
ON A C1ETAIH MOTION IN THE EUCLIDIAN SPACE**

BY

MlNORϋ KURITA

In the ^-dimensional Euclidern space we consider a moving simplex ot

d mension f. Let the vertices of the simplex at an instant / (/1 <: / < /2) be

XΌ, X\> ~ , xr, whose coordinates are assumed to be functions of/. Any point

of the simplex can be expressed as x = X λ, χ ί t where Σ λ , ^ " ' , λi^> 0 and at
;-.-_= o t = - o ι

inner points all \,'s > 0. Let the arc lengrhs described by these points be Lo,

Li, •••, Lr and L« Then

L - ('* (x, x)« * - Γ2 f Σ λi v<( Σ λi x, ) κ A, (1)

where clots''mean the differentiation "with respect to /• Now there -exists' the
relation

ψ

L=s J2LI \ : Lf ( 2 )

The proof can easily be accomplished on account of the convexity of the
function (x, χ)& in the velocity vector χs which is the integrand of (')• The
equrlity holds gcod for inner points when and only when the velocities of all
the vertices χ0, χlt ..., χr at any instant are positive multiples of the same
vector function bt that is

* < - βib ( ι - 0 , V ... rV (3)

where β{ are scalar functions. In the present paper we shall compute this

case and fir.d that the paths of moving points in such a motion are generally

ortnogonal trajectories of the osculating planes of a certain curve. Wertrrark

that, if the above equality holds for tn h nei pcint of the simplex, the same is

true for any other point of the simplex and also for the ver.tices and points

of every inner simplex.

*>- Received in revised form, September 25, 1950.
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2. First, if all β/s are eqυal, our motion is a translation at every instcnt
(type (A)).

Next we see by virtue of (3) that, if some β{ is not eqυal to some βj,

(h v — v V j) = 0, ( 4 )

becaυse the disisnce between χ{ and χj is independent of /• Now consider a
variable point of the carrier r-plane of the simplex

where α^s are functions of / and

Σ α ^ l . (5)

Then we have by differentiation X = Σ α,: x{ 4 (Σ αt βi)b (For the present we

assume that the summation ranges frcm 0 to r)> If we take αt such that

(α, β)**Σ oiiβi = 0, we have-

X = Σ ίi Xi

and then X - Σ αt x{ 4- Σ oc, x{ - Σ αt Xi 4- (ά, )8) /-. In this way if we can take
α, such that

Cr-V),

we have

(α, β)-0, (α, )8)-0, v , (α, β) - 0,

CO CO
X =- Σ α» x t , X *= Σ αf x/, ..., Z = Σ αί;

( 6 )

( 7 )

By a slight calculation we see .that,(6) is equivalent to the following equations

(α, β) = 0, (α, β) - 0, _ , (αί7?- 0. (8)

Now we go into the determination of α/s which satisfy (5) ard (8) We put

( 9 )

1 . ..

βo

βo

1

βf

γ
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CASE L Δ Φ 0.

By hypothesis β{ Φ βj for every pair of indices j, j such that i ψj, hence

(4) holds. As Δ Φ 0, α» 's are determined by (8). From X = Σα^ x{ we get

by virtue of (7) and (5)

, ω (10)

Further we put

. (X.r

CO

and divide the case I into the following two subcases:

CASE la. D Φ O .

In this case X's are linearly independent by virtue of (10), and the simplex

in question is on a plane spanned by vectors X with X as their origin. So if

we put

CO
X, (ID

x lies on this r-plane. Taking jι suitably, let us show conversely that the

motiori in question, namely the one for which the equality holds in (2), is

really possible. From (11) we get

X = (1 + 7ι)X + (7i + 7a) X + . - . . + <7r-i + Ύr)X + Ίf '&

Now let x be a fixed point of our simplex. On account of (3), (4) and (10)

x should be perpendicular to X, . . . , X, hence we must have from the last

equation the following relation :

(<yι

(0
X

μi2+ ^ 1 -f γ ) μif = - yr

(/-I, 2, r), (12)

