SOME REMARKS CONCERNING PRINCIPAL
IDEAL THEOREM*

By
TaApao TANNAKA

In this paper I present a detailed account of the results previously
announced in the Proceedings of the Academy of Tokyo, and which
constitute the arithmetic complement to Terada’s paper in this same
volume. Concerning the historical note we refer to the above previous
note and the preface in Terada’s paper.

In the paragraph 6 of this paper I give a proef of original principal
ideal theorem, which is in substance that of Iyanaga’s paper [1], but
which does not depend on the concept of “order ideal”. §7 contains
further remark in this direction.

2.

Mr. Terada has proved recently the following generalization of Furt--
wingler’s principal ideal theorem : ,

Turorem 1. Let K be the absolute class field over k, and Q a cyclic
wntermediate field of KJk, then all the ambigous ideal classes of Q will
become principal in K.

This Theorem was suggested by the special case K=, where no
essential difficulty occurs. We can prove that special case for instance by
the principal genus theorem, which asserts that Ngza~1 implies a~b'"*
for some ideal b, s being a generator of the Galois group G(KJk). We see
namely that in our case the correspondence a—a'~* leads to an isomorphism
of the ideal classes, and the required proof is at hand.

I will show in the following line in what manner Iyanaga’s principal
ideal theorem [2] for “ray class fields” (Strahlklassenkorper) can be
generalized, and that this amounts to _

TarorEM 2. Let K be the ray class field mod f(KJk) over k, and Q
a cyclic intermediate field of Klk. Let also m denote the ideal Mazx {f(K/Q),
F(Qk)} in Q. If a is an ideal in ambigous class modulo m, then a lies
in the ray modulo F(KJk), when considered as an ideal in K. Thereby

*) Received Sept. 28, 1949,
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¥ means the “ Geschlechtermodul ”, whose construction is given in the below.

3.

Let KJk be an arbitrary nermal field with the Galois group G=G(KJk),
and  a normal subgroup which . corresponds to the subgroup ¢ of G.
Let P be a prime ideal in K, which has G(i=1,2,..) as Hilbert’s
ramification subgroups of order (G;)=DN; respectively, that is, G; may
consists of all the Galeis substitutions o with

A=A mod P (4 in K).

Corresponding subgroups for K/Q are ¢,=G.;Ng, with the order
(sometimes also n(i) when it is convenient in writing) respectively, and
the ramification subgroups v; for Q/k were determined by J. Herbrand in
the following form.

If the subgroups v;=(yg, G:)/g satisfy the relations

v (1) =9'(2) = ... =7'(%)
>0 (a+1) =94 +2) = ... =9'(4
> .
and if
(1) =v(2) = ... = v(4)
>yt + 1) =q9(l + 2) = ... = g(4,)
>

then we have the equalities (putting e=n(1)),
eiy = n(1) + n(2) + ... + n(),
ei, = n(l) + n{2) + ... + n(4),

and the isomorphisms
'Y(q’f)::—l'yl(/"],) (7:1: 2: o ):
by which (i) are completely determined.
As for the infinite spots, we have entirely same results. Readers may
compare with a paper due to Mr. Iyanaga [3]. In the following considera-
tion we will confine ourselves exclusively to the case of finite spots.

4.

By the Hasse’s formula for the conductor of the abelian field K/k we
have

(4.1) (k) = T1®, v=2N (N> N, =1),
and which we write for the sake of convenience

[F(B; Kkl =v = 2(G) (Gi=1).

Conversely if we define the conductor of the arbitrary normal field
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K]k by this formula, formal properties obviously remain true.

From this formula, applied to the field Q/k, and the Herbrand’s in
the preceding section we have easily (cf. [6))
(4.2) [F(B;Q/k)] = 2(Gh)  (Gi - 9).

We have also an analogous formula for the Geschlectermodul &(Q/k),
which is defined by the formula

(4.3) [B(a; k)] =>1 (summed over «; == 1)
where P/q, q in O, and the corresponding formula to (4.2) is
(4. 4) [F(R;Q/k)] = 2(9:) (Gidtyg).

