ON BOREL'S DIRECTIONS OF MEROMORPHIC FUNCTIONS
 OF FINITE ORDER*)

By
Masatsugu Tsuji

Contents

1. Introduction. 2. Main theorems. 3. Existence of Borel's directions. 4. Borel's directions of meromorphic functions of zero order. 5. Meromorphic functions in a half-plane. 6. Theorems of Valiron and Nevanlinna.

1. Introduction.

Let $w(z)$ be meromorphic for $|z|<\infty$ and
where

$$
T(r)=\int_{0}^{r} \frac{S(r)}{r} d r,
$$

$$
\begin{equation*}
S(r)=\frac{1}{\pi} \int_{0}^{r} \int_{0}^{2 \pi}\left(\frac{\left|\nu^{\prime}\left(t e^{i \theta}\right)\right|}{1+\left|\omega \nu\left(t e^{i \theta}\right)\right|^{2}}\right)^{2} t d t d \theta \tag{1}
\end{equation*}
$$

be its Nevanlinna's characteristic function and

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \log T(r) / \log r=\rho \tag{2}
\end{equation*}
$$

be its order. If $\rho<\infty$, then by Borel's theorem, for any $\varepsilon>0$,

$$
\sum_{\nu} 1 /\left|z_{\nu}(a)\right|^{\rho+\varepsilon}<\infty
$$

for any a and if $0<\rho<\infty$,

$$
\sum_{\nu} 1 /\left[\left.z_{v}(a)\right|^{p-\varepsilon}=\infty\right.
$$

for any a, with two possible exceptions, where $z_{\nu}(a)$ are zero points of $w(z)-a$.

Varilon ${ }^{1)}$ proved that there exists a direction J, which is called a Borel's direction, such that

$$
\sum_{\nu} 1 /\left|z_{\nu}(a, \Delta)\right|^{p-q}=\infty,
$$

*) Received October 1, 1949.

1) G. Valiron: Recherches sur le théorème de M. Borel dans la théorie des fonctions méromorphes. Acta Math. 52 (1928).
for any a, with two possible exceptions, where Δ is any angular domain, which contains J and $z_{\nu}(a, \Delta)$ are zero points of $p(z)-a$ in Δ.

In §3, we will prove this Valiron's theorem simply by means of Theorem 2 of $\S 2$. In $\S 5$, we consider meromorphic functions in a half-plane $\Re_{\imath} \geqq 0$ and establish theorems, which are analogous to Nevanlinna's fundamental theorems for meromorphic functions for $|₹|<R(\leqq \infty)$ and by means of which we prove theorems of Valiron and Nevanlinna in § 6.

2. Main theorems.

Theorem 1. Let $w=w(z)$ be meromorphic in $|\Sigma|<1$ and the number of zero points of $\left(w(z)-a_{1}\right)\left(w(z)-a_{2}\right)(w(z)-a$.$) in |z|<1$ be $\leqq n$, where multiple zeros are counted only once, then

$$
S(r) \leqq n+A^{\prime}(1-r),(0 \leqq r<1)
$$

where A is a constant, which depends on a_{1}, a_{2}, a_{3} only.
Proof. Let $z_{1}, \cdot \cdot, z_{\nu}(\nu \leqq n)$ be zero points of $\prod_{i=1}^{3}\left(w(z)-a_{i}\right)$ in $|z|<1$ and ff these points from $|\dot{\chi}|<1$ and D_{0} be the remaining domain and the part of D_{0}, which lies in $|z| \leqq r(<1)$. Let F_{r} be the Riemann read upon the w-sphere, which is generated by $w=w(\tau)$, when z $D_{0}(r)$, then F_{r} is a covering surface of the basic domain F_{0}, which is Erom the w-sphere by taking off three points a_{1}, a_{2}, a_{3}. Let $\rho(r)$ be s characteristic of F_{r}, then by Ahlfors' fundamental theorem on ;urfaces, ${ }^{2}$)

$$
\begin{gather*}
\stackrel{+}{\rho}(r) \geqq S(r)-h L(r), \quad \stackrel{+}{\rho}(r)=\operatorname{Max} .(\rho(r), 0), \tag{1}\\
L(r)=\int_{0}^{2 \pi} \frac{\left|w^{\prime}\left(r e^{i \theta}\right)\right|}{1+\left|\left(r e^{i \theta}\right)\right|^{2}} r d \theta \tag{2}
\end{gather*}
$$

1 constant, which depends on a_{1}, a_{2}, a_{3} only.
hwarz's inequality, we have

$$
\begin{equation*}
[L(r)]^{2} \leqq 2 \pi^{2} r \frac{d S(r)}{d r} \tag{3}
\end{equation*}
$$

the hypothesis, $\stackrel{+}{\rho}(r) \leqq n$, we have by (1),

$$
\begin{equation*}
S(r)-n \leqq h L(r), \quad(0 \leqq r<1) \tag{4}
\end{equation*}
$$

nce if $S\left(r^{\prime}\right)-n>0$ for all $r^{\prime}\left(r \leqq r^{\prime}<1\right)$, then by (3), (4), $1-r<\int_{r}^{1} \frac{1}{r^{\prime}} d r^{\prime}$ $\left.2 \pi^{2} h^{2} \int_{r}^{1}\left(S\left(r^{\prime}\right)-n\right)^{2}\right) S\left(r^{\prime}\right) \leqq 2 \pi^{2} h^{2} /(S(r)-n)$, or

[^0]\[

$$
\begin{equation*}
S(r) \leqq n+2 \pi^{2} h^{2} /(1-r) \tag{5}
\end{equation*}
$$

\]

If $S\left(r^{\prime}\right)-n \leqq 0$ for some $r^{\prime}\left(r \leqq r^{\prime}<1\right)$, then $S(r) \leqq S(r) \leqq n$, so that (5) holds. Hence (5) holds for $0 \leqq r<1$, which proves the theorem.

Let $w(z)$ be meromorphic in an angular domain $\Delta:|\arg z| \leqq \alpha$ and put

$$
\begin{align*}
& S(r ; \Delta)=\frac{1}{\pi} \int_{1}^{r} \int_{-\alpha}^{\alpha}\left(\frac{\left|w^{\prime}\left(t e^{i \theta}\right)\right|}{1+\left|w\left(t e^{i \theta}\right)\right|^{2}}\right)^{2} t d t d \theta \\
& T(r ; \Delta)=\int_{1}^{r} \frac{S(t ; \Delta)}{t} d t \\
& N(r, a ; \Delta)=\int_{1}^{r} \frac{n(t, a ; \Delta)}{t} d t \tag{1}
\end{align*}
$$

where $n(r, a ; \Delta)$ is the number of zero points of $w(z)-a$ in a sector: $|\arg z| \leqq \alpha, 0 \leqq|z| \leqq r$, where multiple zeros are counted only once.

