ON BOREL'S DIRECTIONS OF MEROMORPHIC FUNCTIONS OF FINITE ORDER*)

By

Masatsugu Tsuji

Contents

1. Introduction. 2. Main theorems. 3. Existence of Borel's directions. 4. Borel's directions of meromorphic functions of zero order. 5. Meromorphic functions in a half-plane. 6. Theorems of Valiron and Nevanlinna.

1. Introduction.

Let w(z) be meromorphic for $|z| < \infty$ and

$$T(r) = \int_0^r \frac{S(r)}{r} dr,$$

where

$$S(r) = \frac{1}{\pi} \int_{0}^{r} \int_{0}^{2\pi} \left(\frac{|w'(te^{i\theta})|}{1 + |w(te^{i\theta})|^{2}} \right)^{2} t \, dt \, d\theta \tag{1}$$

be its Nevanlinna's characteristic function and

$$\lim_{r \to \infty} \log T(r) / \log r = \rho$$
 (2)

be its order. If $\rho < \infty$, then by Borel's theorem, for any $\varepsilon > 0$,

$$\sum_{
u} 1/|\chi_{
u}\left(a
ight)|^{
ho+arepsilon}<\infty$$

for any *a* and if $0 < \rho < \infty$,

$$\sum_{\nu} 1/[z,(a)]^{\rho-\varepsilon} = \infty$$

for any a, with two possible exceptions, where $\chi_{\nu}(a)$ are zero points of $w(\chi) - a$.

Varilon¹⁾ proved that there exists a direction J, which is called a Borel's direction, such that

$$\sum_{\nu} 1 \, / \, |_{\mathfrak{T}_{\nu}} \, (a, \Delta)|^{\rho - \varepsilon} = \infty \,,$$

^{*)} Received October 1, 1949.

¹⁾ G. Valiron: Recherches sur le théorème de M. Borel dans la théorie des fonctions méromorphes. Acta Math. 52 (1928).

for any *a*, with two possible exceptions, where Δ is any angular domain, which contains *I* and $\gamma_{\nu}(a, \Delta)$ are zero points of $w(\gamma) - a$ in Δ .

In §3, we will prove this Valiron's theorem simply by means of Theorem 2 of §2. In §5, we consider meromorphic functions in a half-plane $\Re \chi \ge 0$ and establish theorems, which are analogous to Nevanlinna's fundamental theorems for meromorphic functions for $|\chi| < R$ ($\le \infty$) and by means of which we prove theorems of Valiron and Nevanlinna in § 6.

2. Main theorems.

THEOREM 1. Let w = w(z) be meromorphic in |z| < 1 and the number of zero points of $(w(z) - a_1)$ $(w(z) - a_2)$ $(w(z) - a_2)$ in |z| < 1 be $\leq n$, where multiple zeros are counted only once, then

$$S(r) \leq n + A/(1-r), (0 \leq r < 1),$$

where A is a constant, which depends on a_1 , a_2 , a_3 only.

PROOF. Let $\chi_1, \dots, \chi_{\nu}$ $(\nu \leq n)$ be zero points of $\prod_{i=1}^{3} (w(\chi) - a_i)$ in $|\chi| < 1$ and ff these points from $|\chi| < 1$ and D_0 be the remaining domain and the part of D_0 , which lies in $|\chi| \leq r$ (<1). Let F_r be the Riemann read upon the *w*-sphere, which is generated by $w = w(\chi)$, when χ $D_0(r)$, then F_r is a covering surface of the basic domain F_0 , which is from the *w*-sphere by taking off three points a_1, a_2, a_3 . Let $\rho(r)$ be s characteristic of F_r , then by Ahlfors' fundamental theorem on surfaces,²

$${}^{+}_{\rho}(r) \ge S(r) - hL(r), \qquad {}^{+}_{\rho}(r) = \text{Max.} (\rho(r), 0), \qquad (1)$$

$$L(r) = \int_{0}^{2\pi} \frac{|w'(re^{i\theta})|}{1+|w(re^{i\theta})|^2} r \, d\theta \qquad (2)$$

 ι constant, which depends on a_1 , a_2 , a_3 only. hwarz's inequality, we have

$$[L(r)]^2 \leq 2\pi^2 r \frac{dS(r)}{dr}.$$
(3)

the hypothesis, $\stackrel{+}{\rho}(r) \leq n$, we have by (1),

$$S(r) - n \le hL(r),$$
 (0 \le r < 1). (4)

ence if S(r') - n > 0 for all r' $(r \le r' < 1)$, then by (3), (4), $1 - r < \int_{r}^{1} \frac{1}{r'} dr' 2\pi^{2} h^{2} \int_{r}^{1} \frac{1}{(S(r') - n)^{2}} dS(r') \le 2\pi^{2} h^{2} / (S(r) - n)$, or

⁾ L. Ahlfors: Zur Theorie der Überlagelungsflächen, Acta Math., 65 (1935).

$$S(r) \leq n + 2\pi^2 h^2 / (1-r).$$
 (5)

If $S(r') - n \leq 0$ for some $r'(r \leq r' < 1)$, then $S(r) \leq S(r) \leq n$, so that (5) holds. Hence (5) holds for $0 \leq r < 1$, which proves the theorem.

Let w(z) be meromorphic in an angular domain $\Delta: |\arg z| \leq \alpha$ and put

$$S(r;\Delta) = \frac{1}{\pi} \int_{1}^{r} \int_{-\alpha}^{\alpha} \left(\frac{|w'(te^{i\theta})|}{1+|w(te^{i\theta})|^2} \right)^2 t dt d\theta,$$

$$T(r;\Delta) = \int_{1}^{r} \frac{S(t;\Delta)}{t} dt,$$

$$N(r,a;\Delta) = \int_{1}^{r} \frac{n(t,a;\Delta)}{t} dt,$$
(1)

where $n(r, a; \Delta)$ is the number of zero points of w(z) - a in a sector: $|\arg z| \leq \alpha, 0 \leq |z| \leq r$, where multiple zeros are counted only once.

