ON PSEUDO-PARALLELISM IN EINSTEIN SPACES*)

BY

Syun-ichi Tachibana

In this paper we shall define a new parallelism in Einstein spaces making use of their Poincaré's and Klein's representations which were generalized by S. Sasaki [1], [2] and K. Yano [2]¹⁾. We shall obtain the differential equations which give the parallelism and compute the parallel angle.

§1. Preliminaries. Consider an Einstein space E_n with a positive definite fundamental metric tensor g_{ij} $(i, j, k \dots = 1, 2, \dots, n)$, then the curvature tensor is given by the components

$$\mathbf{R}_{jkl}^{i} = \frac{\partial \left\{ {_{jk}^{i}} \right\}}{\partial x^{l}} - \frac{\partial \left\{ {_{il}^{i}} \right\}}{\partial x^{k}} + \left\{ {_{hl}^{i}} \right\} \left\{ {_{jk}^{h}} \right\} - \left\{ {_{hk}^{i}} \right\} \left\{ {_{il}^{h}} \right\},$$

where $\{i_{jk}\}$ are Christoffel's symbols constructed from g_{ij} . Making use of the curvature tensor we put

$$R_{jk} = R^i_{jki}, R = g^{ik} R_{ik}.$$

Now we construct the space with normal conformal connexion C_n [1], [3] corresponding to E_n , then the connexion of C_n is given by following equations:

$$dR_{0} = dx^{i} R_{i},$$

$$dR_{j} = cg_{jk} dx^{k} R_{0} + \{ \substack{i \\ jk \}} dx^{k} R_{i} + g_{jk} dx^{k} R_{\infty}, \qquad (1)$$

$$dR_{\infty} = cdx^{i} R_{i},$$

where R_A 's $(A = 0, 1, \dots, n, \infty)$ are Veblen's reperes corresponding to E_n and

$$c = -\frac{R}{2n(n-1)} \tag{2}$$

which is constant by assumption. Consider a hypersphere or a point $A \equiv R_{\infty} - cR_0$, then the group of holonomy of C_n fixes A. In the following we

^{*)} Received October 16, 1950.

¹⁾ The brackets [] mean the order of papers to be referred which are given at the end of this paper.

assume that $c \neq 0$. Then the hypersphere A is the absolute in Sasaki's generalized Poincaré's representation and conformal circles in C_n which intersect A with a right angle become geodesics in E_n .

On the other hand if we construct from E_n the space with normal projective connexion P_n , then the group of holonomy of P_n fixes a hyperquadric B [2]. For the sake of convenience we perform a trivial conformal transformation $E_n \to E_n^*$ defined by

$$g_{ij}^* = k^2 g_{ij}, \qquad k = \sqrt{2\varepsilon_c}, \qquad (3)$$

where ϵ is +1 or -1 according to c > 0 or c < 0, then the connexion of P_{n}^{*} corresponding to E_{n}^{*} is given by

$$dA_{0} = dx^{i} A_{i}, dA_{j} = g_{ik}^{*} dx^{k} A_{0} + \frac{i}{ik} t^{*} dx^{k} A_{i},$$
(4)

where A_{λ} 's ($\lambda = 0, \dots, n$) are semi-natural repères corresponding to E^*_n . Then the hyperquadric B^* invariant under the group of holonomy of P^* is given by the following equation:

$$\varepsilon g_{ij}^* X^i X^j + (X^0)^2 = 0,$$

where X^{λ} 's are current coordinates in tangential projective spaces.

