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This note is a continuation of the studies [9, 15, 16] of the authors or the
second named author on a class of states of a commutative operator algebra
on a Hubert space. Some theorems of these Previous notes will be given new
proofs or another applications.

In § 1, we shall state definitions and the notation. Most of them are due to
I. E. Segal [11, 12], The representation theorem of a commutative operator
algebra due to Gelfand-Neumark will be explained, which plays an essential
role in the below. A systematic use of the canonical spectral measure due to
N. Dunford [3] may short-cut its development. Most of theorems of this
sections are already known, whence we shall omit their proofs.

In § 2, as a supplement of R. Pallu de la Barriere's theorem (quoted in J.
Dixmier [2]), the canonical representation of normal states by the wave
functions is generalized, which is proved by the second named author [15]
under the separability restriction. It may be worth to note, that the theorem
is equivalent to the Raion-Nikodym Theorem of normal states (cf. [9]).

In § 3, we shall concern with the problem of unitary equivalence for
operators or algebras under the existence of cyclic vectors. Our treatment will
show that the Hellinger-Hahn Theorem for an operator with simple spectrum
is a consequence of the deflation of the decomposition in the sense of I. E.
Segal [12].

In § 4, the Wecken-Plessner-Rokhlin Theorem in the formulation of Segal
is proved under Pallu de la Barriere's theorem. Our technics based on the fact
that the weakly closed operator algebra generated by an operator is the weak*
closure of the uniformly closed algebra in the conjugate space of the weighted
spectrum of the operator. Although we shall discuss the unitary invariants,
our treatment concerns mostly to the algebraic isomorphism problem. Unitary
invariants appear as by-products. Therefore, we shall not enter the multiplicity
theory, which is recently developed by Halmos, Kelley; and Segal.

In § 5, we shall reconstruct the materials of the previous sections from an
another point of view. It will be shown that the Dunford integral representa-
tion can be generalized into the unitary mapping of the L2 -space to the Hubert
space under the existence of cyclic vector. This is known by F. Maeda [8] in
the separable case and again gives a natural proof of the Hellinger-Hahn
Theorem for an operator algebra. And the direct decomposition of the space
into cyclic subspaces gives the Wecken-Plessner-Rokhlin Theorem.
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The paper concludes in § 6 with a remark concerning the normality of

states considered in the previous note [9].

1. After Segal [12], a self-adjoint algebra of operators will be called a

C*-algebra QW*-algebra) according to that the algebra is closed in the

uniform (weak) operator topology. We shall assume in the below that operator

algebras contain the identity operator.

An extremely important theorem concerning a commutative C*-algebra is

the Gelfand-Neumark representation theorem: The commutative C*-algebra is

isometrically isomorphic to the algebra C(i2) of all complex-valued continuous

functions on a compact Hausdorff space Ω, which will be called the spectrum

of the algebra. Recently, N. Dunford [3] refined that the above isomorphism

is given by the integral representation :

(1.1) x = I x (ω) deQω),

where deQω) means the (regular) spectral measure (i. e., projection-valued

set function defined for all Borel sets of Ω,1 the integration is the abstract

Stieltjes integral or in tha sansa that

(1. 2) (£*, i) = [ x CaO d ( ξeQω), ?).

Conversely, a spectral measure defines a C*-algebra. That is, a representation

of a commutative C*-algebra corresponds to a spectral measure of the spectrum

in one-to-one fashion.

A linear functional σ on a C* -algebra A is called positive if

(1. 3) σU#*) ^ 0

for all x of A. A positive linear functional will be called a state, if it is

normalized, i. e, σ (1) = 1. By the well-known theorem of Riesz-Markhoff-

Kakutani (cf. [β]), a state gives a normalized measure dσ on the spectrum Ω

in the sense

(1. 4) σQO = j" xtω) dσQω).

A typical example of a state is the wave function:

(1.5) σOO = QφX, <̂ ), IICPΓI = 1,

A measure defined by the wave function will be called, according to J. L. Kelley

[7], a characteristic meaure'1. In a connection with the Dunford integral

represention, it is not hard to see

(1.40 o-GO = \ tf(αθrfσ(e(αθ),

i.e., dσQω) = dσQeQω)) if it has a meaning, and in the case of a wave function

1) The notion of spectral measures in firstly (probably) introduced by F. Maeda ["8J.
He applied it to generalize the Hellinger-Hahn Theorem. Cf. Prop.6 of ξ 3.

