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The object of this paper is to treat the convergence of the series
) > sy — A0 *n
n=1

for a >0, where sy(x) is the nth modified partial sum of the Fourier series
of f(x), and is to derive an approximation theorem of infinitely differentiable
functions.

1. THEOREM 1. If the function

2) 9(t) = P(t)/(2 tan (t/2))

where Po(t) = f(x + t) + f(x — t) — 2f(x), is L*-integrable and
. 2 21 [g(t + h) — g(t\|‘f o

3 f f e dtdh<

forap>a+1=1, then the series (1) converges for a (1 =a = 0). If 3)
holds with p (2 < p < 3), then (1) converges for o = p — 1.

The L*integrability of (2) is stronger than the Dini’s condition and (3)
holds when

et +n) _ POF
[P 0 e

*

for a B > a. This is stronger than the convergence criterion due to Pollard.
We shall now prove the theorem,

1 [ elt)
six) — f(x) = [ 5 tan (1)2) sin nt dt

27z/. L

~ 2 (t — 7w + 2kn/n) .
' f 2tan(t — = + 2 kw[n)/2) }sm nt dt.

Let us put

n-1

Pt — 7 + 2kn/n)
Fyt) = n 2(ta_n(t — 7 -+ 27r/kn)/2)’

which is the Riemann sum of g(t) = @,(t)/2 tan(£/2)) in the interval ( — =,
). By the assumption, ¢(¢) is integrable. If g(f) is continued periodically
and is expanded in Fourier series such that
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oty ~ 2 cett,

v=—oco

then

Ez(t) ~ 2 Cun €7,
p=—oo
Hence
2r/n

si(%) — f(x) ‘ﬁ; f F,(2) sinnt dt
0

I

27 n

= __nz f (Fu(t) - co)sin nt dt,
T
0

. 2r/n
s — s@lrs B2 [ me - apar
0

rt

- 33 f (Fu(t) — co): dt

since F,(?) has the period 2z/%n. Thus?

o

3wl - @S 5 Zae 3 g,

n=l by
= i S sullvlies

Y0

where
Uw(V) = 2 d“.

alv
It is known that
(4) ao(v) = O(v®) (¢ >1),
(5) ao(v) = O@**) 1za=0)

for any & >0.%
If0o<ax<l weputp=(ax+E+1<2 Then, by (5), we have

1) Cf. Marcinkiewicz and R. Salem, Fund.Math, 30(1949).
2) The author learned these relations from J. Uchiyama. He proved more precise
results than (5).
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(6) S|si(®) — f(D)]*n* < const. S [v]77ek.

p=—00

On the other hand,

27

[ lo(t + B) —g®))2dt = 420‘5 sin? ph,

0

i l9(t + h) — g(B)]* L~ sm vh
f f 2 atdn =43 ¢z | SR an
0 iiad 0

0

= const. 2 [v[?-1c2

—oo

Hence

Sn®|s)(x) — f(x)|* < const, [ f il +Z) — gl dt dh.
Thus we get the first part of the theorem. The second part may be proved
similarly, using (4) instead of (5).
2. THEOREM 2. If the function g(t) is k times differentiable: and g®*)(t)
belongs to L?, and if further

%) f f 92X+ W)= 0O gt an < oo

forap>a—2k+1=1, then the series (1) converges for a 2k <a =< 2k
+1). If (7) holds for p =a 41, 2k + 1< a < 2k + 2, then(1l)converges for
such «.

For the proof we use the notation of the proof of Theorem 1, then
we have (6). Further we have

—o0

f |9t + ) — gO(E)| 2 dt = 4 3 v¥c sin? vh,

f f L0+ 1) = a1 gy g

27

— 4 S [ S”}l’,ffi dh

—-—co —

= const. 2 [p]err-ic,

—co

Hence, for a and pi in the theorem,
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2r 27

< . \ " ®t 4 ) — g®(t)|*

8) S atlsi(x) — D= const.} Lg®(t + izp 9O 4 an.
n=1 0 x .

Thus the theorem is proved.
3. THEOREM 3. If f(x) is differentiable infinitely many times and
Ay = max If(x)] (=0,1,2,....),

0=rs
Ab. [ 1 1 }
@ 2 W@ T @D <™
then the series
(10) > 1) — f()]* Pn)
n=1

converges uniformly, where

nr

() = f S5+ 1) S‘n’ﬁdt/[ Si‘t‘t at

—n

and
P(n) = >, w'/ \lf(k)
X k 1
Especially therelis a trigonomelrical polynomial t(x) of order n such that
1) () —f(®) =01/ pmn))
uniformly.

For, since we can verify that (8) holds for
8.(%) = l’f %(t)gﬂt— dt, gty = 2B
T v t
instead of si(x) — f(x) and g(t), we have

(12) 2 () () = 2 8x(x) 2 ;;?kj

2 (k) 2 Bn(x)n"

k=1

| "l + n) — )|

If we put

max |g:¥Xx)| = By (F=0,1,....),

0=r=Zon

then
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2 8}(x)®P(n) < const. 2 B, {11,—(127) + @@kl—_*_-i)} .

Now,

V

< Kk—1)....(k—v—1 1
ooy = 3 BB D L gty -5(F)

1
- v!

k

= S —1yk(k —1)....(k — v — 1) t=*='PE9(¢)

v=0

k t“‘
—_ (p) —_— =
1) zf (x— 1) M}

G @0 + 08 + fE — g1,
where 0 < § < i, 0< g <1. Hence
B, < 2Az41/(k+ 1).
Thus we have

S Ain (1 1
Z 8%(x)®(m) < const. 2 { 75 + JEETD }’

which is finite by the assumption.
For the proof of (11), it is sufficient to put

ne

£a2) = f fix+ t)§i—%ﬂdt / f S—itn—t-dt.

—-nr

For example, let us consider the function

= S osnE

en
n=1
and let s,(x) be the nth partial sum of the series.
Then
(13) (%) — sa(x) = O(1/e"),

which is the best approximation. A little weak estimation is derived from

our theorem. For A; = max |[{®(x)] = O( % == O(k!), and the series
n=1

2 Afss 2((13 + 2)I)?
Ny (2k) k> (2k)
converges when Y(2k) = {(k + 2)!}?k~* (0 < ¢ < 1) and then it is sufficient to-
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take
Y(k) = kt+ekve* /20,
Hence #(n) = 32'n*/kfe-tki+c ~ g™ [p2+e,
Thus (11) becomes, for any € >0,
(%) — f(x) = o(n**</e"),

which is weaker than (13) a little.

Secondly, let us take y{(k) = k!, then ®(») = e”. In this case, Theorem 3
becomes : .

If A; <const.2%k!/k*(k=1,2,....), then there is a trigonometrical poly-
nomial ¢£,(x) of order # such that

2 e (®) = tu(x)]? < oo

n=1
Further, if
A; < const. (2k)!,
then there is a trigonometrical polynomial #,(x) of order » such that

oo

S 1) — () <

for any & >0, and then
1(8) = ta(3) = ool
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