NOTES ON FOURIER ANALYSIS (XXXVII) :
 ON THE CONVERGENCE FACTOR OF THE FOURIER SERIES
 AT A POINT*)

By
Noboru Matsuyama

1. Let $f(x)$ be an L-integrable function, and denote its Fourier series by

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) . \tag{1}
\end{equation*}
$$

Hardy ${ }^{1}$ has proved the following theorem.
(1.1) if
2)

$$
\int_{0}^{t}|\varphi(u)| d u=o(t)
$$

then the series $\Sigma A_{n}(x) / \log n$ converges at the point x, where

$$
\varphi(t)=\frac{1}{2}\{f(x+t)+f(x-t)-2 f(x)\} .
$$

On the other hand Wang) has proved the following theorems.
(1. 2) If

$$
\begin{equation*}
\int_{0}^{t} \varphi(u) d u=o(t) \tag{3}
\end{equation*}
$$

then the series $\Sigma A_{n}(x) / n^{1.2}$ converges at the point x.
(1.3) Conversely if for $0<\rho<1$ the series

$$
\sum_{n=2}^{\infty} A_{n}(x) / n^{\rho}
$$

converges, then

*) Received August 10, 1949.

1) G.H.Hardy, Proc. London Math. Soc., 13 (1912).
2) F.T.Wang, Tōhoku Science Report, 24 (1935).

$$
\phi_{2}(t)=\int_{0}^{t} d u \int_{0}^{u} \varphi(v) d v=O\left(t^{2-\rho}\right)
$$

The object of this paper is to prove the following theorems concerning (1.2) and (1.3).

Theorem 1. There exists a function such that
(4)

$$
\int_{0}^{t} \Phi(u) u^{-(1+r)} d u
$$

exists by the Cauchy sense, but $\Sigma A_{n}(x) / n^{\delta}$ is not convergent, where $r>0$, $0<\delta<1 /(2+r)$.

Theorem 2. If for any $r \geqq 0$

$$
\begin{equation*}
\int_{0}^{t} \varphi(u) d u=O\left(t^{1+r}\right) \tag{5}
\end{equation*}
$$

then the series $\Sigma A_{n}(x) / n^{1 /(2+r)}$ converges.
Theorem 3. There exists a function $f(x)$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} A_{n}(x)^{\rho} n^{\rho} \tag{6}
\end{equation*}
$$

converges, and
(7)

$$
\boldsymbol{\varphi}_{2}(t) \neq O\left(t^{2-\rho^{\prime}}\right)
$$

where $0 \leqq \rho^{\prime}<\rho$.
2. In Theorem 2 if $r=0$ then we have Wang's result (1.2).

Lemma. There exists an even function $\varphi(x)$ such that for any $\delta,(2+r)^{-1}>$ $\delta>0, \lim _{n \rightarrow \infty} s_{n}(0, \varphi) / n^{\delta}=\infty$, and

$$
\int_{0}^{t} \varphi(u) / u^{(1+r)} d u
$$

converges by the Cauchy sense, where $r>0$.
Proof. Let $\left\{p_{k}\right\},\left\{q_{k}\right\}$ and $\left\{\mu_{k}\right\}$ be three increasing sequences and

$$
p_{0}=q_{0}=1, \quad p_{k}=q_{k} \mu_{k} .
$$

Then the even function $\varphi(t)$ is defined by

$$
\varphi(t)=c_{k} \sin p_{k} t
$$

if t is a point of the interval $J_{k}=\left(\pi / q_{k}, \pi / q_{k-1}\right)$, where $\left\{c_{k}\right\}$ is some positive sequence determined later.
1°. The condition for which $\varphi(t)$ is integrable.

$$
\int_{0}^{\pi}|\varphi(t)| d t \leqq \sum_{k=1}^{\infty} c_{k} \int_{J_{k}}\left|\sin p_{k} t\right| d t \leqq \pi \sum_{k=1}^{\infty} c_{k} / q_{k-1}
$$

Hence if this last series is convergent, then $\varphi(t)$ is integrable.
2°. The condition for which the condition (5) is satisfied. Let $\pi / q_{l} \leqq \varepsilon<\pi / q_{l-1}$, $\pi / q_{k} \leqq \delta<\pi / q_{k-1}$ and $k<l$.