Theorem 2. Let $w(z)$ be meromorphic in an angular domain $\Delta_{0}:|\arg ₹| \leqq \alpha_{0}$ and $\Delta:\left|\arg _{\chi}\right| \leqq \alpha<\alpha_{0}$ be an angular domain contained in Δ_{0}. Then for any $\lambda>1$

$$
T(r ; \Delta) \leqq 3 \sum_{i=1}^{3} N\left(\lambda r, a ; \Delta_{\jmath}\right)+A\left(\log ^{2}\right.
$$

where A is a constant, which depends on $a_{1}, a_{2}, a_{3}, \alpha, \alpha_{0}, \lambda$ only.
Proof. We put $k=\lambda^{1 / 3}>1$ and for $r>1$, let

$$
\begin{equation*}
N=[\log r / \log k], \quad k^{N} \leqq r<k^{N+1}, \tag{2}
\end{equation*}
$$

so that

$$
\begin{equation*}
k^{N+3}=\lambda k^{N} \leqq \lambda r . \tag{3}
\end{equation*}
$$

Let $\mathcal{L}_{\nu}^{0}, Q_{\nu}$ be curvilinear quadrilaterals:

$$
\begin{align*}
& Q_{v}^{0}:|\arg z| \leqq \alpha_{\iota}, k^{\nu-2} \leqq|z| \leqq k^{\nu+1} \\
& Q_{\nu}:|\arg | \leqq\left|\leqq \alpha, k^{\nu-1} \leqq|z| \leqq k^{\nu}\right. \tag{4}\\
& S_{\nu}=\frac{1}{\pi} \int_{Q_{\nu}} \int\left(\frac{w^{\prime}\left(t e^{i \theta}\right)}{1+\left|\nu\left(t e^{i \theta}\right)\right|^{2}}\right)^{2} t d t d \theta
\end{align*}
$$

and n_{ν}^{0} be the number of zero points of $\prod_{i=1}^{3}\left(\eta(z)-a_{i}\right)$ in Q_{v}^{0}. If we map Q_{1}^{0} on $|\zeta|<1$ conformally, such that the center of Q_{1}^{0} becomes $\zeta=0$, then Q_{1} is mapped on a domain, which lies in $|\zeta| \leqq \rho<1$.

Since \mathcal{Q}_{v}^{0} is similar to Q_{1}^{0}, we have by Theorem 1,

$$
\begin{equation*}
S_{\nu} \leqq n_{\nu}^{0}+A, \tag{5}
\end{equation*}
$$

where A is a constant, which depends on $a_{1}, a_{2}, a_{3}, \alpha, \alpha_{0}, \lambda$ only.
In the following, we denote such constants by the same letter A. We put

$$
\begin{equation*}
n\left(r ; \Delta_{0}\right)=\sum_{i=1}^{3} n\left(r, a_{i} ; \Delta_{\jmath}\right) \tag{6}
\end{equation*}
$$

Since \mathcal{Q}_{ν}^{0} overlap only twice,

$$
\begin{aligned}
& \int_{k^{\nu-1}}^{k^{\nu}} \frac{S(t ; \Delta)}{t} \leqq S\left(k^{\nu} ; \Delta\right) \log k=\left(S_{1}+\cdots+S_{v}\right) \log k \\
& \quad \leqq\left(n_{0}^{1}+\cdots+n_{v}^{0}\right) \log k+A \nu \leqq 3 n\left(k^{\nu+1} ; \Delta_{0}\right) \log k+A \nu,
\end{aligned}
$$

so that

$$
\begin{align*}
& \int_{1}^{r} \frac{S(t ; \Delta)}{t} d t \leqq \int_{1}^{k^{N+1}} \frac{S(t ; \Delta)}{t} d t=\sum_{\nu=1}^{N+1} \int_{k^{\nu-1}}^{k^{\nu}} \frac{S(t ; \Delta)}{t} d t \\
& \quad \leqq 3\left(n\left(k^{1} ; \Delta_{0}\right)+\cdots+n\left(k^{N+2} ; \Delta_{0}\right)\right) \log k+A N^{2} . \tag{7}
\end{align*}
$$

Since

$$
\int_{k^{\nu}}^{k^{\nu+1}} \frac{n\left(t ; \Delta_{0}\right)}{t} d t \geqq n\left(k^{\nu} ; \Delta_{0}\right) \log k
$$

we have from (7), (3),

$$
\begin{aligned}
T(r ; \Delta) & =\int_{1}^{r} \frac{S(t ; \Delta)}{t} d t \leqq 3 \int_{1}^{k^{N+3}} \frac{n\left(t ; \Delta_{0}\right)}{t} d t+A N^{2} \\
& \leqq 3 \int_{1}^{\lambda r} \frac{n\left(t ; \Delta_{0}\right)}{t} d t+A(\log r)^{2}=3 \sum_{i=1}^{3} N\left(\lambda r, a_{i} ; \Delta_{0}\right)+A(\log r)^{2}
\end{aligned}
$$

3. Existence of Borel's directions.

1. Now we will prove Valiron's theorem:

Theorem 3. Let $w(z)$ be a meromorphic function of finite order $\rho>0$, then there exists a direction $J: \arg z=\alpha$, such that for any $\varepsilon>0$.

$$
\begin{equation*}
\sum_{\nu} 1 /\left|z_{\nu}(a ; \Delta)\right|^{\rho-\varepsilon}=\infty \tag{i}
\end{equation*}
$$

for any a, with two possible exceptions, and if

$$
\int^{\infty} \frac{T(r)}{r^{\rho+1}} d r=\infty
$$

then
(ii)

$$
\sum_{\nu} 1 /\left|z_{\nu}(a, \Delta)\right|^{p}=\infty
$$

for any a, with two possible exceptions, where Δ is any angular domain, which contains J, and $z_{\nu}(a, \Delta)$ are zero points of $w(z)-a$ in Δ, multiple zeros being counted only once.

