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1. Introduction.

Let n>(%) be meromorphic for |«ζ[ < oo and

where

be its Nevanlinna's characteristic function and

I S l o g T ( r ) / l o g r = p (2)
r-*oo

be its order. If p < oo, then by BoreΓs theorem, for any β > 0,

for any a and if 0 < p < oo,

V

for any a, with two possible exceptions, where ^v (a) are zero points of

w (%) - a.

Varilon15 proved that there exists a direction /, which is called a BoreΓs

direction, such that

•) Received October 1, 1949.
1) G. Valiron: Recherches sur le theorems de M. Borel dans la theorie des fonctions

meromorphes. Acta Math. 5 2 (1928).
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for any a, with two possible exceptions, where Δ is any angular domain, which
contains J and *ζv (a, Δ) are zero points of w (sζ) - a in Δ.

In §3, we will prove this Valiron's theorem simply by means of Theorem 2
of § 2. In § 5, we consider meromorphic functions in a half-plane 5ft ̂  > 0
and establish theorems, which are analogous to Nevanlinna's fundamental
theorems for meromorphic functions for | ί ζ [ < R ( ^ ° ° ) and by means of
which we prove theorems of Valiron and Nevanlinna in § 6.

2* Main theorems.

THEOREM 1. Let w — w{^) be meromorphic in [ ί ζ | < 1 wnd the number of %ero

points of {w{^)—aλ) ( # Ό ζ ) ~ a2) (w(%) — aή in | ^ I < 1 be ̂  n, where multiple

are counted only once, then

where A is a constant, which depends on aL} a2, as only*
3

PROOF, Let ^ , • - •> ^v (v <Ξ> n) be zero points of Π ( ^ ( ^ ) — a{) in [jζ| < 1 and

fί these points from |«ζ| < 1 and Do be the remaining domain and

the part of D o , which lies in | ^ | g r ( < l ) . Let Fr be the Riemann

τead upon the ^-sphere, which is generated by w = w Gζ), when *ζ

D0(r), then PV is a covering surface of the basic domain F o , which is

from the ^-sphere by taking off three points a^ a2, a*. Let p(r) be

s characteristic of Fr> then by Ahlfors' fundamental theorem on

mrfaces,2)

( , 0), ( 1 )

L(r)=j"

i constant, which depends on au a2, as only,
hwarz's inequality, we have

mp. (3)
the hypothesis, jό(r)g», we have by (1),

S(r)-n^hL(r), ( 0 ^ r < l ) . (4)

nee if S(r') - « > 0 for all r' (r^r' < 1), then by (3), (4),1 - r < £-?,- ir'
A'!!! ( J F F ^ ^ (r'} -2jr? **; (s (r) ~w)> OΓ

) L. Ahlfors: Zur Theorie der Jberlagelungsfmchen, Acta Math., 65 (1935).
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r). (5)

If S(r)-n^0 for some r'(r^rf < 1), then S(r)^S(r) ^n, so that (5)

holds. Hence (5) holds for 0 ^ r < l , which proves the theorem.

Let w{<%) be meromorphic in an angular domain Δ : |arg ίζ| ̂ α and put

N(r, a; Δ) = \[ 1±1'*>

where n(r > #; Δ) is the number of zero points of w(%)— a in a sector:

|arg jζ[ <Jα, 0<^ |«ζ| ̂  r, where multiple zeros are counted only once.

THEOREM 2. JLef w{%) be meromorphic in an angular domain Δ o : |arg^| ̂ La0

and Δ : (arg^f ^a < a0 be an angular domain contained in Δo. Then for any

3

T (r; Δ) ̂  3 Σ N(λ r, * Δ.,) + A (log2,

^ m y l i ί ^ constant, which depends on aL9 >a2, aiy a, a09 λ only.

PROOF. We put k = λ1/3 > 1 and for r > 1, let

N = [logr/log A], ^ ^ r < ̂ v + 1 , (2)

so that

ĵv+3 — -^feN < ^ r > (3)

Let ^°, ^ v be curvilinear quadrilaterals :

( 4 )

3

and °̂ be the number of zero points of Π (w (jζ) - #f ) in J2J. If we map Q*

on | f[ < 1 conformally, such that the center of J2J becomes ζ = 0, then j2χ is

mapped on a domain, which lies in \ζ\ ̂ p < 1.