$$
\begin{aligned}
& \left|\int_{\varepsilon}^{\delta} \varphi(t) t^{-(1+r} d t\right| \leqq\left|\int_{\varepsilon}^{\pi \cdot q_{l-1}}\right|+\sum_{i=l-1}^{k+1}\left|\int_{\pi, q i}^{\pi \cdot q_{i-1}}\right|+\left|\int_{\pi ; q_{k}}^{\delta}\right| \\
& \leqq \pi^{-(r+1)}\left(c_{l} q_{l}^{r+1} p_{l}^{-1}+\sum_{i=k+1}^{l-1} c_{i} q_{i}^{r+1} p_{i}^{-1}+c_{k} q_{k}^{r+1} p_{k}^{-1}\right)=\pi^{-(r+1)} \sum_{i=k}^{l} c_{\imath} q_{i}^{r+1} p_{i}^{-1} .
\end{aligned}
$$

Hence if this last series is $o(1)$ as $\ell \rightarrow \infty$, then the condition (4) is satisfied.
3°. The condition for which

$$
\lim _{n \rightarrow \infty} s_{n}(0, \varphi) / n^{\delta}=\infty .
$$

If we consider especially the sequence $\left\{s_{p_{k}}(0, \phi) / p_{k}^{\delta}\right\}$,

$$
\int_{0}^{\pi} \varphi(t)\left(\sin p_{k} t / t\right) d t=\left(\int_{0}^{\pi^{\prime} q_{k}}+\int_{\pi / q_{k}}^{\pi^{\prime} \cdot q_{k}-1}+\int_{\pi / q_{k}-1}^{\pi}\right) \equiv S_{1}+S_{2}+S_{3}
$$

say.

$$
\begin{aligned}
\left|S_{1}\right| & =\left|\sum_{i=k+1}^{\infty} \frac{c_{i}}{2} \int_{\pi / q_{i}}^{\pi \cdot q_{i}-1}\left[\left\{\cos \left(p_{i}-p_{k}\right) t-\cos \left(p_{i}+p_{k}\right) t\right\} / t\right] d t\right| \\
& \leqq \frac{1}{2} \sum_{i=k+1}^{\infty} c_{i} q_{i} 2 p_{i}\left(p_{i}^{2}-p_{k}^{2}\right)^{-1} \leqq \sum_{i=k+1}^{\infty} c_{i} q_{i} p_{i}^{-1}=\sum_{i=k+1}^{\infty} c_{i}^{\prime} \mu_{i} . \\
S_{2} & =\frac{c_{k}}{2} \int_{\pi, q_{k}}^{\pi / q_{k-1}}\left[\left(1-\cos 2 p_{k} t\right)^{\prime} t\right] d t \\
& =\frac{c_{k}}{2} \log \left(q_{k}^{\prime} q_{k-1}\right)-\frac{c_{k}}{2} \int_{\pi q_{k}}^{\pi \cdot q_{k-1}}\left[\cos 2 p_{k} t / t\right] d t .
\end{aligned}
$$

Hence

$$
S_{s} \geqq \frac{c_{k}}{2^{\prime}} \log \left(q_{k}^{\prime} q_{k-1}\right)-c_{k}^{\prime} \mu_{k} .
$$

By the similar way as $\left|S_{1}\right|^{\prime}$,

$$
\left|S_{3}\right| \leqq \sum_{i=1}^{k-1} c i^{\prime} \mu_{i}
$$

Consequently

$$
\begin{aligned}
\left|\int_{0}^{\pi} \varphi(t) \sin p_{k} t_{i}^{\prime} t d t^{\prime}\right| & \geqq S_{2}-\left|S_{1}\right|-\left|S_{3}\right| \\
& \geqq \frac{c_{k}}{2} \log \left(q_{k^{\prime}}, q_{k-1}\right)-\sum_{n=1}^{\infty} c_{n^{\prime}}^{\prime} \mu n
\end{aligned}
$$