THEOREM 2. Let w(z) be meromorphic in an angular domain $\Delta_0: |\arg z| \leq \alpha_0$ and $\Delta: |\arg z| \leq \alpha < \alpha_0$ be an angular domain contained in Δ_0 . Then for any $\lambda > 1$

$$T(r; \Delta) \leq 3 \sum_{i=1}^{3} N(\lambda r, a ; \Delta_{i}) + \mathcal{A}(\log^{2},$$

where A is a constant, which depends on a_1 , a_2 , a_3 , α , α_0 , λ only.

PROOF. We put $k = \lambda^{1/3} > 1$ and for r > 1, let

$$N = [\log r / \log k], \qquad k^{N} \le r < k^{N+1}, \qquad (2)$$

so that

$$k^{N+3} = \lambda k^N \leq \lambda r. \tag{3}$$

Let Q_{ν}^{0} , Q_{ν} be curvilinear quadrilaterals:

$$\begin{aligned} Q_{\nu}^{0} &: |\arg \chi| \leq \alpha_{\nu}, \ k^{\nu-2} \leq |\chi| \leq k^{\nu+1}, \\ Q_{\nu} &: |\arg \chi| \leq \alpha, \ k^{\nu-1} \leq |\chi| \leq k^{\nu}, \\ S_{\nu} &= \frac{1}{\pi} \int_{Q^{\nu}} \int \left(\frac{w'(te^{i\theta})}{1+|w'(te^{i\theta})|^{2}} \right)^{2} t \, dt \, d\theta \end{aligned}$$

$$(4)$$

and n_{ν}^{0} be the number of zero points of $\prod_{i=1}^{3} (w(\chi) - a_{i})$ in Q_{ν}^{0} . If we map Q_{1}^{0} on $|\zeta| < 1$ conformally, such that the center of Q_{1}^{0} becomes $\zeta = 0$, then Q_{1} is mapped on a domain, which lies in $|\zeta| \leq \rho < 1$.

Since Q_{ν}^{0} is similar to Q_{1}^{0} , we have by Theorem 1,

$$S_{\nu} \leq n_{\nu}^{0} + A, \qquad (5)$$

where A is a constant, which depends on a_1 , a_2 , a_3 , α , α_0 , λ only.

In the following, we denote such constants by the same letter A. We put

$$n(r; \Delta_0) = \sum_{i=1}^{3} n(r, a_i; \Delta_0).$$
 (6)

Since Q^0_{ν} overlap only twice,

$$\int_{k^{\nu-1}}^{k^{\nu}} \frac{S(t;\Delta)}{t} \leq S(k^{\nu};\Delta) \log k = (S_1 + \dots + S_{\nu}) \log k$$
$$\leq (n_0^1 + \dots + n_{\nu}^0) \log k + A\nu \leq 3n (k^{\nu+1};\Delta_0) \log k + A\nu,$$

so that

$$\int_{1}^{r} \frac{S(t;\Delta)}{t} dt \leq \int_{1}^{k^{N+1}} \frac{S(t;\Delta)}{t} dt = \sum_{\nu=1}^{N+1} \int_{k^{\nu-1}}^{k^{\nu}} \frac{S(t;\Delta)}{t} dt$$
$$\leq 3 (n(k^{1};\Delta_{0}) + \dots + n(k^{N+2};\Delta_{0})) \log k + AN^{2}.$$
(7)

Since

$$\int_{k^{\nu}}^{k^{\nu+1}} \frac{n(t;\Delta_0)}{t} dt \ge n(k^{\nu};\Delta_0) \log k,$$

we have from (7), (3),

$$T(r;\Delta) = \int_{1}^{r} \frac{S(t;\Delta)}{t} dt \leq 3 \int_{1}^{k^{N+3}} \frac{n(t;\Delta_{0})}{t} dt + AN^{2}$$
$$\leq 3 \int_{1}^{\lambda r} \frac{n(t;\Delta_{0})}{t} dt + A(\log r)^{2} = 3 \sum_{i=1}^{3} N(\lambda r, a_{i};\Delta_{0}) + A(\log r)^{2}.$$

3. Existence of Borel's directions.

1. Now we will prove Valiron's theorem :

THEOREM 3. Let w(z) be a meromorphic function of finite order $\rho > 0$, then there exists a direction J: $\arg z = \alpha$, such that for any $\varepsilon > 0$.

(i)
$$\sum_{\nu} i / |z_{\nu}(a; \Delta)|^{\rho-\varepsilon} = \infty$$

for any a, with two possible exceptions, and if

$$\int^{\infty} \frac{T(r)}{r^{p+1}} dr = \infty$$

then

BOREL'S DIRECTIÓN

(ii)
$$\sum_{\nu} 1/|\chi_{\nu}(a,\Delta)|^{\rho} = \infty$$

for any a, with two possible exceptions, where Δ is any angular domain, which contains J, and $z_{\nu}(a, \Delta)$ are zero points of w(z) - a in Δ , multiple zeros heing counted only once.