2) The second named author called it as spectre measure in the previous [16].
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(1.50 σGO = J xQω)d\\φeQω)\\*.

If A is a commutative W*-algebra, the spectrum Ω of A possesses some
special properties. Let Ar be the real algebra of all self-adjoint members
of A. Then A is ordered with respect to the usual ordering of non-negative
deίinitness, i. e., x^y if and only if x — y is non-negative definite. Concerning
this ordering, it is not hard to see that Ar forms a vector lattice3 in the sense
of G. Birkhoff [1]. Moreover, we have4

PROPOSITION 1. A metrically bounded Moore-Smith set of self-adjoint ele-
ments of a commutative W*-algebra converges strongly to its bound, i.e., the
order convergence implies the strong convergence.

The proposition can bs proved with a few modification of a proof due to
F. Riesz and B. von Sz. Nagy[14; p. 15] in the case of the monotone sequential
convergence, whence we shall omit its detail.

From Proposition 1 and a theorem of T. Ogasawara [10; p. 20], the
spectrum of a commutative W*-algebra has the following propeties : (a) the
closure of an open sat is op3n, (b) open-closed sats form a complete lattice
and a basis for open sets, Cc) a Borel sat is congruent to an open-closed
set modulo maigre set5, (d) a Borel measurable function coincides with a
continuous function except points of a maigre set, etc. After J. Dixmier [2],
such space will be called a Stone space. That is, the spectrum of a commutative
W*-algebra is a Stone space.

A state σ of a commutative W*-algebra A is called normal6 in the sense

of J. Dixmier [2], if σ satisfies

(1.6) xa 10 implies σ Oα) ~> 0.

It is clear by Proposition 1, the wave function is normal. A linear functional

P will be called normal if it is a complex linear combination of normal states.

A measure on the spectrum will be called normal provided that it is defined

by a normal linear functional. Such measure annihilates maigre sets, and

3) This is true for all C*-algedras. Actually, it is an abstract (M) space in the sense of
S Kakutani [6J.

4) This proposition is also obtained by Fell-Kelley [4J. Compare with G.Birkhoff [l;p.ll8J.
5) A maigre set is a set of the first category in the usual definition. The term due to

Bourbaki.
6) This notion originally due to G.Birkhoff [l;p 73j. He used it for a decomposition of

complemented modular lattices. The notion is generalized to vector lattices by T.Oga-
sawara [10]. Ogasawara, Nakano and the first named author examined this notion
in some details. Application of the notion to states of W*-algebras is introduced by
J.Dixmier [2] and the authors £9]. The present term dus to the former. The authors
called "order-continuous" in the previous note.
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conversely a measure annihilating maigre sets is normal7 if it is finite.

An important example of commutative W*-algebras is maximal abelian

self-adjoint (shortly masa, according to Segal [12]} algebra. A fundamental

theorem for masa algebra on which we shall base read as follows8:

THEOREM 1 (SEGAL). A masa algebra is unitarily equivalent to the

multiplication algebra of L*-space of a 7neasure space. Consequently, two

masa algebras are wtitarily equivalent if and only if they are algebraically

isomorphic.

In the theorem, the multiplication algebra of a measure space QX, v)

means Loo (Z, v) considering as the operators on Lz QX, v~) such that

(1. 7) ξ *(ω) = K ω X α O where x E. L~(X, iθ, ξ e U QX, * ) .

2. The following theorem has the deteremining importance in the theory

of normal states:9

THEORAM 2 (PALLU DE LA BARRIERE) Each normal linear functional σ of

a commutative W*-algebra allows the canonical representation:

(2.1) σ-QO = ( £ * , ? ) .

Then we get the following10

PROPOSITION 2. A commutative W*-algebra is the conjugate space of all

measures of the form (2.1).

PROOF. By the above theorem, all measures of the form (2. 1) constitue

a linear space and an element of the algebra A gives a linear functional on

such measures. Conversely, if φ (σ) is a linear functional on that measures,

then

i < ξ, V >l = 10 CO I S Iί0l! ΐlσ || ^ Il0ll l!f ll lltfll

implies the bilinearity of < ξ, y>, where < ξ, -η > = φ (<r) if σ (#) = Qξ x, -η).

