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Introduction. Recently Cameron and Martin developed the theory
of Wiener integrals. Their method of study based upon the measure of
quasi-intervals in Wiener's generalized harmonic analysis (cf. Wiener [77).
In this note we prove their theorem by another method depending on har-
monic development of Brownian motion, The known results and preliminary
remarks are given in §1. In §2 and §3, we prove some theorems concerning
to the change of variables in Wiener integrals. These results are almost
evident in view of our method and somewhat general than the results of
Cameron and Martin. The proof also is simpler than that of Cameron
and Martin,

1. Harmonic analysis of Wiener integrals.® The results of this
article are well known, but we summarize them for the sake of comple-
teness.

Let {x(¢)} be real valued functions ot a real variable #, where 0 <7 =<1,
and Brownian motion, then almost all functions {x(Z)} is continuous in
this probability measure (cf. Wiener [7]). We call the Lebesgue integral
of functionals F[x] = F[x(.)], where x(.) = x(¢) €C (all continuous func-
tions of £, where 0 <{<1) by Wiener integral and denote

W
4
Then let @ (¢) and v (¢) be bounded variation in [0,1], we have

W, 1 1 1
1.2) f U P (1) dx(t)f 1lr(t)dx(t)]dwx - %f @ ()P (D) dt.
C 0 0 0
This is well known, see for example, Wiener [7], Paley, Wiener and
Zygmund [6] or Doob [3]. Especially let {®,(#)} (n =1,2,----) be N.O.S.
in [0,1], then the functionals

1
(1.3) V2 Dux] =2 f Po(1)dxCE)
0

is N. 0. S. in the space C. Let v(¢) be any function of bounded variation
and put

*) During the preparation of this paper, G. Maruyama applied this method to
another problems independently. See G. Maruyama, Kodai Math. Seminar Rep.
3 (1950) 41-44.
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1
.4 VA = f o(8) dx(t).
If V[«] is developed in series such as

a. 5) Vi:x] ~Z Cn(bn,Ex]y

n=1
then the coefficient ¢, is calculated by
1

w
1.6 Co =2 f V 04 Dalx] duox = f o(OP.(DAE, by (1.1)).
C 0
That is, ¢, is ordinary Fourier coefficient of »(¢). Provided that {®,({)}
is L*complete, we have

(1.7) f l Vij - 2 Cn¢7z[xj l duwx '
c
N 2
~-——f’v(t)— ) dt>0, as N-» oo,

n=1

that is

(1.8) L LM Z ca®alx] = V1.

Kl n=1
Put o(t) =1, if 0< 7 and »(¢)= 0, if + <1, then
i N T
1.9 2(r) —x%(0) =L. L. M. > (f P.(t) dt) @[],
N> o n=1

0

and we can assume x(0) = 0 without loss of generality.
In the following line we take

1.10) ®.(t) = sin nxt, n=1,2---),
then the series (1.9) converges in the mean almost x( e, \that is
1
(1.11) limf ‘x(*r) - f%,,(t) dt) a.e.
N n=1
0

(cf.Paley-Wiener [5]).
If F[x] is depending only on finite number of ®,[x], i.e

(1.12) FTx] Ef(.([)xtxl DLx], -, (Dn[x]);
then we have
(1.13) f FToldux = f SO, -y DuLxDdux

n/.,f ff(uh e ) exp( 2 u) duy- - dutn,

v=1
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provided that the right hand series is convergent,

Any integrable functional F{x] can be approximated in the sense of
L-norm by these functionals (Paley-Wiener [5]). Thus if we write
1.1 Flxl= L'nlé °1}/1 ful®ilx], -- -+, Palxl)

Ef((Dl[x], ey, (DnEx]y M ')
then we have

1.15) fl«[x]dwx ff(dh[xj ceee, Dylx], cc-) dux

= hm ,,/r [ ff(ul, U n":) exp ( —zui) dul"dun’
v=1

from the integration theory of infinite many variables, The right hand
i

integral is ordinary Lebesgue integral and exp (2 u,”,) is convergence
=1

factor where (#,) is ordinary Fourier-Stieltjes coe_ﬂicient of x(¢) (See

(1.3)).

2. Change of variables of Wiener integrals under translations. Let
x,(2) is a fixed continuous function and put
2.1 Y@ = a(t) + x(D),
then if write

0
(I)n[y:l = Uy, (I)n,[x] = Un, (I)n,[xo_f = MEL ),
we have

2.2) Vy = Uy u(nu).
Whence we have

w
@.3) [ FLylduy

=lim —= ,,u, f f V(CTREER )exp( 20) dv,--dv,

v=1

=1im—’Lf .“.ff(uﬁ—u(ﬁ’), St ud )

T

-co — oo

eXp( - 2 (u, + m“”)”) du, ---- dum,

exp( Z(u'o’ hm ”“f ff(u + o+ wP )

Il

n

exp(—z V’)exp(—ZZmzw) Uy - -e duy

P
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1 w 1
= exp( - f [xé(t)]‘-’dt) Jf Flx+ x] exp[ -2 f x,’(t)dx(t)] duwx,
0 c 0
provided that x,(#) is of bounded variation, Thus we get the following
theorem,

THEOREM 1. Let F(y) be a Wiener-integrable functional over C and x,(t)
be a given function of C with x, (t) of bounded variation in 0=t <1, Then
under the translation
(2.4) y(t) = x(t) + x%(%)
we have

w
@.5) f FTy] duy

= exp( f[xo(t)] dt f ITx+ Xo ] exp( - fxo(t) dx(t)) dux.

