)] ( = Σ ( Λ ) (ft =*=•!))•
From these both results we conclude the required equality, and especially
that f ( iζΩ, jfe) is an ideal in Ω.

THEOREM 4. If Kjk is a normal field with Galois group ©, and Ω,
Id two intermediate fields which correspond to the subgroups g and G of ©
respectively, then we have

(4.7) [f(¥;0,^*)]
Thereby φ is a prime ideal in K, and Gt, @t are corresponding ramifica-

tion groups for ίΓ/i' and Kjk respectively.
PROOF. ΛVΘ denote the quotient groups <8/g, Gjg by δ and γ

respectively, and 8h γ£ corresponding Hubert's subgroups.
CASE I. There is a group δ t :Φl with B{ciy.
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We have then by the proof of preceding theorem
[f (q Ω, V, *)] = f (q n/k')l (5β/q, q in O)

and then using the formula (4. 2) applied to the fields K, Ω and k' instead
of K, Ω and K respectively,

but as we see easily by our assumption Giφg^±($ίφ.g, this reduces to the
equality (4. 7).

CASE II. There is no group δfφl with Sidy. By the proof of
preceding theorem and the formula (4.4), again applied to the fields K,
kr and k,

But from the assumption follows (Stφg^l&iφG, as we have Si—(Si/gί y—G/g,
and the theorem is proved.

5.

ΛVe denote generally by S(m) the "ray" (Strahl) modulo m. Our
main theorem 2 is an immediate consequence of the following theorem, if
we assume Terada's result of group theoretical part of our theorem. Apart
from this application theorem 5 may be of some interest in itself.

THEOREM 5. Let Ω be the ray class field modulo f (Ω/&) over k, and
k! an arbitrary (not always cyclic) intermediate field. Let further Ω be the
ray class field modulo $(Ω/&) over Ω and K maximal abelian extension
over ¥ contained in Ω. Then K is the ray class field modulo some ideal
m over hf'. We may assume

NOTE. By the application to the theorem 2 we restrict V to the cyclic
field, and write K and Ω instead of Ω and F respectively.

PROOF. ΛVe shall prove this by showing the following two partial
results.

FIRST : If KaΩ and K/kf is abelian then we have \{Kjkf) ^f (Ω, kf, k),
or
(5.1) f(iΓ/Ω) ^ $(Ω/i) -> KW) ^ f(Ω, *', *)-

If we use the same notations as in theorem 4, the left side inequality
will become (restricting to ̂ -contribution),

(5.2) Σ(ίfc) (Λ=*=1)^Σ(Λ) (®«φy),
or subtracting the same terms (grt) with (^Φl, ®ίφ^) from both sides

(5.2)' 2(ίfc) ( Λ Φ ^ ^ C f l f ) ^ Σ ( Λ ) ( Λ ^ l , β c Φfl̂ )
ΛVe can transform likewise the right member of the logical relation
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(5. 1), successively into the form

(5.3)
or
(5.3)'

If the assertion (5.1) is not true, the left side of (5. 3)' does not vanish
(at least for a prime spot ψ), so that there exists a group © f C^ with
G ^ Φ J Π G Φ I . We. see immediately that the left side of (5.2)' does not

vanish, while the right side is zero, in contradiction to our assumption.

SECOND : If K is the class field for the ideal group #(f (ίl, k', k)) in

k', then Kczίϊ or what comes to the same thing

(5.4) f (Ψ)^f(Ω^' 5 ^^fWβ)^ϊ(^) ,
or by the above-mentioned reductions
(5.4)' (5 .3) '-* (5.2)'.

If then (5. 2)' is not true, we have for some prime spot ψ

Σ(ίfc)(gt Φ l, ®, c sr) > Έ(g()(g< = l , ®4 φ g),
and there, is a group (SjCig with ^ φ l . This implies that the right side
of (5. 3)' is zero, while the left side of the same equality is equal to that
of (5.2)', which is > 0 by the assumption.

6.

In this paragraph I will give a little remark about the Iyanaga's proof
of original principal ideal theorem. We can namely by a slight modifica-
tion avoid the concept of " order ideal" in his proof, though it is very
important in itself.

The theorem to be treated here is the well known

" Let G be a metabelian group and 8σ(S1=l) represent a system of

representatives of the commutator factor Gr/(?'=Γ, then factor set D^ —

SσStS~l satisfies the relation T\.σD^τ=l for all τ ". .

We construct as in Iyanaga's paper, Artin's splitting group ίl generated
by G' and the symbols ^ ( ^ — 1 ) , and with Γ as operator system by the
rules

A* = Aσ AafDσ^ T.

One of the important technics lies in the principle

((3.1) AC

T, c = *Σcσσ (for all T ) ->]>>σ<r = ^Γ.

Let now σΊ, σ23 ... and σk be a basis of Γ with the orders ely e2, ... and

ek(e1e2...elt=n) respectively. As we have

Aστ^AσA? (G')
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ίl is symbolically generated (that *iβ to say generated by all symbolic
powers) by At and G', where At denotes Aσ with σ=σ t .

Any element of G has the form UσSσ(Uσ€Gf), and the commutator of
two such elements is

UσSσ UtSτ (UσS& )~1( UτSτ) ~
ι = Ul~τ U*'1 A^r 1A\~ σ.