( 0 Ci>
where we have put (X, X) = μij. As the determinant | μ i j \ Φ 0 (/,y = 1, 2,..., r)

by virtue of the linear independence of X, ...,X, we get from (12)

-f Ύr> (13)
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where vlt . . . , vr are functions of μ^ (/ = 1, . . . , r\ j = 1, •> r -f 1), When

we write the general solution of the differential equation (13) in the vector form

7 = (7, . . . , 7r), we obtain

r

7 - Σ λ, r + 7°, (14)
4=3 '

where λt's are constants and 70 is a special solution. As λ/s vary, the point

(11; moves on the osculating r-plane. By calculation we have

X = v j

x
Jr

Here \μ{j\ is a determinant and the right side is a linear combination of
O+i) . . . :•••• v . . . '

vectors X, .,., X. From the last equation we get (x, χ)% = θ \<yr\, where θ is
a function which is independent of λ '̂s. So far as y is of the same s'ιgn>
(x, x)K is linear in Xt, So if we denote the points corresponding to 7^,7° +
71, . . . , 7° + Y and 7 by x0, xif . . . , χr and x respectively, we have

"= Σ x t
1 — Σ

Heήcie if 7' corresponding to χ0, Xi, .-.., x r and x are of the same sigΐi, we

have L = 2 λ/ Lj. Thus the case la is settled. Our motion is the one whou

paths are the orthogonal trajectories of the osculating r-planes of a curve (type(B)).

3. CASE Ib. D = 0.

Before proceeding further, we state here the lemrm which will be used
irepeateciiy later.

LEMMA.. Let %p, ίζi, •••, %n be functions of P, and ao, a\, •••••,• a* be constants

not all %ero* If

'= 0,

.ίζ»
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than there exist constants Cis not all %ero such that Σ ^ i = {\ Especially if

ao = a.\ = ••• = an> we have in addition the relation Σ Cι = 0.

PROOF. AS at least one of <z/s is not zero, we assume ao 4= 0* Now we

obtain ftom the given equality

w

n-l) Cn-1) aΌ

Hence by Wronski's theorem there exist constants ct's not all zero such that

M n

Putting Co == - ZCiai/ao we obtain X ^ ^ » 0- If .*0, î> •••. a» are all equal,

we have Σ a = 0.

Now we proceed to investigate the case Ib. Owing to D = 0, there exist

constants μ{ not all zero such that Σ μι ά* = 0. So we have Σ /x* αt -f μ, = 0

(yL6 constant). From (5), (8) and the last equation we eliminate α/s, then we

get after a slight calculation

μι

βr- βo βθ

> i χ r i χ
βi — βo

_ l

βo " X ' ~ h X r l

By virtue of the lemma βλ — /?0, j8a — /?0, . . . , /5f — ̂  and βQ are linearly

dependent with constant coefficients,, and consequently Σ ^ ^ t = 0 ^ constants,
i~o

not all zero).
Here it is evident that Σ v{ Φ 0 by virtue of the assumption Δ =t= 0. If we

r i^-0 r ... : ,

take vι such that 2 ^ = 1, then x = Σ vt χ{ is a fixed point in the space as well

as in the plane of the simplex, because by (3) we have x = Σ v{ x{ = Σ v${b
i=o i=o -

« 0. Let us take this point as the origin and denote the r points, which
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are fixed to the.simplex in question and are forming together with the origin

the vertices of a certain simplex o : dimension r, by yγ . . . , jv. As j//s are

linear combinations of χΰ} χi} . . . , χr with constant coefficients, we get by (3)

Ji-δφ, (15)

where δt are real functions of /. Now we put

If we can find α^(7 =* 1, . . . , r) such that

(α, δ) = 0, (α, δ) = 0, . . . , (α,C?) 2- 0 (16)

where (α, δ) = Σ α ^ etc., we will have
4 = 1

^X=Σα, : 7, ...,X=!ΓαJ,, (1?)

because (16) is equivalent to the following relations:

(α, δ) = Q, (ά, 8) = 0, . . . , (V'δ) - 0.

