A PRODUCT IN HOMOTOPY THEOR

HARUO SUZUKI

(Received June 7,1954)

1. Introduction. H. Samelson conjectured, in his paper [1] that the Whitehead product in homotopy groups satisfies an analogous relation to the Jacobi identity in Lie algebras. This is stated also by A. L. Blakers and W. S. Massey [6]. We refer to the relation as the Jacobi identity in Whitehead products.

The present paper proves the identity for elements of dimension >1 . For this purpose we introduce a new product in homotopy groups of an H-space (See section 3 below and J. -P. Serre [2]) by means of the product operation of the space. We call the product an H-product. It is connected to the Pontrjagin product of homology groups (cf. L. Pontrjagin [4], H. Hopf [5]) and is interesting itself (see section 3, Proposition 2 below).

This product is bilinear for elements of dimension ≥ 2 and is not associative but under some additional conditions¹ satisfies a modified form of the Jacobi identity. In the lacet spaces [2] the relation holds and is translated to the Jacobi identity in Whitehead products of the original space, using certain isomorphisms. These isomorphisms are Eilenberg's suspension for homotopy groups (see section 2 below) in a fiber space of paths starting from a fixed point.

2. Preliminaries. Let *X* be an arcwise connected topological space and x_0 be a fixed point in it. We consider a space whose elements are paths beginning at *x⁰* with compact-open topology and denote it by *E.* A mapping which associates each element of *E* with its terminal point, is continuous and denoted by *P.* Moreover it it well known that *E* is a fiber space with a base space X, projection P and a fiber, the lacet space Ω_x relative to *x0* (see J. -P. Serre [2]).

Let p and n be integers such that $1 < p \leq n$, if be a mapping from an ndimensional cube $Iⁿ$ (an *n*-fold product space of $I = [0, 1]$) into X such that $f(I^n) = x_0$ where I^n is the boundary of I^n . Under these notations we define a mapping $T_p f$ of I^{n-1} into Ω_X by the formula

(1) $T_p f(x_1, \ldots, x_{n-1})(t) = f(x_1, \ldots, x_{p-1}, t, x_p, \ldots, x_{n-1}),$

(this definition has its sense if only the faces $x_p = 0$ and $x_p = 1$ of I^n go into *x*₀). *T*_{*P*} is one-to-one and induces a homomorphism of $\pi_n(X, x_0)$ into $\pi_{n-1}(\Omega_X, x_0)$ *x*₀) for $n > 1$, where x_0 is also a constant path $I \rightarrow x_0 \in X$. We also denote this homomorphism by T_p . Let Σ_p be the inverse of T_p ;

(2) $\sum_{p} f'(x_1, \ldots, x_{p-1}, t, x_p, \ldots, x_{n-1}) = f'(x_1, \ldots, x_{n-1})(t),$

where f' is a mapping of I^{n-1} into Ω_{τ} , then we have

^{1) §5,} Theorem 3 in this paper.

(3)

A homomorphism of homotopy groups induced by Σ_p is denoted by Σ_p .

PROPOSITION 1. T_p is an isomorphism of $\pi_n(X, x_0)$ onto $\pi_{n-1}(\Omega_X, x_0)^2$ and Σ_p in its inverse.

 $\Sigma_p T_p f = f$.

The proof is trivial. Moreover we have the relations $T_p = (-1)^{p+q} T_q$ $(1 < p, q \le n)$, $T_n = \partial P_*^{-1}$ which were shown by H. Samelson [1], where ∂ is the boundary homomorphism of the homotopy group $\pi_n(E, \Omega_X, x_0)$ to $\pi_{n-1}(\Omega_X, x_0)$ (this is an isomorphism onto, P_1 is an isomorphism of $\pi_n(E, \Omega_X, x_0)$ onto $\pi_n(X, x_0)$ induced by the projection P. Hence a relation $T_p = (-1)^{n+p} \partial P_*^{-1}$ holds.

 T_n is the transgression and Σ_n the Eilenberg's suspension for *n* and *(n* -1) dimensional homotopy groups (cf. J.-P. Serre [2, pp. 453]). For the sake of convenience we write T , Σ instead of T_n , Σ_n respectively.

