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Many results concerning properties in the large of geodesies in Rieman-
nian spaces are known, some of them may be considered in other spaces
without the concept of length, but it seems to the author that no general
method to deal with such problems is known.

In this paper, we shall investigate the boundary problem of a system
of paths in plane which are given by a differential equation of the second
order

y" = A(x, y)y'* - B(x, y)y>* + C(x, y)y! - D(x, y), (1)
where A(x, y), B(x, y), C(x, y) and D(x, y) are bounded continuous functions
of x and y and dashes denote derivatives with respect to x.

S.Sasaki have investigated the special cases of the problem in which
A, B, C and D are constants and obtained the result as follows1) :

These systems of paths are classified into two types. For one of them
any two points can be bound always by a path, and for any other point
can be bound by a path with those and only those point which lie between
certain parallel lines at equal distance from the first points. We call these
types (a) and (β) respectively.

In Part I, we shall investigate the special cases in another method.
Our result may be stated in a more detailed form as follows:

THEOREM 1. For the system of paths in plane τυhich are given by the

differential equation of the second order

y" = Ay* - By'* + Cyf - Ό, (2)

where A, B, C and D are all constants, if, and only if the conditions

Φ = (27A2D - 9ABC + 2Bψ + (27AD" - 9BCD + 2C3)2Φθ, (3)

ψ = 4(AC3 + B*D) - BιCλ + 27A*Da - 1SABCD > 0 (4)

are satisfied, it is of the type (β) and otherwise it is of the type (a).

Then, in Part II, we shall investigate the general case by means of a
fixed point theorem in functional spaces. Our main result may be stated
as follows:

THEOREM 2. Let (1) be the differential equation of a system of paths in

1) S SASAKI, A boundary va]αe problem of some special ordinary differential
equations of the second order, Journal of the Mathematical Society of Japan, Vol. l,No.
2, 1949, pp. 79-90.
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plane. For two given points\(a0, b0), (aΎ,bι) (ao< aj, suppose that there exists a
path binding them in the system of paths which are given by the differential
equation

y" = A(a0, bo)yfs - B(θo, bQ)y'* + Cfo, W - D(a0, b0).

Then, if the differential equations

W = />(*>' Ίίϊ-W'
where fΎ(z) and FΎ{z) are continuous functions of z such that

/i(s)</(*) = g.l.b. P(x,y,z),

F1(z)>F(*) = l.u.b. P{x,y,z),

P(x, y, z) = A(x, y)z3 - B(x, y)z* + C{x, y)z - D(x, y)

are soluble in \ x\ ̂ aλ — a0 under the initial condition

there exists a path binding them in the given system of paths.

Part I

§1. Reduction of (2). As is well known, (1) is the equation of paths in

an affinely connected space whose parameters of connexion Γjfc (i,j,k = 1,2)

are given by Γ}Λ ^ 2g + C, Γu = Γ\ - /, Ί\ = A, Γ^ = D, Ί\ = Γ^ = g,

Γ̂ 2 = 2/ + B in the coordinates xι = x, xz - y, where / and g are any

functions of x1 and xι. In the space, the paths are determined also by the

differential equations

ί + Γj* i^x ^0 ( i=l,2), (5)

where dots denote derivatives with respect to an affine parameter of path.
Now, in the following, we assume that A, B, C, D,f, g are all constants.

For any pair of constants (\, μ) Φ (0, 0), we get from (5) the relation

(λi'+ μy) + (\(2g + C) + μD)xx + 2(\f + μg)xy

In order that the part of the second order with respect to x and y in the

left side of the above relation is proportional to (\x + μy)1, it is necessary
and sufficient that

λ(2α + C) 4- μD = λ/ + ^ = λA +

that is
~ /λ2 + (.7 + Oλμ2 + DΓ' = 0,

Aλ2 + (/ + 5)λμ - (7/A2 - 0. (6)

Accordingly, / and g have to satisfy the relation
- / : g + C : £> = A : / + B : - flr. (7)
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Now, we distinguish three cases as follows:

Case I. A Φ O , D Φ O . If we put y = yx + -SJ-JC, we get

y- - Ay? + - 3 A ξχ^-Λ 3 - ~^

Furthermore, if

27A*D - 9ABC + 2£3 = 27A2A Φ 0, (8)

putting yι = —Z>ĵ 2, we get

Lastly, putting y2 = — (AD{)-'y3, x = — (A£>{)"~ΛΓ3, we get the canonical form

\ dx3

where

(27ΛaD - 9AJBC + 2B3)i
In the above process, if Dλ == 0, we may treat the case in Case II.

Case II. A = 0, D Φ O O Γ A Φ O , D = 0. We may put A = 0, D Φ 0.

Then, if JB = 0, we can easily see that the case is of the type {a). Hence,
we may consider only the case B 4= 0. We shall reduce (2) to a canonical

Q
form as follows: If we put y = yx + ^ p ΛΓ, we get

Then, if

4BD ~ C 2 * 0 , 11)

1 -_L
putting^ = ^^g-^a; # = 2|4BD —C21 ^ ΛΓJ? we get the canonical form

where signs + , — correspond to 4BD — C2 > 0, < 0 respectively. In the
above process, if 4BD — C2 = 0, the case may be treated in Case ΠL

Case III. A = D = 0. We can easily see that the case is of the type (a).

§2. Canonical eases. For the system of paths given by the differential
equation

y" = - / 3 + c/ + i, (9')

(7) becomes

- / : (g + C) : 1 = - 1 / : g.

Hence, / is a solution of the equation

P - cf - 1 = 0, (13)
which has at least a real solution * 0. Conversely, / satisfying the above
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equation and g = 1// satisfy (7). Making use of such a pair of / and g, we
can easily obtain the conclusions as follows:

i) If (g -j- c)2 — 4/ > 0, (6) has two real solutions with respect to \:μ,
hence this case is of the type (a).

ii) If (g + c)1 — 4/ < 0, (6) has two conjugate imaginary solutions with
each other, hence it is of the type (β).

iii) If (g + c)2 — 4/ = 0, / is 4^ and it follows cz = 27/4. Then, we can
_j_

take also /7 = —2 * as a solution of (13). For such a pair of/i and gΊ = 1//,,
/i — 4<7i > 0. Accordingly, this case is of the type ipc), since (6) has two

real solutions.
Let us consider the relations between the above cases i), ii), iii) and

c. If we put H~(g + cf — 4/", then for a solution / of (13) and g = 1// it
is written as H = f(cf - 3). If c = 0, we may have by (13) that P = 1,
hence H = —3/< 0. If c < 0, we see easily that / > 0, since /(/ 2 — c) = 1.
Hence, # < 0. Lastly, if c >0, £Γ< 0 for 0< / < 3/c. On the other hand,
if we put φ (/) = p — c/ — 1, we have the relations ^ (0) = — 1 and φ' (0)
= — c< 0. Accordingly, in order that p — c/ — 1 = 0 has a solution such

that 0 < / < 3/c, it is necessary and sufficient that φ (3/c) = 27/c° - 4 > 07

that is c3 < 27/4. Thus, from these considerations we see that the canonical
case (9') is of the type (β), if, and only if, c3 < 27/4.

For the system of paths given by the differential equation
/ ' = sy* + 1, (12')

where 8 = ± 1 , (7) becomes

-f:g:l = 0:f-8:g.

If S = —1, we may p u t / = 0 , # = ± 1 and (\,μ) = (1,0),(l,^). Hence, this
case is of the type (ac). If 8 = 1, we may put / = 1, ^ = 0. Then, the
second equation of (6) vanishes. From the first equation of (6) we get \:μ
= 1 J ifc^/ — 1. Accordingly, this case is of the type (β).