Next we define an ideal f(K,Q,%) in Q, which unifies the concepts of
“ conductor ” and “ Geschlechtermodul ”, and which is given by the formula

(4.5) [F(P; K,Q,k)]=2(G nyg) (G=1)
We see immediately, that it follows
(4.6) (K, K, k=3 (KJk), (K, k k)=i(K]k)

respectively. More generally we can prove the

TreEorEM 3. (K, Q, k) = Max{f(K/Q), F(Q/k)}.

Proor. We distinguish two cases according to the behavior of ramifica-
tion groups.

Case 1. There is a group G;=1 with G;Cyg. - In this case the condition
G;=+1 coincides with the condition ¢,=G;Ng=1, so that we have

[F(B; K, Q, k)] = X(g) (9. + 1)
= [[(P; K= [F(B;2/k)] (= (9. (Gi  9)).

CasE II. There is no group Gi=#1 with G,cg. In this case the
right-hand side of the equality (4.5) coincides with that of the equality
(4.4), we have accordingly

[F(B; K Q k)] =[F®; k)]
=[H(®; K] (= 2(g) (g +1)).
From these both results we conclude the required equality, and especially
that {(K, Q, k) is an ideal in Q.

Tueorem 4. If Kk is a normal field with Galois group ®, and L,
¥ two intermediate fields which correspond to the subgroups g and G of &
respectively, then we have
(4.7) [F(P; @1, k)] = 2(G), Gy

Thereby P is a prime ideal in K, and G;, &; are corresponding ramifica-
tion groups for Kk’ and KJk respectively.

Proor. We denote the quotient groups /g, G/g by & and g
respectively, and &;, v, corresponding Hilbert’s subgroups.

Cast I. There is a group §=1 with §,Cy.
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We have then by the proof of preceding theorem
[f(a; QF, k)] =(q; Q)] (P/a,q in Q)
and then using the formula (4.2) applied to the fields K, Q and %’ instead
of K,Q and K respectively,
[f(S‘B ) ‘()7 kl; k):] = 2(G€)7 Gt’ Ct 9,

but as we see easily by our assumption Gyd-g2®.dg, this reduces to the
equality (4.7).

Case II. There is no group &=1 with &cy. By the proof of

preceding theorem and the formula (4.4), again applied to the fields K,
k¥ and F, '

[F(B; ¥, %)]= 2(6), 6 ¢ 6.
But from the assumption follows G,d-¢g 2,4 G, as we have 8,=6,/g, y=G/g,
and the theorem is proved.

5.

We denote generally by S(m) the “ray” (Strahl) modulo m. Our
main theorem 2 is an immediate consequence of the following theorem, if
we assume Terada’s result of group theoretical part of our theorem. Apart
from this application theorem 5 may be of some interest in itself.

THEOREM 5. Let Q be the ray class field modulo f(Q/k) over k, and
K an arbitrary (not always cyclic) intermediate field. Let further Q be the
ray class fielld modulo F(Q/k) over Q and K mazimal abelian extension
over k' contained in Q. Then K is the ray class field modulo some ideal
m over k'. We may assume

m = (0, ¥, k) = Max{f(Q/K), & (¥/k)}.

Nore. By the application to the theorem 2 we restrict £’ to the eyclic
field, and write K and Q instead of Q and ¥’ respectively.

Proor. We shall prove this by showing the following two partial
results.

Frsr: If KO and KJ¥ is abelian then we have f(K/%') <f(Q, ¥, k),
or
(5.1) f(KQ) < &(Q/k) > H(K]K) <T(Q,F, k).

If we use the same notations as in theorem 4, the left side inequality
will become (restricting to P-contribution),

(5.2) 2(g) (9:+1) =2(9) (Gicky), .
or subtracting the same terms (g;) with (¢;=1, &;dg) from both sides

(5.2) () (9: + 1,6, Cg) < 2(9:) (9 = 1, 6. & 9).
We can transform likewise the right member of the logical relation
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(5. 1), successively into the form

(5.3) 2U(G) (G # 1) < 2U(G) (G g),

or

(5.8) 2U(G)(Gh+1,6,Cg) < 2(6:)(G:=1,6d ).