Now we consider a geodesic e in E_n and let g(h) be the corresponding conformal circle (path) in $C_n(P_n^*)$. We develop g(h) in a tangential Möbius' (projective) space at a point P_0 which lies on g(h) and let P', P'' be points at which g(h) and $A(B^*)$ intersect. Let $\overline{g(h)}, \overline{P_0}, \overline{P'}, \overline{P''}$ be the circle (path) and points defined in the same way for an another geodesic \overline{e} . Next we make following

DEFINITION. Two geodesics e, \overline{e} in E_n are said to be $\mathcal{A}(B)$ -parallel, if the image of $\overline{P'}$ coincides with P' when we develop the tangential Möbius' (projective) space at \overline{P}_0 on the one at P_0 along a suitable curve which joins $\overline{P_0}$ to P_0 , provided that P' and $\overline{P'}$ lie in directions of increasing or decreasing arc length for both geodesics simultaneously.

§2. A-parallelism. At first we consider A-parallelism in C_n . We develop an arbitrary conformal circle in a tangential Möbius' space at P_0 and choose a projective parameter t suitably on the circle, then a variable point P on it is expressible in the following form [1].

$$P = \left(1 + \frac{t^2}{4} g_{jk} n^j n^k\right) \mathbf{R}_0 + \left(x'^i t + \frac{t^2}{2} n^j\right) \mathbf{R}_i + \frac{t^2}{2} \mathbf{R}_{\infty}, \qquad (5)$$

S. TACHIBANA

where $x'^i = \left(\frac{dx^i}{ds}\right)_{P_0}$, $n^i = \left(\frac{\delta^2 x^i}{\delta s^2}\right)_{P_0}$ and δ means the covariant differentiation along the curve.

Now consider a geodesic e in E_n , then a variable point P on the corresponding conformal circle g in C_n is r presented as follows;

$$P = \mathbf{R}_0 + t \boldsymbol{x}^{\prime i} \mathbf{R}_i + \frac{t^2}{2} \mathbf{R}_{\infty}.$$
 (6)

Since (6) meets with A as points corresponding to $t = \pm \sqrt{\frac{2}{c}}$ [1], the point of intersection P' is given by

$$P' = R_0 \pm \sqrt{\frac{2}{c}} x'^i R_i + \frac{1}{c} R_{\infty}. \qquad (7)$$

In the same way, we have for another geodesic \overline{e}

$$\overline{P}' = \overline{R}_0 \pm \sqrt{\frac{2}{c}} \, \overline{x}'^i \, \overline{R}_i + \frac{1}{c} \, \overline{R}_{\infty} \,, \qquad (8)$$

where the quantities carrying bar are considered at \overline{P}_0 .

Now suppose that $\overline{P}_0(\overline{x^i})$ lies indefinitely near to $P_0(x^i)$, then we can put $\overline{x^j} = x^j + \epsilon \lambda^j$, wher λ^i is a unit vector at P_0 and ϵ is an infinitesimal constant. Then from (1) we have

$$\overline{R}_{0} = R_{0} + \epsilon \lambda^{i} R_{i},$$

$$\overline{R}_{j} = R_{j} + \epsilon c g_{jk} \lambda^{k} R_{0} + \epsilon \left\{ \frac{i}{jk} \right\} \lambda_{k} R_{i} + \epsilon g_{jk} \lambda_{k} R_{\infty},$$

$$\overline{R}_{\infty} = R_{\infty} + \epsilon c \lambda^{i} R_{i}.$$
(9)

If e and \overline{e} are A-parallel, then, by definition, the relation $\overline{P'} = \rho P'$ holds good, where ρ is some scalar function. Substituting (9) in (8) and putting the relation thus obtained into $\overline{P'} = \rho P'$, we obtain

$$\rho = 1 \pm \sqrt{2c} \ \epsilon \ g_{jk} \lambda^k \ \overline{x}^{\prime j}, \tag{10}$$

$$\pm \rho x^{\prime i} = \epsilon \sqrt{2c} \lambda^{i} \pm (\overline{x}^{\prime i} + \epsilon \{_{jk}^{i}\} \overline{x}^{\prime j} \lambda^{k}), \qquad (11)$$

where the double sign \pm n ust be used in he same order by the definition of *A*-parallelism. El minating ρ from (10) and (11) and neglecting terms of the higher order with respect to ϵ , we get

$$[x'^{i};j\pm\sqrt{2c} g_{jk}(x'^{i}x'^{k}-g^{ik})]\lambda^{j}=0, \qquad (12)$$

where semi-colom deno es the covarient derivative.