Since jgo is similar to J2J, we have by Theorem 1,

Sv^n°v+A, (5)
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where A is a constant, which depends on aly a2, a-s, a, αo> λ only.
In the following, we denote such constants by the same letter A
We put

3

»(r5Δo) = Σ*(r , & Ad). (6)

Since jg° overlap only twice,

f Λί^AL^s(k?\ Δ) logk=(SL+ -+ Sv) logk

^ (»J + - + »J) log /fe + ^ ^ 3« (yfe^1; Δo) log k+ AJ>>

so that

l

^ 3 ( » ( # ; Δo) + .• + »(fe^+a; Δo)) log yfe + ylN*. ( 7 )

Since

.** + !
ΛSbM dt>n(k^Ao

we have from (7), (3),

Γ (r; A) = j ; A ^ ^ g 3 f+ > ^ ̂ > ^ +

- 3 SΓ ^ ( ^ Δ θ ) * + -^ ( loβ ^)2 = 3 Σ N(λr, ^ Δo) + A (log r)2.

3. Existence of Borel's directions.

l Now we will prove Valiron's theorem:

THEOREM 3. Let ψty be a me romorphic function of finite order p > 0, then

there exists a direction J: arg ίζ= α, such that for any e > 0.

(i) Σ */Iξv (tf;Δ)[p-s= oo
V

for any a, with two possible exceptions^ and if

then
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for any a, with two possible exceptions, where Δ is any angular domain, which

contains J, and %v(a, Δ) are %ero points of w{%) - a in Δ, multiple ^eros heing

counted only one p..

PROOF. Suppose that for some k > 0,

Then dividing (0,2τr) into 2Λ equal parts, we see that, there exists an angular

domain ΔM of magnitude 2τr/2n, such that Δj r> Δ2 Γ3 ••• 13 Δ n •••,

^ V ^ ^ * ' («-l,2,...). (2)

Let An converge to a direction J: arg ^ = α, then for any angular domain Δ :

[arg^ - a\ ^ δ, which contains /, Δ » c Δ for n > »j, so that

Let Δj : [argίζ - a\ ^ 2δ, then by Theorem 2,

so that from (3),

= » , or

for any a, with two possible exceptions.

—Λ-l—-dr=. oo, if we take k= p-ε, then we have (i) and for

k= p, we have (ii). q. e. d.

2. Theorem 3 can be extended as follows.

THEOREM 4. Let C-' z = ίζ (/) (0 ^ / < co) kζ (0) = 0, -ζ (oo) = x ) be a simple

curve, which connects % ~ 0 to \ = co and for any δ > 0, /^ί Δ (δ) ^ / ^ j ̂ / ^

poinΦsy which is covered by all discs: | ζ - sζ(/)[ ^ I^(/)| δ ( 0 ^ / < oo) W ΔΘ (δ)

be the set obtained from Δ(δ) by rotating an angle θ. Let w = w(%) be a me-

romorphic function of finite order p > 0 for | ^ | < co. Then there exists a certain

00) such that for any δ > 0, e > 0, .
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( i ) Σ Vlίfr ( ^ Δβ o (δ)) |p- ε = <*>, for # # / #, »>/Λ& 5f»>0 possible exceptions and

if w(%) is of order p of divergence type, then

( i i ) 2 ΰ VI?v (#> Δβ0 (δ))|p = oo, y^r any a> with two possible exceptions^ where

^v (#; ΔΘQ (δ)) <2'r ί^rfl points of w(%) - a in Δβ0 (δ).

First we prove a lemma.

LEMMA. Let E be a closed set contained in [ίζ| ^ 1 ##*/ 0 < p < 1.

