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Introduction. Recently Cameron and Martin developed the theory
of Wiener integrals. Their method of study based upon the measure of
quasi-intervals in Wieners generalized harmonic analysis (cf. Wiener [7]).
In this note we prove their theorem by another method depending on har-
monic development of Brownian motion. The known results and preliminary
remarks are given in § 1. In § 2 and § 3, we prove some theorems concerning
to the change of variables in Wiener integrals. These results are almost
evident in view of our method ,and somewhat general than the results of
Cameron and Martin. The proof also is simpler than that of Cameron
and Martin.

1. Harmonic analysis of Wiener integrals.*) The results of this
article are well known, but we summarize them for the sake of comple-
teness.

Let{x(t)} be real valued functions of a real variable t, where O g / S l ,
and Brownian motion, then almost all functions {#CO} is continuous in
this probability measure (cf. Wiener [7]). We call the Lebesgue integral
of functionals F[_x] = F[x(..)], where x(.) = x(t) €C (all continuous func-
tions of t, where 0 < ^ S D by Wiener integral and denote

rw

Cl 1) I Fix} dwx.
c

Then let φ (I) and ψ (7) be bounded variation in [0,1H, we have

C1.2) ί [f φ(t) dχwf ΨV)dx(t)]dwx= ~γj ΦQt)ψ(tϊ dt.

This is well known, see for example, Wiener [7], Paley, Wiener and
Zygmund [6] or Doob [3]. Especially let {<Pn(t)} (n = 1,2, •) be N.O.S.
in HO, lj, then the functionals

(1. 3)

is N. O. S. in the space C. Let v(t) be any function of bounded variation
and put

*) During the preparation of this paper, G. Maruyama applied this method to
another problems independently. See G. Maruyama, Kodai Math. Seminar Rep.
3 C1950} 41-44.
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(1.4) F M ΞΞ / v(t)

0

If V[_x~} is developed in series such as

(1.5) ' ~

then the coefficient cΛ is calculated by

(1.6) = 2J VtxlΦnZxldnX^ / , (by (1.1).).

That is, cn is ordinary Fourier coefficient of v(t). Provided that
is Incomplete, we have

N 2

0, asiV->oo,

that is

(1.8)

Put

(1. 9)

L. I. M.

= 1, if 0 < r and v(t) = 05 if r ^ 1, then

= L. I. M. 2 1 ΦnW dt J ΦnLxl,

(1.11)
r1

Hm I - 0, a. e.
ϋ o

(cf. Paley-Wiener [5]).
If F M is depending only on finite number of ΦnLxl, i.e.

(1.12) /TZ^=/CΦiE*X Φ . M , ••••, ΦΛXD,
then we have

(1.13)

and we can assume x(0) = 0 without loss of generality.
In the following line we take

(1.10) Φ Xt) = sin nπt, (n = 1,2, ),
then the series (1. 9) converges in the mean almost x(.) £ C, .that is

r1 N

x(τ) - 2

c c

= ^iTF I * ' I /C«n * * * , »n) exp ( - 2 ^ ) duy -dun,
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provided that the right hand series is convergent.
Any integrable functional F^xJ can be approximated in the sense of

L-norm by these functionals (Paley-Wiener Γ5Ί). Thus if we write
(1.14) ~~

then we have

(1.15) I F[_x]dwx = / / ( Φ J M , , Φ W M, )

C G

= lim—j^r I " I f(u1} - , un •, ) exp ( —

from the integration theory of infinite many variables. The right hand

integral is ordinary Lebesgue integral and exp ( 2 ^ ) * s convergence
V

factor where (uv) is ordinary Fourier-Stieltjes coefficient of x(t) (See
α.3)).

2. Change of variables of Wiener integrals under translations. Let
Xu(t) is a ήxeά continuous function and put
(2.1) y(t) - x(t) + ΛΓOCO,

then if write
ΦnLyΊ = v«, Φ » M = M», Φ»CΛbJ =.«(»0),

we have

(2. 2) tfrt - Un. 'r Un\

Whence we have

rw

(2.3) j Fly-]dwy
c

1 Γ°° Γ°° / ' \
= } ^ ̂ ^" J ' Ί f(J)u'' > Vn>'') e x p v ~ ̂  v y dυ"' 'dv>ι

— «O — CO

- l i m - ^ Γ -. - Γ / ( M l + ^ ί ΰ )

? - • • - , « „ + « 2 ° , -•••)

e x p ί — 2 (#1/ + ^ ( 0 ) ) 2 ) duΎ " •
v = l

~ Σ ('̂ °3)2) l i m -4?ϊ ί f Λ«i +

exp ( — 2 «i;) exp
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= exp ( - f LX0(OJdM F[> + X^ exp [̂  - 2 f x^t)dx(t) J AOAΓ,

0 C 0

provided that V(O is of bounded variation. Thus we get the following
theorem.