If the assertion (5.1) is not true, the left side of (5.8)’ does not vanish

(at least for a prime spot P), so that there exists a group &,cg with

G;=6,NG=*1. We see immediately that the left side of (5.2)’ does not

vanish, while the right side is zero, in contradiction to our assumption.
Seconp: If K is the class field for the ideal group S(f(,%,k)) in

¥, then KcQ; or what comes to the same thing

(5.4) F(KJE) <T(Q, ¥, k) > [(K)Q) < F(Q/k),
or by the above-mentioned reductions
(5.4) (5.8) — (5.2)".

If then (5.2)" is not true, we have for some prime spot P

2(9)(9: 1,6, c9) > 2(9:)(9: =1,6, & g),
and there is a group §;c¢ with ¢g,#1." This implies that the right side
of (5.8)" is zero, while the left side of the same equality is equal to that
of (5.2)’, which is >0 by the assumption.

6.

In this paragraph I will give a little remark about the Iyanaga’s proof
of original principal ideal theorem. We can namely by a slight modifica-
tion. avoid the concepi of ““order ideal ” in his proof, though it is very
important in itself.

The theorem to be treated here is the well known

“Let G be a metabelian group and S,(S,=1) represent a system of
representatives of the commutator factor G/G'=T, then factor set D,,=
S,8,S51 satisfies the velation II,D, =1 for all 77.

We construct as in Iyanaga’s paper, Artin’s splitting group 1l generated
by @ and the symbols A4,(4,=1), and with I' as operator system by the
rules

U = S, US;' (Ued),
Az = 474,,D3..
One of the important technics lies in the principle
(6.1) A8 c=Slc,0 (for all ) — 2,0 = ¢l
Let now o, o, ... and o be a basis of I' with the orders e, e, ... and
ex(e.e,. . e,=n) respectively. As we have
A, = 4,47 (G)
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1 is symbolically generated (that s to say generated by all symbolic
powers) by 4, and ', where A4, denotes 4, with o=o;,.
Any element of G has the form U,S,(U,eG"), and the commutator of
two such elements is
U,S,US,(U,S,) H(US,) ™ = UsrUs Ay i,
Thus the elements U, U,, .., U, of G' have the form

k 1
(6.2) U=TL 47T U;eh o (5 =1,2,..,1)

i=1 §=1
where f(j,4) =fx and g(j,s)=g, have respectively the form
(6.3) Sy (0 —7) and Xd, (o — 7).

On the other hand we have
A= A3 (G),
Ap = A A% = Ao+’ (@),
s0 that, if we. put
N =140, + 0 + ... +0f®
and recalling the relation 4,=1,
An=1 (@),
(6.4) A =U; (§=4())
Solving the equations (6.2) and (6.3) in U and 4, by Cramér’s method,
we have

(6.5) A} =1, Ur=1
where
N, . -1
1
N|—1
(6.6) A=1- I

f11~-~f1k'~ 1+ Gu--- 9u ’

Ja o Julga 1+ gu
From the principle (6.1) follows immediately A=¢I'. But this gives by
the ring homomorphism
ZC(,G‘ — zc,

the relation n=cn or ¢=1, as is easily seen by (6.6) and (6.3).

As 1=A4F :H(A;lAﬂD;},) holds, our proof is now completed.

’ q. e. d.

Of course this proof is in substance quite the same as that of Iyanaga’s.
I intended only to extract the essential point of his proof.

It seems to me, that the most important point (assuming Artin’s
splitting group to be known) lies in the method of showing the equality
A=I" by means of the principle (6.1). Concerning this I will show in the
next paragraph, the equality A=T" is in fact an ¢ identity ”, in some sense.
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7.

The object of this paragraph is the following general theorem concerning
the determinants, whose elements lie in a commutative ring R.

TaeoreMm 6. Let N, A; and AP (i, r, s=1,2, ..., k) be the elements in
an abstract commutative ring R, which satisfy the relations

(7.1) NA, =0,
(7.2) AD = — AD AD. = (.
Then the determinant |a;;| s equal to NN,.... Ny, where

a;, = N, + ZA;;)AS, (8e=1, &,=0, i=j).