That is, it is sufficient to prove that
(a)

$$
\sum_{k=1}^{\infty} c_{k}^{\prime} q_{k-1}<\infty,
$$

(b)

$$
c_{k} p_{k}^{-\delta} \log q_{k}^{\prime} q_{k-1} \rightarrow \infty
$$

$$
(0<\delta<1 /(2+r))
$$

(c)

$$
\sum_{k=1}^{\infty} c_{k} q_{k}^{\tau /} \mu_{k}<\infty .
$$

If we put

$$
\begin{aligned}
& p_{k}=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 k+1), \quad \mu_{k}=p_{k}^{(r+\delta) /(1+r) \cdot k,} \\
& q_{k}=p_{k}^{(1-\delta) /(1+r)} k^{-1}, \quad \text { and } c_{k}=p_{k}^{\delta} / \sqrt{\log (2 k+1)},
\end{aligned}
$$

then the left hand side of (b) is

$$
\frac{p_{k}^{\delta}}{\sqrt{\log (<k+1)}} \frac{1}{p_{k}^{\delta}}\left\{\frac{1-\delta}{r+1} \log (2 k+1)+\log \frac{k-1}{k}\right\} \rightarrow \infty,(k \rightarrow \infty) .
$$

Thus the condition (b) is satisfied.
Now, we have

$$
\begin{aligned}
& \sum_{k=1}^{\infty} c_{k} q_{k}^{r} / \mu_{k}=\sum_{k=1}^{\infty} \frac{p_{k}^{\delta}}{\sqrt{ } \log (2 k+1)} \cdot \frac{p_{k}^{\left.r^{\prime} 1-\delta\right)(r+1)} k^{-r}}{p_{k}^{(r+\delta)(r \mp+1)} k} \\
&=\sum_{k=1}^{\infty}(\log (2 k+1))^{-1 / 2} \\
& k^{-(r+1)}<\infty
\end{aligned}
$$

This is the condition (c). Lastly the left hand side of (a)

$$
\begin{aligned}
& \sum_{k=1}^{\infty} p_{k}^{\delta}(\log (2 k+1))^{-1 / 2}(k-1) p_{k-1}^{-1-\delta) /(r+1)} \\
\leqq & \sum_{k=1}^{\infty}(\log (2 k+1))^{-1 / 2} k^{(2+r-\delta) /(r+1)} p_{k}^{-1-(r+2 \delta \zeta /(r+1)} .
\end{aligned}
$$

Since

$$
\frac{1-(r+2) \delta}{r+1}>\frac{1}{r+1}-\frac{r+2}{r+1} \cdot \frac{1}{r+2}=0
$$

and the inequality

$$
\frac{2+r-\delta}{r+1}<x \frac{1-(r+2) \delta}{r+1}
$$

has a solution, that is

$$
x>\frac{2+r-\delta}{1-(r+2) \delta}>\left(2+r-\frac{1}{r+2}\right)>1+r>0
$$

the condition (a) is satisfied, and thus the Lemma is proved.
3. We prove Theorem 1.

If $\varphi(t)$ satisfies (4) we can easily prove $\sigma_{n}=o(1)$,

$$
\begin{aligned}
\sum_{k=1}^{n} A_{k}(0) / k^{\delta} & =\sum_{k=1}^{n-2}(k+1) \sigma_{k}(0) \Delta^{2}\left(1 / k^{\delta}\right)+n \sigma_{n-1}(0) \Delta\left(1 /(n-1)^{\delta}\right) \\
& -\sigma_{0}(0)+s_{n}(0) / n^{\delta}-s_{0}(0) \\
& \geqq s_{n}(0) / n^{\delta}-O(1) .
\end{aligned}
$$

Since there exists a function satisfying (4) such as

$$
\varlimsup_{n \rightarrow \infty} s_{n}(0) / n^{\delta}=\infty
$$

for $0<\delta<1 /(r+2)$, our theorem is proved.
Proof of Theorem 2 is similar as that of Wang's.
4. We will pass to the proof of Theorem 3. Without loss of generality we can suppose that $f(t)$ is even and $x=0$. As the theorem is proved by the same way as the following theorem, we prove only

