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Let ¢(t) denote an even periodic function with Fourier series

@) ¢(t>~2a,‘cosm‘, a,= 0.

n=0

The a-th integral of ¢(¢) is defined by
t
P (L) = 1%63[ PCu)(t — u)*~" du, a >0,
0

and the B-th Cesaro sum of (1) is given by

st = %(n[i y>a,,cos vt.
L. S. Bosanquet? has proved that
Pg(t) = o(tP) (t>0)

implies

¥ = o(n®) (n > )
for a > 2, and conversely

sB = o(nB) (7> o0
implies

Du(t) = o(t*) t->0)
fora >3+ 1,

Recently F. T. Wang® has proved that
Dp(t) = o(tY) @->0)
for B > v implies
% = o(n%+F-Y) (n-> o)
for &« > 3 + (8 — ). Analogously to the converse part of the Bosanquet
theorem, we prove the following theorem?®
THEOREM. s = o(nY) (n > )
for B—y>—1 B> —1, v >—1, implies
Oy (t) = o(t¥*+F-Y) >0
Jor a >1+ «.
This theorem is proved by J. M. Hyslop® for 0 <8 —y < 1 and 0<y <.
In the case 8 — v < — 1, Theorem becomes trivial,

1> L.S. Bosanquet, Proc. London Math. Soc. (2), 31{1930).

2) F.T. Wang, Annals of Math. (2), 44(1943). Of. J. M. Hyslop, Journ. London
Math. Soc. 24(1949).

3) The case g8 <y was suggested by G.Sunouchi.

4y J.M. Hyslop, loc. cit.
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PRroOOF., We will first consider the case 0 < y < 1, Then we can suppose
1< a2,

14
I' (a) Py (t) =f du) (t — u)—'du
(2) 0

= D> a, | cosnu(t—u)*'du.

n=0
0

By the definition

n
= 2(—1)"‘”(§t,1}>s§,

r=0
and then

o t n
I'a) ®u ) = 2 cos nu(t — u)*~‘du > ( — 1)"~ "(’8 * l)s,,

(3) n=0y v=0
oo oo t
= 2 sB 2 (—1r-v (f i ,lj)f cos nu(l — u)* du,
v=0 n=v

0

where the interchange of the order of summation is legitimate, For,since
t

f cos nut —u)*"! du = O /n%),
0

.4 oo 1
25'? 2 (— 1) (f i }})f cosnu (X — uw)* ‘du

v=0 n=M+1
0

(Z Zm>

- 0(1&‘”;: (M+i}y_,,).e+1>= 0<M1_y )= o(l).

=0

ll

Thus (3) is proved. Since

g( — 1yn-v (B + )cos nu =N {m%o (- 1)m<B;n|‘ 1> gime emb}
B+1

=23+1(sin%> cos((y+ B;I)u— B+1”> ,

2
f{z( Dr-v (‘B+ )Cos nu} (t —uw)* ! du

n=v

= 25+1ft<sin -g—)ﬁtzlos ((v + = B+ 1 ) % — '8;- 1 ﬂ)(t —u)*! du

0
CO(tB+1/p%)

4

Il
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for vt =1, we have

oo o t

>sE > (— 1y ('8 * 1>fcos nut —u)* du

n —v
v=M n=v

™ o1
=o(Xv g
v=M

Let N =[1/¢] and

0
(5)

) = oct/m=r1y .

o N oo
D) ®at) = > = > + > =I+].
v=0 v=0 v=N+1
By the second mean value theorem
t 8+1
f(sin—%—) cos <<y + 3-21- 1 >u + B'z" 1 7r>(t — weidy = 0( 75":’3 >7
and ghen
N
I=o0 Y-l ga+B ) = o ({#+BNY) = o(2**B-V)
(Z vt am02) = o (t=e2)
By 5 '

_] =0 (tBH/Na—y—l) — O(t'“B"y)-
Thus the theorem is proved for 0 < y < 1.
For — 1< v < 0 above estimations hold® and theorem is also true.
Next consider the case 1 <y < 2, whence we can suppose 2< a < 3.
Using Abel’s lemma in (2), we have

(6) L)o@t = 25| Acosnut —u)*=! du,
n=0 ;
53 This is proved by the lLebesgue’s device. That iz, putting A=(B+1)/2, we have
1

. B+1
r(sin g) Cos(r+MDu~am){A—w)*=1 du

‘0
t
B+1
= ; {'f (Sill~%) cos ((v+ADu—Aam)t—de=1 du
0
L—7|(v+ )
: o1 AR GALT R o %1
— @in - - -z C08 — A7 t—u— o
'{ «in 3 (n—f— y+)\) cos CCv+Du—rmr ( u V—f—)\) )t}
—7[(w+A)
t 0 ¢
1
il o
0 —n[(v+A) t—x|(w+A)
{B+1 {a+p-1 =1 1B+1
=0 (S + T+ ) =0 (Sa),
f()!‘ vi g 1. '
6). The difference is to take Cauchy limit in (2). That is,
t—¢ oo t—¢
()P a(t)=lim dCud(t—1) du=1lim an cog nuCt—ud)®=1 du.
€0 . €0 -0
0

Cf. T.. S. Bosanquet, Loc.cit.and Proc. London Math. Soc. 33(1932).
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where s, denotes the #-th partial sum of (1) and A cos nu = cos nu

— cos(n + Du. For,
11

f cos nu (t — u)*~! du= O(1/n?

0
for @ =2 and s, = OmY/*+Y) by a, = o(1) and s = o(nY).

Substituting

_S—e(, B ) s

v=0
into (6), we get

= ! n
I'(a) ®a(t) = ZfA cos mu (t —u)* ' du > (— l)n_”(n {g— ,,) @
(73 ":” . V=0
= Esf {E( — 1)y (71 ﬂi V)A COS nu} t — u)“—l du,

The interchange of the order of summation is proved as in the former
case, using that
B+1

31,2, o= (g ) s+ B s 2410)
(4n)= Vholds in this case” and

f Acos nu(t — u)*~' du = Ot/v*).

Dividing (7) into I and J as in the former case, we can get
)Py (t) = o(1®+8-7),

Similarly proceeding we can complete the proof of the theorem.

Finally I have to express my hearty thanks to Dr. L. S. Bosanquet,
who gave me some valuable remarks and advice. Originally the theorem
was proved for 3 >0 and v > 0. He let me know that the theorem holds
for 3 > —1 and v > —1 and it is proved by his method in the paper cited
in ¥. I have to mention that our method is like his method and order
estimations are, explicitely or implicitely, contained in his paper.
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7> (4 is proved by the twice use of the ILebesgue’s device in this case. Generally,
use it n times in the case n<e<n+1.