Hence by Riesz' Lemma there is a linear operator a such as <ξ,-η > = ( £ a, τ?)

Let b be an element of ths commutator A' of A, then the equation

Qξab, *) = C£β, Vb^ = 0(α-O = φdσ'O = dSb a, -η)

implies β E i , where σ'ζx) = (f Λ:, ^6*) and <rr/(jt:) = ζξbx, rf), since cr7 = σ".

Proposition 2 implies at once

7) It will be proved similar to Lemma 1 of the previous note, by the help of Ogasawara's
theorem.

8) Theorem 1 is due to Segal [11.12J. A similar result is also obtained by J.Dixmier [2J
9) The theorem is stated without proof in Dixcnier [2]. Two proofs of the theorem are

contained in the second named author's [15].
ICO Proposition 2 is obtained by the second named author independently to Dixmier [2]

and Kelley [7J. It is published (in Japanese) Zitukansu Geppo 6, No.2(1952).
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PROPOSTION 3. In a commutative W*-algebra, the weak operator topology
coincides with the wealf' topology as the conjugate Banach space. Or, the weak
topology for a commutative W*-algebra is purely algebraical.

Our chief object of the present section is to prove the following theorem,
which may supply the preceding theorem11

THEOREM 3. Concerning a state of a commutative W*-algebra, the following
three statements are mutually equivalent; (i) it is strongly continuous, (ii) it is
normal, (iii) it is a wave function*

Since obviously CO implies GO and (iii) implies CO D V Proposition 1 and
the definition of the strong convergence, we shall prove only that GO implies
GiO. To prove this, we may assume that the implication is true for masa
algebras since it is deducible directly from Theorem 1.

Let σ be a normal state of a commutative W*-algebra A and let B be a
masa extension of A. By Theorem, 2, σ is extensible to a normal linear
functional on B with σζx) = Qϊx, <r') for all x^B, whence

σίx) - CCΛ;, cθ = Cf#, f ) - (si*, 7).
If 0 <: x E: A, then Qξx, f) Ξ> Qqx, nf) ί> 0, whence by the Radon-Nikodym
Theorem of [9], there exists an a in A with O^a^l and Qξxa, £) = G?#, y).
Hence σίx) = C $d - ά)x, £). Putting b2 = 1 - a and 0 ̂  b e A, we have

CΓCΛT) = Qξbx, ξb^ - C Λ̂:, ^
where φ = fδf as desired.

REMARK 2.1. Although Theorem 3 is proved using the Radon-Nikodym

Theorem, the latter can be proved by virtue of the former, that is,

Theorem 3 is equivalent to the Radon-Nikodym Theorem for normal states.

Since by a Theorem12 of Segal [12; II, Th. 5] each abelian W*-algebra is

algebraically isomorphic to a masa algebra, we may assume A is itself masa.

If σ and τ are two normal states with σ^aτ, and τQx) = Qφx, φ)9 then it is

not less general to assume φ A is dense in the Hubert space H and τ Qxy*^) =

Qψx, </&). Put<£, y>= σ Oζy*) for ξ = φx and y=<py, then<f, γ>is bilinear by

I <<PX9 vy> I 2 = Wίxy*ϊ ί 2^σQxx*)σ(yy*) ^ct*τQxx*) τ (yy*^ ^ a ? \ \ φx\\2 II <py2 II.

Hence by Riesz' Lemma we have an hermitian non-negative a with a^a such

as σ Oζy*) = C<̂ Λ̂ ,̂ <κy). It is not hard to see by the masa character of A,

a belongs to A. Therefore σ Qxy*^) = τ Qxay*^). This is desired.

11) Theorem 3 is clearly a generalization of a theorem of the previous note [15] of the
second named author> in which the separability of the underlying space is assumed.
A similar result is proved by Dye, Trans. Amer. Math. Soc.,72 (1952), 243-280 who
proved for σ-finite W*-algebras of finite type. Cf. Proposition 10. »

12) A proof of this theorem without using the multiplicity theory is contained in [Ί5J.
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3. In this section, we shall assume that A is a C*-algebra having a cyclic

vector in the sense that φA spans the underlying space H. In this case, we

shall say also that A is cyclic over H. The purpose of this section is to

show that the deflation of decomposition implies the Hellinger-Hahn Theorem.

For this purpose, the following proposition is basic for us13.