Theorem 3'. There exists an even and integrable function $f(x)$ such that the series

$$
\sum_{k=1}^{\infty} A_{k}(0) / k^{\rho}
$$

is convergent for $0<\rho<1$, and

$$
f_{2}(t)=\int_{0}^{t} d u \int_{0}^{u} f(v) d v \neq O\left(t^{2}\right)
$$

Let $f(x)$ be an even, periodic and integrable function with $a_{0}=0$. Generally•

$$
\begin{aligned}
\sum_{k=1}^{n} A_{k}(0) / k^{\rho} & =\frac{2}{\pi} \int_{0}^{\pi} f(t)\left(\sum_{k=1}^{n} \cos k t / k \rho\right) d t \\
& =\frac{9}{\pi} \int_{0}^{\pi} f(t)\left(\sum_{k=1}^{n-1} D_{k}(t) \Delta(1 / k \rho)\right) d t+\frac{2}{\pi} n^{-\rho} \int_{0}^{\pi} f(t) D_{n}(t) d t \equiv P+Q
\end{aligned}
$$

say. If $s_{n}(0)=O\left(n^{\varepsilon}\right)$ for $\rho>\varepsilon>0$, then $Q=o(1)$, and

$$
\sum_{k=1}^{\infty}\left|{ }_{S k}(0) \Delta\left(1 / k^{\rho}\right)\right| \leqq \sum_{k=1}^{\infty} k^{-\rho-1+\varepsilon}<\infty .
$$

Thus the series $\Sigma s_{k}(0) \Delta\left(1 / k^{\rho}\right)$ is absolutely convergent, and

$$
P=\sum_{k=1}^{n-1} s_{k}(0) \Delta\left(1 / k^{\rho}\right)=O(1) \quad(n \rightarrow \infty)
$$

Consequently it is sufficient to prove Theorem 3^{\prime} that there exists an even function $f(x)$ such that,

$$
\begin{equation*}
f_{2}(t) \neq O\left(t^{2}\right) \tag{8}
\end{equation*}
$$

and for any $\varepsilon>0$

$$
\begin{equation*}
s_{n}(0, f)=o\left(n^{\mathrm{e}}\right) \tag{9}
\end{equation*}
$$

Let $\left\{p_{k}\right\}$ and $\left\{q_{k}\right\}$ be two increasing sequences such as $p_{k}>q_{k},\left\{\mu_{k}\right\}$ be decreasing tending to 1 , and if $t \in J_{k}=\left(\pi / q_{k}, \pi \mu_{k} / q_{k}\right)$

$$
\begin{aligned}
& f(t)=2 c_{k} \sin p_{k} t+4 c_{k} p_{k} t \cos p_{k} t-c_{k} p_{k}^{2} t^{2} \sin p_{k} t, \quad \quad \quad \text { elsewhere } \\
&=0, \quad t \in J_{k}, \\
&
\end{aligned}
$$

1° The condition that $f(x) \varepsilon L$. If $c_{k} \geqq 0$, then

$$
\begin{aligned}
& \int_{0}^{\pi}|f(t)| d t \leqq \sum_{k=1}^{\infty} c_{k} \int_{\pi / q_{k}}^{\pi \mu_{k} \cdot q_{k}}\left\{2\left|\sin p_{k} t\right|+4\left|p_{k} t \cos p_{k} t\right|+\left|p_{k}^{2} t^{2} \sin p_{k} t\right|\right\} d t \\
& \leqq \sum_{k=1}^{\infty} c_{k}\left\{2 \pi q_{k}^{-1}\left(\mu_{k}-1\right)+2 p_{k}\left(\pi q_{k}^{-1}\right)^{2}\left(\mu_{k}^{2}-1\right)+p_{k}^{2}\left(\pi q_{k}^{-1}\right)^{3} \mu_{k}^{2}\left(\mu_{k}-1\right)\right\}
\end{aligned}
$$

$$
\leqq \text { const. } \sum_{k=1}^{\infty} c_{k}\left(\mu_{k}-1\right) p_{k}^{2} q_{k}^{-3} .
$$

If the last series converges then $f(x) \in L$.
2° The condition for which (8) is satisfied.
We consider the integral of $f(x)$ in J_{k}.