§3. Conclusion. By means of the considerations in the preceding
paragraphs, we can say that the system of paths given by the differential
equation y" = Ay3 — Byf2 + Cy! — D is of the type (β), if, and only if, the
constants A,B,C,D satisfy the conditions as follows:

I. A,DΦθ,

Φ = {27A*D - 9ABC + 2Bψ + (27AD2 - 9BCD + 2C3)aΦθ, (3)

and

Ψ = MAC3 + B*D) - B*σ + 27Λ2i?3 - 18Λ5CD > 0. (4)

For the condition c2 < 27/4 is rewritten by (10) as (4).

II. Λ = 0} 5, D * 0 ( o r D = 0 , C , A * 0 ) ,

4BD -C2>0 (or 4CA - B* > 0).

Let us now consider the case A, D Φ O and φ = 0 which was not
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discussed in § 2. By the argument as in the case I in § 1 we get

, ,, SAC - B2 ,
yϊ = Ay* + g^ yλ

which is equivalent to (2). In order that it is of the type (β), it is necessary
and sufficient that SAC — B2 > 0 or 3ZλB - C2 > 0, by means of the above
condition II. But, in this case, neither of them occurs. For, if A, D Φ 0
and φ = 0, that is 27A2JD - 9ABC + 2£3 = 0 and 27AD2 - 9BCD + 2C3 = 0,
it follows that B O Γ C Φ O , and B3D = C3A. Hence, # ? C Φ 0. Accordingly,
we obtain from the first of the above relations 27A3C3 - 9AB*C + 2BQ = 0.
Therefore, we get the relation (SAC - Bψ = 27A3C3 - 27A*B*C* + 9A£4C

- ^ 6 = -SB\SAC - 52)2 < 0, hence SAC - B2 < 0. We get also SDB - C2

< 0. Thus, we see that the case is of the type (a).
Let us now arrange the conditions I, II. For the system of conditions

Φ Φ 0, Ψ > 0, it is clear that A2 + D2 Φ 0. If A, D Φ 0, it becomes the
condition I. If A = 0, D Φ 0, it is equivalent to the system of conditions
Φ = (2B3)2 + (2C3 - 9BCD)1 Φθ, t = BH4BD - C2) > 0, that I S 5 Φ 0 , 4£D
— C2 >0, which is the condition II. Thus, we have completed the proof

of the Theorem 1.

Part II

§1. A Lemma. For a differential equation of the second order,

y = A(x,y)yf3 - B(x,y)y
2 + C(x, y)y' - D(x, y), (1)

where A(x,y), B(x,y), C(x}y) and D{x3y) are bounded continuous functions
in plane, let

P(x,y,*) = A(x}y)z3 - B(x,y)& + C(x}y)z - D(x,y),

and

Then, we have the following lemma.

LEMMA 1. f(z) and F(z) are continuous for — oo < z < oo and satisfy
Lipschitz's condition in any interval.

Let us put

dP%fZ) = SA(x} y)z* - 2B(x, y)z + C(jr, y),

and define the auxiliary functions as follows:

flz) = g. 1. b. Q(x, y, z), F&) = 1. u. b. Q(x, y, z),

/,ίβ) = g.l.b. R{x,y,z), ίΊ(β) = I. u. b. Λ(*,j»,«),
(αiV) (Jί, 2/)

/o = g. 1. b. A(x, y), Fo = 1. u. b. A(x, y).



ON A BOUNDARY VALUE PROBLEM ETC. 289

Let h > 0, then we can easily obtain the following relations.

+ h) -Mz) <£ 3hFQ,

2hfτ(z) + 3fca/o έflz + *) - /"*(*) ̂  2/*F3(2) + 3h\2FQ - /o),
+ Λ) - F,(z) ^ 2ftF:(z) + 3ft*F0,

*) - /(«)
- Λίa:)) + &3(4F0 - 3/Ό),

/*o - 3F0)
4- h) - F(z)£hF2(z) + VFiCO + ^ 3 F 0 .