REMARK. The isomorphism T_n was given by W. Hurewicz [9] for the first time.

COROLLARY 1. If A is a subset of X containing x_0 , then for $n > 2$ we have $\pi_n(X, A, x_0) \approx \pi_{n-1}(\Omega_X, \Omega_A, x_0).$

The isomorphism is induced by T_p *(* $p < n$ *).*

PROOF. Consider the exact homotopy sequences of pairs (X, A, x_0) and $(\Omega_X, \Omega_A, x_0)$. T_p induces a homomorphism of the first sequence to the second. In fact, in the diagram $(n > 2)$

$$
\cdots \longrightarrow \pi_n(X, x_0) \xrightarrow{j_*} \pi_n(X, A, x_0) \xrightarrow{\partial} \pi_{n-1}(A, x_0) \xrightarrow{i_*} \pi_{n-1}(X, x_0) \longrightarrow \cdots
$$

\n
$$
\downarrow T_p \qquad \qquad \downarrow T_p \qquad \qquad \downarrow T_p \qquad \qquad \downarrow T_p
$$

\n
$$
\cdots \longrightarrow \pi_{n-1}(\Omega_X, x_0) \longrightarrow \pi_{n-1}(\Omega_X, \Omega_X, x_0) \longrightarrow \pi_{n-2}(\Omega_A, x_0) \longrightarrow \pi_{n-2}(\Omega_X, x_0) \longrightarrow \cdots
$$

homomorphisms of each square are commutative. Making use of Proposition 1 above and the five lemma (Eilenberg-Steenrod [7]), our result is obtained immediately.

COROLLARY 2. For a triad $(X; A, B, x_0)$, where $x_0 \in A \cap B$, and for $n > 3$, *we obtain*

$$
\pi_n(X;A,B,\,x_0)\!\approx\!\pi_{n-1}(\Omega_X;\,\Omega_A,\,\Omega_B,\,x_0)
$$

The isomorphism is induced by $T_p(2 < p < n)$ *.*

The proof is analogous to that of the Corollary 1 above.

3. A new product in homotopy groups of the H -space.

DEFINITION 1. We call a space X with a product operation \vee , satisfying following conditions, an *H*-space and denote it by (X, \vee) :

²⁾ If Ω_X is arcwise connected i.e. X is a simply connected space, we can take x_0 as the base point ot homotopy groups of Ωx without any loss of generality. Even if *X* has not this property, as for isomorphism T_p , it is enough to consider the arcwise connected component containing x_0 , therefore the condition is not so restrictive.

80 H. SUZUKI

(H. 1). The mapping $(x, y) \rightarrow x \lor y$ is a continuous mapping of the space X x *X* into *X.*

(H. 2). There exists a *fixed* point $x_0 \in X$ such that $x_0 \vee x_0 = x_0$ and the continuous mappings of X into itself: $x \to x \lor x_0$, $x \to x_0 \lor x$ are homotopic to the identical mapping of X by two *fixed* homotopies $H_i(x, t)$, $H_r(x, t)$ which leave the point x_0 invariant (cf. J. P. Serre [2, PR 474]).

REMARK. This definition is somewhat different from that of J. -P. Serre. The latter treats the homology theory, therefore it does not need to fix the point x_0 and the homotopies of $(H, 2)$.

For example, Topological groups and lacet spaces become H -spaces. In topological groups the operation of multiplication is regarded as \vee , the unit element as x_0 and the two homotopies of $(H, 2)$ are trivial. In lacet spaces an ordinary product of paths [10, VIII, § 46, pp. 217-8] is considered as \vee , a fixed constant path as x_0 and the two homotopies of (H. 2) are these induced by a homotopic transformation of parameters, which remove the constant path at one end point $[10, VIII, § 46, pp. 217-8]$. These homotopies in lacet spaces play a fundamental role to prove the modified form of the Jacobi identity for the *H* product (see Theorems 1,2).