PROPOSITION 4. // A is a commutative C*-algebra having a cyclic vector <p,

and if C is the weak closure of A. Then C is algebraically isomorphic

with the mult plication algebra of the measure space (42, or), ivhere Ω is the

spectrum of A and cr Otr) = Qφx, φ).

In short, a commutative W*-aIgebra cyclic over H is determined up to

isomorphism by the spectrum of a weakly dense C*-algebra and its nor-

malizing measure, where the normalizing measure of an algebra is the me-

asure on the spectrum induced by ίφx,φ) in which φ in cyclic.

PROOF. Let deζώ) be the canonical spectral measure on the spectrum. If

xQω) is an essentially bounded measurable function on Ω with respect to dσ =

<2GΓ(>O)), then

C3.1) x = j *CαO deίώ)

exists as an operator on H and belong to A" = C. Clearly the mapping

from L^ (J2, <r) to C is one-to-one, linear, multiplicative and norm-preserving.

Hence it remains to show that each x of C is expressible in (3. 1) with a

suitable x (ω) of LnQΩ, <r).

Since A is weakly dense in C, we can select a phalanx {xa Xa 8 A}

converging (bounded) weakly to the given x of C. For any y of A,

cr Qzay') = Qφza, <£y*)= j zaQ(o) yCoo) dσ O ) -» Qvx, ςpy*) = Qφxy, φ).

Since CQΩ) is dense in LiQΩ, σ^ by the strong topology, the representation

Zaίω) of za in C(i2) converges weak* in L^QΩ, σ^) to an essentially bounded

measurable xQω^):

Cvza, <py*} = \ za Cω) y CαO dσ -* j x (ω) y

This shows each x of C is expressible in (3.1).

A commutative C*-aIgebra acting on H is called having simple spectrum if

it is weakly dense in a mas a algebra, and an hermitean operator a has simple

; Proposition 4 is a direct generalization of a result of I.E.Segal [12; I, glO]. Our proof
is essentially a verbal change of his proof. It may be remarked that the spectrum of
C is a Kakutani space of the perfection of the measure space (Ω,σ) in the sense of
I.E. Segal [11]. Hence Proposition 4 is a direct generalization of a result of the second
named author's [16] Cf. Proposition 8.
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spectrum if a εr.ά 1 generate a C*-aJgebra having simple spectrum. Using

this term, the preceeding propcsiticn will be rewritten by Theorem ί in the

following

PROPOSITION 5. A commutative C*-algebra having simple spectrum which

is cyclic over the Hiltert space determines its weak closure up to unitary

equivalence.

In the proposition, the assumption of simple spectrum is superfluous since

a commutative "W*-aIκebra is masa if it has a cyclic vector by Segal [12; II,

Cor. 1.1]. Conversely, on a separable space, the masa character of an algebra

implies the existence of a cyclic vector by Segal [12: II, Cor. 1.2] Ccompare

Stone [13; p. 274]). Hence, on a separable space a commutative C*-algebra

having simple spectrum is uniquely determined within the unitary equivalence

by the spectrum and the normalizing measure.

If two commutative C*-algebras A and B both having simple spectrum on

a separable H are algebraically isomorphic, let φ and Φ be cyclic vectors for

A and B respectively. Then their wτeak closure A11 and B" are isomorphic if

their normalizing measures dσ and dτ (induced by σ θ ) = O#, ψ) and r ( y) =

CΦy> 0) respectively) are mutually equivalent by the preceeding propositions.

Hence, by Theorem 1, A" and B'f are unitarily equivalent, and also A and B.

Conversely, if A and B are unitarily equivalent, it is obvious there exists two

cyclic vectors which define mutually equivalent normalizing measures. This

shows

PROPOSITION 6 (MAEDA). χwo c*-algebras> both having the identity and

simple spectrum on a separable Hilbert space, are unitarily equivalent if and

only if they have same spectrum and mutually equivalent normlizing measures.