Proof. Suppose that for some $k>0$,

$$
\begin{equation*}
\int^{\infty} \frac{T}{r^{k+1}}(r) \tag{1}
\end{equation*}
$$

Then dividing $(0,2 \pi)$ into 2^{n} equal parts, we see that there exists an angular domain Δ_{n} of magnitude $2 \pi / 2^{n}$, such that $\Delta_{1} \supset \Delta_{2} \supset \cdots \supset \Delta_{n} \cdots$,

$$
\begin{equation*}
\int^{\infty} \frac{T\left(r ; \Delta_{n}\right)}{r^{k+1}} d r=\infty, \quad(n=1,2, \cdots) \tag{2}
\end{equation*}
$$

Let Δ_{n} converge to a direction $J: \arg z=\alpha$, then for any angular domain Δ : $\left|\arg _{Z}-\alpha\right| \leqq \delta$, which contains $J, \Delta_{n} \subset \Delta$ for $n \geqq n_{\text {J }}$, so that

$$
\begin{equation*}
\int^{\infty} \frac{T(r ; \Delta)}{r^{k+1}} d r=\infty \tag{3}
\end{equation*}
$$

Let $\Delta_{J}:|\arg z-\alpha| \leqq 2 \delta$, then by Theorem 2,

$$
\int_{1}^{r} \frac{T(r ; \Delta)}{r^{k+1}} d r \leqq 3 \sum_{i=1}^{3} \int_{1}^{r} \frac{N\left(\lambda r, a_{i} ; \Delta\right)}{r^{k+1}} d r+O(1) \quad\left(\lambda \gg^{\prime}\right)
$$

so that from (3),

$$
\int^{\infty} \frac{N\left(r, a ; \Delta_{0}\right)}{r^{k+1}} d r=\infty, \quad \text { or } \quad \sum_{\nu} 1 /\left|z^{\nu}\left(a, \Delta_{0}\right)\right|^{k}=\infty
$$

for any a, with two possible exceptions.
Since $\int^{\infty} \frac{T(r)}{r^{\rho-\varepsilon+1}} d r=\infty$, if we take $k=\rho-\varepsilon$, then we have (i) and for $k=\rho$, we have (ii). q. e. d.
2. Theorem 3 can be extended as follows.

Theorem 4. Let $C: z=z(t)(0 \leqq t<\infty)(z(0)=0, z(\infty)=\infty)$ be a simple curve, which connects $z=0$ to $z=\infty$ and for any $\delta>0$, let $\Delta(\delta)$ be the set of points, which is covered by all discs: $|z-₹(t)| \leqq|z(t)| \delta(0 \leqq t<\infty)$ and $\Delta_{\theta}(\delta)$ be the set obtained from $\Delta(\delta)$ by rotating an angle θ. Let $w=w(z)$ be a meromorphic function of finite order $\rho>0$ for $|z|<\infty$. Then there exists a certain θ_{0}, such that for any $\delta>0, \varepsilon>0$,
(i) $\quad \sum_{\nu} 1 /\left|z_{\nu}\left(a ; \Delta_{\theta_{0}}(\delta)\right)\right|^{\rho-\varepsilon}=\infty$, for any a, with two possible exceptions and if $\omega(z)$ is of order ρ of divergence type, then
(ii) $\quad \sum_{\nu} 1 / /\left.\chi_{\nu}\left(a ; \Delta_{\theta_{0}}(\delta)\right)\right|^{\rho}=\infty$, for any a, with two possible exceptions, where $z_{\nu}\left(a ; \Delta_{\theta_{0}}(\delta)\right)$ are zero points of $\omega(z)-a$ in $\Delta_{\theta_{0}}(\delta)$.

First we prove a lemma.
Lemma. Let E be a closed set contained in $|z| \leqq 1$ and $0<\rho<1$. Then we can coner E by N circles $C_{i}(i=1,2, \cdots, N)$ of radius ρ with its center $\left(z_{2} \in E\right)$, such that $N \leqq 16 \pi /\left(\sqrt{3} \rho^{2}\right)$ and circles $C_{i}^{0}(i=1,2, \cdots, N)$ of radius 2ρ with ienter z_{i} overlap at most 54 -times.

Proof. We cover the \approx-plane by a net of regular triangles, whose vertices are $z_{m n}=m \rho e^{\pi i / 3}+n \rho(m, n=0, \pm 1, \pm 2, \cdots)$. Let $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{N}$ be the triangles, which contain points of E, then since Δ_{i} is contained in $|z| \leqq 1+\rho$ and the area of Δ_{i} is $\sqrt{3} \rho^{2} / 4$ and $0<\rho<1$,

$$
N \leqq \pi(1+\rho)^{2} / \frac{\sqrt{3} \rho^{2}}{4}=\frac{4 \pi}{\sqrt{3}}\left(1+\frac{1}{\rho}\right)^{2} \leqq \frac{4 \pi}{\sqrt{3}}\left(\frac{1}{\rho}+\frac{1}{\rho}\right)^{2}=\frac{16 \pi}{\sqrt{3} \rho^{2}} .
$$

We take a point $Z_{i}(\varepsilon E)$ in Δ_{i} and draw a circle C_{i} of radius ρ with Z_{i} as its center, then C_{i} contains Δ_{i}, so that C_{1}, \cdots, C_{N} cover E. Let C_{i}^{0} be a circle of radius 2ρ with Z_{i} as its center, then it is easily seen that C_{i}^{0} overlap at most 54 -times.

Proof of Theorem 4. Let $k>1$ and $\Delta_{\nu}(\delta)$ be the part of $\Delta(\delta)$ contained in $k^{\nu-1} \leqq|z| \leqq k^{\nu}(\nu=0,1,2, \cdots)$ and $\Delta_{\nu}^{0}(3 \delta)$ be the part of $\Delta(3 \delta)$ contained in $k^{\nu-2} \leqq|z| \leqq k^{\nu+1}$, so that $\Delta_{\nu}(\delta) \subset \Delta_{\nu}^{0}(3 \delta)$. By transforming $\Delta_{\nu}(\delta)$ into a closed set in $|\zeta| \leqq 1$ by $\zeta=\frac{\chi}{k^{v}}$ and applying the lemma, with $\rho=\frac{\delta}{k^{\prime}}$, we see easily that $\Delta_{\nu}(\delta)$ can be covered by N circles $C_{\nu}^{(i)}(i=1,2, \cdots, N)$ of radius $k^{\nu-1} \delta$ and center $\tau_{\nu}^{(i)}\left(\varepsilon \Delta_{\nu}(\delta)\right)$, such that

$$
N \leqq \frac{16 \pi}{\sqrt{3}} \delta^{2}
$$

and circles $C_{\nu}^{0(i)}$ of radius $? k^{j-1} \delta$ with center $z_{i}^{(i)}$ overlap at most 54 -times.
Let a_{1}, a_{2}, a_{3} be any three values and $S_{\nu}, S_{\nu}^{(i)}$ be the area on the w-sphere generated by $w=w(z)$, when z varies in $\Delta_{\nu}(\delta), C_{\nu}^{i}$ and $\left.n_{\nu}^{0}, n_{\nu}^{0}{ }^{i} i\right)$ be the number of zero points of $\prod_{i=1}^{3}\left(\nu(z)-a_{i}\right)$ in $\left.\Delta_{\nu}(3 \delta), C_{\nu}^{0}, i\right)$ respectively, then by Theorem 1,

$$
S_{\nu}^{(i)} \leqq n_{\nu}^{0(i)}+A,
$$

where A depends on $a_{1}, a_{2}, a_{3}, k, \delta$ only.
Since $C_{\nu}^{0 i}$ is contained in $\Delta_{\nu}(3 \delta)$ and overlap at most 51 -times and $S_{\nu} \leqq \sum_{i=1}^{N} S_{i}^{(i)}$, we have

$$
S_{\nu} \leqq 54 n_{\nu}^{0}+N A
$$

From this we have the similar theorem as Theorem 2, where $\Delta=\Delta(\delta)$, $\Delta_{0}=\Delta(3 \delta)$ and from this we can prove Therem 4 as Theorem 3.