THEOREM 1. Let F(y) be a Wiener-integrable functional over C and xo(t)
be a given function of C with x0' (7) of bounded variation in 0 Ξ3 t <L 1. Then
under the translation
X2.4) XO = x(t)

(2.5) J
^ Γ ) Γ ( Γ d dwx.= exp ̂  - Γ Γ^oCO]2 ̂ ) Γ i 7 ^ + ΛbD exp ( - 2 Γ Λb(« dx(OJ dw

o a o

This is a result of Cameron-Martin [11. More generally we have
THEOREM 2.**^ Let xo(t) be an absolutely continuous function with xΌity

€L2(0,1), then under the translation (2.4), we have the formula (2.5)r

where the integral

(2.6) Γxoίt)dx(t)

is Paley-Wiener s sense [5] {that is defined by Fourier Stieltjes coefficient).
The proof is evident from the above argument.
3. Change of vaiables of Wiener integrals under general class of

linear transformations.
If x(t) € C and put

I sin nπt dx(t) = un, I cos nπt x(t) dt = Un,
0 0

then we have
(3.1) un = nπUn
and

(3.2) J /(ΦiOα , Φ,M) Λa

= . nj.z I '' " I /(^i> " '', Un) exp t — s^ut) <

— oo — c o

* * / 0^U\,

dun

, ϊ/n) exp ^ - 2;(^£/J a ) dUι -dUn,

where

**) This is also proved in Maruyama's note, see Joe. cit.



HARMONIC ANALYSTS AND WIENER INTEGRALS 191

i, 2πU2,

CO

y/t) ~ 2 Vn COS

CO

*(*.) ~*ΣUn COS

If

C3. 3)

(3.4)

and
CO

(3.5) K(t,s) ~ 2 a>n,n cos mπt cos ^TΓS,

then under apropriate conditions
1

(3.6) y(t) = x(ί) + λ i i^(/, 5.Xs) ί/s

o

is equivalent

(3.7.) = Um + λ = 1,2,

that is
(3.8) y = Λ ί7
where (V) and (£/) are single row matrices respectively and

(3.9) A =

If we denote
D = determinant (A ),

then we have by (3. 2) formally

(3.10) r
J

- l im n ! TΓ"'2 Γ Γ ί/ΓF,, , Vn, • •) exp ( - ^

= l im » I τr«'-|£)| Γ • Γ ./• , U,n + λ Σ «™»

«->" J J \ ,t,ι

exp Γ - Σ I *v + dUλ •

where

On the other hand

dV1-• dV»
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(3.11) n

From (3.3), (3.4) and (3.5;, we have formally

(3.12) ^

(3.13)

1

2 ^ ^ s m wi7rt^?a»mUn~ ~-rr I K{t,s)x(s)ds
w=l n = \ U t J

0

2 waΛ a ( 2 β^^») = ( ^ / K(t,s)x(sϊds^

and

(3..14) 2 ^Tr'Um^Σ a/hnUn^ = Γ ( ^ Γ K(t,s)x(s)ds)
0 0

,s)x(s)ds) dxφ.
0 0

If K(t,s) is Zr for each variables and both variables and

(3.15) ί ( Γί (-—Γ
0 ϋ

the formulas (3.12). (3.13) and (3.14) are justified. Moreover it is sufficient
for the absolute convergence of determinant D that

(3.16) 2 l«/»nl2<«>, and 2 1^1 < °°>

from von Koch's theorem. If (3.16) holds, then above formal calculation
can be justified by step by step; and D coincides with Fredholm's deter-
minant, that is

(3.17) D = l + 2l^Ί
μ=:l ^ o o

This is due to Marty [4]. If

(3.18)
at

oo

exists almost everywhere and €L2, then 2 \a>nn\ < °°, for

m =β l ?)?, ?? • = 1 J J

< 00,

and we have

2 \a^m\ = 2 \<*mm\W V
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112 ' ^
niι\ < oo.

Thus we get the following theorem.

