ON A CERTAIN MOTION IN THE EUCLIDEAN SPACE*

By

Minoru Kurita

In the #-dimensional Euclidecn space we consider a moving simplex ot
d mension . Let the vertices of the simplex at an instant ¢ (1, < 7 < #,) be
X0, X1, -+, Xr, Whose ccordinates are assumed to ke functions of /. Any point
of the simplex can be expressed as x =1_j207x,: i, where éoxi =1, Ni = 0 and at
inner points all A,’s > 0. Let the arc lengrths described by these points be Ly,
Li, -, Lrand L. Then

L= (e 9% = (2 (v, Bnaski ) ar ™

where dots mean the differentiation with respect to . Now there exists the
relation

i
M-

L A L (2)

1=0
The proof can easily be accomplished on account of the convexity of the
function (x, x)* in the velocity vector x, which is the integrand of (7). The
équelity holds gcod for inper points when and only when the velccities of all
the vertices x;, X3, .-+, X, at any instant are positive multiples of the same
vector function p, that is

xi=Pi b (i=0,1, «., 1), (3)

where g; are scalar functions. In the present paper we shall compute this
case and fird that the paths of moving points in such a motion are generally
orthogonal traiectories of the osculating planes of a cetiain curve. We remark
that, .if the above equality holds for ¢n i1net pcint of the simplex, the same i8
true for any other point of the simpiex and also for the vertices and points
of every inner simplex.

*): Received in revised form, September 25, 1950.
This paper owes to the problem suggested Ly Frof. K. Cno of Nagoya University.
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2. First, if all B;’s are equal, our motion is ¢ translation at every instcnt
(type (A)).
Next we see by virtue of (3) that, if some f; is not equal to some f;,

(17) Xi—x]'),:v= (-’."i_—-;(j: X X]')—’:O, (4)

.
pi—b;
because the distance ketween x; and x; is independent of . Now consider a
-variable point of the carrier »-plane of the simplex

X = Z Ai X5,
1=-0

where «;’s are functions of # and

4

zoc,-=l. (5)

i=1

Then we have by differentiation X = 3 u; x; + (2 o; f;)b- (For the present we
assume that the summation ranges frcm 0 to ). If we take «; such that
(x, B) == o;B; =0, we have.-

X =3 Ozi X3

and then X = S, 5, + S ;5 = So; 5 + (o, f)F- In this way if we can take
«; such that

. . (r—1
(o, f)=0, (& p)=0, ..., (&, B) =0, (6)
we have
. . [€2) ‘(1)
X=Za;x; X=3Zo;xi -, X =3 o; x;- (7)

By a slight calculation we see that (6) is equivalent to the following equations

(@ B) =0, (& B) =0, e (s ) = 0. (8)

Now we go into the determination of «;’s which satisfy (5) ard (8). We put
1o 1

S (o)
(=1 =1
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Case . A =+0.

By hypothesis §; + f; for every pair of indices 7, ; such that ; + j, hence
(4) holds. As A +0, x; ’s are determined by (8). From X = Z«; x; we get
by virtue of (7) and (5)

r . y .
(@) (€}
= Do xi = 2 o (0 — x0)- (10)
i=0 k=1
Further we put
02‘ ............... ALy
D= ..., ,
(€) ()
Ly eoeeeeeiaenns oy

and divide the case I into the following two subcases :
Case Ia. D =0.
@ .
In this case X’s are linearly independent by virtue of (10), and the simplex

& . . } . . . . ) .
in question is on a plane spanned by vectors X with X as their origin. So if
we put

r

@)
x=§%X+X, (11)

x lies on this s-plane. Taking v; suitably, let us show conversely that the
motion in question, namely the one for which the equality holds in (2), is
really possible. From (11) we get

. . e .. . L@ r+1
x=(1+'yl)X+('yl+'yz)X+ ..... +('Yr—l+'Yr)X+'YrX~

Now et x be a fixed point of our simplex. On account of (3), (4) and (10)

. . . . r
x should be perpendicular to X, ..., X, hence we must have from the. fast
equation the following relation :

1+ "I.'l)f“il + (7 + 'Y.z\’/l«[g + oo (Y- Y ) e = = e g
(i1=1,2, ..... , ), (12)

(ONE))
where we have put (X, }]{) = wj-  As the determinant [4;;|#=0 (7,7 = 1,2, ..., r)
. [0)
by virtue of the linear independence of X, ..., X, we get from (12)