Remark. From (3) in the proof of Theorem 3, we see that there exists $r_{1}<r_{2}<\cdots<r_{n} \rightarrow \infty$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} S\left(r_{n} ; \Delta\right) / \log r_{n}=\infty \text {. } \tag{4}
\end{equation*}
$$

Let

$$
N=\left[\log r_{n} / \log k\right], \quad k^{N} \leqq r<k^{N+1},
$$

then from (4), there exists a certain curvilinear quadrilateral $\mathcal{Q}_{n} \cdot|\arg Z-\alpha| \leqq \delta$, $k^{\nu} n^{-1} \leqq|\chi| \leqq k^{\nu n}\left(\nu_{n} \leqq N\right)$, such that

$$
S_{n}=\frac{1}{\pi} \cdot \iint_{Q_{n}}\left(\frac{\left|w^{\prime}\left(t e^{i \theta}\right)\right|}{1+\left|w\left(t e^{i \vartheta}\right)\right|^{2}}\right)^{2} t d t d \theta \rightarrow \infty \quad(n \rightarrow \infty) .
$$

Let $\mathcal{C}_{n}^{0}:|\arg Z-\alpha| \leqq 2 \delta, k^{\nu n^{-2}} \leqq|\Sigma| \leqq k_{2}^{\nu+1}$. We map \mathcal{C}_{n}^{0} conformally on $|\zeta|<1$ by $w=w(\zeta)$, such that the center of Q_{n} becomes $\zeta=0$, then the image of Q_{n} lies in $|\zeta| \leqq \eta<1$, where η depends on k, δ only. We put $w(z)=\nu(\zeta)$ and put

$$
\begin{aligned}
& S(r)=\frac{1}{\pi} \int_{0}^{r} \int_{0}^{2 \pi}\left(\frac{\left|\nu^{\prime}\left(t e^{i \theta}\right)\right|}{1+\left|v\left(t e^{i \theta}\right)\right|^{2}}\right)^{2} t d t d \theta \quad(0 \leqq r \leqq 1) \\
& L(r)=\int_{0}^{2 \pi} \frac{\left|\nu^{\prime}\left(r e^{i \theta}\right)\right|}{1+\left|\nu\left(r e^{i \theta}\right)\right|^{2}} r d \theta
\end{aligned}
$$

then $S_{n} \leqq S(\eta)$ and

$$
(L(r))^{9} \leqq 2 \pi^{2} r \frac{d S(r)}{d r}
$$

Suppose that

$$
L(r) \geqq(S(r))^{3 / 4} \quad \text { for } \eta \leqq r \leqq 1
$$

then

$$
\begin{gathered}
(S(r))^{3 / 2} \leqq 2 \pi^{2} r \frac{d S(r)}{d r}, \\
1-\eta \leqq \int_{\eta}^{1} \frac{d r}{r} \leqq 2 \pi^{2} \int_{\eta}^{1} \frac{d S(r)}{(S(r))^{3 / 2}} \leqq \frac{4 \pi^{2}}{S(\eta)^{1 / 2}}, \text { or } \\
S_{n} \leqq S(\eta) \leqq\left(\frac{4 \pi^{2}}{1-\eta}\right)^{2} .
\end{gathered}
$$

Hence if $S_{n}>\left(\frac{4 \pi^{2}}{1-\eta}\right)^{2}$, then there exists a certain $r_{n}\left(\eta \leqq r_{n} \leqq 1\right)$, such that $L\left(r_{n}\right)<\left(S\left(r_{n}\right)\right)^{3.4}$, or

$$
L\left(r_{n}\right) / S\left(r_{n}\right)<1 / S\left(r_{n}\right)^{14} \leqq 1 / S_{n}^{1 / 4} \rightarrow 0(n \rightarrow \infty)
$$

From this we conclude by Ahlfors' theorem on covering surfaces, the following theorem:

Let $J: \arg z=\alpha$ be a Borel's direction, then for any $\delta>0$, the image of Δ; $|\arg z-\alpha| \leqq \delta$ by $w=w(z)$ on the w-sbere covers schlicht infinitely often one of any five disjoint simply connected domains on the w-sphere.

4. Borel's directions of meromorphic functions of zero order.

We consider meromorphic functions of zero order, such that

$$
\lim _{r \rightarrow \infty} \log T(r) / \log r=0, \quad \varlimsup_{r \rightarrow \infty} T(r) /(\log r)^{2}=\infty .
$$

First we will prove a lemma.
Lemma. Let $T(r)>0$ be an increasing function, such that

$$
\lim _{r \rightarrow \infty} \log T(r) / \log r=0, \quad \varlimsup_{r \rightarrow \infty} T(r) /(\log r)^{2}=\infty,
$$

then for any $\lambda>1, k>1$, there exists $r_{1}<r_{2} \cdots<r_{n} \rightarrow \infty$, such that

$$
\lim _{n \rightarrow \infty} T\left(r_{n}\right) /\left(\log r_{n}\right)^{2}=\infty, T\left(\lambda r_{n}\right) \leqq k T\left(r_{n}\right)(n=1,2, \cdots) .
$$