Now the rank of the matrix

δj δ 2 δrV

5 | O'2 Or \

(18)
•-2)(f-2) ' * lr-A

δx δ 2 δr /

r-i

is r—1. If not, there would be constants p{ not all zero such that Σ p{ δ{ = 0,
r— 1 i~l

so the point X p, yt would be a fixed point and the direction from the origin

to this point would be constant. On the other hand, by the lemma and (3),

Δ = 0 is equivalent to the existence of constants μ^s not all zero such that

Σ ^ (βi — βo) = 0, which shows us by virtue of (3) the existence of a fixed

direction.

By the hypothesis Δ 4= 0 the rank of (18) is r— 1. Hence we can find ocj,

. . . , oίr such that (16) holds.

Next we have
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0.

ϊ(r-l)

α.

If not, there would be constants p{ not all zero such that Σ p{ α,

the last equation and (16) we get

0. From

Px
δr

δ,

(,-2,

Sr

So by the lemma this would lead to Δ = 0 as above stated which contradicts

Δ 4= ϋ, • and hence D Φ 0.

By (17) and D Φ 0, X, . . . , X are linearly independent vectors. Now we
can show as in la that the motion in question is really possible. We put

r-i CO

x = Σ Ji X and proceed as before, and finally get the result that our motion

is the one ivhose paths are orthogonal trajectories of the r-planes which contain

a fixed point and osculating (r — \)-planes of a curve- {type (C))

4. O S E II. Δ = 0.
r r

By virtue of the lemma we have in this case Σ μι βi = 0, Σ μι = 0 (μt con-
r i=0 i = θ '

stants not all zero), and hence we get Σ μι {βi — β0) = 0 Accordingly we find

by virtue of (3) that Σ μι X{ = Σ μι {xι — x0) is a constant direction. If the

maximum number of the linearly independent ones among such vectors ot

constant direction is r - k, we can take them as ak+1 = xΛ + 1 — xo, ..., ar =

xr - Xo Now we consider the point

X = Σ αf

k

Σα ί

Putting xo = jSo by (xi — x0) = βi b(i - 1, .'.., k) and taking α such that

(α, β) = 0, (oc, β) - 0, . . . , (α, /?) = 0, (19)

where α - (1, αA, . . . , αΛ), j8 - (j80, /3i, . . . , βk), we get
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X
k

V ; α̂  *,•,. . . . , X =
l t = l

(19) is equivalent to the following relations:

(α, β) = 0, (α, β) = 0, . . . , (<χ,Ckβ)Ό = 0.

Such α exists. For otherwise we would have by virtue of (21)

(20)

(21)

βl βi

βl β*

β.h

βk

βl βl
*
βk

= 0.

This would result in 2 μt jβj = 0, where μ{ are constants not all zero. Ac-
* = 1 fe

cordingly one more direction 2 μ{ (χ{ - χ0) would be constant, which contra-

diets the assumption on k-

Now let us put

CΛ) to

and divide the case II into the following two subcases.

Ckj
5. Case Ha. A =4= 0.

Then, by virtue of (20), X, . . . , X^are linearly independent. To show the

existence of the motion in question we put

x X+Σ7J +

CΛ)
and take y = (yt, . . . , γr) so that x is perpendicular to X, X, . . . , I and

. . . , at* Proceeding in the same way as before we obtain the result that our

motion is the one whose paths are orthogonal trajectories of the r-planes which

contain the osculating k-planes of a curve and are parallel to a fixed plane of di-

mension r — k (type (D)).

CASE l ib. Dv = 0.
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Then there exist constants μlt . . . , μk not all zero and a constant μc such
that

μq -f μi αι + •'• + μk &k = 0.