1+ ');1 =v1%, Y1+ '7.2 = Vg Yry eeeees , Yr—1+ '.)’r = Vr Yr» (13)
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where »,, ..., v, are functions of u; (i=1, ..., 57 =1, ..., r+1), When
we write the general solution of the differential equation (13) in-the vector form
r)l = (7: L 'Yr), WéObtaln

v = ; Nyt 0, (14)

where A;’s are constants and 0 is a special solution. As \;’s vary, the point
(11) moves on the osculating r-plane. By calculation we have

. G+
XX . oot X
(: ) Mip M12 e v oo e e e Mir+1 v
Ll |
Mrl U2 o vvvovoe Mrr+

Here |u;;| is g+<§eterm1nant and the right side is a linear combination of
vectors X, ..., X.” From the last equanon we get (x, x)% =0 |y,|, where 6 is
a functlon Wh1ch is mdepende"lt of N\’s. So far as y7 is of the same sign,
(%, x)% is linear in A;. So if we denote the points corresponding to ¢, o0 +

v, ..., 9"+ 97 and v by xo, x,, ..., x, and x respectively, we have by 3‘-(13‘)‘

14 r 14 r
x=27w>4,,+<1—-27w>xo=27wx¢ <7\o=1—27\i>°
1=1 i1=1 1=0 1=1

Hence ‘if ry' corresponding to x,, 3, ..., x, and x are of the same sign, we
have L. = 27& L;. Thus the case Ia is settled. - 'Our motion is the gne 'wbou
7="00

paths are the orthogonal trajectories of the osculating r-planes of a curve (type (B))-

3. Casse Ib. D=0.
Before proceeding further, we state here the lemm1 which will be used
repeatedly later.

Lemma. Let o0, 215 -+ 3 be fanctions of #, and av, a1, +--y an be constamts
not all zero.  If
A) Al o+ v eeeeococns au
o K1 vvvvveennnns ORI 0’
R0 K1 sieeericanes n
(n—1)(n—1) (n—1)
e 1 .z,,'
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then there exist constants ¢i’s not all gero sach that ? cixi =" Especially if
6 ,
@ = ay = - = a,. we have in adaition the relation = Li= 0
o

Proor. As at least one of z;’s is not zero, we assume g, + 0. Now we
obtain from the given equality

ac L 0 .
2 n E6 N - 0 X0 n — . go
. a =& r— “a—l‘Zo A an 20 = 0.
Qo {1— ——Ro-+--Zn— __d‘:::— o do dao

............................ (n—1) @ (n—1) (n— 1) an n—1)
(=D=1 g, (=1 (:_u an =D Rt g X0 Rn—
Ro R 7T R0+ R Ty X0

Hence by Wronski’s theorem there exist constants ¢,’s not all zero such that

Soiln— %) =0

1=1

Putting ¢, = — ﬁc a;la; We obtain E i = 0. If 4, a, «. @, are all equal,
we have ”2 Gi = 0

Now we proceed to investigate the case Ib. Owing to D =0, there exist
constants u; not all zero such that E 7z #;=0. So we have = p;o; + pu=0

(u constant). From (3), (8) and the last equation we eliminate o;’s, then we
get after a slight calculation

I L My "
R e P (U Br—=1Po B |=0.
(r—l)(r——l)\r-—l)(r—l‘ (_7—1)(7—1)(;—1;
- ﬂo .......... r — Po Po
By virtue of the lemma B, — 8y, B~ Bo, ..., Br— [)’0 and f, are linearly

dependent with" constant coefficients, and consequently v; By =0 (b; constants,
=0

not all zero).

Here it is ev1denr that v; +0 by virtue of the assumption A +10. If we
take »; such that X vi =1, 1thoen x = Hoy, x; is a fixed point in the space as well
as in the plane of the simplex, because by (3) we have x =3 Zvix =3 y,ﬁ,

=0. Let us take this point as the origin and denote the 7 pomts “Which
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are fixed to the.simplex in question and are forming together with the origin

the vertices of a certain simplex o? dimension », by y ..., 3. As y’s are
linear combinations of x;, x,, ..., x» with constant coefficients, we get by (3)
)/,' = Sib, (15)

where §; are real funttions of 7. Now we put
L4
X = zi o; Ve
1=

If we can find o;(i =1, ..., ) such that

_2)

(o, 8) =0, (&, §)=0, ..., (& 0) =0 (16)
where («, 8} = ‘? 0,8 etc., we will have
4 r—1) I (=1
X = Zl i Viv evoey \X: _7' (U'i_yix (17)

because (16) is equivalent to the following relations:

r—2)

<%m=qmwpmpu4%m_o

Now the rank of the matrix

O Oy i &r
8 & e 5 ,
(18)
oy e
1 Oz ¢t nens .. r

s p—1. If not there would be constants p; not all zero such that : Pi §; =0,
so the point 8 p y; would be a fixed point and the direction from the origin
to this point would be constant. On the other hand, by the lemma and (3),
A = 0 is equivalent to the existence of constants y;’s not all zero such that
.E{l,u,- (B; — Bo) =0, which shows us by virtue of (3) the existence of a fixed
=

direction.