$\mathrm{P}_{\text {roof }}$. First we will prove that for any $M>0$, there exists $\nu_{1}<\nu_{2}<\cdots$ $<\nu_{n} \rightarrow \infty$, such that

$$
\begin{equation*}
T\left(\lambda^{\nu}\right) \geqq M\left(\log \lambda^{\nu}\right)^{2} \tag{1}
\end{equation*}
$$

holds for $\nu=\nu_{n}(n=1,2, \ldots \ldots)$.
For, if for $\nu \geqq \nu_{0}, T\left(\lambda^{\nu}\right)<M\left(\log \lambda^{\nu}\right)^{2}$, then for $\lambda^{\nu} \leqq r<\lambda^{\nu+1}, T(r) \leqq$ $T\left(\lambda^{\nu+1}\right)<M\left(\log \lambda^{\nu+1}\right)^{2}=M((\nu+1) / \nu)^{2}\left(\log \lambda^{\nu}\right)^{2} \leqq M((\nu+1) / \nu)^{2}(\log r)^{2}$, so that

$$
\varlimsup_{r \rightarrow \infty} T(r) /(\log r)^{2} \leqq M<\infty,
$$

which contradicts the hypothesis, hence (1) holds for an infinite number of ν.
Next we will prove that there exists an infinite number of ν, for which (1) and

$$
\begin{equation*}
T\left(\lambda^{\nu+1}\right) \leqq k T\left(\lambda^{\nu}\right) \tag{2}
\end{equation*}
$$

hold simultaneously.
For, suppose that for all $\nu \geqq \nu_{0}$, for which (1) holds,

$$
\begin{equation*}
T\left(\lambda^{\nu+1}\right)>k T\left(\lambda^{\nu}\right) \tag{3}
\end{equation*}
$$

then since $k>1$,

$$
\begin{gathered}
T\left(\lambda^{\nu+1}\right)>k T\left(\lambda^{\nu}\right) \geqq k M\left(\log \lambda^{\nu}\right)^{2}=k M(\nu /(\nu+1))^{2}\left(\log \lambda^{\nu+1}\right)^{2} \\
\geqq M\left(\log \lambda^{\nu+1}\right)^{2}, \quad(\nu \geqq 1 /(\sqrt{k}-1)),
\end{gathered}
$$

so that $\lambda^{\nu+1}$ satisfies (1), hence by the hypothesis,

$$
T\left(\lambda^{\nu+2}\right)>k T\left(\lambda^{\nu+1}\right)
$$

Hence (3) holds for all sufficiently large ν, so that

$$
\varlimsup_{r \rightarrow \infty} \log T(r) / \log r \geqq \log k / \log \lambda>0
$$

which contradicts the hypothesis, hence there exists an infinite number of ν, which satisfy (1) and (2) simultaneously. If we take $M_{1}<M_{2}<\cdots<M_{n} \rightarrow \infty$ for M, then we have the lemma.

Theorem 53). Let $w(z)$ be a meromorphic function of order zero, such that

$$
\varlimsup_{r \rightarrow \infty} T(r) /(\log r)^{2}=\infty
$$

then there exists a direction $J: \arg z=\alpha$, such that for any angular domain $\Delta:|\arg Z-\alpha| \leqq \delta$, which contains J,

$$
\varlimsup_{n \rightarrow \infty} N\left(r_{n}, a ; \Delta\right) / T\left({ }^{n} n\right) \geqq|\Delta| /(72 \pi), \quad(|\Delta|=2 \delta)
$$

for any a, with tawo possible exceptions, where the sequence $\left\{r_{n}\right\}$ is independent of a and Δ, such that

$$
\lim _{n \rightarrow \infty} T\left(r_{n}\right) /\left(\log r_{n}\right)^{2}=\infty
$$

Proof. By the lemma, for any $\lambda>1, k>1$, there exists $\left\{r_{n}\right\}$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T\left(r_{n}\right)\left(\log r_{n}\right)^{2}=\infty, T\left(\lambda r_{n}\right) \leqq k T\left(r_{n}\right),(n=1,2, \cdots) \tag{1}
\end{equation*}
$$

[^1]By dividing $(0,2 \pi)$ into 2^{m} equal parts, we see that there exists an angular domain Δ_{m} of magnitude $2 \pi / 2^{m}$, such that $\Delta_{1} \supset \Delta_{3} \supset \cdots \supset \Delta_{m} \supset \cdots$,

$$
\begin{equation*}
T\left(r_{n} ; \Delta_{m}\right) \geqq T\left(r_{n}\right) / 2^{m} \tag{2}
\end{equation*}
$$

holds for an infinite number of n.
Let Δ_{m} converge to a direction $J: \arg _{z}=\alpha$ and $\Delta:\left|\arg _{z}-\alpha\right| \leqq \delta(1-\varepsilon)$ $(\varepsilon>0)$ be any angular domain, which contains J.

Let m be such that $2 \pi / 2^{m} \leqq \delta(1-\varepsilon)<2 \pi / 2^{m-1}$, then $\Delta \supset \Delta_{m}$, so that by (2), (1),

$$
\begin{equation*}
T\left(r_{n}: \Delta ; \geqq T\left(r_{n} ; \Delta_{m}\right) \geqq 2^{-m} T\left(r_{n}\right) \geqq k^{-1} 2^{-m} T\left(\lambda r_{n}\right)\right. \tag{3}
\end{equation*}
$$

holds for an infinite number of n.
Let $\Delta_{0}:|\arg z-\alpha| \leqq \delta$, then

$$
\begin{equation*}
\left|\Delta_{0}\right|=2 \delta<8 \pi_{i}\left(2^{m}(1-\varepsilon)\right) . \tag{4}
\end{equation*}
$$

We apply Theorem 2 for Δ_{0}, Δ and r_{n}, then

$$
T\left(\lambda r_{n}\right)^{\prime} k 2^{m} \leqq T\left(r_{n} ; \Delta\right) \leqq 3 \sum_{i=1}^{3} N\left(\lambda r_{n}, a_{i} ; \Delta_{0}\right)+A\left(\log r_{n}\right)^{2}
$$

hence by (1), (4),

$$
\left|\Delta_{0}\right|(1-\varepsilon) /(24 k \pi) \leqq \sum_{i=1}^{3} \varlimsup_{n^{\rightarrow \infty}} N\left(\lambda r_{n}, a_{i} ; \Delta_{i}\right) T\left(\lambda r_{n}\right) .
$$

If we make $\varepsilon \rightarrow 0, k \rightarrow 1$, we have

$$
\left|\Delta_{,}\right| /(24 \pi) \leqq \sum_{i=1}^{3} \lim _{n \rightarrow \infty} N\left(\lambda r_{n}, a_{i} ; \Delta_{0}\right) ; T\left(\lambda r_{n}\right) .
$$

Hence

$$
\varlimsup_{n \rightarrow \infty} N\left(\lambda r_{n}, a ; \Delta_{\mathrm{J}}\right) /\left(T \lambda r_{n}\right) \geqq\left|\Delta_{0}\right|_{/}(72 \pi),
$$

with two possible exceptions. If we write r_{n}, Δ instead of $\lambda r_{n}, \Delta_{0}$, then we have the theorem.