From the last equation and (21) we eliminate αx, . . . , αA. Then we get, by
virtue of the lemma, the following relation

k

2,Σ "»ft = 0 (z>i constants not all zero).

k

Hence p0 χ0 -f Σ v{ (x{ — x0) is a constant vector. But as it is not a constant

direction on account of the assumption on k, we must have v0 =*= 0. So x0 +

ΈίVi'i/Q (xi-xo) is a fixed point in the space. We take it as the origin. Now

we put

k r

x-ΣofXi + .Σ^itfi

and proceed in the same way as in Ib. We have χ{ — δ;b(i = 1, .••, yfe)

If we can find α such that

(α, δ) - 0, (ά> δ) = 0, . . . , (α,2)δ) - 0, (22)

where α - (α l f . . , αft), δ = (Slf . . . , δft), we will have

(22) is equivalent to the following relations:

(α, δ) - 0, (oc, δ) - 0, . . . , ( α ^ δ f - 0* (23)

Here the rank of the matrix

^i o2 ok\

5i δ 2 δ Λ \

\δ» ^ hi

is k ~ 1. For otherwise there would be constants ^ , . . . , μ t - 1 not all zero
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k-i k-i

such that Σ μ; Si = 0 and then Σ μι x{ would be a fixed point in the space.

As a fixed point has been taken as the origin, this would result in the existen-

ce of one more fixed direction except ak+v . . , Cr This contradicts the

assumption on M> Thus there exists α such that (23) holds. Next we can find

that

0.

For otherwise there would be, by the lemma, constants p{ not all zero such

that Σ Pi oίi = 0. From the last equation and (23) we eliminate αt and by the

lemma we would get the relation 2 μι 8{ = 0, where μ{ are constants not all

zero. Then one more direction except ak+i, . . . , ar would be constant. This

contradicts the assumption on k

Now by virtue of D2 4 = 0 , X , . . . , X are linearly independent. We put x =

Σ ji X + Σ % ^ , and determine γ0. -••> ΎΛ-I, ΎM-I, . . . Ύ? so as to satisfy the
*=0 i = k-r'l . (&-1)

relation that x is perpendicular to X, X, . . . , X and ah+v . . . , όr Thus we

find that the motion in question is really possible. Consequently we get the

result that our motion is the one whose paths are the orthogonal trajectories of

the r-planes which contain the osculating {k — l)-plcnes of a curve end a fixed

plane of dimension r-k (type (JB))- Thus our motion, for which the equality holds

in (2), must be one of the five types (A), (B), (C), (D) and (£)• The restriction

on the position of the simplex on each plane is evident from the above dis-

cussion.

6. Concerning the motion on the sphere of dimension n the result

analogous to (2) does not hold. In this case, if n is odd, there exists even a

motion by which all points on the sphere describe the arcs with the same

length and it is easy to get all the motion of that nature. Let x be a point

that moves on the ^-dimensional unit sphere and the position of x at an

instant / = 0 be a. Then x can be represented as x = Pa, where P is a proper

orthogonal matrix whose elements are functions of /., We denote by ds the

arc element of the curve which x describes. When we put P'P = S', S is

skew and

(ds/dt)2 = (x, x) - (Pa, Pa) = {JPSa. PS a) - (S'Sa, a).
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Now we suppose ds is the same for all a such that (a,.a) = 1. Then taking s

for the parameter / we get the result S'S = E, where E is the unit matrix.

As S is skew, there exists an orthogonal matrix such that S = OΆO, where

Tr en owing to i1 '^ = E we have J ' j 1 - OV12O = E, hence ^42 = jζ, which results

in λ2 = ± 1 . Thus all the matrices S which are orthogonal as well as skew

are obtained, namely S = OΆO, where A is the skew matrix of the form stated

above and O is an arbitrary orthogonal matrix.

Now we solve the matric differential equation

P - (P-^'S (24)

with the initial condition P = E at / = 0- Then P'P -f P'P' = (P'P) = 0 and

so P'P = E for all Λ Hence we have from (24)

P-PS. (25)

It is more convenient to solve (25) with the initial condition P - E at t = 0

than to solve (24). Owing to the uniqueness of the solution of the differential

equation the solutions of (24) and (25) with the same initial condition P = E

at t = 0 are the same. If O is a constant matrix, the motion thus obtained

is trivial, while if O contains the parameter /, our motion is of some interest.

It is well known that the rotation group of dimension 4 is locally a direct

product of the two groups, each of which is locally isomorphic to the rotation

group of dimension 3. All the motions of these two groups possess the

property stated above, namely all the points on the sphere describe the arcs of

the same length.
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