PROOF. Suppose that for some k > 0,

$$\int^{\infty} \frac{T}{r^{k+1}} dr = \infty.$$
 (1)

Then dividing $(0, 2\pi)$ into 2^n equal parts, we see that there exists an angular domain Δ_n of magnitude $2\pi/2^n$, such that $\Delta_1 \supset \Delta_2 \supset \cdots \supset \Delta_n \cdots$,

$$\int_{-\infty}^{\infty} \frac{T(r; \Delta_n)}{r^{k+1}} dr = \infty, \qquad (n=1, 2, \cdots). \qquad (2)$$

Let Δ_n converge to a direction $J: \arg z = \alpha$, then for any angular domain $\Delta: |\arg z - \alpha| \leq \delta$, which contains $J, \Delta_n \subset \Delta$ for $n \geq n_0$, so that

$$\int^{\infty} \frac{T(r;\Delta)}{r^{k+1}} dr = \infty.$$
(3)

Let Δ_{j} : $|\arg_{\mathcal{I}} - \alpha| \leq 2\delta$, then by Theorem 2,

$$\int_{1}^{r} \frac{T(r;\Delta)}{r^{k+1}} dr \leq 3 \sum_{i=1}^{3} \int_{1}^{r} \frac{N(\lambda r, a_{i};\Delta)}{r^{k+1}} dr + O(1) \qquad (\lambda > 1),$$

so that from (3),

$$\int_{-\infty}^{\infty} \frac{N(r,a;\Delta_0)}{r^{k+1}} dr = \infty, \quad \text{or} \quad \sum_{\nu} 1/|\chi_{\nu}(a,\Delta_0)|^k = \infty$$

for any *a*, with two possible exceptions.

Since $\int_{-\infty}^{\infty} \frac{T(r)}{r^{\rho-\varepsilon+1}} dr = \infty$, if we take $k = \rho - \varepsilon$, then we have (i) and for $k = \rho$, we have (ii). q. e. d.

2. Theorem 3 can be extended as follows.

THEOREM 4. Let C: z = z(t) $(0 \le t < \infty)$ $(z(0) = 0, z(\infty) = \infty)$ be a simple curve, which connects z = 0 to $z = \infty$ and for any $\delta > 0$, let $\Delta(\delta)$ be the set of points, which is covered by all discs: $|z - z(t)| \le |z(t)| \delta$ $(0 \le t < \infty)$ and $\Delta_{\theta}(\delta)$ be the set obtained from $\Delta(\delta)$ by rotating an angle θ . Let w = w(z) be a meromorphic function of finite order $\rho > 0$ for $|z| < \infty$. Then there exists a certain θ_{0} , such that for any $\delta > 0$, $\varepsilon > 0$,

M. TSUJI

(i)
$$\sum_{\nu} 1/|z, (a; \Delta_{\theta_0}(\delta))|^{\rho-\varepsilon} = \infty$$
, for any a , with two possible exceptions and if $w(z)$ is of order ρ of divergence type, then

(ii) $\sum_{\nu} 1/|\chi_{\nu}(a; \Delta_{\theta_0}(\delta))|^{\rho} = \infty$, for any a, with two possible exceptions, where $\chi_{\nu}(a; \Delta_{\theta_0}(\delta))$ are zero points of w(z) - a in $\Delta_{\theta_0}(\delta)$.

First we prove a lemma.

LEMMA. Let E be a closed set contained in $|z| \leq 1$ and $0 < \rho < 1$. Then we can cover E by N circles C_i (i = 1, 2, ..., N) of radius ρ with its center ($z_i \in E$), such that $N \leq 16\pi/(\sqrt{3} \rho^2)$ and circles C_i^0 (i = 1, 2, ..., N) of radius 2ρ with center z_i overlap at most 54-times.

PROOF. We cover the χ -plane by a net of regular triangles, whose vertices are $\chi_{mn} = m\rho e^{\pi i/3} + n\rho$ (m, $n = 0, \pm 1, \pm 2, \cdots$). Let $\Delta_1, \Delta_2, \cdots, \Delta_N$ be the triangles, which contain points of E, then since Δ_i is contained in $|\chi| \leq 1 + \rho$ and the area of Δ_i is $\sqrt{3} \rho^2/4$ and $0 < \rho < 1$,

$$N \leq \pi \left(1 + \rho\right)^2 / \frac{\sqrt{3}\rho^2}{4} = \frac{4\pi}{\sqrt{3}} \left(1 + \frac{1}{\rho}\right)^2 \leq \frac{4\pi}{\sqrt{3}} \left(\frac{1}{\rho} + \frac{1}{\rho}\right)^2 = \frac{16\pi}{\sqrt{3}\rho^2}$$

We take a point χ_i (εE) in Δ_i and draw a circle C_i of radius ρ with χ_i as its center, then C_i contains Δ_i , so that C_1, \dots, C_N cover E. Let C_i^0 be a circle of radius 2ρ with χ_i as its center, then it is easily seen that C_i^0 overlap at most 54-times.

PROOF OF THEOREM 4. Let k > 1 and $\Delta_{\nu}(\delta)$ be the part of $\Delta(\delta)$ contained in $k^{\nu-1} \leq |\zeta| \leq k^{\nu}$ ($\nu = 0, 1, 2, \cdots$) and $\Delta_{\nu}^{0}(3\delta)$ be the part of $\Delta(3\delta)$ contained in $k^{\nu-2} \leq |\zeta| \leq k^{\nu+1}$, so that $\Delta_{\nu}(\delta) \subset \Delta_{\nu}^{0}(3\delta)$. By transforming $\Delta_{\nu}(\delta)$ into a closed set in $|\zeta| \leq 1$ by $\zeta = \frac{\chi}{k^{\nu}}$ and applying the lemma, with $\rho = \frac{\delta}{k}$, we see easily that $\Delta_{\nu}(\delta)$ can be covered by N circles $C_{\nu}^{(i)}$ ($i = 1, 2, \cdots, N$) of radius $k^{\nu-1} \delta$ and center $\chi_{\nu}^{(i)}$ ($\epsilon \Delta_{\nu}(\delta)$), such that

$$N \leq \frac{16\pi}{\sqrt{3}} \frac{k^2}{\delta^2}$$

and circles $C_{\nu}^{\nu(i)}$ of radius $2k^{\nu-1}\delta$ with center $\chi_{\nu}^{(i)}$ overlap at most 54-times.