Now, consider a C*-algebra A generated by an hermitean operator a and

1. By the well-known theorem of I. Gelfand [5], the spectrum Ω of A

coincides with the usual spectrum of a Cwithin homeomorphisms). Hence we

shall consider Ω as a compact set in the real axis. Therefore, if a has simple

spectrum and acts on a separable space, then the normalizing measure άσ can

be considered as a usual Stieltjes measure on the real axis. The preceeding

proposition implies at once the following14

THEOREM 4 (HELLINGER-HAHN). Suppose that tivo hermitean operators

(3.2) a = Γλ dpdλ) and b = Γλ dqQλ)

have simple spectra on a separable Hilbert space. If φ and Φ are cyclic vectors

for a and b respectively, then a and b are unitarily equivalent if and only if

they have same spectrum in common and the normalizing measures

14) Compare with Stone £13; VII, §§2-3] and Segal [12; II, The. 4 esp. Lemma. 4 2J.
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(3. 3) dσQω) = d(u>pίώ), φ) and dτtω) = dQΨqM, Ψ)
are mutually equivalent.

Before concluding this section, we may note that Proposition 4 and a theorem
of J. von Neumann give a proof of the well-known von Neumann-Riesz Theo-
rem1 5 concerning the functions of an hermitean operators under the support of
Segal's Theorem [12; II, Th. 5], The converse implication is obvious.

4. In this section, we shall prove the Wecken-Plessner-Rohklin Theorem
in the form of Segal [12; II, Th. 4]. Before stating the theorem, we shall
introduce a notion of weighted spectrum EQA) of a C*-algebra A (£"(#) of
an hermitean operator a) as follows : If A is a C*-algebra (C*-aIgebra
generated by a and 1) acting on a Hubert space H, then EQA) QEQa^ is the
set of all positive measures on the spectrum of A induced by
C4.Γ) PQx) = (£*, $), ξ (Ξ H.
By Theorem 3, the weighted spectrum of a W*-algebra is the set of all finite
positive normal measures on the spectrum, whence it is determined within the
algebra

Now the theorem will be read as follows :

THEOREM 5 (WECKEN-PLESSNER-ROKHLIN). TWO hermitean operators with
simple spectra are unitarily equivalent if and only if they have same iveighted
spectrum.

Naturally, we are assuming that two operators have same spectrum. From
this, it is easy to deduce (with the Gelfand-Neumark Theorem), two operators
generate C*-algebras which are algebraically isomorphic and have the same
spectrum in common. Hence, as in the preceeding section, it is sufficient to
show that the weak closure of a commutative C*-algebra A, acting on Hy

having simple spectrum is determined by the weighted spectrum up to unitary
equivalence. On the other hand, two masa algebras are unitarily equivalent if
they are isomorphic, whence the proof is further reduced into the following

PROPOSITION 7. A commutative W*-algebra is determined up to isomor-
phism by the weighted spectrum of a weakly dense C*-subalgebra.

PROOF. Let A be a commutative C*-algebra having the spectrum Ω and
the weak closure C. If E is the set of all (complex) linear combinations of
EQA), then, by Theorem 2 and 3, E forms a Banach space and its conjugate
space E* coincincides with C. Therefore, C is determined by EQA) within
isometric isomorphisms as a Banach space16.

15) J. von Neumann, Math. Ana, 102 (1929), 370-427, Satz 10. B. von Sz. Nagy QΊ4,p.93].
Segal [12; II, Cor.5.1] gives a proof basing on the realization of separable measure rings.

16) Proposition 7 is deducible from this and a theorem due to R.Kadison, Ann. of Math ,
54 (1951), 325-338, Theorem 14,
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Now, let Er be the set of all real linear combinations of EQA). It is the

set of all real normal measures on the spectrum Γ of C, and consequently it

forms an (AL) -space in the sense of S. Kakutani [6], If C is the set of all

self-adjoint members of C, then Cr is isometrically isomorphic with the space

CGΠ) of all real-valued continuous functions on Γ, whence Cr is the conjugate

space of LirQx, //),the Banach space of all integrable real-valued functions on a

measure space QX, μ) by a theorem due to I. E. Segal [11] and J. Dixmier[2].

On the other hand, C is the conjugate space of Er by Pallu de la Barriefe's

theorem, whence Er is equivalent to L^QX, μ). Therefore, Cr is determined

Er up to vector lattice isomorphisms as an CAM)-space, whence the spectrum

of C, which is coincides with the spectrum of Cr, is determined by Er up to

homeomorphisms by a theorem of S. Kakutani [6], and so C is determined by

the weighted spectrum.