5. Meromorphic functions in a half-plane.

1. First fundamental theorem.

Let $w(z)$ be meromorphic in $\Re_{q} \geqq 0$ and let $z=\rho e^{i \theta}(|\theta| \leqq \pi / 2)$,

$$
\begin{gather*}
\zeta=-1 / z=\sigma+i t \tag{1}\\
\sigma=-\cos \theta / \rho, \quad t=\sin \theta / \rho,
\end{gather*}
$$

then the niveau curve $\Re(1 / z)=$ const. $=1 / r$, or

$$
\begin{equation*}
\sigma=\text { const. }=-1 / r \quad(r>0) \tag{2}
\end{equation*}
$$

is a circle : $r \cos \theta=\rho$, whose diameter is r and which touches the imaginary
axis at the origin and the niveau curve

$$
\begin{equation*}
t=\text { const. }=1 / t_{0} \tag{3}
\end{equation*}
$$

is a circle, whose diameter is $\left|t_{0}\right|$ and which touches the real axis at the origin. Hence to a rectangle Q_{σ} on the ζ-plane, which is bounded by four lines: $t= \pm \pi, \sigma=\sigma_{0}=-1 / r_{0}, \sigma=-1 / r\left(r>r_{0}\right)$, there corresponds on the z-plane a domain Δ_{r}, which is bounded by four circles.

We put $w(z)=\mathfrak{w}(\zeta)$ and let $\mathfrak{n}(\sigma, a)$ be the number of zero points of $\mathfrak{w}(\zeta)-a$ in Q_{σ} and

$$
\begin{gather*}
\mathfrak{n t}(\sigma, a)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \frac{1}{[\mathfrak{m}(\sigma+i t), a]} d t \tag{4}\\
\mathfrak{N}(\sigma, a)=\int_{\sigma_{0}}^{\sigma} \mathfrak{n}(\sigma, a) d \sigma \tag{5}
\end{gather*}
$$

where

$$
\begin{equation*}
[a, b]=|a-b| /\left[\left(1+|a|^{2}\right)\left(1+\left|b^{2}\right|\right)\right]^{1 / 2} \tag{6}
\end{equation*}
$$

Since $w(\chi)$ is meromorphic on three circles, which correspond to three lines; $\sigma=\sigma_{0}, t= \pm \pi$, we have by the argument princ ple, if $\mathfrak{w}(\zeta) \neq a, \neq b$ on $\Re \zeta$ $=\sigma$,

$$
\begin{aligned}
\frac{\partial \mathfrak{m}(\sigma, a)}{\partial \sigma}-\frac{\partial \mathfrak{m}(\sigma, b)}{\partial \sigma} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\partial}{\partial \sigma} \log \left|\frac{\mathfrak{w}-b}{\mathfrak{w}-a}\right| d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \arg \left(\frac{\mathfrak{w}-b}{\mathfrak{w}-a}\right)=\mathfrak{n}(\sigma, b)-\mathfrak{n}(\sigma, a)+O(\mathrm{l})
\end{aligned}
$$

so that

$$
\begin{equation*}
\mathfrak{m}(\sigma, a)+\mathfrak{R}(\sigma, a)=\mathfrak{m}(\sigma, b)+\mathfrak{R}(\sigma, b)+O(1) . \tag{7}
\end{equation*}
$$

Returning to the z-plane, if we write

$$
\mathfrak{m}(\sigma, a)=m(r, a), \mathfrak{n}(\sigma, a)=n(r, a), \mathfrak{\Re}(\sigma, a)=N(r, a),
$$

then we have easily

$$
\begin{gather*}
m(r, a)=\frac{1}{2 \pi r} \int_{-\tan ^{-1} \pi r}^{\tan ^{-1} \pi r} \log (1 /[w(z), a]) \sec ^{2} \theta d \theta \tag{8}\\
N(r, a)=\int_{r_{0}}^{r} \frac{n(r, a)}{r^{2}} d r \tag{9}
\end{gather*}
$$

where the right hand side of (8) is integrated on a circle $\Re(1 / z)=1 / r$ and $n(r, a)$ is the number of zero points of $\nu(z)-a$ in Δ_{r}. If we put

$$
\begin{equation*}
T(r, a)=m(r, a)+N(r, a), \tag{10}
\end{equation*}
$$

then (7) becomes

$$
\begin{equation*}
T(r, a)=T(r, b)+O(1) \tag{11}
\end{equation*}
$$

From this we have easily the following
Theorem 6. (First fundamsintal theorem).

$$
T(r, a)=T(r)+O(1)
$$

where

$$
\begin{gathered}
T(r)=\int_{r_{0}}^{r} \frac{S(r)}{r^{2}} d r \\
S(r)=\frac{1}{\pi} \int_{\Delta} \int\left(\frac{\mid w^{\prime}\left(\rho e^{i \theta} \mid\right.}{1+\left|\nu \nu\left(\rho e^{i \theta}\right)\right|^{2}}\right)^{2} \rho d \rho d \theta
\end{gathered}
$$

Hence $T(r)$ is an increasing convex function of $\sigma=-1 / r$. We call $T(r)$ the characteristic function of $w(z)$ for $\Re \supsetneq \geqq 0$.
2. It can easily be proved:

Theorem 7. $\int^{\infty} \frac{T(r)}{r^{\lambda+1}} d r$ and $\int^{\infty} \frac{S(r)}{r^{\lambda+2}} d r(\lambda>0)$ converge simultancously and

$$
\int^{\infty} \frac{N(r, a)}{r^{\lambda+1}} d r, \quad \int^{\infty} \frac{n(r, a)}{r^{\lambda+2}} d r, \quad \sum_{\nu}\left[\Re\left(1 / ₹^{\nu}(a)\right)\right]^{\lambda+1} \quad(\lambda>0)
$$

converge simultaneouly, where $z^{\sim}(a)$ are zero points of $w(z)-a$.
Theorem 8. Let $w(z)$ be regular for $\Re_{Z} \geqq 0$ and $\Delta:|\arg \mathfrak{凤}| \leqq \alpha<\pi / 2$,

$$
M(r ; \Delta)=\operatorname{Max}_{|\theta| \leqq \infty}\left|w\left(r e^{i \theta}\right)\right|
$$

then

$$
\log ^{+} M(r ; \Delta) \leqq A r(T(\lambda r)+O(1))
$$

where

$$
A=2(1+\sin \alpha) /\{\cos \alpha(1+\sin \alpha)\}, \quad \lambda=2 / \cos \alpha
$$

Proof. Let $M(r, \Delta)=\operatorname{Max}_{|\theta| \leqq \alpha}\left|\nu \nu\left(r e^{i \theta}\right)\right|$ be attained at $z_{0}=r e^{i \theta_{0}}\left(\left|\theta_{\nu}\right| \leqq \alpha\right)$, which lies in a circle $|z-\rho| \stackrel{\mid 9}{\mid 9} \mid=\rho \sin \alpha(\rho=r / \cos \alpha)$, which touches two lines $\arg z= \pm \alpha$, so that

$$
z_{0}=r e^{i \theta_{0}}=\rho+t_{0} e^{i \varphi_{0}}, \quad\left|t_{0}\right| \leqq \rho \sin \alpha .
$$