$$
\begin{aligned}
& \int_{J_{k}} f(u) d u=\left[2 c_{k} t \sin p_{k} t+c_{k} p_{k} t^{2} \cos p_{k} t\right]_{\pi / q_{k}}^{\pi \mu_{k} / q_{k}} \\
& =c_{k} p_{k}\left\{\left(\pi \mu_{k}^{\prime} q_{k}\right)^{\prime \prime}-\left(\pi / q_{k}\right)^{2}\right\}=c_{k} p_{k}\left(\mu_{k}^{2}-1\right) \pi^{2} / q_{k}^{2}
\end{aligned}
$$

where we suppose that q_{k} is a common divisor of p_{k} and $\mu_{k} p_{k}$, and

$$
\begin{equation*}
p_{k}^{\prime} q_{k}=\text { even }, \quad p_{k} \mu_{k} / q_{k}=\text { even } . \tag{10}
\end{equation*}
$$

Consequently if $t \in J_{k}$, then

$$
\begin{aligned}
& f_{1}(t) \equiv \equiv \int_{0}^{t} f(u) d u=\sum_{i=k+1}^{\infty} \int_{J_{i}}^{i} f(u) d u+\int_{\pi}^{t} f(u) d u \\
&= \sum_{i=k+1}^{\infty} c_{i} p_{i}\left(\mu_{i}^{2}-1\right) \pi^{2} / q_{i}^{2}-c_{k} p_{k} \pi^{2} / q_{k}^{2}+\left(9 c_{k} t \sin p_{k} t+c_{k} p_{k} t^{2} \cos p_{k} t\right) \\
& \equiv A_{k}-B_{k}+\left(2 c_{k} t \sin p_{k} t+c_{k} p_{k} t^{2} \cos p_{k} t\right), \text { say. } \\
& \quad \int_{J_{i}} f_{1}(u) d u=\left(A_{i}-B_{i}\right)\left(\mu_{i}-1\right) \pi / q_{i} .
\end{aligned}
$$

Hence if $t \in J_{k}$, then

$$
\begin{aligned}
f_{2}(t)= & \int_{0}^{t} f_{1}(u) d u=\sum_{i=k+1}^{\infty} \int_{J_{i}} f_{1}(u) d u+\int_{\pi / q_{k}}^{t} f_{1}(u) d u \\
= & \sum_{i=k+1}^{\infty}\left(A_{i}-B_{i}\right)\left(\mu_{i}-1\right) \pi q_{i}^{-1}+\left(t-\pi q_{k}^{-1}\right)\left(A_{k}-B_{k}\right)+c_{k} t^{2} \sin p_{k} t . \\
t^{-2} f_{2}(t)= & \pi t^{-2} \sum_{i=k+1}^{\infty}\left(u_{i}-1\right)\left(A_{i}-B_{i}\right) q_{i}^{-1}+t^{-2}\left(t-\pi q_{k}^{-1}\right)\left(A_{k}-B_{k}\right)+c_{k} \sin p_{k} t . \\
& \left|A_{k}-B_{k}\right| \leqq \sum_{i=k+1}^{\infty} c_{i} p_{i}\left(\mu_{i}^{2}-1\right) / q_{i}^{2}+c_{k} p_{k}^{\prime} q_{k}^{2} \\
\left({ }^{*}\right) \quad & t^{-2}\left(t-\pi q_{k}^{-1}\right)\left|A_{k}-B_{k}\right| \\
\leqq & \left(\pi q_{k}^{-1}\right)^{-2}\left(\pi q_{k}^{-1}\right)\left(\mu_{k}-1\right)\left\{\sum_{i=k+1}^{\infty} c_{i} p_{i} q_{i}^{-2}\left(\mu_{i}-1\right)+c_{k} \dot{p}_{k} q_{k}^{-2}\right\} \\
\leqq & c_{k} p_{k}\left(\dot{\mu_{k}}-1\right) / q_{k}+\pi^{-1} q_{k}\left(\mu_{k}-1\right) \sum_{i=k+1}^{\infty} c_{i} p_{i}\left(\mu_{i}-1\right) / q_{i}^{2}
\end{aligned}
$$