Let X be an arcwise connected space and f_n, g_n be mappings from the *n*-dimensional cube $Iⁿ$ into the space *X* such that the restrictions of these mappings on \dot{I}^n agree, i.e. $f_n | \dot{I}^n = g_n | \dot{I}^n$. Similarly to the theory of S. Eilen berg [8, §1], we define a mapping $d(f_n, g_n)$ of an *n*-dimensional sphere S^n to *X* as follows: $a(f_n, g_n) | I_+^n$ is induced by $f_n, d(f_n, g_n) | I_-^n$ is induced by g_n , where I_{+}^{n} , I_{-}^{n} are two copies of I^{n} identified on the boundaries and represent upper and lower hemispheres of $Sⁿ$ respectively. Hence we have $I_{+}^{n} \cup I_{-}^{n} =$ $Sⁿ$ and $Iⁿ₊(Iⁿ_z = Sⁿ⁻¹$, the latter is an $(n-1)$ dimensional equatorial sphere of S^n . We take $(0, \ldots, 0) \in S^{n-1}$ as a pole of S^n and describe an element of *π*_{*n*}(*X*, *x*₀) determined by $d(f_n, g_n)$ as $d(f_n, g_n)$.

We define here that the two singular *n-cubes* (i. e. continuous mappings of Euclidean *n*-cubes) f_n , f'_n are the same if there exists a homeomorphism of the Euclidean *n*-cubes preserving its orientation such that $f_n = f'_n \lambda$. For any singular *n*-cubes f_n , g_n and a homeomorphism λ of the *n*-cubes such that $f_n | I^n = g_n \lambda | I^n$, we can define a mapping $d(f_n, g_n \lambda)$ and an element $d(f_n, g_n\lambda)$ of $\pi_n(X, x_0)$ determined by it.

Now let f be a mapping from I^p into X such that $f(I^p) = x_0$ and g be that from I^q into X such that $g(I^q) = x_0$. Let α be an element of $\pi_p(X, x_0)$ deter mined by *f* and *β* be that of $\pi_{\theta}(X, x_0)$ determined by *g*. We define a mapping $f \vee g$ of $I^p \times I^q$ into X by a formula

$f \vee g(x, y) = f(x) \vee g(y)$

for $x \in I^p, y \in I^q$. We deform a partial mapping $f \vee g | (I^p \times I^q)$ to a mapping which coincides with $f(x)$ on $I^p \times I^q$ and with $g(y)$ on $I^p \times I'$. This is established as follows. The mapping $f\vee g$ on $\tilde{I}^p\times \tilde{I}^q$ is always a constant x_0 , therefore we apply the homotopies (relative to x_0) of condition (H. 2) to both of $I^p \times I^i$ and

 $I^p \times I^q$ independently and obtain the desired homotopy. Thus we have extended the mapping $f\vee g$ of $P^2 \times P^2 \times 0$ identified with $P^2 \times P^2$ to that of $P^2 \times P^2$ $I^q \times 0$ U ($I^p \times I^q$) $\cdot \times I = \overline{I^{p+q}}$. We denote it by $f \nabla q$. $\overline{I^{p+q}}$ is homeomorphic to a $(p+q)$ -dimensional Euclidean cube³), hence $f \nabla g$ determines a singular cube.

Let $\lambda_{p,q}$ be a homeomorphism of $I^p \times I^q \times I$ onto $I^q \times I^p \times I$ defined by $h(p,q)(x, y, t) = (y, x, t)$ for all $x \in I^p, y \in I^q$ and $t \in I$. We consider $d(f \nabla g, t)$ $(g\nabla f)\lambda_{p,q}\in \pi_{p+q}(X,\mathfrak{x}_0)$ i.e. a homotopy class of $d(f\nabla g,(g\nabla f)\lambda_{p,q})$ by homotopies which map the point $(0, \ldots, 0) \times (0, \ldots, 0) \times 1 \in \overline{I^{p+q}} = \overline{I^{p+q}} \cap \overline{I^{p+q}}$ always to x_0 . It is shown that the element is uniquely determined by α , β and this operation is linear for elements of dimension >1 .