This is a result of Cameron Martm [11. More generally we have

THEOREM 2,%9  Let x,(t) be an absolutely continuous function with xo(t>
€ L*(0,1), then wunder the translation (2.4), we have the formula (2.5),
where the integral

1
(2.6) f X0 )dx(E)

0
is Paley-Wiener's sense [5] (that is defined by Fourier Stieltjes coefficient).
The proof is evident from the above argument,
3. Change of vaiables of Wiener integrals under general class of
linear transformations.
If x(¢) € C and put

1 1
f sin nxt dx(t) = uy, f cos nrt x(t) dt = U,,

0 0
then we have

G.D un = nxlU,
and

w
3.2 f AD[x], -+, PuLx]) dwx

f ff(ul, ceeety) €Xp (—2u§> du,----diy
v=1

—nl n/zf fgaj,, o U exp (—2;(unU,,>2) v, -dU,,
v=1

where

**) This is als~ pwved in Mamyama% note, see loc. cit.
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{/(UI;""yUn):f(”Uh 27fUz, ey, n”Un).

If
(3.3 3t) ~ 2V, cos nxt
n=1
(3.4) x(t) ~ 2 Un cos nrt
n=1
and
(3.5) K(,s) ~ 2 Q,,n COS Mzl COS N7s,

m =1

then under apropriate conditions
1

(3.6) yt) = x@) +n| K¢, s)x(s) ds
0

is equivalent

(3 7) .Vm = Um + A 2 A, -nUn, (m = 1, 2, et );
n=1

that is
(3.8) V=AU
where (V) and (U) are single row matrices respectively and

[/ 1+ ran a a3
(3.9 A = | @ 14 A2y a;s

as A3y 1+ Aass

If we denote .
D = determinant (A,
then we have by (3.2) formally

w
(3.1 ‘/.F[y]dzqy

%

i-yoo

= lim#n! n'l’zf . f (Ve oy Vi, 2D exp( — Z(DH'V.,)Z) dVi--dVa
v=1

= lim %!ﬂnllelf"f ,(I("", U,n“l‘ Xzaanm )

e i n=1

n o 2
eXp[ _'2 {7[2”2((]1/‘{‘ XEaanm) }'j} dU]""dUn""

v=1 n=1
where
Flyl =P xd, -+, DLl )=gVy, -y Vi, ---2).
On the other hand
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(3.11) m? (Um + 7\2 anmUn>

n=1
2

= m* {U,,L + 2AU,. 2 @raUn + N* <2 Ann n) }

n=1 n=1
From (3.3), (3.4} and (3.5,, we have formally

oo

o 1
(3.12) X ma sin mat > @, ~ dit f K(t,s)x(s)ds

m=1 n=1

(3.13) 2 mir’ (2 anmUn) ng K(t,s>x(s)ds)
0

m=1

-and

1 1
(3. 14) 2 m* 7Z' Um(z Q)n ll) zf (:jz‘f K(tys)x(s>ds) dx(t)-
0

n=1 n=1
0

If Kct,s) is L* for each variables and both variables and

(3.15) f( : fK(t s)x(s)ds) e 1

the formulas (3.12). (3.13) and (3.14) are justified. Moreover it is sufficient
for the absolute convergence of determinant D that

(3.16) 2 |@u|* < oo, and 2 [@n] < oo,

’m."ﬂ:l m=1
from von Koch’s theorem. If (3.16) holds, then above formal calculation
can be justified by step by step, and D coincides with Fredholm’s deter-
minant, that is
1| K(si, 800 - K(s1, 800 |

(3.17) -—1+2, f f ................... - idsl""ds'p

| K(sus) - K(s,80) |
This is due to Marty [4]. If
(3.18) 9’%’; $)

oo

exists almost everywhere and €L? then 2 |@.n] < oo, for

m-1
1 1
Z mir "a»m 2, m*r? amn = ff

m=l m,n=1

’)K(? $) 'dz‘ds < oo,

and we have

> amm| = > (@un|m e 1/m

m=1 m=1
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1)z

=< (im%ﬁ.m>m<é 1/m“) < oo,

m=1 m=1
Thus we get the following theorem.
THEOREM 3. Let
(1°» K(t,s) belongs to L? for each variables and both variables,
(2°) GK(t,s)/at exists almost everywhere and belongs to L?,

1
(3°: f(?z«f K(t, s.)x(s)ds) dx(t) exists almost all x(.) €C,
N 0
4°, D=0,
then under the transformation