Since $\log ^{+}|\boldsymbol{\nu}(\chi)|$ is subharmonic, we have by means of Poisson integral on $|z-\rho|=\rho$,

$$
\begin{aligned}
& \log ^{+} M(r ; \Delta)=\log ^{+}\left|w\left(z_{0}\right)\right| \leqq-\frac{\rho+\left|t_{0}\right|}{\rho-\left|t_{0}\right|} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \log +\left|\nu\left(\rho+\rho e^{i \theta}\right)\right| d \theta \\
& \leqq \frac{1+\sin \alpha}{1-\sin \alpha} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left(1+\left|\nu\left(\rho+\rho e^{i \theta}\right)\right|^{2}\right)^{1 / 2} d \theta \\
& =\frac{1+\sin \alpha}{1-\sin \alpha} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left[1 /\left[\nu\left(\rho+\rho e^{i \theta}\right), \infty\right]\right] d \theta \\
& \leqq \frac{1+\sin \alpha}{1-\sin \alpha} 2 \rho(m(2 \rho, \infty)+O(1))=\frac{1+\sin \alpha}{1-\sin \alpha} 2 \rho(T(2 \rho, \infty)+O(1)) \\
& \leqq \frac{1+\sin \alpha}{1-\sin \alpha} 2 \rho(T(2 \rho)+O(1))=\operatorname{Ar}(T(\lambda r)+O(1))
\end{aligned}
$$

where

$$
A=2(1+\sin \alpha) /\{\cos \alpha(1-\sin \alpha)\}, \quad \lambda=2 / \cos \alpha
$$

Theorem 9. Let $w(z)$ be meromorphic in $\mathfrak{R}(z) \geqq 0$ and $T(r)=O(1)$, then $w(z)=g(z) / h(z)$, where $g(z), h(z)$ are regular and $|g(z)| \leqq 1,|h(z)| \leqq 1$ for $\mathfrak{R}(\chi)>0$.

Proof. By $x=(z-1) /(z+1)$, we map $\mathfrak{R}(z) \geqq 0$ on $|x|<1$ and put $w^{\prime}(z)=w_{1}(x)$ and $T_{1}(\rho)$ be the Nevanlinna's characteriatic function of $w_{1}(x)$ in $|x|<1$,

$$
\begin{gathered}
T_{1}(\rho)=\int_{0}^{\rho} \frac{S_{1}(\rho)}{\rho} d \rho \quad(0 \leqq \rho<1) \\
S_{1}(\rho)=\frac{1}{\pi} \int_{0}^{\rho} \int_{0}^{2 \pi}\left(\frac{\left|w_{1}^{\prime}\left(r e^{i \theta}\right)\right|}{1+\left|w_{1}\left(r e^{i \theta}\right)\right|^{2}}\right)^{2} r d r d \theta
\end{gathered}
$$

Since the circle $\Re(1 / z)=1 / r(r>1)$ is mapped on a aircle, which contains a circle $|x|=(r-1) /(r+1)=\rho$,

$$
S_{1}(\rho) \leqq S(r)+O(1) \quad(\rho==(r-1) /(r+1)
$$

and since $d \rho^{\prime} \rho=2 /\left(r^{2}-1\right) d r \leqq 4 / r^{2} d r(r \geqq \sqrt{2})$, we have

$$
\int^{1} \frac{S_{1}(\rho)}{\rho} d \rho \leqq 4 \int^{\infty} \frac{S(r)}{r^{2}} d r+O(1)=O(1)
$$

Hence $T_{1}(\rho)=O(1)$, so that by Nevanlinna's theorem, $w_{1}(x)=g_{1}(x) / h_{1}(x)$, where $g_{1}(x), h_{1}(x)$ are regular and $\left|g_{1}(x)\right| \leqq 1,\left|h_{1}(x)\right| \leqq 1$ in $|x|<1$. Returning to the z-plane, we have the theorem.
3. Second fundamental theorem.

In Ahlfors' proof of Nevanlinna's second fundamental theorem, ${ }^{4}$) if we
4) L. Ahlfors: Über eine Methode in der Theorie der meromorphen Funktionen, Soc. Sci. Fenn. Comment. Phys-Math. 8, No. 10 (1932).
replace $\log _{\chi}=\log r+i \theta$ by $\zeta=-1 / ₹=\sigma+i t$, we have the following
Theorem 10. (Second fundamental theorem).

$$
(q-2) T(r) \leqq \sum_{i=1}^{q} N\left(r, a_{i}\right)-N_{1}(r)+O(\log r+\log T(r))
$$

outside certain intervals $\left\{J_{\nu}\right\}$, such that

$$
\sum_{\nu} \int_{J_{\nu}} r^{\lambda-1} d r<\infty \quad(0 \leqq \lambda<1)
$$

where $N_{1}(r)$ is formed similarly as $N(r, a)$ with respect to all multiple values, a-ple value being counted ($a-1$)-times.

Especially if we take $q=3, \lambda=0$,

$$
\begin{equation*}
T(r) \leqq \sum_{i=1}^{3} N\left(r, a_{i}\right)+O(\log r+\log T(r)) \tag{1}
\end{equation*}
$$

outside intervals $\left\{J_{\nu}\right\}$, such that

$$
\begin{equation*}
\sum_{\nu} \int_{J_{\nu}} d \log r<\infty . \tag{2}
\end{equation*}
$$

From this we have
Theorem 11. If $\varlimsup_{r \rightarrow \infty} T(r) \log r=\infty$, then $w(z)$ takes any value infinitely often with two possible exceptions.

6. Theorems of Valiron and Nevanlinna.

As an application of the theorems proved in § 5 , we will prove theorems of Valiron and Nevanlinna as follows.