Let *f* be another mapping of α and α' be that of β . Let $F(x, t)$ and $G(y, t)$ give these homotopies $f \simeq f'$, $g \simeq g'$ relative to x_0 ($x \in I^p$, $y \in I^q$ and $t \in I$). We define a mapping of $I^p \times I^q \times 0 \times I \cup (I^p \times I^q)^+ \times I \times I$ into X by the formulas

This gives a homotopy $f \nabla g \simeq f' \nabla g'$ which maps $(0, \ldots, 0) \times (0, \ldots, 0) \times 1$ always to x_0 . The homotopies of the mappings $f\nabla g$, $(g\nabla f)\lambda p,_q$, defined above agree on the boundary *P+Ί .* Hence we obtain the homotopy

 $d(f\nabla g, (g\nabla f)\lambda_{p,q}) \simeq d(f'\nabla g', (g'\nabla f')\lambda_{p,q})$

relative to x_0 . This proves that $d(f\nabla g, (g\nabla f)\lambda_{p,q})$ is determined by α and β .

Let α_1 , α_2 be elements of $\pi_p(X, x_0)$ such that $\alpha = \alpha_1 + \alpha_2$ and f_1, f_2 be mappings of I^p into X such that $f_1(I^p) = f_2(I^q) = x_0$. We define a mapping $f_{1,2}$ by

$$
f_{1,2}(x_1, \ldots, x_p) = f_1(2x_1, \ldots, x_p) \quad \text{if } 0 \leq x_1 \leq 1/2, \\
\qquad = f_2(2x_1 - 1, \ldots, x_p) \quad \text{if } 1/2 \leq x_1 \leq 1.
$$

This belongs to α . Let S^{p+q} be a $(p+q)$ -dimensional sphere. We shrink its equatorial sphere to a point and identify the two spheres thus obtained with two copies $[I^{\overline{p+q}}_+ \cup I^{\overline{p+q}}_-, [I^{\overline{p+q}}_+ \cup I^{\overline{p+q}}_-, \text{or } I^{\overline{p+q}}_+ \cup I^{\overline{p+q}}_-, \text{where the points}]$ $[(1,0, \ldots, 0) \times (0, \ldots, 0) \times 1]_1$, $[(0, \ldots, 0) \times (0, \ldots, 0) \times 1]_2$ coincide with the point shrunk. We describe the shrinking followed by $d(f_i \nabla g, (g \nabla f_i) \lambda_{p,q})$ and $d(f_2 \nabla g, (g \nabla f_2) \lambda_{p,q})$ on the two spheres respectively, as $F_{1,2}$.

Next we identify the part $1 \times P^{q+q-1} \times I$ of $[I^{p+q}_{+}]_1$ with $0 \times P^{q+q-1} \times I$ of $[\overline{I^{p+q}_+}]_2$ and retract it to $1 \times (I^{p+q-1} \times 0 \times I^{p+q-1} \times 1)$. This is a deformation retract. Similarly we consider this operation for $\overline{[P_{-}^{p+q}]_i}$, $\overline{[P_{-}^{p+q}]_2}$. A space thus obtained is clearly homeomorphic to $\overline{I^{p+q}_+}$ | $\overline{I^{p+q}_-}$

Let θ be a composite mapping of identifications and homeomorphisms

^{. 3)} A homeomorphism is given as follows: we project the set $I^p \times I^q \times 0 \cup (I^p \times I^q)$ $J^{(q)} \times I$ to a hyperplane $\mathcal{P}_{p+q+1} = 1$ from a point $(\frac{1}{2}, \ldots, \frac{1}{2}, 2)$.