(**) $\left|t^{-2} \sum_{i=k+1}^{\infty}\left(\mu_{i}-1\right)\left(A_{i}-B_{i}\right) q_{i}\right|$

$$
\begin{aligned}
& \leqq\left(\pi q_{k}^{-1}\right)^{-2} \sum_{i=k+1}^{\infty}\left(\mu_{i}-1\right)\left(\sum_{j=i+1}^{\infty} c_{j} p_{j} q_{j}^{-2}\left(\mu_{j}^{2}-1\right)+c_{i} p_{\imath} q_{i}^{-2}\right) q_{i}^{-1} \\
& =\pi^{-2} q_{k}^{2} \sum_{i=k+1}^{\infty} c_{i} p_{i} q_{i}^{-3}\left(\mu_{i}-1\right)+\pi^{-2} q_{k}^{2} \sum_{i=k+1}^{\infty}\left(\mu_{i}-1\right) q_{i}^{-1} \sum_{j=i+1}^{\infty} c_{j}{ }_{j} p_{j} q_{j}^{-2}\left(\mu_{j}^{2}-1\right)
\end{aligned}
$$

Here if we put

$$
\begin{aligned}
& p_{i}=q_{i}(2 i)^{2}, q_{i}=2^{i^{3}}, \mu_{i}=1+i^{-1}, \text { and } c_{i}=O(1), \\
& \left(^{*}\right)=-t^{-2}\left(t-\pi q_{k}^{-1}\right) c_{k} p_{k} q_{k}^{-2}+t^{-2}\left(t-\pi q_{k}^{-1}\right) \sum_{i=k+1}^{\infty} c_{i} p_{i} q_{i}^{-2}\left(\mu_{i}^{2}-1\right) \\
& =-t^{-2}\left(t-\pi q_{k}^{-1}\right) c_{k} p_{k} q_{k}^{-2}+q_{k}\left(\mu_{k}-1\right) \pi \sum_{i=k+1}^{\infty} c_{i} p_{i} q_{i}^{-2}\left(\mu_{i}^{2}-1\right) \\
& =-t^{-2}\left(t-\pi q_{k}^{-1}\right) c_{k} p_{k} q_{k}^{-2}+O\left(2^{k 9} k^{-1} \sum_{i=k+1}^{\infty} i^{2} 2^{-i^{2}} i^{-1}\right) \\
& =-t^{-2}\left(t-\pi q_{k}^{-1}\right) c_{k} p_{k} q_{k}^{-2}+O\left(2^{2--(k+1)^{2}} k^{-1}\right) \\
& =-t^{-9}\left(t-\pi q_{k}^{-1}\right) c_{k} p_{k} q_{k}^{-2}+o(1) . \\
& \left({ }^{* *}\right) \leqq O\left(\left(2_{2} k^{2} \sum_{i=k+1}^{\infty} i 2^{-2 i^{2}}\right)+O\left(2^{2 k 2} \sum_{i=k+1}^{\infty} 2^{-i^{2}} i^{-1} \sum_{j=i+1}^{\infty} j 2^{-\jmath^{2}}\right)\right. \\
& =O\left(2^{2 k^{2}} 2^{-2 \cdot k+1,{ }^{2}}\right)+O\left(\Sigma^{2 k^{2}} \sum_{i=k+1}^{\infty} 2^{-i^{2}} 2^{-i+1+,^{2}} i^{-1}\right)=o(1) \text {. }
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\lim _{t \rightarrow 0} t^{-2} f_{2}(t) & =\lim _{t \rightarrow 0}\left\{o(1)-t^{-2}\left(t-\pi q_{k}\right) c_{k} p_{k} q_{k}^{-2}+c_{k} \sin p_{k} t\right\} \\
& =O(1)-\lim _{t \rightarrow 0} O\left(t^{-2}\left(t-\pi q_{k}^{-1}\right) \cdot k^{2} 2^{-k^{2}}\right)=-\infty .
\end{aligned}
$$

3° The condition by which (9) is satisfied.
We must prove that

$$
\begin{equation*}
n^{-\varepsilon} \int_{0}^{\pi}\left[f(t) \sin n t^{\prime} t\right] d t=o(1) \tag{11}
\end{equation*}
$$