These relations show that /(z), F(«) are countinuous and there exist two
constants m{a,b), M(a,b) such that

I F(z2) - F(zi) I ^ Mίβ, ft) I z3 - z: I
for a^z}, z%^b. Lemma 1 is established.

§2. Functional space 33. Let / = (y(x), z(x)) be a pair of two con-
tinuous functions in a given closed interval a0 ̂  x ̂  aΊ. Then, the set of
such elements becomes a vector space, as is well known, if we define two
operations such that

cf = (cy(x), cz(x)),

Λ + Λ = (.Vi(*) + yjjx), zι(χ) + z2(x)),
where c is a real constant. Furthermore, if we define the norm of / by

Il/Ίi = max I y{x)\ + max | a;(^)|,

i t has the following properties

Since we can easily verify that the linear normed space is complete, it is
a Banach space2>. We denote the space by 33.

Now, let H(x,τ) be the function of x, T defined by

Uaj - x)(τ -
(14)

- τ)(x - Λo)/(«i - <*o) {X < T)

and y"= (V(ΛΓ),<Λ:)) = ^(/), / € 33 be the transformation of S into 33 defined
by

y(x) = - H(x, τ)P(τ, y(τ), z(τ))dτ + - ^ ^zf* "°;t/1 , (15)

-~i/(Λr,τ)P(τ,.

2) S. BANACH, Theorie des Operations Lineaires, 1932, Ch. V.
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In fact, / = φ{f) € ϋ. For we can easily obtain by means of (14), (15) the
following relations

-J^X*) - Ί{x), ^z{x) = P(x, y(x), z(x)), (16).

hence

f f(z(τ))dτ έ zjxj - J(x,) <c Γ F(z{(j))dz.

ίl'2 T 2

These relations show that / = {y(x),~z~(x)) 6 33. We get also J(a0) = b0, y(aι))
= bΊ.

(16) shows that if / is invariant under ψ, 'then we have

Thus we have obtained the following lemma.

LEMMA 2. An invariant element / = (>>(#), z(#)) under φ determines a
solution of (1) y = y(x) binding (ao,bo), (a]tbx) such that z(x) = y!{x). The
converse is also true.

LEMMA 3. φ is continuous and compact^.

Let /o = (JΌW, ZO(X)) € 33. On the closed domain Δ in the coordinate
space (x,y,z) denned by a0 ^ x ^ au \y\^= max|^0Wl + 1 = M, \z\ £ max
l*o(*)l + 1 = N, for any ε > 0, there exists a 0 < 8 < 1 such that if |yτ — 3;^
< 8, \yi\, 1^1 ^ M , |ar, - z s | < 8, |arχ|, |^2 | ^ N, then | P (ΛΓ, y2, z2)
— -P(Λ:,^I,2I)| < β. For any / € S3 such that [[/ — /0[[ < 8, since we have
-JΌWI < δ, I2(Λ:) -zo(x)\ < 8, ύro^Λ:^^, it follows that |^(Λ)| < M, |
< N. Accordingly, we get

y(x) - yo(x)\ ^ f \H{X,T)\ \P(r,y(τ),z(τ)) - P(r,yo(τ),Zo(τ))\dτ

< (a, - aoYe,

^ f 1\~H(x,τ)\\P(ryy(τ),z(τ)-P(τ,y{J(τ),Z0(τ))\dr

a0

< fa - ao)S,
hence

l^(/) ~ φtfo)\ < ({a, - a0) + (a, - βo))aθ.
Thus, the continuity of £> has been proved. In order to prove that φ is.
compact, it is clearly sufficient to prove that for any bounded set G c 33,
the component functions of the elements €Ξ Ψ{G) are uniformly bounded and
equi-continuous. Let Gi be a set of elements/= (y(x),z(x)) of 33 such that
\y(%)\ < MΎ, \z(x)\ < Nj (a0 <ύ x ^ ad, and let L be the maximum of P(x, y,z)»
for ao ̂  x £ aly \y\ z, MΊ, \z\ z, N^ Then, we get easily the relations