Let a_1 , a_2 , a_3 be any three values and S_{ν} , $S_{\nu}^{(i)}$ be the area on the *w*-sphere generated by w = w(z), when z varies in $\Delta_{\nu}(\delta)$, C_{ν}^{i} and n_{ν}^{0} , $n_{\nu}^{0(i)}$ be the number of zero points of $\prod_{i=1}^{3} (w(z) - a_i)$ in $\Delta_{\nu}(3\delta)$, $C_{\nu}^{0(i)}$ respectively, then by Theorem 1,

$$S_{\nu}^{(i)} \leq n_{\nu}^{0(i)} + A,$$

where A depends on a_1 , a_2 , a_3 , k, δ only.

Since $C_{\nu}^{0(i)}$ is contained in Δ_{ν} (38) and overlap at most 54-times and $S_{\nu} \leq \sum_{i=1}^{N} S_{\nu}^{(i)}$, we have

$$S_{\nu} \leq 54n_{\nu}^{\circ} + NA.$$

From this we have the similar theorem as Theorem 2, where $\Delta = \Delta(\delta)$, $\Delta_0 = \Delta(3\delta)$ and from this we can prove Therem 4 as Theorem 3.

REMARK. From (3) in the proof of Theorem 3, we see that there exists $r_1 < r_2 < \cdots < r_n \to \infty$, such that

$$\lim_{n\to\infty} S(r_n;\Delta)/\log r_n = \infty.$$
(4)

Let

$$N = [\log r_n / \log k], \quad k^N \leq r < k^{N+1},$$

then from (4), there exists a certain curvilinear quadrilateral $\mathcal{Q}_{n} |\arg_{\mathcal{Z}} - \alpha| \leq \delta$, $k^{\nu_{n}-1} \leq |\chi| \leq k^{\nu_{n}} (\nu_{n} \leq N)$, such that

$$S_n = \frac{1}{\pi} \iint_{Q_n} \left(\frac{|w'(te^{ig})|}{1+|w(te^{ig})|^2} \right)^2 t dt d\theta \to \infty \quad (n \to \infty).$$

Let \mathcal{Q}_n° : $|\arg \chi - \alpha| \leq 2\delta$, $k^{\nu_n - 2} \leq |\chi| \leq k^{\nu_n + 1}$. We map \mathcal{Q}_n° conformally on $|\zeta| < 1$ by $w = w(\zeta)$, such that the center of \mathcal{Q}_n becomes $\zeta = 0$, then the image of \mathcal{Q}_n lies in $|\zeta| \leq \eta < 1$, where η depends on k, δ only. We put $w(\chi) = v(\zeta)$ and put

$$S(r) = \frac{1}{\pi} \int_{0}^{r} \int_{0}^{2\pi} \left(\frac{|v'(te^{i\theta})|}{1+|v(te^{i\theta})|^2} \right)^2 t dt d\theta \qquad (0 \le r \le 1),$$

$$L(r) = \int_{0}^{2\pi} \frac{|v'(re^{i\theta})|}{1+|v(re^{i\theta})|^2} r d\theta,$$

then $S_n \leq S(\eta)$ and

$$(L(r))^{2} \leq 2\pi^{2} r \frac{dS(r)}{dr}.$$

Suppose that

$$L(r) \geq (S(r))^{3/4}$$
 for $\eta \leq r \leq 1$,

then

$$(S(r))^{3/2} \leq 2\pi^2 r \frac{dS(r)}{dr},$$

$$1 - \eta \leq \int_{\eta}^{1} \frac{dr}{r} \leq 2\pi^2 \int_{\eta}^{1} \frac{dS(r)}{(S(r))^{3/2}} \leq \frac{4\pi^2}{S(\eta)^{1/2}}, \text{ or}$$

$$S_n \leq S(\eta) \leq \left(\frac{4\pi^2}{1-\eta}\right)^2.$$

Hence if $S_n > \left(\frac{4\pi^2}{1-\eta}\right)^2$, then there exists a certain r_n ($\eta \leq r_n \leq 1$), such that $L(r_n) < (S(r_n))^{3/4}$, or

$$L(r_n) / S(r_n) < 1 / S(r_n)^{1/4} \leq 1 / S_n^{1/4} \rightarrow 0 \quad (n \rightarrow \infty).$$

From this we conclude by Ahlfors' theorem on covering surfaces, the following theorem:

Let J: $\arg z = \alpha$ be a Borel's direction, then for any $\delta > 0$, the image of Δ ; $|\arg z - \alpha| \leq \delta$ by w = w(z) on the w-shere covers schlicht infinitely often one of any five disjoint simply connected domains on the w-sphere.

4. Borel's directions of meromorphic functions of zero order.

We consider meromorphic functions of zero order, such that

$$\lim_{r\to\infty} \log T(r) / \log r = 0, \qquad \lim_{r\to\infty} T(r) / (\log r)^2 = \infty.$$

First we will prove a lemma.

LEMMA. Let
$$T(r) > 0$$
 be an increasing function, such that

$$\lim_{r\to\infty} \log T(r) / \log r = 0, \qquad \lim_{r\to\infty} T(r) / (\log r)^2 = \infty,$$

then for any $\lambda > 1$, k > 1, there exists $r_1 < r_2 \cdots < r_n \rightarrow \infty$, such that

$$\lim_{n\to\infty} T(r_n)/(\log r_n)^2 = \infty, \ T(\lambda r_n) \leq kT(r_n) \ (n = 1, 2, \cdots).$$

PROOF. First we will prove that for any M > 0, there exists $\nu_1 < \nu_2 < \cdots < \nu_n \to \infty$, such that

$$T(\lambda^{\nu}) \ge M(\log \lambda^{\nu})^2 \tag{1}$$

holds for $\nu = \nu_n$ (n = 1, 2,).