82 H.SUZUKI

stated above, from S^{p+q} onto $I^{p+q}_+ \cup I^{p+q}_-$. We have easily

 $F_{1,2} \simeq d(f_{1,2}\nabla g, (g\nabla f_{1,2})\lambda_{p,q})\theta$

where this homotopy maps the point $(0, \ldots, 0) \times (0, \ldots, 0) \times 1$ always to *x*₀. Since the degree of θ is + 1, $F_{1,2}$ and $d(f_{1,2}\nabla g, (g\nabla f_{1,2})\lambda_{p,q})$ represent the same element of $\pi_{p+q}(X, x_0)$. If $\omega(\alpha_1)$ is an automorphism of $\pi_{p+q}(X, x_0)$ induced by a closed path $F_{1,2} | [I \times (0, \ldots, 0) \times (0, \ldots, 0) \times 1]_1 = f_1 | I \times (0, \ldots, 0), F_{1,2}$ determines

$$
\mathrm{d}(f_1 \nabla g, (g \nabla f_1) \lambda_{p,q}) + \omega(\alpha_1) \mathrm{d}(f_2 \nabla g, (g \nabla f_2) \lambda_{p,q}).
$$

For $p > 0$ ω is trivial.

Similarly this holds for *β.* Thus the linearity is proved.

DEFINITION 2. To any elements $\alpha \in \pi_p(X, x_0)$, $\beta \in \pi_q(X, x_0)$ we associate an element $(-1)^{p}d(f\nabla g, (g\nabla f)\lambda_{p,q})$ of $\pi_{p+q}(X, x_0)$ and call it an *H*-product of α and β and denote it by $\langle \alpha, \beta \rangle$.

We show some properties of this product in the following Propositions.

PROPOSITION 2. Let h be the Hurewicz natural homomorphism of $\pi_n(X, x_0)$ *into Hⁿ (X) and* * *be the Pontrjagin product. We have the relation* (4) $h < \alpha, \beta > = (-1)^p \{ h\alpha^* h\beta - (-1)^{pq} h\beta^* h\alpha \}.$

Proof. If we regard the mappings $f\nabla g$, $(g\nabla f)\lambda_{p,q}$, $d(f\nabla g)$, $(g\nabla f)\lambda_{p,q}$ as cubic singular cycles we have

$$
d(f\nabla g,(g\nabla f)\lambda_{p,q})=f\nabla g-(-1)^{pq}g\nabla f.
$$

By means of a natural deformation retract we obtain the relation $f\nabla g$ $\sim f \vee g$ (homologous) and this determines $h\alpha * h\beta$. Thus the result is proved.

PROPOSITION 3. *If a topological group G is abelian, then the H-product in homotopy groups of G is trivial.*

This is a direct consequence of the Definition 2.

4. A relation between the H -product and the Whitehead product. In this section, we consider how to derive the Whitehead product from our *H*-product. Let X be an arcwise connected space and f be a mapping of I^{p+1} into *X* such that $f(I^{p+1}) = x_0$ and *g* be that of I^{q+1} into *X* such that $g(I^{q+1})$ $= x_0$ where x_0 is a fixed point of *X*. Let α and β be elements of homotopy groups determined by the mappings f and g respectively i.e. $\alpha \in \pi_{p+1}(X, x_0)$, $B \in \pi_{q+1}(X, x_0)$.

The Whitehead product $[\alpha, \beta]$ of α and β (see [3]) is defined as an element of $\pi_{p+q+1}(X, x_0)$ determined by a mapping *h* of $(I^{p+1} \times I^{q+1})^{\frac{1}{p}}$ into X such that

$$
h(x, y) = f(x) \quad \text{if } x \in I^{p+1}, y \in I^{q+1}, \\
 = g(y) \quad \text{if } x \in I^{p+1}, y \in I^{q+1}.
$$

For the sake of convenience, we describe the mapping *h* as [*f, g*].

PROPOSITION 4. *In every H-space the Whiiehead product is null.*

Proof The mapping $f\nabla g$ gives a null homotopy of $h = [f, g]$.

Let f' be a transgression of the mapping f , namely a mapping of I^p into a lacet space Ω_X of X based on x_0 such that $f'(I^p) = x_0^{\alpha}$, and similarly g' be a transgression of g i.e. $Tf = f'$, $Tg = g'$. The elements of homotopy groups determined by f' and g' are $T\alpha \in \pi_p(\Omega_x, x_0)$ and $T\beta \in \pi_q(\Omega_x, x_0)$. We denote them by α' and β' respectively.