This can be proved, if the following theorem is established.
TaeoreEM 7. Under the same assumptions as in the preceding theorem,

Bis|= 0, where B;; = X APA,.

$

we have

We first assume theorem 7 and deduce the theorem 6. Expanding
the determinant |a,;| in terms of N, we have
lay| = By;| + 2N.D, + 2N N,Dy + ... + N, ... N,.
Wo seo thon easily that all terms vanish except the last one, for instance

k k
NDy = N, 2 AP, 2. A0A,
§=1 §=2
and the determinant in the right-hand side is 0, according to the theorem
7, applied to the case of (k—1)-th order.
Proor or THEOREM 7.
We show in the expansion

(7' 3) ;Bi!l =

aQl), ..., ak) 71, ..., 7(kd

i, j=2 = Nl i, j=22

APy Al |
...... A ATk
Ay AR v
all the coefficients of A¥®. . A™ vanish identically in the variables A (r <s).
Thereby #;, 7y, .. , 7, runs over all the possible combinations of the values
(7.4) cC=(1,..,12.2... k.. k).
—— ~———
ay ay Qy;
So we have to prove the identity

(7.5) Zm((lﬂ)(?'rz) (k) =0, ((r(1), .., m(k))eC)

(1), o
where ((10(*1)(%'2).. (k, r:)) means the determinant in the summand of tho
equality (7.3).

The proof will be performed by induction in k.

We now distinguish two cases.

Case I. At least one a; is 0 (for instance ¢,=0 and a,>0).
In this case the coefficent of 4%’ in our sum (7.3) is
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2 D |
A(:,)r(z)- . »Ag,)r(k)

AP0y A v
where 7(2), ..., (k) belongs to the class
C'=(2.2 8.3, .k k),
a1 a5 ap
and by the assumption of our induction (7.6) will then vanish.

As every term in (7.5) contains A{”,,, as a factor, above mentioned
proof can be considered to be “typical ”, though we restricted =1 and
r(1)=2.

To be noticed is, in this case, A, give no contribution to the sum
with 4>, as a factor, for r(2) can not be 1, so that AP, =+ — AN,

Case II. All @, are positive, that is a,=1.

In this case L g L
P= (1) r() (k)

is a permutation of order k. We denote the corresponding determinant
also by P, and decompose P in cycles 4,4,4; .., for instance

124
(124D - (40D - asmen.
If P contains a transposition (ab), then the corresponding determinant
is 0, because of the relation AY,=— A§?,. We can therefore assume 4, A7,
A=A
Now we write the sum (7.5) in the form

2P =24 44, = DIXAEOLOLS (8 == 1).
4 &

We first assume P itself a cycle
P=(12...k),
then the sum P+ P is 0, owing to the simple computation :

P+ P = ((12)(23)...(k1) + ((1k)(21)(32)... (kEk—1))
= ((12)(23)...(k1)) + (— 1)*((k1)(12)(23)... (k—1,k))
= ((12)(23)...(k1)) — ((12)(28)... (k1)).

General terms are also similarly treated as in the following schema,

ZE:Af("Aﬁ(”Ag(” = EPI(AIP + A7'P) =0 (P = A5PA4®)

and the proof is completed. q. e. d.

We remarked at the end of the preceding paragraph, that the principal
ideal theorem is an identity in some sense. This will be explained here.
Under the identity we do not mean A=I' (in §6) itself. If we let
correspond to each U,(eG’), symbols N;(=1) and A4,(=U;), and if ¢ and
s denote the suffixes representing both i(=1,2, ..,k) and j(=1,2,..,1),

(7. 6)
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then we have by (6.2), (6.3), (6.4) and (6.5)
(7.6) AN = [T 4

$
or written in additive notation

New = 21 f, s
where f; ; is of the form
ZA;.;)A,. (Ars = Asr; Ar == 1 it 0',.).

To bo noticed is, we have to put o,=1 for r=j (corresponding to an
element in G'), so that

Uym = 4" = A 7479,
As N;A;=0 holds, all the conditions of the theorem 6 are satisfied, so we
have N,.. Niy;=0 ordf=1, “identically” in A®, and this was just our
object.®)

Math. Inst., T6hoku Univ., Sendai.
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