For, if for $\nu \ge \nu_0$, $T(\lambda^{\nu}) < M(\log \lambda^{\nu})^2$, then for $\lambda^{\nu} \le r < \lambda^{\nu+1}$, $T(r) \le T(\lambda^{\nu+1}) < M(\log \lambda^{\nu+1})^2 = M((\nu+1)/\nu)^2 (\log \lambda^{\nu})^2 \le M((\nu+1)/\nu)^2 (\log r)^2$, so that

$$\lim_{r\to\infty} T(r) / (\log r)^2 \leq M < \infty,$$

which contradicts the hypothesis, hence (1) holds for an infinite number of ν .

Next we will prove that there exists an infinite number of ν , for which (1) and

$$T(\lambda^{\nu+1}) \leq kT(\lambda^{\nu}) \tag{2}$$

hold simultaneously.

For, suppose that for all $\nu \ge \nu_0$, for which (1) holds,

$$T(\lambda^{\nu+1}) > kT(\lambda^{\nu}), \tag{3}$$

then since k > 1,

$$T (\lambda^{\nu+1}) > k T (\lambda^{\nu}) \ge k M (\log \lambda^{\nu})^2 = k M (\nu/(\nu+1))^2 (\log \lambda^{\nu+1})^2$$
$$\ge M (\log \lambda^{\nu+1})^2, \qquad (\nu \ge 1/(\sqrt{k} - 1)),$$

so that $\lambda^{\nu+1}$ satisfies (1), hence by the hypothesis,

 $T(\lambda^{\nu+2}) > kT(\lambda^{\nu+1}).$

Hence (3) holds for all sufficiently large ν , so that

$$\lim_{r \to \infty} \log T(r) / \log r \ge \log k / \log \lambda > 0,$$

which contradicts the hypothesis, hence there exists an infinite number of ν , which satisfy (1) and (2) simultaneously. If we take $M_1 < M_2 < \cdots < M_n \rightarrow \infty$ for M, then we have the lemma.

THEOREM 5³). Let w(z) be a meromorphic function of order zero, such that

$$\lim_{r\to\infty} T(r)/(\log r)^2 = \infty,$$

then there exists a direction $J: \arg z = \alpha$, such that for any angular domain $\Delta: |\arg z - \alpha| \leq \delta$, which contains J,

$$\overline{\lim_{n\to\infty}} N(r_n, a; \Delta)/T(r_n) \geq |\Delta|/(72\pi), \qquad (|\Delta| = 2\delta)$$

for any a, with two possible exceptions, where the sequence $\{r_n\}$ is independent of a and Δ , such that

$$\lim_{n\to\infty} T(r_n)/(\log r_n)^2 = \infty.$$

PROOF. By the lemma, for any $\lambda > 1$, k > 1, there exists $\{r_n\}$, such that

$$\lim_{n\to\infty} T(r_n) (\log r_n)^2 = \infty, \ T(\lambda r_n) \leq k T(r_n), \ (n = 1, 2, \cdots).$$
(1)

³⁾ G. Valiron: Sur les directions de Borel des fonctions méromorphes d'ordre nul, Bul. Sci. Math. **39 (1935)**.

By dividing $(0, 2\pi)$ into 2^m equal parts, we see that there exists an angular domain Δ_m of magnitude $2\pi/2^m$, such that $\Delta_1 \supset \Delta_3 \supset \cdots \supset \Delta_m \supset \cdots$,

$$T(r_n; \Delta_m) \ge T(r_n)/2^m \tag{2}$$

holds for an infinite number of n.

Let Δ_m converge to a direction J: $\arg z = \alpha$ and Δ : $|\arg z - \alpha| \leq \delta (1 - \epsilon)$ ($\epsilon > 0$) be any angular domain, which contains J.

Let *m* be such that $2\pi/2^m \leq \delta(1-\epsilon) < 2\pi/2^{m-1}$, then $\Delta \supset \Delta_m$, so that by (2), (1),

$$T(r_n; \Delta) \ge T(r_n; \Delta_m) \ge 2^{-m} T(r_n) \ge k^{-1} 2^{-m} T(\lambda r_n)$$
(3)

holds for an infinite number of n.

Let Δ_0 : $|\arg_{\mathcal{X}} - \alpha| \leq \delta$, then

$$|\Delta_0| = 2\delta < 8\pi/(2^m (1-\varepsilon)). \tag{4}$$

We apply Theorem 2 for Δ_0 , Δ and r_n , then

$$T(\lambda r_n)' k^{2m} \leq T(r_n; \Delta) \leq 3 \sum_{i=1}^{n} N(\lambda r_n, a_i; \Delta_0) + \mathcal{A}(\log r_n)^2$$

hence by (1), (4),

$$|\Delta_0| (1-\varepsilon)/(24k\pi) \leq \sum_{i=1}^{3} \lim_{n \to \infty} N(\lambda r_n, a_i; \Delta_0) T(\lambda r_n).$$

If we make $\varepsilon \to 0$, $k \to 1$, we have

$$|\Delta_{\Lambda}|/(24\pi) \leq \sum_{i=1}^{3} \lim_{n \to \infty} N(\lambda r_{n}, a_{i}; \Delta_{0})/T(\lambda r_{n}).$$

Hence

$$\lim_{n\to\infty} N(\lambda r_n, a; \Delta_j)/(T \lambda r_n) \geq |\Delta_0|/(72\pi),$$

with two possible exceptions. If we write r_n , Δ instead of λr_n , Δ_0 , then we have the theorem.