1
W) = 2(E) + f K(t,)x8)ds,
0

we have

w w 1
(3.19 f Fyldwy = Ile F[x—{—fl((r,s)x(s)ds]exp( — O(x))dwx,
C C o

where

. 1 1 2 . 1
(3.20; [x]= f[ddtf K(t,s,t-x(s)ds—l dat +- 2f [gtfK(t,s,)x(s)ds]dx&ti,
0 0 - 0 v
a1d D is Fredholm's determinant of kernel K(Z,s).
For example, let the transformation be

(3.21) yt)= x) + xf tan A(s — 1)x(s)ds, —7[2 <A< ]2,
0

then we have
1

1
f Kt s)x(s)ds =f A tan (s — D x(s)ds
0 0

and (3°) is

1 1
(3.22) f A tan N(Z — Dx($)dxt) = f A tan A(E — Dd{Cx(E) T}
(1)
Thus we can apply the theorem to this case.
Since the condition (3°) contains x(Z), in order to exclude x(#), we
can proceed as follows.
Coresponding to the results of Cameron-Martin [2], put
KN(t,8), where 0 <7 <s, 0<s=<1,
(3.25) K(t,s) = Kx(t,s), where s<t=<1, 0=<s<1,
(Z"X{K‘('s,m + K*(s,s)}, wheret=s 0=s=<1,
and ,
(3.24) Js) = K%s,s) — K\(s, s).
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Let
Kt b, where 0<t<s, 0<s=<l1
(3.25) K'(t, s) = {Kz(t, 1), where s<t<1 0=s<1
2-1(Ki(s,s) + K*(s,s)), wheret=s 0=s=1,
and
(3.26) Rt ) = K(t,s) — K(t,s)

be absolutely continuous with respect to t. Then

1
d
—d_[f K(t,s)x(s)ds
0

3 1

_ d & _d_ 0 )

= b’ff K¢, )x(s)ds + ar [K (t,six(s)ds
0 0

=L + L), say

1 1
L) = lim~L[ [ﬁ‘(t + h,s)x(s)ds — f .S?(t,s)xﬁs)ds]
n>0 R
0 0
1
= lim I—[Q(t + h,s) — @(t,s»] x(s)ds.
>0, n
0
If
(3.27) aa} R(t,s) = H(E,s), - ae,
and
1
(3.28) fos?p H(t,s)ds < oo,
=t=1
0
1
then I(t) = fH(t,s)x(s)ds
0

from the dominated convergence theorem of Lebesgue. In order to be of

bounded variation, it is sufficient that
1

(3.29) fvar.cH(t,s)ds< 0.

0
For

1 1
var.fH(t,s)x(s)ds :1@[ |AH(t, s)||x(s)|ds
0 0

1 1
gfmm,}l(t,s)llx(s)lds =| var., H(t,$))x(s)ds < oo,
0

by Lebesgue’s theorem.
On the other hand
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1 1
L) = L%([Kz(s,s)x(s)ds+ fK‘(s,s)x(s)ds)
0

13
= K&, )x(t) — K'(t, Hx(t) = J(@Hx(t)
by (3.24).
If JHxt) €L?, then we have

2 f JOx(dxt) = f IHOAL Oy, ae.

and if ](t)éBV then the rlght hand integral is ordinary Riemann-
Stieltjes integral. Summing up these results we have the following theorem
which is due to Cameron and Martin [2].

THEOREM 4. Let K'(t,s) be continuous on the closed triangle [0 =t ='s,
0=<s=<1] and let it vanish on the line segment t=0[0=<s=<1]; It K*
(t,s) be continuous on the closed triangle [0 <s<t,0=<t<1]; let

Kit,s), where 0 <t <s, 0<s=1
Kt,s) = {K*t,s), where s<t<l, 0=<s=1
2-1(K(s,s) + K*(s,s)), wheret=s, 0<s=<1,
J(s) = K¥s,8) — K'(s,8), 0=<s=1,
D = Fredholm’'s determinant of K(t,s).

Assume further that K(t,s) is such that the following conditions are
satisfied :

(1°) For almost all s, K(t,s) is absolutely continuous in t on 0=t =1
after the jump at t = s is removed by the addition of a step function.

(2°) There exists a wmeasurable function H(t,s) which is of bounded
variation in t for each s and which for almost all t, s inthe square o=st<l,
0<s=<1] is equal to 2K(t,s)/ct.

(3°) The function H(t,s) mentioned in (2°) can be so chosen that
1 1

fongl VH(t,s)|ds < <o, f var [H(¢,s)] ds < oo.
J ost=

0=t=1
0
and

1 1

ff |H(t,s)|*dt ds < oo,

0 0
(4°) J(s) is of bounded variation on 0 <s <1,
(5°) D =%=0.
Then under the transformation

1
y(@) = x() + fK(t, s)x(s)ds,

we have

w w 1
fF[y]a’wy = [leF[x +fK<. ,s)x(s)ds] exp ( — PdLx))dwx,
' o 0
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where

1 1 "
DL} =f[g?f K¢, s)x(s)ds] dt
0

0

1 1 Wl
+2 f [ % K(t,s)x(s)ds]dx('t) + j JHd{Tx(t) ).
0

0 0
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