Theorem $12\left(\text { Valiron }^{5}\right)^{5}$. Let $w(z)$ be me romorphic in $\Delta_{0} ;|\arg Z| \leqq \alpha_{0}$, $\left|\Delta_{0}\right|$ $\left.=2 \alpha_{\nu}\right)$ and $\Delta:|\arg \underset{\chi}{ }| \leqq \alpha<\alpha_{0}$ be an angular domain contained in Δ_{0}. If for a certain value a and $\rho>\pi /\left|\Delta_{0}\right|$,

$$
\sum_{v} 1 /\left|z_{v}(a, \Delta)\right|^{p}=\infty,
$$

then

$$
\sum_{v} 1 /\left|z_{v}\left(a, \Delta_{v}\right)\right|^{\rho}=\infty
$$

5) G. Valiron : Sur les directions de Borel des fonctions méromorphes d'ordre fini, Journ, de Math, 9 séries 10 (1931).
for any a, with two possible exceptions and Δ_{0} contains a Borel's di.ection of order. ρ of divergence type.
$\mathrm{P}_{\text {roof }}$. Wè choose

$$
\Delta_{1}:\left|\arg _{\chi}\right| \leqq \alpha_{1} \quad\left(\alpha<\alpha_{1}<\alpha_{0}\right)
$$

such that $\rho>k_{1}=\pi /\left|\Delta_{1}\right|$.
By $z^{k 1}=x$, we map Δ_{1} on $\Re(x) \geqq 0$, then Δ is mapped on $\omega:|\arg x| \leqq \beta$ $<\pi / 2$. We put $\nu(z)=w_{1}(x),|z|=r,|x|=R\left(=r^{k 1}\right)$,

$$
\left(\tau_{\nu}(a, \Delta)\right)^{k 1}=x_{\nu}(a, \omega)=R_{\nu} e^{i \varphi_{\nu}}, \quad\left(\left|\varphi_{\nu}\right| \leqq \beta\right)
$$

so that

$$
\Re\left(1 / x_{\nu}(a, \omega)^{\prime},=\cos \varphi_{\nu} / R_{\nu} \geqq \cos \beta / R_{\nu}=\cos \beta /\left|Z_{\nu}^{\nu}(a, \Delta)\right|^{k_{1}}\right.
$$

Hence $\sum_{\nu}\left(\Re\left(1 / x_{\nu}(a, \omega)\right)\right)^{\rho} k_{1}=\infty$, a fortiori, $\sum_{\nu}\left(\Re\left(1 / x_{\nu}(a)\right)\right)^{k_{1}}=\infty$, where $x_{\nu}(a)$ are zero points of $w_{1}(z)-a$ in $\Re(x)>0$.

Let $T_{1}(R), N_{1}(R, a)$ be the functions defined in $\S 5$ for $\nu_{1}(x)$, then since $\rho^{\prime} k_{1}>1$, we have by Theorem 7,

$$
\begin{equation*}
\int^{\infty}-\frac{S_{1}(\mathrm{R})}{\mathrm{R}^{\rho} k_{1}+1} d \mathrm{R}=\infty . \tag{1}
\end{equation*}
$$

If $S\left(r, \Delta_{1}\right)$ is defined as in $\S 2$, then $S_{1}(R) \leqq S\left(r, \Delta_{1}\right)\left(R=r^{k 1}\right)$, so that from (1),

$$
\int^{\infty} \frac{S\left(r, \Delta_{1}\right)}{r^{\rho+1}} d r=\infty
$$

Since $T\left(? r, \Delta_{1}\right) \geqq S\left(r, \Delta_{1}\right) \log 2$, we have

$$
\begin{equation*}
\int^{\infty} \frac{T\left(r, \Delta_{1}\right)}{r^{\rho+1}} d r=\infty \tag{2}
\end{equation*}
$$

Hence by Theorem 2,

$$
\int^{\infty} \frac{N\left(r, a ; \Delta_{0}\right)}{r^{\rho+1}} d r=\infty, \text { or } \sum_{\nu}\left|z_{\nu}\left(a, \Delta_{0}\right)\right|^{-\rho}=\infty,
$$

with two possible exceptions. From (2) we conclude as Theorem 3 that Δ_{0} connains a Borel's direction of order ρ of divergence type.

Theorem 13 (Nevanlinna-Valiron). Let $w(z)$ be regular in $\Delta_{0}:|\arg 凤| \leqq \alpha_{0}$ and $\Delta:\left|\arg _{z}\right| \leqq \alpha<\alpha_{0}$ be an angular domain contained in Δ_{0}. If for some $\rho>\pi /\left|\Delta_{0}\right|(\geqq 1 / 2)$

$$
\int^{\infty} \frac{\log ^{+} M(r, \Delta)}{r^{\rho+1}} d r=\infty,
$$

then

$$
\sum_{\nu} 1 /\left|z^{v}\left(a, \Delta_{0}\right)\right|^{p}=\infty
$$

for any a, with two possible exceptions ${ }^{6}$ and Δ_{0} contains a Borl's direction of order ρ of divergence type ${ }^{7}$.

Proof. Let $\Delta_{1}:\left|\arg _{\chi}\right| \leqq \alpha_{1}\left(\alpha<\alpha_{1}<\alpha_{0}\right)$ be so chosen that $\rho>k_{1}=\pi /\left|\Delta_{1}\right|$ and by $z^{k 1}=x$, we map Δ_{1} on $\Re x \geqq 0$, then Δ is mapped on $\omega:|\arg x| \leqq \beta$ $<\pi / 2$. We put $w(z)=w_{1}(x)$, then

$$
M_{1}(R, \omega)=\operatorname{Max}_{\theta \leqq \beta}\left|w_{1}\left(\mathrm{Re}^{i}\right)\right|=M(r, \Delta) \quad\left(\mathrm{R}=r^{k 1}\right)
$$

so that

$$
\begin{equation*}
\int^{\infty} \frac{\log ^{+} M_{1}(R, \omega)}{R^{\rho} k_{1}+1} d R=k_{1} \int^{\infty} \frac{\log ^{+} M(r, \Delta)}{r^{\rho+1}} d r=\infty . \tag{1}
\end{equation*}
$$

Let $T_{1}(R)$ be the characteristic function of $w_{1}(x)$ defined in $\S 5$, then by Theorem 8

$$
\log +M_{1}(\mathrm{R}, \omega) \leqq A R\left(T_{1}(\lambda R)+O(1)\right),(\lambda>1)
$$

so that from (1),

$$
\int^{\infty} \frac{T_{1}(R)}{R^{\rho / k_{1}}} d R=\infty, \text { hence } \int^{\infty} \frac{S_{1}(\mathrm{R})}{R^{\rho}(\mathrm{k}+1} \mathrm{l} .
$$

From this we proceed similarly as Thorem 12 and have the theorem.

Mathematical Institute, Tokyo University.

[^2]
[^0]:) L. Ahlfors: Zur Theorie der Überlagelungsflächen, Acta Miath., 65 (1935).

[^1]: 3) G. Valiron: Sur les diréctions de Borel des fonctions méromorphes d'ordre nul, Bul. Sci. Math. 39 (1935).
[^2]: 6) R. Nevanlima: Untersuchungen über Picard’schen Satz. Acta Soc. Sci. Fenn. 50 (1924).
 7) G. Valiron. 1. c. (7)