5. Meromorphic functions in a half-plane.

1. FIRST FUNDAMENTAL THEOREM.

Let $w(\chi)$ be meromorphic in $\Re \chi \ge 0$ and let $\chi = \rho e^{i\theta}$ ($|\theta| \le \pi/2$),

$$\zeta = -1/\chi = \sigma + it, \qquad (1)$$

$$\sigma = -\cos\theta/\rho, \quad t = \sin\theta/\rho,$$

then the niveau curve $\Re(1/z) = \text{const.} = 1/r$, or

$$\sigma = \text{const.} = -1/r \quad (r > 0) \tag{2}$$

is a circle: $r \cos \theta = \rho$, whose diameter is r and which touches the imaginary

axis at the origin and the niveau curve

$$t = \text{const.} = 1/t_0 \tag{3}$$

is a circle, whose diameter is $|t_0|$ and which touches the real axis at the origin. Hence to a rectangle Q_{σ} on the ζ -plane, which is bounded by four lines: $t = \pm \pi$. $\sigma = \sigma_0 = -1/r_0$, $\sigma = -1/r(r > r_0)$, there corresponds on the ζ -plane a domain Δ_r , which is bounded by four circles.

We put $w(z) = w(\zeta)$ and let $n(\sigma, a)$ be the number of zero points of $w(\zeta) - a$ in Q_{σ} and

$$\mathfrak{m}(\sigma,a) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \frac{1}{[\mathfrak{w}(\sigma+it),a]} dt, \qquad (4)$$

$$\Re(\sigma, a) = \int_{\sigma_0}^{\sigma} \mathfrak{n}(\sigma, a) \, d\sigma, \qquad (5)$$

where

 $[a,b] = |a-b|/[((1+|a|^2)(1+|b^2|))]^{\frac{1}{2}}.$ (6)

Since $w(\chi)$ is meromorphic on three circles, which correspond to three lines; $\sigma = \sigma_0, t = \pm \pi$, we have by the argument princ ple, if $w(\zeta) \neq a, \neq b$ on $\Re \zeta = \sigma$,

$$\frac{\partial \mathfrak{m}(\sigma, a)}{\partial \sigma} - \frac{\partial \mathfrak{m}(\sigma, b)}{\partial \sigma} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\partial}{\partial \sigma} \log \left| \frac{\mathfrak{w} - b}{\mathfrak{w} - a} \right| dt$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} d \arg \left(\frac{\mathfrak{w} - b}{\mathfrak{w} - a} \right) = \mathfrak{n}(\sigma, b) - \mathfrak{n}(\sigma, a) + O(\mathfrak{l}),$$

so that

$$\mathfrak{m}(\sigma, a) + \mathfrak{N}(\sigma, a) = \mathfrak{m}(\sigma, b) + \mathfrak{N}(\sigma, b) + O(1).$$
(7)

Returning to the z-plane, if we write

$$\mathfrak{m}(\sigma, a) = \mathfrak{m}(r, a), \ \mathfrak{n}(\sigma, a) = \mathfrak{n}(r, a), \ \mathfrak{N}(\sigma, a) = N(r, a),$$

then we have easily

$$m(r,a) = \frac{1}{2\pi r} \int_{-\tan^{-1}\pi r}^{\tan^{-1}\pi r} \log\left(1/[w(\chi),a]\right) \sec^2\theta \ d\theta, \qquad (8)$$

$$N(r, a) = \int_{r_0}^{r} \frac{n(r, a)}{r^2} dr,$$
 (9)

where the right hand side of (8) is integrated on a circle $\Re(1/z) = 1/r$ and n(r, a) is the number of zero points of w(z) - a in Δ_r . If we put

$$T(r, a) = m(r, a) + N(r, a),$$
 (10)

then (7) becomes

$$T(r, a) = T(r, b) + O(1).$$
 (11)

From this we have easily the following

THEOREM 6. (First fundamental theorem).

$$T(r, a) = T(r) + O(1),$$

where

$$T(r) = \int_{r_0}^{r} \frac{S(r)}{r^2} dr,$$
$$S(r) = \frac{1}{\pi} \int_{\Delta} \int \left(\frac{|w'(\rho e^{i\theta})|}{1 + |w'(\rho e^{i\theta})|^2} \right)^2 \rho \, d\rho \, d\theta.$$

Hence T(r) is an increasing convex function of $\sigma = -1/r$. We call T(r) the characteristic function of w(z) for $\Re_{z} \ge 0$.

2. It can easily be proved:

THEOREM 7.
$$\int_{0}^{\infty} \frac{T(r)}{r^{\lambda+1}} dr$$
 and $\int_{0}^{\infty} \frac{S(r)}{r^{\lambda+2}} dr$ ($\lambda > 0$) converge simultaneously and

$$\int_{-\infty}^{\infty} \frac{N(r,a)}{r^{\lambda+1}} dr, \quad \int_{-\infty}^{\infty} \frac{n(r,a)}{r^{\lambda+2}} dr, \quad \sum_{\nu} \left[\Re \left(1/\chi_{\nu}(a) \right) \right]^{\lambda+1} \quad (\lambda > 0)$$

converge simultaneouly, where $z_v(a)$ are zero points of w(z) - a.

THEOREM 8. Let w(z) be regular for $\Re z \ge 0$ and $\Delta : |\arg z| \le \alpha < \pi/2$,

$$M(r; \Delta) = \max_{\substack{|\theta| \leq \alpha}} |w(re^{i\theta})|,$$

the n

$$\log M(r; \Delta) \leq Ar (T (\lambda r) + O(1)),$$

whe re

 $\mathcal{A}=2\ (1+\sin\alpha)/\{\cos\alpha\ (1+\sin\alpha)\},\qquad \lambda=2/\cos\alpha.$

PROOF. Let $M(r, \Delta) = \underset{\substack{|\theta| \leq \alpha \\ p \mid f = \alpha}}{\operatorname{Max.}} |w(re^{i\theta})|$ be attained at $z_0 = re^{i\theta_0} (|\theta_0| \leq \alpha)$, which lies in a circle $|z - \rho| = \rho \sin \alpha$ $(\rho = r/\cos \alpha)$, which touches two lines arg $z = \pm \alpha$, so that

$$\chi_0 = re^{i\theta_0} = \rho + t_0 e^{i\varphi_0}, \quad |t_0| \leq \rho \sin \alpha.$$