^7^r E by N circles & (i == 1, 2, •••, JV) ςf W/^j p ^//^ //j ^»/^r fe 6" E),

such that N g l & r / ί v T p ) β«^ Π Γ ^ J Q (i = l, 2, — ,N) <?/ ΓΛΛ'ΛJ 2p with

center ̂  overlap at most Si-times*

PROOF. W e cover the ̂ -plane by a net of regular triangles, whose vertices
are 5ζ W M = mpe**!* + np (m, « = 0, ± 1, ± 2 , •••). Let Δi, Δ 2 , —, Δ N be t h e
triangles, w h i c h c o n t a i n points of E , t h e n since Δ» is conta ined in |«ζ| < Ξ 1 + p
a n d t h e area o f Δ i is y"3~ p?/4 a n d 0 < p < 1,

We take a point ^ fe £) in Δ̂  and draw a circle O of radius p with ^ as its
center, then C* contains Δi, so that C\, •••, Ĉ v cover E. Let Q be a circle
of radius 2p with ^ as its center, then it is easily seen that C\ overlap at
most i

PROOF OF THEOREM 4. Let k > 1 and Δv (δ) be the part of Δ (δ) contained

in ]e~x^ | ζ| g*kv (v= 0, 1, 2, ) and ΔJ (3δ) be the part of Δ (3δ) contained in

kJ~2^ |ξl ̂ k»+\ so that Δv(δ)cΔJ(3δ). By transforming Δv (δ) into a closed

set in I ζ\ ^ 1 by ζ = -^ and applying the lemma, with ^ == ̂ , we see easily that

Δv (δ) can be covered by N circles C^i} (i = 1, 2, ••, N) of radius ^ v " 1 δ and

center ĈO (€Δv (δ)), such that

and circles CJΦ of radius ?/fev-1δ with center ^ ^ oveilap at most 54-times.

Let aι, a2, a3 be any three values and J\,, Sfr be the area on the ̂ -sphere

generated by w — wty, when ^ varies in Δv (δ), Cj and »J, «JCΰ be the

number of zero points of n(^(^) - ^ ) in Δv (3δ), C*& respectively, then by

Theorem 1,
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w h e r e A depends o n aly a2> a3, k, δ only.

Since C° ^ is conta ined in Δv (3δ) a n d over lap a t m o s t 54-times a n d

^ ΣΣ S^, we have

Sv ^ 54»o 4- NΛ.

From this we have the similar theorem as Theorem 2, where Δ = Δ(δ),

Δo == Δ (3δ) and from this we can prove Therem 4 as Theorem 3.

REMARK. From (3) in the proof of Theorem 3, we see that there exists

n < r2 < ••• < rw -> oo, such that

lim S (r«s A)/log m = oo. ( 4)
W->oo

Let

N = [log ml log k], kN^r<k*+1,

then from (4), there exists a certain curvilinear quadrilateral j2V

j&n-1^ |ίζ[ ^kv*>{vn^N), such that

Let C ° : larg ίζ- a\ ^ 2δ, >fev»~2g I«ζ| ^/fev«^. We map 6^ conformally on

[ξΊ < 1 by w = w(ζ), such that the center of Qn becomes ζ = 0, then the

image of Qn lies in \ζ\ ^ ?y < 1, where 77 depends on /fe, δ only. We put

then Sn^S {η) and

Suppose that

L(r)>(J») 3 '± for

then
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,
-- or

) 1 ' 1 '

Hence if ,ΓΛ> Γ~~Y, then there exists a certain m (y g r* ^ 1), such that

, or

From this we conclude by Ahlfors' theorem on covering surfaces, the

following theorem:

Let J: arg ^~ a be a Borel's direction^ then for any δ > 0, the image of

A I arg <ζ- a\ i=Lh by w ~ w ty on the w-shere covers schlichi infinitely often

one of any five disjoint simply connected domains on the wsphere.

4. BoreΓs directions of meromorphic functions of zero order*

We consider meromorphic functions of zero order, such that

lim log T (r) / log r = 0, ίϊm T (r) / (log r)2 = oo.

First we will prove a lemma.

LEMMA. Let T (r) > 0 £<? ## increasing function, such that

lim logΓ(r)/log r = 0 , lϊm T(r)/(logr)2 = QO,

then for any λ > 1, k>l, there exists rt < r2 — < rn-> oo,

lim T (rM)/(log n)2-oo, Γ'(λrM)^£Π*ι) (» = 1,2, ).
n-»co

PROOF. First we will prove that for any M> 0, there exists ^ < v2 < —

< z/n ~> °°, such that

T(λ-)^M(logV) 2 (1)

holds for v = 2/« (« = 1, 2, ).