By the hypothesis A + 0 the rank of (18) is r — 1. Hence we can find «,,
..., o such that (16) holds.

Next we have
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0(1 ............... oy
D= 12 ar =0
k’—-‘-1'-) ............... \;;i)q
I Kl st nenenonnns [+ 24

It not, there would be constants p; not all zero such that = p, #; =0. From
the last equation and (16) we get )

p1 DR A R A I Pr
N Sy
O  teetrieinnnenaes Sr|=0
......................
(r—2, Cr—2))
L e S,

So by the lemma this would lead to A = 0 as above stated which contradicts
A+ O,-and hence D = 0.

(r-1 )
y {17) and D + 0, X, , X are linearly independent vectors. Now we

can ﬁhow as in Ia that the mOthIl in question is really possible. We put
r—1 @
x =_\ i }i:' and proceed as before, and finally get the result that our motion

is tb» onc whose paths are orthogonal irajectories of the r-planes which contain

a fixed point and oscalating (r — 1)-planes of a carve- (type (C)).

4. Case II. A =0.

By virtue of the lemma we have 1n this case 3, = ,u,l Bi = 0, = i =0 (2, con-
stants not all zero), and hence we get 2, w; (B — ,30) =90. ACuoxdmgly we find
by virtue of (3) that = u;x; = X X (xz — xo) is a constant direction. [f the

maximum number of the lmearly independent ones among such vectors ot
constant direction is » - &, we can take them as 4., = x,., — xo, .

oy Ar =

xr — xo. Now we consider the point

7 k r

X =D oy = o+ Zai(xi - xo) + 2 % ¢ie

1=0 1=1 1=k-1

Putting xo = fob, (x; — x0)« = f:b(i =1, ..., k) and taking « such that
. (k=15
(“:ﬂ)'—‘o, (CZ, ﬂ)= ) ey (“’ /3)‘_0 (19)

where « = (1, o, ..., o), B = (Bo Pr --.. Pi), We get
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k r
* (ky
Z 05,'(9(5 - Xo) + Z O'.,-/ﬂi (20)
=1 i=k+1

(2

k r
. . . (&)
X =2 — x0) + 2 sy ey X =
=0 1=k41

(19) is equivalent to the following relations:

(k—1)

(@ ) =0, (o, f)=0, ..., (&, f) =0. (21
Such « exists. For otherwise we would have by virtue of (21)
I ﬁl 632 ................. e ﬂk %
B Bzeveriiiiiiiinii., Br |=0.
ity e W
1 9 ceeesscrscenccscnnnn k

k

This would result in X u; 8; =9, where u; are constants not all zero. Ac-
‘ izl k

cordingly one more direction ¥ u; (x; — x;) would be constant, which contra-
i1

dicts the assumption on 4.
Now let us put

[ B R R *97
1 =] ceeetvorertsrsronnanisn

()] 6D}

K eeesccscccascnns [+ 43

and divide the case II into the following two subcases.

5. Case lla. D, =0. ]
. 2] . . .
Then, by virtue of (20), X, ..., X are linearly independent. ~To show the
existence of the motion in question we put

k 4
D)
x =X+ Z%‘X-i- Z Vi@

i=1 i=k41

. ... (k)
and take y = (y,, ..., 7s) so that x is perpendicular to X, X, ..., X and 4,4,
.., ar- Proceeding in the same way as before we obtain the result that our
motion is the one whose paths are orthogonal trajectories of the r-planes which
contain the osculating k-planes of a curve and are parallel to a fixed plane of di-
mension r — k (type (D))

CasE IIb. D, = 0.
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Then there exist constants u,, ..., u; not all zero and a constant g, such

that

Mo+ py oy 4 oo, + oy o = 0.
From the last equation and (21) we eliminate a,, ..., ;. Then we get, by
virtue of the lemma, the following relation

> B; =0 (v; constants not all zero).
1=0

Hence »; x0 + 2 vi (x; — x0) is a constant vector. But as it is not a constant

direction on account of the assumption on &, we must have »,+0. So x, +
k

p i 7 (5;—x) is a fixed point in the space. ~We take it as the origin. Now
1=
we put

k r
= Zoc,-x,- + Z &; a;
i=1 i=k+1

and proceed in the same way as in Ib. We have x;=8,b(i=1, ..., &).
If we can find « such that