T h u s the elements U19 U2, ...,• Ut of Gf have t h e form

( 6 . 2 ) Uj=TlAr^^nU;^s' ij = l,.2,...,l)

where f(j,i)=fji and g(j,s)~gJiS have respectively the form

(6.3) Σ c σ i T ( σ - τ ) and *ΣdσtT{σ-τ).
On the other hand we have

so that, if we put

and recalling the relation Aί~l,
Aϊ*zzl (G'),

(6.4) Af*=U§ ( i = j ( i ) ) A

Solving the equations (6.2) and (6.3) in U and -4, by Cramer's method,
we have
(6.5) -4*̂  = 1, Uf = l
where

(6.6) Δ =
/π /ifc

Jll • ••JlΊc

- 1

- 1
- 1

9n 9iι

+
From the principle (6.1) follows immediately Δ = cΓ. But this gives by
the ring homomorphism

the relation w=cw or c = l , as is easily seen by (6.6) and (6.3).

As l=Jξ=Tl(Aϊ1AσrD-*τ) holds, our proof is now completed.
q. e. d.

Of course this proof is in substance quite the same as that of Iyanaga's.
I intended only to extract the essential point of his proof.

It seems to me, that the most important point (assuming Artin's
splitting group to be known) lies in the method of showing the equality
Δ = Γ by means of the principle (6.1). Concerning this I will show in the
next paragraph, the equality Δ = Γ is in fact an " identity ", in some sense.
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7.

The object of this paragraph is the following general theorem concerning
the determinants, whose elements lie in a commutative ring R.

THEOREM 6. Let Ni} Δt- and A^t(i} r, β = l , 2, ...,k) be the elements in

an abstract commutative ring It, which satisfy the relations

(7.1)

(7.2) A^*=

Then the determinant \oίu\ is equal to N1N2.... Nk} where

This can be proved, if the following theorem is established.

THEOREM 7. Under the same assumptions as in the preceding theorem,

we have |/3O | — 0, ivhere βi5 =^ 2 ^ . ; ? ^ .
s

We first assume theorem 7 and deduce the theorem 6. Expanding
the determinant \atj\ in terms of N£, we have

K l - \βn\ + Σ^iA + ΈNΛD* + ... + iv;... iv;.
λ\re see then easily that all terms vanish except the last one, for instance

and the determinant in the right-hand side is 0, according to the theorem
7, applied.to the case of (Jc — l)-th order.

PROOF OF THEOREM 7.

We show in the expansion

(7.3)

all the coefficients of Δfcυ.. .Δ2(λ° vanish identically in the variables A$
Thereby r1? r2, .. ,rk runs over all the possible combinations of the values

(7.4) C= (1, ...,1 2.. 2 i . . .*).

α 2 α 2 ak

So wτe have to prove the identity

(7.5) Σ ((M)(2r 2 ) ... (h k)) = 0, ( ( r ( l ) , .. ,r(*))eC)

where ((l^)(2f 2) -••(*, ̂ *)) means the determinant in the summand of the
equality (7.3).

The proof will be performed by induction in k.
We now distinguish two cases.
CASE I. At least one at is 0 (for instance aL~0 and α 2 >0).
In this case the coefficent of A& in our sum (7. 3) is
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(7..,

where r(2), ...,r(&) belongs to the class

C " = ( 2 . 2 , 3 . 3 , .. , £ . . . £ ) ,

α 2 — 1 α 3 ttfc

and by the assumption of our induction (7.6) will then vanish.
As every term in (7.5) contains Aγ>KΌ as a factor, above mentioned

proof can be considered to be " typical v, though we restricted i—1 and
r ( l ) = 2 .

To be noticed is, in this case, A^^ give no contribution to the sum
with A^j, as a factor, for r(2) can not be 1, so that J.^ r ( 2 ) Φ — Aγ}\.

CASE II . All at are positive, that is at=l.
In this case

2 ... ί

is a permutation of order k. ΛVe denote the corresponding determinant

also by P, and decompose P in cycles A^A^A^..., for instance

12345λ

If P contains a transposition (ab), then the corresponding determinant
is 0, because of the relation Affb= — ASpa. We can therefore assume A

AT\....

Now we write the sum (7. 5) in the form

ΛVe first assume P itself a cycle
P= (12...*),

then the sum P + P" 1 is 0, owing to the simple computation:

= ((12)(23)...(M)) + ( - 1)*((*1)(12)(23)... ( i - 1,*))
= ((12)(23)...(*1))-((12)(23)..._ (Al)).

General terms are also similarly treated as in the following schema.

6 P

and the proof is completed. q. e. d.
We remarked at the end of the preceding paragraph, that the principal

ideal theorem is an identity in some sense. This will be explained here.
Under the identity we do not mean Δ = Γ (in § 6) itself. If we let
correspond to each U^eG'), symbols JVj(=l) and AJ( = UJ)r and if i and
s denote the suffixes representing both i(— 1, % ..., k) and j(=l, 2, ...,l),
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then we have by (6. 2), (6. 3), (6.4) and (6. 5)

(7.6) iif«

or written in additive notation

s

where fti s is of the form
2 4 ? Δ r (Λrs - - Asr, Δ,. = 1 - σr).

r

To be noticed is, we have to put στ—l for r=j (corresponding to an
element in G'), so that

As NtΔt=Q holds, all the conditions of the theorem 6 are satisfied, so we
have JY1...JV3fcci:=() o r J J = l , "identically" in A%\ and this was just our
object.**

Math. List., Tόhoku Univ., Sendai.
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