For, if for v^vOy T (λv) < Λf (log λv)2, then for λv g f < λv+ ι, Γ ( r ) ^
T (V+1) < Λf (log λ^1) - = Λf ((v + 1) / χ̂ )2 (log λv)2 ^ Af ((^ + 1) / P)2 (log r)2, so that
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which contradicts the hypothesis, hence (1) holds for an infinite number of v.

Next we will prove that there exists an infinite number of v, for which

(1) and

Γ(λ»+ ι)gAΓ(λ») (2)

hold simultaneously.

For, suppose that for all v > vOi for which (1) holds,

; T (λ^1) > kT (λ>), (3)

then since k > 1,

T (λ*+1) > kT (λv) S kM(logxγ = kM(vj(y + I))2 (logχ>+ψ

so that λ v+ x satisfies (1), hence by the hypothesis,

Hence (3) holds for all sufficiently large v, so that

fiiή log T (r)/log r ^ log A/log λ > 0,

which contradicts the hypothesis, hence there exists an infinite number of z/,

which satisfy (1) and (2) simultaneously. If we take Mx < M2 < ••• < Mw -* co

for M, then we have the lemma.

THEOREM 58). Let n>{%) be a meromorphic function of order %ero, such that

then there exists a direction J: arg ^ = α , such that for any angular domain

Δ : I arg «ζ - a\ ^ δ, »/AίVA contains J,

Ϊΐ5i N (r», β; Δ)/T (*») ^ | Δ [ / ( 7 2 Λ ) , ( |Δ[ - 2δ)

^, with two posύbW exceptions^ where the sequence {r»} is independent of a

and Δ, such that

PROOF. By the lemma, for any λ > 1, k > 1, there exists {rM}> such that

lim T (*»), (log rn)2 = oo, Γ (λΓή) ^ /fe T (rw), (« = 1,2, •..). (1)

3) G* Valiron: Sur les directions de Borel das fonctions, meromorphes d'ordre nul,
Buh Sci. Math. 39 (1935).
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By div iding (0,2τt) i α t o 2m equa l par t s , we see t h a t t h e r e exists a n angular

d o m a i n Δ M of m a g n i t u d e 2τr/2m, s u c h t h a t Δ i zs Δ , Z3 — 13 Δ m ̂  •••,

T(r*5Δ*)>T(r*)/2" (2)

holds for an infinite number of «•
Let Δm converge to a direction J: argίζ= a and Δ: |arg^ — a\ ^ δ ( l — ε)

(e > 0) be any angular domain, which contains /.
Let m be such that 2̂ /2™ ^ δ(l - e) < 2τt/2*n-1

y then Δ :r> Δm, so that by

(2), (1),
T (rM: Δ; > T (-*; Δm) > 2— T (r») > /fe"12— T (λr ) (3 )

holds for an infinite number of n.
Let Δo: [arg^— a\ ^ δ , then

1 A I — O5s ^ Q>^ '/O*Λ /1 e\\ ( j, I

We apply Theorem 2 for Δo, Δ and m, then

T (λrt.) 'k2m ̂  Γ (*••; Δ) ̂  3 X N(\rn, at\ Δo) + A (log /•»)*,

hence by (1), (4),
3 -

I ΔQI (1 - ey(24jkπ) ̂  Σ ϊϊm N(\rn) aΛ Δ,) T (λr«).

If we make ε ->• 0, yfe -> 1, we have
3

[ Δ,]/(24it) ^ Σ ϊϊmN(λ^, ^ Δo) T(λrn). ,
Hence

ίim N(\m, a\ Δj)/(T λ/«) > [Δo|/(72τr),

with two possible exceptions. If we write m, Δ instead of λr«, Δo, then we

have the theorem.

5. Meromorphic functions in a half-plane.

1. FIRST FUNDAMENTAL THEOREM.

Let w (%) be meromorphic in 91 % > 0 and let ^ = peiθ (\θ\ ̂  π-/2),

f = — 1/ίζ = σ 4- //, ( 1 )

σ s= - cos θ'ιp> t = sin ^/>,

then the niveau curve SR (1/^) = const. = 1/r, or

σ = const. = - 1/r (r > 0) (2)

is a circle: r cos θ = p, whose diameter is r and which touches the imaginary
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axis at the origin and the niveau curve

/ = const. = l//o (3)

is a circle, whose diameter is [/0[ and which touches the real axis at the
origin. Hence to a rectangle Qσ on the ξ'-plane, which is bounded by four
lines : / = ± π\ σ= <r0 = - l/r09 σ = ~ l/r(r > r0), there corresponds on the
ζ-plane a domain Δr, which is bounjded by four circles.