216

Equation (11) defines A-parallelism in consideration in the Einstein space E_n .

In the next place we shall compute the angle which may be called to be parallel angle. In order to do this we displace \bar{x}'^i at \bar{P}_0 to P_0 in the sense of Levi-Civita's parallelism and substitute the resulting vec or (neglecting terms of the higher order with respect to ϵ)

$$\overline{\mathbf{x}}'^{i} = \overline{\mathbf{x}}'^{i} + \epsilon \left\{\begin{smallmatrix} i \\ i \end{smallmatrix}\right\} \lambda^{k} \ \overline{\mathbf{x}}'^{j}$$

in (11). Then we have

$$\epsilon \sqrt{2c} \lambda^{i} = \pm (\rho x^{\prime i} - \overline{x}^{\prime i}).$$
⁽¹³⁾

Now suppose that $\lambda_i x'^i = 0$, then contracting λ_i with (13) we obtain

$$\mp \lambda_i \, \overline{\mathbf{x}}^{\prime i} = \epsilon \, \sqrt{2c} \, .$$

Let θ be the angle which $\overline{\mathbf{x}}'^i$ makes with λ^i , then we see that

$$\cos\theta = \mp \epsilon \sqrt{2c} \tag{14}$$

holds good, because \overline{x}^{i} is a unit vector as \overline{x}^{i} . (14) is the equation which gives the parallel angle of the *A*-parallel geodesics e and \overline{e} .

§ 3. B-parallelism. Next let us consider *B*-parallelism. We shall deal only with the case c > 0, since the case c < 0 can be dealt with similarly.

Consider a geodesic e in E_n , it is a path h in P_n^* . We develop h in the tangential projective space at a point P_n on h, then a variable point P on h is expressible as follows [2]:

$$P = \cosh s^* \cdot A_0, + \sinh s^* \cdot A_0',$$

where s^* means arc length along the curve in E^* and A_0 , A_0' are those at point corresponding to P_0 . *h* meets with B^* at points

$$\mathbf{P}' = A_0 \pm A_0'. \tag{15}$$

In the same way, for $\overline{P'}$ corresponding to an another geodesic \overline{e} , we get

$$\vec{P}' = \vec{A}_0 \pm \vec{A}'_0. \tag{16}$$

Hereafter we agree that the quantities denoted by symbols with bar are those at \overline{P}_0 .

S. TACHIBANA

Now as in §2, we assume that \overline{P}_0 lies indefinitely near to P. Then the relation $\overline{x^i} = x^i + \epsilon \lambda^i$ holds good, where λ^i/k is a unit vector in E_n^* . From (4) we have

$$\overline{\mathcal{A}}_{0} = \mathcal{A}_{0} + \epsilon \lambda^{i} \mathcal{A}_{i},$$

$$\overline{\mathcal{A}}'_{0} = \overline{x'^{i}} \overline{\mathcal{A}}_{i} = \overline{x'^{i}} (\mathcal{A}_{i} + \epsilon g^{*}_{ik} \ \lambda^{k} \ \mathcal{A}_{0} + \epsilon \{^{j}_{ik}\}^{*} \ \lambda^{k} \ \mathcal{A}_{j}).$$
(17)

If e and \overline{e} are *B*-parallel, then substituting (17) into (16) and computing $\overline{P}' = \rho P'$, we have

$$egin{aligned} &
ho = 1 \pm \epsilon \; g_{jk}^* \; \overline{\mathbf{x}}'^j \lambda^k, \ &\pm
ho \; \mathbf{x}'^i = \epsilon \; \lambda^i \pm (\overline{\mathbf{x}}'^i + \epsilon \; \overline{\mathbf{x}}'^j + rac{i}{ik} \; * \; \lambda^k). \end{aligned}$$

Since these equations are written in terms of quantities of E^* , we must translate them to those written in terms of quantities of E_n . For this it is ufficient to remark that vectors x'^i , \overline{x}'^i are unit vetors with respect to ξ_{ij} . Thus, we obtain (10) and (11) again.