Since $\log^+ |w(z)|$ is subharmonic, we have by means of Poisson integral on $|z - \rho| = \rho$,

$$\begin{split} \log^{+} M(r; \Delta) &= \log^{+} |w(q_{0})| \leq \frac{\rho + |t_{0}|}{\rho - |t_{0}|} \frac{1}{2\pi} \int_{-\pi}^{\pi} \log^{+} |w(\rho + \rho e^{i\theta})| \, d\theta \\ &\leq \frac{1 + \sin \alpha}{1 - \sin \alpha} \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left(1 + |w(\rho + \rho e^{i\theta})|^{2} \right)^{\frac{1}{2}} d\theta \\ &= \frac{1 + \sin \alpha}{1 - \sin \alpha} \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left[1 / [w(\rho + \rho e^{i\theta}), \infty] \right] d\theta \\ &\leq \frac{1 + \sin \alpha}{1 - \sin \alpha} 2\rho \left(m(2\rho, \infty) + O(1) \right) = \frac{1 + \sin \alpha}{1 - \sin \alpha} 2\rho \left(T(2\rho, \infty) + O(1) \right) \\ &\leq \frac{1 + \sin \alpha}{1 - \sin \alpha} 2\rho \left(T(2\rho) + O(1) \right) = \mathcal{A}r(T(\lambda r) + O(1)), \end{split}$$

where

$$\mathcal{A}=2(1+\sin\alpha)/(\cos\alpha(1-\sin\alpha)), \qquad \lambda=2/\cos\alpha.$$

THEOREM 9. Let w(z) be meromorphic in $\Re(z) \ge 0$ and T(r) = O(1), then w(z) = g(z)/h(z), where g(z), h(z) are regular and $|g(z)| \le 1$, $|h(z)| \le 1$ for $\Re(z) > 0$.

PROOF. By x = (z - 1) / (z + 1), we map $\Re(z) \ge 0$ on |x| < 1 and put $w(z) = w_1(x)$ and $T_1(\rho)$ be the Nevanlinna's characteriatic function of $w_1(x)$ in |x| < 1,

$$T_{1}(\rho) = \int_{0}^{\rho} \frac{S_{1}(\rho)}{\rho} d\rho \quad (0 \leq \rho < 1),$$

$$S_{1}(\rho) = \frac{1}{\pi} \int_{0}^{\rho} \int_{0}^{2\pi} \left(\frac{|w_{1}'(re^{i\theta})|}{1 + |w_{1}(re^{i\theta})|^{2}} \right)^{2} r dr d\theta.$$

Since the circle $\Re(1/z) = 1/r (r > 1)$ is mapped on a circle, which contains a circle $|x| = (r-1)/(r+1) = \rho$,

$$S_1(\rho) \leq S(r) + O(1)$$
 $(\rho = (r-1)/(r+1),$

and since $d\rho \rho = 2/(r^2 - 1) dr \leq 4/r^2 dr$ $(r \geq \sqrt{2})$, we have

$$\int^{1} \frac{S_{1}(\rho)}{\rho} d\rho \leq 4 \int^{\infty} \frac{S(r)}{r^{2}} dr + O(1) = O(1).$$

Hence $T_1(\rho) = O(1)$, so that by Nevanlinna's theorem, $w_1(x) = g_1(x)/h_1(x)$, where $g_1(x)$, $h_1(x)$ are regular and $|g_1(x)| \le 1$, $|h_1(x)| \le 1$ in |x| < 1. Returning to the z-plane, we have the theorem.

3. Second fundamental theorem.

In Ahlfors' proof of Nevanlinna's second fundamental theorem," if we

L. Ahlfors: Über eine Methode in der Theorie der meromorphen Funktionen, Soc. Sci. Fenn, Comment. Phys-Math. 8, No. 10 (1932).

replace $\log z = \log r + i\theta$ by $\zeta = -1/z = \sigma + it$, we have the following

THEOREM 10. (Second fundamental theorem).

$$(q-2) T(r) \leq \sum_{i=1}^{q} N(r, a_i) - N_1(r) + O(\log r + \log T(r)),$$

outside certain intervals $\{J_{\nu}\}$, such that

$$\sum_{\nu}\int_{J^{\nu}}r^{\lambda-1} dr < \infty \qquad (0 \leq \lambda < 1),$$

where $N_1(r)$ is formed similarly as N(r, a) with respect to all multiple values, a-ple value being counted (a - 1)-times.

Especially if we take q = 3, $\lambda = 0$,

$$T(r) \leq \sum_{i=1}^{n} N(r, a_i) + O(\log r + \log T(r)),$$
 (1)

outside intervals $\{J_{\nu}\}$, such that

$$\sum_{\nu} \int_{J_{\nu}} d \log r < \infty.$$
 (2)

From this we have

THEOREM 11. If $\overline{\lim_{r \to \infty}} T(r)/\log r = \infty$, then w(z) takes any value infinitely often with two possible exceptions.

6. Theorems of Valiron and Nevanlinna.

As an application of the theorems proved in § 5, we will prove theorems of Valiron and Nevanlinna as follows.

THEOREM 12 (VALIRON)⁵). Let w(z) be meromorphic in Δ_0 ; $|\arg z| \leq \alpha_0$, $(|\Delta_0| = 2\alpha_0)$ and Δ : $|\arg z| \leq \alpha < \alpha_0$ be an angular domain contained in Δ_0 . If for a certain value a and $\rho > \pi/|\Delta_0|$,

$$\sum_{\nu} 1/|\chi_{\nu}(a,\Delta)|^{\rho} = \infty,$$
$$\sum_{\nu} 1/|\chi_{\nu}(a,\Delta)|^{\rho} = \infty$$

then

5) G. Valiron : Sur les directions de Borel des fonctions méromorphes d'ordre fini, Journ. de Math. 9 séries 10 (1931). for any a, with two possible exceptions and Δ_0 contains a Borel's direction of order ρ of divergence type.