THEOREM 3. Let

(1°) K(t,s) belongs to L2 for each variables and both variables,
(2°) dK(t,s)/?jt exists almost everywhere and belong to IJ,

(3° ί [~3ff K(t> s)χ^ds) dχU) e x i s t s almost all x(. ) € C,

then under the transformation

>y(t)^ x(t)+ f K(t,s)xκs)ds,

0

we have

0 0 ί)

α ?r/ Z) is Fredholrrts determinant of kernel K(t,s).
For example, let the transformation be

(3.21) y(t) = x(t) + \j tan λ(s — l)^(s)ύ?s, — τr/2 < λ < τr/2,

ϋ

then we have

/ K(t,s)x(s)ds = I x tan \(s —

I) ϋ

and (3°) is

(3.22)

(3.19. I F[y^dwy= \D\\ FyxΛ- \ K(t,s)x(s)ds]exp( -Φ(x))dwx,

C C ()

where

(3.20; Φ M = Γ [-jjff K(t,s)xζs)ds] dt Λ~ 2 f [-^JKζt,

Γ λ tan \(ί - l)x(Odx(t) - Γ λ tan

00 0

Thus we can apply the theorem to this case.
Since the condition (3°) contains x(t), in order to exclude x{t), we

can proceed as follows.
Coresponding to the results of Cameron-Martin £2], put

,KHt,s), where 0<Lt<s, 0 < s < ; i ,
(3.25; K(t,s) = JKKt,s), where s<t<l, 0 S s < 1,

(Z-^KXs, s) + KHs, s)}, where t = s, 0 < s S 1,
and
< 3.24) /cs) = /ί2^, 5) — ̂ ( 5 , s).
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Let

(Kι(t,t), where O^t<s, 0< s
(3.25) K>(t,s)= \KHt,t), where s<ΐ^l, 0 $ s

\2-ι(KKs,s) 4- /Pcs, s))? where t = s, 0 < s g l ,
and
(3.26) ffc^sϊ ^K(t,s) -K°(t,s)
be absolutely continuous with respect to t. Then

-~^l K(t,s)x(s)ds

d
dt

= /i(

0

J
0

f) + /2Cί).

1)

, say

t+h,

dt J
0

s)x(s)ds— ί ff(ί,s")Λ:cs)rfs

0

lim Γ 4-

If

(3.27) -~τffCί,5) = ffα,s), •••• a. e.,

and

(3. 28) Γ sup H(t, s)ds < oo,

o

then 7(f) = f H(t,s)x(s)ds

0

from the dominated convergence theorem of Lebesgue. In order to be of
bounded variation, it is sufficient that

(3.29J) j var. e H(t, s)ds < oo.

0

F o r

j var.

var. / H(t, s)x(s)ds = lim I |Δti7(f, 5)| |^(5)|i/5

0 0

r* rι

I limjΔίH(t,s)\ \x(s)\ds <Ξ / (var. tH(t.s)}x(s)ds < oo,
J J0 0

by Lebesgue's theorem.
On the other hand
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0

= KHt, t)x(t) -
by r3.24\

Tf J{t)x{t) €Zr, then we have

f K1(s,s)x(s)dsSj

2 f JίtlxCtϊdxV) = f a. e.

and if /(£) € 2?F, then the right hand integral is ordinary Riemann-
Stieltjes integral. Summing up these results we have the following theorem
which is due to Cameron and Martin [21.

THEOREM 4. Let KKt,s) be continuous on the closed triangle [0 < t <; 5,
0 $ s g 1] and let it vanish on the line segment t •= 0 [0 <Ξ s < 1H It K2

(t,s) be continuous on the closed triangjίe [0 <Ξ s ^ t, 0 <Ξ t ^ 1H let
ιKHt,s), where O ^ K s, 0 < s ^ l

K(t,s) = <K*(t,s), where s<t<l, O ^ s ^ l
^ s , 5) + K\s, s)), wΛer̂  ί = s, 0 ̂  s ̂  1,

D = Fredholrris determinant of K(t,s).
Assume further that K(t, s) is such that the following conditions are

satisfied:
(1°) For almost all s, K(t,s) is absolutely continuous in t on O^t ^ 1

after the jump at t — s is removed by the addition of a step function.
(2°) There exists a measurable function H(t,s) which is of bounded

variation in t for each s and which for almost all t, s in the square CO <ί t <i 1,
0 g s <i 1] is equal to 3K(t, s)/at.

(3°) The function Hit, s) mentioned in (2°) can be so chosen that

/
sup \H(t,s)\ds< oo? / var [i/(f,s)] ds < oo.

0 0

and

\H(t,s)\2dt ds< oo,

0 0

(4°) /(s) is of bounded variation on
(5°) D Φ O .

Then under the transformation

y(t) - x(t) + f K(t, s)x(s)ds,

0

we have
1

f F[yΊdwy = \D\ [F\X+ f K(. ,s)x(s)dsj exp ( —
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where

0 0

[(-§t KV> s)x(s)ds']dx(t) + / Kt)d{ΐ
0 0 0
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