If $n=p_{k}$, then

$$
\int_{0}^{\pi}\left[f(t) \sin 力_{k} t \mid t\right] d t=\left(\sum_{i=k+1}^{\infty} \int_{J_{i}}+\sum_{i=1}^{k-1} \int_{J_{i}}\right)+\int_{J_{k}} \equiv S_{i}+S_{2}+S_{3},
$$

say.

$$
\begin{aligned}
&\left|S_{1}\right| \leqq \sum_{i=k+1}^{\infty} c i \int_{J_{i}}\left\{p_{i} p_{k} t+p_{i} p_{k} t+p_{i}^{3} p_{k} t^{3}\right\} d t \\
& \leqq \sum_{i=k+1}^{\infty} c_{i} p_{i}\left\{2 p_{i}\left(\mu_{i}-1\right) \mu_{i}\left(\pi q_{i}^{-1}\right)^{2}+p_{i}^{3} \mu_{i}^{3}\left(\mu_{i}-1\right)\left(\pi q_{i}^{-1}\right)^{4}\right\} \\
& \leqq p_{k} \sum_{i=k+1}^{\infty} c_{i}\left(\mu_{i}-1\right) p_{i}^{3} q_{i}^{-4} \leqq O\left(k^{2} q_{k} \sum_{i=k+1}^{\infty} i^{5} q_{i}^{-1}\right) \\
&=O\left(k^{2} q_{k} \sum_{i=k+1}^{\infty} i^{5} 2^{-i^{2}}\right)=O\left(k^{6} 2^{k^{2}-(k+1)^{2}}\right)=o(1) . \\
& \left\lvert\, \begin{aligned}
\left|S_{z}\right| & \leqq \sum_{i=1}^{k} c_{i} p_{k}^{-1}\left\{q_{i} \pi^{-1}+2 p_{i}+c_{i} p_{i}^{2} \pi \mu_{i} q_{i}^{-1}\right\} \\
& =O\left(p_{k}^{-1} \sum_{i=1}^{k} c_{i} p_{i}^{2} \mu_{i} q_{i}^{-1}\right)=O\left(p_{k}^{-1} \sum_{i=1}^{k} i^{4} q_{i}\right)=k+o(1) . \\
S_{3} & =\int_{J_{k}} c_{k}\left(1-\cos p_{k} t\right)^{\prime} t d t+\int_{J_{k}} 2 c_{k} p_{k} \sin 2 p_{k} t d t-\int_{J_{k}} c_{k} p_{k}^{2} t \sin ^{2} p_{k} t d t \\
& =c_{k} \log \mu_{k}+O\left(c_{k} q_{k} \mu_{k}^{-1}\right)+O\left(c_{k}\right)+O\left(c_{k} p_{k}^{2}\right) \int_{J_{k}}\left(t+t \cos 2 p_{k} t\right) d t \\
& =c_{k} \log \mu_{k}+O(1)+O\left(k^{3}\right)+O\left(k^{2}\right)=O\left(k^{3}\right) .
\end{aligned}\right.
\end{aligned}
$$

Hence

$$
\int_{0}^{\pi}\left[f(t) \sin p_{k} t / t\right] d t=O\left(k^{3}\right)
$$

and

$$
S_{P_{k}}(0) / p_{k}^{\mathrm{e}}=O\left(k^{3} / k^{2 \mathrm{e} \cdot 2-\varepsilon k^{2}}\right)=o(1)
$$

If $n \neq p_{k}$ then for some $k, p_{k}<n<p_{k+1}$.

$$
\int_{0}^{\pi}[f(t) \sin n t / t] d t=\sum_{i=k+2}^{\infty} \int_{J_{i}}+\int_{J_{k+1}}+\int_{J_{k}}+\sum_{i=1}^{k-1} \int_{J_{i}}
$$

and by the similar calculation we have

$$
s_{n}=o\left(n^{\mathrm{n}}\right)
$$

Thus Theorem ${ }^{\prime}$ is proved.
Mathematical Institute, Tohoku University.