PROOF. We choose

 Δ_1 : $|\arg \chi| \leq \alpha_1$ ($\alpha < \alpha_1 < \alpha_0$),

such that $\rho > k_1 = \pi/|\Delta_1|$.

By $\chi^{k_1} = x$, we map Δ_1 on $\Re(x) \ge 0$, then Δ is mapped on ω : $|\arg x| \le \beta < \pi/2$. We put $w(\chi) = w_1(x)$, $|\chi| = r$, $|x| = \mathbb{R}(-r^{k_1})$,

$$(\chi_{\nu}(a, \Delta))^{k_1} = \chi_{\nu}(a, \omega) = \mathbb{R}_{\nu} e^{i\varphi_{\nu}}, \qquad (|\varphi_{\nu}| \leq \beta),$$

so that

$$\Re \left(1/x_{\nu} (a, \omega) \right) = \cos \varphi_{\nu}/R_{\nu} \geq \cos \beta/R_{\nu} = \cos \beta/|\chi_{\nu} (a, \Delta)|^{k_1}.$$

Hence $\sum_{\nu} (\Re (1/x_{\nu} (a, \omega)))^{\rho k_1} = \infty$, a fortiori, $\sum_{\nu} (\Re (1/x_{\nu} (a)))^{\rho k_1} = \infty$, where $x_{\nu}(a)$ are zero points of $w_1(z) - a$ in $\Re (x) > 0$.

Let $T_1(\mathbf{R})$, $N_1(\mathbf{R}, a)$ be the functions defined in § 5 for $w_1(x)$, then since $\rho/k_1 > 1$, we have by Theorem 7,

$$\int_{-R_{\rho}}^{\infty} -\frac{S_{1}(R)}{R_{\rho}k_{1}+1} dR = \infty.$$
 (1)

If $S(r, \Delta_1)$ is defined as in §2, then $S_1(R) \leq S(r, \Delta_1)$ $(R = r^{k_1})$, so that from (1),

$$\int^{\infty} \frac{S(r, \Delta_{\mathfrak{l}})}{r^{\rho+1}} dr = \infty.$$

Since $T(r, \Delta_1) \ge S(r, \Delta_1) \log 2$, we have

$$\int_{-\infty}^{\infty} \frac{T(r, \Delta_{\rm i})}{r^{\rho+1}} dr = \infty.$$
 (2)

Hence by Theorem 2,

$$\int^{\infty} \frac{N(r, a; \Delta_0)}{r^{\rho+1}} dr = \infty, \text{ or } \sum_{\nu} |\chi_{\nu}(a, \Delta_0)|^{-\rho} = \infty,$$

with two possible exceptions. From (2) we conclude as Theorem 3 that Δ_0 connains a Borel's direction of order ρ of divergence type.

THEOREM 13 (NEVANLINNA-VALIRON). Let w(z) be regular in $\Delta_0: |\arg z| \leq \alpha_0$ and $\Delta: |\arg z| \leq \alpha < \alpha_0$ be an angular domain contained in Δ_0 . If for some $\rho > \pi/|\Delta_0| \geq 1/2$

$$\int^{\infty} \frac{\log^+ M(r, \Delta)}{r^{\rho+1}} dr = \infty,$$

then

$$\sum_{\nu} 1/|\chi_{\nu}(a, \Delta_0)|^{\rho} = \infty$$

for any a, with two possible exceptions⁶) and Δ_0 contains a Borl's direction of order ρ of divergence type⁷).

PROOF. Let Δ_1 : $|\arg \chi| \leq \alpha_1 (\alpha < \alpha_1 < \alpha_0)$ be so chosen that $\rho > k_1 = \pi/|\Delta_1|$ and by $\chi^{k_1} = x$, we map Δ_1 on $\Re x \geq 0$, then Δ is mapped on $\omega : |\arg x| \leq \beta < \pi/2$. We put $w(\chi) = w_1(\chi)$, then

$$M_1(\mathbf{R}, \omega) = \max_{\theta \leq \beta} |w_1(\mathbf{R}e^i)| = M(r, \Delta) \qquad (\mathbf{R} = r^{k_1}),$$

so that

$$\int^{\infty} \frac{\log^+ M_1(\mathbf{R}, \omega)}{\mathbf{R}^{\rho \, k_1 + 1}} d\mathbf{R} = k_1 \int^{\infty} \frac{\log^+ M(\mathbf{r}, \Delta)}{r^{\rho + 1}} d\mathbf{r} = \infty.$$
(1)

Let $T_1(\mathbf{R})$ be the characteristic function of $w_1(x)$ defined in §5, then by Theorem 8

$$\log^+ M_1(\mathbb{R}, \omega) \leq A\mathbb{R} (T_1(\lambda \mathbb{R}) + O(1)), (\lambda > 1),$$

so that from (1),

$$\int^{\infty} \frac{T_1(\mathbf{R})}{\mathbf{R}^{\rho/k_1}} d\mathbf{R} = \infty, \text{ hence } \int^{\infty} \frac{S_1(\mathbf{R})}{\mathbf{R}^{\rho/k_1+1}} d\mathbf{R} = \infty.$$

From this we proceed similarly as Thorem 12 and have the theorem.

MATHEMATICAL INSTITUTE, TOKYO UNIVERSITY.

⁶⁾ R. Nevanlima: Untersuchungen über Picard'schen Satz. Acta Soc. Sci. Fenn. 50 (1924).

⁷⁾ G. Valiron. 1. c. (7)