We put w (%) = to (ζ) and let n (<τ, a) be the number of ze^o points of
to (ζ) - a in Qσ and

m (σ, a) = -~- (* log - * - , _ - du (4)

<ft (cr, a) = \ n (σ, tf) Λr, ( δ )

where

Since w (%) is meromorphic on three circles, which correspond to three lines;

σ — crO1 t=±π, we have by the argument princ pie, if to (ζ) Φ a, 4= b on $tζ

= = CΓ,

am (σ, a) am (σ , b)__ JM (σ, b) = _1__ f* _9_
9σ 2τr J-* a<r to -

so that

tn.(σ,Λ) + 3l(σ,β) = m(σ,ί)+ 3l(σ,*)+ 0(1). (7)

Returning to the ^-plane, if we write

in (σ, ̂ ) = tn (r, a), n (<r, a) = n (r, ίz), 5B (σ, ̂ ) = N(r, #),

then we have easily

m (r, β) = 4 - f " ^ log (l/[y (!t), β])scc» ̂  Λ, (8)
Z7TΓ J —tan -Srr

where the right hand side of (8) is integrated on a circle 3t(l/;ζ)s= 1/r and
n(r,a) is the number of zero points of w(*ζ) — a in Δ f. If we put

), (10)
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then (7) becomes

T(r,*) = T(r, 0+0(1). (11)

From this we have easily the following

THEOREM 6 (First fundamental theorem)*

where

Hence T (r) is an increasing c onvex function of σ = ~ 1/r. We call T (f) the

characteristic function of w (sζ) for ίfcζ ;> 0.

2. It can easily be proved:

5
00 T if) Γx J (r)

λ\i dr and\ — ^ ' 2 - dr ( λ > 0) converge simultaneously and

converge simultaneouly, where jζv (^) are %ero points of w(%) — a.

THEOREM 8. Let w{%) be regular for 3Rjζ > 0 ^β? Δ : |arg^ | ^ or < τr/2,

then

where

log M(r; Δ) ^ ^4r (T (λr) f 0(1)),

A = 2 (1 -f sin α)/{cos a (1 + sin a)}, λ = 2/cos a*

PROOF. Let M(*•, Δ) = Max. \w(reiΘ)\ be attained at jζ0 = reiΘo (\θo\ ^ a),

which lies in a circle \%- p\ — p sin a {ρ= r/cosa)y which touches two lines

arg ^ = ± a, so that

*o, I /01 ^ p sin α

Since log |^(jζ) | is subharmonic, we have by means of Poisson integral on
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logf Λf (r;Δ) =

= 1 - s i n α

where

A = 2 (1 + sin α)/ (cos α (1 - sin α)}, λ = 2/cos α.

THEOREM 9. "Let w(%) be meromorphic in iR(ίζ)>0 and T(r) = O(l),
are regular and | gθζ) |^ l , \h{z)\^lfor

PROOF» By x = (ζ - 1) / ( ζ + 1), we map $ (ζ) ^ 0 on \x\ <l and put

w (jζ) = /̂j (x) and Ti (p) be the Nevanlinna's characteriatic function of w\ (x)
in |*[ < 1,

Since the circle $(l/;ζ) = l/r(r > 1) is mapped on a αircle, which contains a
circle |χ[ = (r - l)/(r + 1) = />,

and since /̂/>> = 2/(r2 -l)dr^ 4/r2 ̂ /r (r ̂  V"2"), we have

Hence Ti(/>) = 0(1), so that by Nevanlinna's theorem, ^λ(x) = g1{x)/h1(x)i

where ^I(ΛΓ), h}(x) are regular and J^i(x)I^l, \h1(χ)\ ^l in |ΛΓ| < 1.
Returning to the ^φlane, we have the theorem.