33 S. BANACH, IOG. cit.y p. 96.
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I y{x)\ έ \ \H(x,τ)\ \P(τ, Xr), z(τ)\dτ •

-ao?L+ max{|£0|, | ^ | > .

bΊ — #o

{a, ~ x)bυ + (x —

d\ —

By virtue of (15), for a0 ^ xλ < x^ ̂  aι we get

hence

and analogously

r2(βi „
~ a0

Thus, the lemma is established.
Now, let P(x,y,z; 6) be the function defined by

P{x,y, z ε) = P((l — ε)a0 + θΛT, (1 - 6)δ0 + f .y, 2),
then P(x,y,z;Q) = P{aQ%bQ,z), P(x,y,z;l)~P(x,y,z). Let ^e:33->93 be a
transformation defined by ΨJί(y(ri),z(x))~ (y{x), z(x)), such that

c ) ^ τ + (^i — *)6Q + (Jf — flo)&Ί

fli — CIQ,
 7

α 0

• / •

, τ)P(τ,Xτ), z(τ) €)dτ2(X) - -

We can easily see that <P€ has the same properties as φ. Furthermore, we
may prove the following lemma, with slight modifications of the argument
in the proof of Lemma 3.

LEMMA 4. Ψlf\ as a transformation 33 x / -» 33, is continuous and
compact.

In the lemma, I denotes the interval 0 ^ £ ^ 1.

§3. Lemmas for a differential equation of the second order. Let
us assume that the differential equation of the second order

dv
0, bo,

d χ

has a solution j ; = H{x) such that i/(tf0) = b(), H(aj) = ^j. By means of
Theorem 1 in Part I, we can easily see whether there exists such a solution
or not.

Let fι(z), Fι(z) be two continuous functions such that
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f(z) >/i(2), ft*) < F,(z) ( - oo < z < oo), (17)

and consider the differential equations as follows:

dy

Let g(x) and G(x) be the solutions of them which satisfy the initial conditions
y(aQ) = bo, y'(a0) = m, where m = (^ — bo)/(aι — <zo) NOW, we assume that
g(x),G(x) are defined at least on C«0,^IJ- Then, we shall prove the following
lemma.

LEMMA 5. G(x) > g(x) (a0 < x έ aλ).

Since gr(a0) = G'(*o) = ̂ , ί/'Oo) = A(m) < Fi(m) = G/;(«o), it follows that
< G(x) {x Φ Λ0) in a sufficiently small right neighborhood of a0. Suppose

that there exist such values of x that g(x) = G(x) (a0 < x <ύ az) and that xι be
the minimum of them. Let ΛΓ2 be a value of Jtr, where G{x) — ̂ (Λ:) becomes its
maximum in the interval ao< x< xlm Then, G'(x2) = #'(tf2) and Fi(G'(x2)}
= G"{x z) iύ grf(Xz) = fiWiXzϊ), which is a contradiction. The lemma is estab-

lished.
Let now be #(x) and G(Λ) determined in the interval 2#0 — cii ̂  x ̂  &\

and put

/ = min{min gr(x), min G'(x)}, (19>

L = max{max ί7;(^), max Gr(x)}.

Since (/(tfo) = G7(α0) = w, g"(a0) = ̂ (wi) < Fi(wι) = G"(a0), we have / < Ly

I ^m^L.
Take a suitable positive number δj < 0 such that

Cn(x) = G(x) - δ, < fΓ(Λ) < flf(Λ) + δi = gi(x),

in the interval ao^x^aι. Then, we shall prove the following lemma.

LEMMA 6. Let y = ψ(x), z = τ/rf(Λ:j 6^ α solution of the differential
equations

~dx * dx nx,y,z,w

such that ψ(a0) = ̂ α, ^(«r) = blt and d(x) έ Ψ(x) £ ΰi{x), I ̂  Ψ(x) έ L for
au^x^ai, then none of the signes of equality in the above relations holds
good.