THEOREM 1. *Let* α, *β be as above. Then we have the formula* (5) $T[\alpha, \beta] = \langle T\alpha, T\beta \rangle$.

Proof. We deform the mapping $\Sigma d(f' \nabla g', (g' \nabla f') \lambda_{p,q})$ and will show that the element of $\pi_{p+q+1}(X, x_0)$ determined by it, coincides with $(-1)^p[\alpha, \beta]$.

Now, we construct a mapping $[\varphi_s]_+$ of $E = \overline{I^{p+q}} \times I(0 \le s \le 1)$ onto itself. (It is not always necessary that the mapping is continuous). On $\overline{I^{p+q}}$ $\times t$, for any $x \times y \in (I^p \times I^q)$ we map the line segment with end points $(1/2, \ldots, 1/2) \times (1/2, \ldots, 1/2) \times 0 \times t$, $x \times y \times 0 \times t$ onto a broken line segment (tree) with vertices $(1/2, \ldots, 1/2) \times (1/2, \ldots, 1/2) \times 0 \times t$, $x \times y \times 0 \times t$, $x \times y$ $y \times s(1-2t) \times t$ for $0 \le t \le 1/2$ and onto that with vertices $(1/2, \ldots, 1/2)$ $x(1/2, \ldots 1/2) \times 0 \times t, x \times y \times 0 \times t, x \times y \times s(2t-1) \times t, \text{ for } 1/2 \leq t \leq 1,$ $\text{linearly about length. On } I^{p+q} \times I \times I, \text{ for any } x \in I^p - I^p, y \in I^p, 1/2$ $\leq t \leq 1$, in $x \times y \times I \times I$ we map the interval $x \times y \times [0, 2t - 1] \times t$ onto the interval $x \times y \times [s(2t - 1), 2t - 1] \times t$ linearly, and the interval $x \times y \times r \times r$ [0, $1/2(1 + r)$] onto the line segment with end points $x \times y \times (r + s(1 - r)) \times$ 0, $x \times y \times r \times 1/2(1 + r)$ ($0 \le r \le 1$), linearly about length. For $x \in$ \dot{I}^p , $y \in I^p - \dot{I}^q$ the mapping is defined similarly by inverting the value *t.* For any $x \in I^p$, $y \in I^q$ we map the interval $x \times y \times [0, 1 - 2t] \times t$ onto x $x \times z \times [s(1-2t), 1-2t] \times t$ for $0 \le t \le 1/2$ and $x \times y \times [0,2t-1] \times t$ onto x $x \times y \times [s(2t - 1), 2t - 1] \times t$ for $1/2 \le t \le 1$ linearly. We define a mapping $[\varphi_s]$ by $[\varphi_s]$ (x, y, s, t) = $[\varphi_s]$ + (x, y, s, 1 - t).

Let S^{p+q+1} be a $(p+q+1)$ -dimensional sphere represented by two copies E_+ , E_- of the cube E by identifying their boundaries and φ_s be a mapping of $p+1+1$ onto itself. It is one-to-one for s-values $0 \le s < 1$, but is not continuous on $\dot{I}^p \times \dot{I}^q \times I \times I$. However $[\Sigma d(f' \nabla g', (g' \nabla f') \lambda_{p,q}] \varphi_s^{-1}$ is defined for $0 \leq s$ ≤ 1 and continuous and gives a homotopy of the mapping $\Sigma d(f' \nabla g', (g' \nabla f'))$ $\lambda_{p,q}$).