REMARK 4.1. Since the Wecken-Plessner-Rokhlin Theorem is an inseparable

extension of the Hellinger-Hahn Theorem, it is natural to try to find a proof

of the former which is an extension of the proof of the latter. The proof in

this section shows that the unitary equivalence problem (of masa algebras) is a

consequence of the representation, whence it differs from the preceeding section

which indicates that the problem of the unitary equivalence is a deflation

phenomema. Hence it will be given a sketch concerning this attempt.

Let A, E and Ω be as in the theorem, A linear function f on E will be

called an E-function. Although an ^-function / is not a function in general, we

shall denote by /(Λ) for the convenience, and put

(4.2) fiά) = f fίX) deQλX

where a is the element which generates A and

(4.3) a = f λ deQλ).

The equation (4.2) has a meaning in the sense that17

(4.4)

This defines an is-function of an operator a, and gives a generalization of the

operator calculus.

To prove the theorem, we must prove (4.2) gives an algebraic isomorphism

between C and 2Γ-functions. Main difficulty lies in the definition of multiplication

of E- functions, which the authors do not succeed without using the representation

of (AM)-spaces.

17) Proof of the existence of/(α) as a linear operator on H is similar to that of Proposition
2, whence we shall omit it.
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5. In this section, we shall give an another proof of Theorem 5 from a different

point of view. It is a closed analogy to the classical theory due to Hellinger,

Hahn, Stone and Maeda. Firstly we shall show18

PROPOSITION 8. In Proposition 4, A is unitarily equivalent to CQΩ^ as a

subalgebra of the multiplication algebra on L2QΩ, σ ). More precisely, L2QΩ, </)

is mapped onto H in one-to-one manner by

(5.1) ξ = f ξQώ) d<peίώ),

where ξ(.) £Ξ L2QΩ, σ ) . Therefore,

(5.2) ξx = I £U) * U ) rf^CαO

where xC^EzCQΩ) is the reprerentaίion of x of A.

PROOF. It is not hard to sea by the definition of the integral, (5.1) gives

an element ξ since

(5.3) l i£(.) i l 2 - J l?(ω)! 2 d| | eeCαOll 2 = f \ξtω)Vzdσ

is finite. Hence it is sufficient to show that each ξ has the representation of

(5.1). On the other hand, φA (and so <?£(.)) spans H, the mapping (5.1) is

additive and homogeneous, and

(5.4) llflla = Cf,f)= Jlf(ω)l2d(<^U),<p) = II f ( . ) l ί 2

by the property of the spectral measure, whence (5.1) gives a linear isometry

between L2 QΩ, σ) and H. This shows the second part. (5.2) follows easily

from the property of the spectral measure and (1.1), whence the first half is

proved.

Since the direct sum of L2-spaces of measure spaces is the Z,2-space of the

direct sum of measure space, the Wecken-PIessner-Rokhlin Theorem follows

from the following19

PROPOSITION 9. If A is a commutative C*-algebra with simple spectrum on

Ht if CΓ(ΛΓ) = Qφx, φ) and r ( » = Qψχf φ') are states of A, and moreover if K and

L are closures of φA and ΦA respectively. Then the following two statement are

true :

(5.5) φξΞK if and only if dτ < dσ\

(5.6) K±L if and only if dσ ±dσ.

In the proposition, dτ < dσ means that dτ is absolutely continuous with

respect to dσf and dσ J_ dτ means that dP < dσ and dQ < dτ imply dP = 0,

where dP is a measure on the spectrum of the algebra induced by PQx~) = (C#,O

18; Cf. Kelley C7J, Maeda [8J, Segal [12; It. Lem. 4.2] and Stone [13 p. 226 & 243J.
Identifying A and <7(Ω), we can say that H and i/Ω,τ) are isometrically isomorphic
as A-moάv\.

19) The essential part of the proposition is proved by Kelley £7], Maeda C8J and Segal
[12 II, Lemma. 4.1J.
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Before entering the proof,we need a definition: A projection p of a W*-algebra

C is a earner projection (in the sense of Dye) of a normal state σ of C if

σQp) = 1 and if σie) =• 0 implies e 5j \-p for any projection e of C. It is

known, in a commutative W*-aIgebra, the ortho-complement 1 — p of the carrier

projection of a normal state σ generates a principal ideal / which is the kernel

of σ, i.e., x EΞ / if and only if σQxx^ = 0. If cr has the form of (1. 5), then / is

the set of all operators of the algebra which vanish φ.