We suppose in the first place that ψζjXi) = gι(Xi) (aύ £ xx <c aj. Since

GAto) < H{aQ) = bo = ψ Cβb) < gi (a0), & (β,) < Jfffo) = &τ = Ψ'(αi) < flΊ ίβi), i t

follows that Λ0 < *ι < ^J. Then we have g'(Xι) = ̂ ίte) = Ψfa), ΰ'f{xύ = ̂ Γ(^>

i*ψ "(*i). On the other hand, we have g['(xΊ) = flr"(x,) =/i(^(^i)) <f{g\xι)\

T^nce g^Xi)<f(g[(xi))^P(Xit Ψ(Xi\Ψ(xύ^)-Ψr(xι)' This contradicts to

the above relation. Therefore, we see that ψ(x) < gi(x\ We get similarly

Since ψ{a0) = ̂ 0 ? Ψίβi) = bι, we have at least an x0 such that
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Ψί*o) = a[Zba0 = m> "o < *o < a,.

y = G2(x) = G(# — x0 + tfo) is also a solution of the second of (18) and
G;(ΛΓ0) = G'(a0) = m = ^'(*o). Hence we get

ψ'(x0) = P(*o, ψ<*b), tn;€)£F (m) < Fτ(m) = Gί'(*b).
It follows from the above relation that if we take a small δ2 > 0, ψ(x) <
G'2(x) for x0 < x < Xo + &>. But this inequality holds good in the interval x0

< x ^aτ. For otherwise, let xz be the minimum of x such that ^ ;(#) = G'2(x),
xo<x<aΊ, then ψ"(χa) = P(x2,ψ\xΛ)y ψ(x2) S) ̂  F(ψr (x2)) < F1(ψf (x2))
— G2(x z). This shows that G,(*) < ψ{x) in a sufficiently small left neighbor-

hood of x2, which contradicts to the definition of χ.z. Making use of g^x)
= g(x — Xo -f a0), we see also that g'z(x) < ψ(x) (x0 < x ^ aΊ). Hence, we get the

inequality g!2(x) < ψ(x) < G'2{x) (x0 < x <ύ a,). By means of the same method
as above, the inequality G'2(x) < ψ(x) < g'2{x) holds good for ao^x< x0.

By means of (19) we get easily / < ψ(x) < L.

§4. Proof of Theorem 2. Using the same notations as in the previous
pargraphs, let M be the subset of elements f ~ (y(x),z(x)) in S3 such that

Gjlx) < y(x) < gAx), I < z{x) <L (a0 ^ x ^ a,\
Then, M is a bounded open set in 33 and its closure Mis the set of elements
/ = (y(χ)} z(x)) such that

Gi(x) έ y(x) ̂  gΛx), I ̂  z(x) ̂  L, {a^^x^ β2).

By Lemma 4, there exists a compact set K such that £>e(M) cz K for 0 ^ S
^ 1. Let Φe be the translation denned by Φe(/) = / — φe(f), then the null
element 0 = (0;0) of S3 does not become images of elements in the boundary
of M under any φ e . For otherwise, there exist an £, / such that / = <P€(f),
feM-M, that is, / = (y(x),z(x)), y\x) = z(x), y"{x) = P (x,y(x), y'(x) €),
y(a0) = b0, y{aΊ) = bl7 which contradict to Lemma 6, since for the elements
of M — M, at least one of the signs, of equality in the relations Gi(x)
£y(x) ^ 91(x), I ^= z(x) £ L have to hold good. Therefore, according to the
theory of the degrees of mappings in functional spaces4>, the degree or Φe

at the point 0 with respect to M is constant for 0 ^ £ ^ 1. By the assumption
in § 3, the degree of Φo at the point 0 is not zero. Hence the same is
also true for Φi. Thus, we see that there exists an /*€ M such that /

that is

-r-
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4) LERAY-SCHAUDER, Topologie et equations fonctionelles. Annales de Γβcole
Norm. Sup.,51C1934).