3. SECOND FUNDAMENTAL THEOREM.

In Ahlfors' proof of Nevanlinna's second fundamental theorem,4> if we

4) L. Ahlfors: Uber eine Methode in der Theorie der meromorphen Funktionen, Soc.
Sci, Fenn, Comment, £hys-Math. 8, No 10 (1932).
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replace logiζ — logr + id by ζ =- 1/jζ = σ -f //, we have the following

THEOREM 10. {Second fundamental theorem)*

{q-2)T(r) ^ Σ N(r} a{) - Nx(r) + 0(logr + logT(r))>

outside certain intervals {/*}, W/δ / ^ /

v J 7v

Nι(r) informed similarly a* N(r, a) with respect to all multiple values,
a~ple value being counted {a — l)*times.

Especially if we take q = 3, λ = 0,

T (r) ̂  Σ N(r, at) + 0 (log r -f log T (r)), (1)

outside intervals {/v}, such that

Σ \ r d logr < po. (2)

From this we have

THEOREM 11. If lim T (r)/log r = oo , / ^ ^(^ ) / ^ x «̂y ^ / ^ infinitely

often with two possible exceptions*

6. Theorems of Valiron and Nevanlinna;

As an application of the theorems proved in § 5, we will prove theorems

of Valiron and Nevanlinna as follows. .

THEOREM 12 (VALIRON)5\ Let w(%) be meromorphic in Ao; |arg;ζ| ^aQ, (|Δ0 |

= 2a0) and Δ: [arg^| ^a < a0 be an angular domain contained in Δo. If for a

certain value a and 9 > *r/|Δ0|,

then

ΣV|!ζv(*,Δ.)|P=0O

G. Valiron : Sur les directions de Borel des functions meromorphes d'ordre fini,
Journ» de Matht 9 series 10 (1931),
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for any ay with two possible exceptions and Δ o contains a Bore I9 s direction of orde*'

p of divergence type.

PROOF. We choose

ax (a < aλ < a0),

such that p> kι = it/W\.

By iζftl = x, we map Δx on Sft (x) ;> 0, then Δ is mapped on ω : | arg χ\ ^ β

< τr/2. We put w (Z) = wτ (x), \Z\ = r, Ixl = R (-r*1),

(ίζv (^, Δ ) ) ^ = ΛΓv (.7, o>) = Rv^>v,

so that

,ω)̂  = cos φv/Rv ^ cos /9/Rv = cos βj \ ^ (a, Δ) [ *i.

Hence Σ (^ (V^v (Λ, ω)))p ftl = oo, a fortiori, Σ (^ (VΛΓW U)))P Λ l = °°» where XV(Λ)

are zero points of wλ (ζ) - a in $ (x) > 0.

Let Ti (R), Ni (R, a) be the functions defined in § 5 for wx (x), then since

pki > 1, we have by Theorem 7,

If Sir, A0 is defined as in §2, then St(R)^S(r, Δt) ( R = rΛl), so that from

(0,

Since T {9r, Δi) S ί (r> Δx) log 2, we have

Hence by Theorem 2,

with two possible exceptions. From (2) we conclude as Theorem 3 that Δo

connains a BoreΓs direction of order p of divergence type.

THEOREM 13 (NEVANLINNA-VALIRON). Let wty he regular in Δ o : |arg^| ^a0

and Δ: I a r g ^ | ^ α < α 0 be an angular domain contained in Δo. If for some
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then

for any #, with two possible exceptions^ and Δo contains a BonΓs direction of

order p of divergence type1"**

PROOF. Let Δ x : ) arg ^| <; ax {a < ax < a0) be so chosen that p > kι = n\\ Δx |

and by %kl = x, we map Δx on $tx > 0, then Δ is mapped on ω : |argx| gL

< τt/2. We put w (%) = ^i (x), then

^ 1 ( R ^ ) l = M(r, Δ) (R = rk%

so that

f* log*Mλ(R, ω) Jn 7 r iog-^mκr,!±) ^ s _ ^ χ j

Let Tι (R) be the characteristic function of wι [x) defined in § 5, then by
Theorem 8

i (R, ω) ^ AR (Tx (λR) + O (1)), (λ > 1),

so that from (1),

From this we proceed similarly as TRhorem 12 and have the theorem.

MATHEMATICAL 'INSTITUTE, TOKYO UNIVERSITY.

6) R. Nevanlima: Untersuchungen Uber Picard'scheπ Satz. Acta Soc. Sci. Penn. 5 0 ^
(1924).

7) G. Valiron. 1. c. (7)