LEMMA. In Proposition 9, if p is the projection belonging to K, then it is the

earner projection of σ, where σ will be understood as a state of C which is the

weak closure of A.

PROOF. If q is the carrier projection of cr, then φQl — ί ) = # ( l —<?) = 0 implies

Q^ίp, since it is easy to deduce by the masa character of C that p and q belong

to C. On the other hand, φCq = φC implies q^ p. Hence p = q.

PROOF OF (5.5). If ψ belongs to K, then there exists a square σ-integrable

function ΦQω) with dτQω~) — φ{ώ) dσ(jo) by the preceeding proposition, whence

the condition is necessary.

Conversely, if dτ is absolutely continuous with respect to dσ, then there

exists σ-integrable function 0Qω~) which is the Radon-Nikodym derivative of dτ

and non-negative almost every where with respect to dσ, whence 0(ω) = 0(α>X

exists almost everywhere and is square integrable with respect to dσ. By Pro-

position 8,

0 = 1 0
exists in K. Put P(x) = (0x, 0). Then

PGO= \ xQώ) Φ Co)2 dtφeίω), <P)= \ *M θ U ) dσ = J" Λ : U ) 6?Γ = Γ(ΛO

implies P = r on C, whence their carrier projections coincide, and so the closure

of φA coincides with L by tha above Lemma. Clearly, φA is a subset of K by

the definition, L is included in ZΓ, and which shows the sufficiency.

PROOF OF (5.6), If oQx) = Qζx,ζ^) and if dP is absolutely continuous with

respect to both dσ and dτ, then ζ belongs to K fl •£ by the above. If ϋf is

orthogonal to L, then this shows ^ = 0, or dσ _[_ dτ, and so the sufficiency

follows.

Conversely, suppose that dσ _Ldτ. lie is the projection belonging to K Π L,

then 0 (#) = (f £#, f) defines a measure <î  which is absolutely continuous with

respect to both dσ and dτ by (5. 5), whence ξe = 0 for any f in Ϊ7, and so

£ = 0 or K Π •£ = 0 If ί ^nd ^ are projections belonging to K and L respectively,

then 7rOO = (£px> f) defines Jzr such that dπ < <iσ by (5. 5). Moreover, if ξ is

an element of L, then dπ is also absolutely continuous with respect to dτ. Hence

ξp = Q for all ξ^L. This shows K _L L.
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Let A be a commutative W*-algebra over H. Then it is not hard to see by

Proposition 8 that two cyclic subspaces are operator-isomorphic (by a unitary

operator) as ^4-modul if and only if two normalizing measures are equivalent.

From this and (5.5), no pair of mutually orthogonal cyclic subspaces are Λ-

operator-isomorphic if A is masa. Hence, the direct decomposition of the

underlying space into orthogonal subspaces by (5.6) under a masa algebra has

no component which is A operator-isomorphic to another.

6. In this section, we shall add a remark on the notion of the normality of

traces of a W*-algebra of finite type in the sense of J.Dixmier. As in the before,

a trace of a W*-aIgebra will be called normal if it satisfies (1.6). In the previous

note [9], the authors stated without proof that a trace ofa W*-algebra of finite

type is normal if and only if it is normal in the center of the algebra. Here,

we shall give a proof of this.

Before entering the proof, we shall make a definitions: A property of a C*-

algebra A will be called purely czntral if it is determined within the center Z

of A. Under this definition we shall prove the above statement in the following

PROPOSITION 10. The normality of traces in a W*-algebra of finite type

is purely central.

The proof is essentially a version of the second named author's [ 15 ]. It is

sufficient to show that a trace τ is normal if it is normal in Z. If xa I 0, then

we can assume without loss of generality \\xa\\ . ^ 1 , whence by Proposition

1 the phalanx {xa} converges bounded strongly to zero, and so by a thoerem of

J.Dixmier20{#£}converges strongly in Z. Therefore by the hypothesis r (*«) =

τ (ΛΓα) converges to zero, and so the proposition is proved.

ADDED IN PROOF : After the note presented to the editors, the authors find

that Propositions 1 and 10 are established by J.Dixmier in the following papers

: (1) C.R.,230 (1950),267-269; (2) Comp.Math.,10 (1952), 1-55, Prop.2, respectively.
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