. (k—2)
(x, 8 =0, («, 8) =0, ..., («, 8) =0, (22)
where o = (o, ..., %), 8 = (&), ..., 8;), we will have

k 4 k r .
. . . . (k=1) (k—1) (k=1
X=Zl<x,-xi+,glaiai,......,X=‘ a; x; + Z o @y
1= 1=Fk4

1=1 tmi41
(22) is equivalent to the following relations :

. k—2
(@ 8) = 0, (o 8) =0, ..., (o 8) =0. 23)

‘Here the rank of the matrix

81 O3 ciiierncnenainaan eee O
(81 B2 ittt O
IR R I I N A )
(k—2)k—2) (k—2)
TR N k!

is £ —1. For otherwise there would be constants u,, ..., u,_, not all zero
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such that 2 ,u,S = 0 and then 2 m x; would be a fixed point in the space.
As a fixed ] p01nt has been taken as ‘the origin, this would result in the existen-
ce of one more fixed direction except gy, ..., a»» This contradicts the

assumption on 4. Thus there exists o such that (23) holds. Next we can find
that

[ P Ap
Dg =3 I~ 4 T oy ( + 0
(k—1) (h—-1)
O] seevscscrscccnns *9

For otherw1se there would be, by the lemma, constants p; not all zero such
that 2 P = 0. From the last equatxon and (23) we eliminate «; and by the

lemma we would get the relation 2 MS =0, where yu; are constants not all

Tl

zero.  Then one more direction except ary1, ..., ar would be constant. This
contradicts the assumption on 4.

. . (k—1)
Now by virtue of D, = 0, X, ..., X are linearly independent. We put x =

k—l )

‘..'y, X+ Ery, a, and determine o, ..., vi—1, Yit1, ... v, SO as to satisfv the
i=k+1 E=1) A
relatlon that x is perpendicular to X, X, , Xand g4, ..., ar- Thus we

find that the motion in question is really possxble. Consequently we get the
result that our motion is the one whose paths are the orthogonal irajectories of
the r-planes which contain the osculating (k — 1)-plenes of a curve cnd a fixed
plane of dimension r-k (type (E)).  Thus our motion, for which the equality holds
in (2), must be one of the five types (A), (B), (C), (D) and (E). The restriction

on the position of the simplex on each plane is evident frcm the above dis-
cussion.

6. Concerning the motion on the sphere of dimension » the result
analogous to (2) does not hold. In this case, if # is odd, there exists even a
motion by which all points on the sphere describe the arcs with the same
length and it is easy to get all the motion of that nature. Let x be a 'point
that moves on the #-dimensional unit sphere and the position of X at an
instant # =0 be @. Then x can be represented as x = Py, where P is a proper
orthogonal matrix whose elements are functions of r., We denote by ds the

arc element of the curve which x describes. When we put P'P =S5,S is
skew and

(ds/dty = (x, %) = (Pa, Pa) = (PSa, PSa) = (5'Sa, a)-
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Now we suppose Js is the same for all z such that (z,.4) =1. Then taking s
for the parameter ; we get the result §'§ = E, where E is the unit matrix.
As § is skew, there exists an orthogonal matrix such that .§ = 0’40, where

A=((;“ ‘3‘)4(0)7 ) +(§ ) (a4 1=2m).

Tten owing to S5 = E we have §'S = O’ 420 = E, hence 42 = E, which results
in \; = +=1. Thus all the matrices § which are orthogonal as well as skew
are obtained, namely § = 0’40, where 4 is the skew matrix of the form stated
above ard QO is an arbitrary orthogonal matrix.

Now we solve the matric differential equation

P = (PSS (24)

with the initial condition P = E at # =0. Then P'P + P'P’ = (P'P) = 0 and
so P'P = E for all #.  Hence we have from (24)

P =Ps. (25)

It is more convenient to solve (25) with the initial condition P=FE at z=0
than to solve (24). Owing to the uniqueness of the solution of the differential
equation the solutions of (24) and (25) with the same initial condition P = E
at ¢ = 0 are the same. If O is a constant matrix, the motion thus obtained
is trivial, while if O contains the parameter 7, our motion is of some interest.
It is well known that the rotation group of dimension 4 is locally a direct
product of the two groups, each of which is locally isomorphic to the rotation
group of dimension 3. All the motions of these two groups possess the

property stated above, namely all the points on the sphere describe the arcs of
the same length.

Nacova UNIVERSITY.