§4. Pseudo-parallel vector fields. In §2, §3 we observed that for two geodesics which lie indefinitely near to each other, A- and B-parallelism coincide with each other. Therefore we shall call that unit vectors v^i at (x^i) and $v^i + dv^i$ at $(x^i + dx^i)$ are (+) (or (-))-pseudo-parallel if their components satisfy the equations

$$[v^{i}; j + (\text{or} -) \sqrt{2c} g_{jk} (v^{i} v^{k} - g^{jk})] dx^{j} = 0$$
(18)

(Cf. (12)). A unit vector field v^i which satisfy (18) for arbitrary element (x^i, dx^i) will be called a (+) (or (-))-pseudo-parallel vector field. Then we can state the following

THEOREM. If an Einstein space with non vanishing constants c admits n linearly independent pseudo-parallel vector fields, it is a space of constant curvature.

PROOF. Let v^i be a pseudo-parallel vector fields, then from (18) we have

$$v_{i;k} \pm \sqrt{2c} \quad (v_i v_k - g_{ik}) = 0,$$

where \pm is taken either + or -. Differentiating it covariantly, we get

$$v_{i;k;j} + 2c \left[-2 v_i v_j v_k + g_{ji} v_k + g_{kj} v_i\right] = 0.$$

Interchanging k and j and subtracting the equation thus obtained from the

218

first equation, we have

$$v_{i;k;j} - v_{i;j;k} + 2c (g_{ij} v_k - g_{ik} v_j) = 0.$$

Making use of Ricci's identities, we see that the relation

$$\nu_h Z^{h_{ikj}} = 0 \tag{19}$$

holds good, where

$$Z^{h}_{ikj} = \mathbb{R}^{h}_{ikj} - 2c \left(g_{ij} \, \delta^{h}_{k} - g_{ik} \, \delta^{h}_{j} \right)$$

is the so-called concircular curvature tensor. From (19), we can easily see that our assertion is true.

§ 5. Up to the present we restricted ourselves only to Einstein spaces. But these results can be generalized to an arbitrary Riemannian space \mathcal{V}_n as follows²). Let c be an arbitrary constant, and we difine \overline{C}_n and \overline{P}_n^* (or \overline{P}_n) from \mathcal{V}_n by (1) and (4) respectively. Then making use of \overline{C}_n and \overline{P}_n we obtain results analogous to those in sections 2, 3, 4. But generally \overline{C}_n (or \overline{P}_n) is not a space with normal conformal (or projective) connexion.

References

[1]	S. Sasaki, On the spaces with nomral conformal connexio of h	0-
	lonomy fix a point or a hypersphere, I, II, III.	34
	(1942), pp. 615-622, pp. 623-633, pp. 791-795.	
[2]	S. Sasaki and K. Yano, On the structure of spaces with normal projective connexio	ns
- 1	whose groups of holonomy fix a hyperquadric or a quadric of $(n-2)$	1i-
	mensions. Tôhoku Math. Journ. (2) 1 (1949), pp. 31-39.	
[3]	K. Yano et Y. Muto, Sur la théories des espaces à connexion conforme normal et	la
	géométrie conforme des espaces de Riemann. J. Fac. Sci. Imp. Univ. T	`o-
	kyo. Sect. I.4 (1941), pp. 117-169.	
[4]	K. Yano, Les espace connexion projective et la géométrie projective des patl	ns.

Annales Sci. Univ. Jassy, (1) 24, pp. 395-464.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY, SENDAI.