There exists a homeomorphism of $\varphi_1(E_+)$ onto $(I^p \times I^q) \times (I \times 0 \cup 1 \times I)$ U $(I^p \times I^q) \times$ (the triangle with vertices $(0, 0), (1, 0), (1, 1)$ in $I \times I$) as follows : for any $x \in I^p$, $y \in I^q$ line segments $\varphi_1(x \times y \times 0 \times [0, 1/2])$ and $\varphi_1(x \times y \times 0 \times 0 \times$ [1/2,1]) go onto $x \times y \times I \times 0$ and $x \times y \times 1 \times I$ obviously piecwise linearly. $For (x, y) \in (I^p \times I^q);$ $\varphi_1(x \times y \times I \times I)$ which is $x \times y \times$ (the triangle with vertices(1, 0), (0, 1/2), (1, 1) in $I \times I$) goes onto $x \times y \times$ (the triangle with vertices $(0,0)$, $(1,0)$, $(1,1)$) by an affine transformation which maps the vertices $(1,0)$, $(0,1/2)$,

⁴⁾ x_0 means also the constant path $I \rightarrow x_0 \in X$.

84 H. SUZUKI

(1,1) to $(0,0)$, $(1,0)$, $(1,1)$ in $I \times I$ respectively. Under this homeomorphism $\text{line segments} \varphi_1(x \times y \times s \times |0, \frac{1+s}{2}|), \varphi_1(x \times y \times s \times | \frac{1+s}{2}, 1] \text{ for any } x \times y \times s$ $f \in I^p - \dot{I}^p, y \in \dot{I}^q$ go onto the broken line segment with vertices $x \times y \times 0 \times \dot{I}^q$ 0, $x \times y \times 1 \times s$, $x \times y \times 1 \times 1$ and $\varphi_1(x \times y \times s \times [0, \frac{1-s}{2}]), \varphi_1(x \times y \times s \times$ $\left\{\left[\frac{1-s}{2}, 1\right]\right\}$ for any $x \in \dot{I}^p, y \in I^q - \dot{I}^q$ go onto that with vertices $x \times y \times 0 \times$ 0, $x \times y \times (1-s) \times 0$, $x \times y \times 1 \times 1$ and $\varphi_0(x \times y \times s \times (\left[0, \frac{1-s}{2}\right] \cup \left[\frac{1-s}{2}, \frac{1+s}{2}\right] \cup$ $\left(\frac{1+s}{2},1\right]$) for any $x \in \dot{I}^p$, $y \in \dot{I}^q$ go onto that with vertices $x \times y \times 0 \times 0$ $x \times y \times (1 - s) \times 0, x \times y \times 1 \times s, x \times y \times 1 \times 1$, piecewise linearly. Similarly *φ*₁(*E*₋) is homeomorphic to $I^p \times I^q \times (0 \times I \cup I \times 1) \cup (I^p \times I^q)^* \times$ (the triangle with vertices $(0,0), (0,1), (1,1)$ in $I \times I$). These induce a homeomorphism *f* of $\varphi_1(S^{p+q+1})$ onto $(P \times P \times I \times I)$. Let ϕ be a mapping ϕ' followed by the transformation $\eta: (I^p \times I^q \times I \times I) \to (I^p \times I \times I^q \times I)$ defined by $\eta(x, y, s, t)$ t) = (x, s, y, t). This is a homeomorphism with the degree $(-1)^p$. From the construction the relation

$$
\left[\sum d(f'\nabla g', (g'\nabla f')\lambda_{p,q})\right]\varphi_1^{-1} = [f, g]\varphi
$$

is obtained. Therefore for any $\alpha' \in \pi_p(\Omega_x, x_0)$, $\beta' \in \pi_q(\Omega_x, x_0)$ we have $\Sigma < \alpha', \beta' > \square$ [$\Sigma \alpha', \Sigma \beta'$].

and this means that for any $\alpha \in \pi_{p+1}(X, x_0)$, $\beta \in \pi_{q+1}(X, x_0)$ $T[\alpha, \beta] = \langle Ta, T\beta \rangle$.

5. The Jaeobi identities in homotopy groups. Let *X* be an arcwise connected *H*-space and x_0 , H_1 , H_r be those of Definition 1. We suppose that mappings $f: I^p \to X$, $g: I^q \to Y$, $h: I^r \to X$, $f(I^p) = g(I)$ $\mathcal{I} = h(\dot{I}^r) = x_0$ represent $\alpha \in \pi_p(X, x_0)$, $\beta \in \pi_q(X, x_0)$, $\gamma \in \pi_r(X, x_0)$ respection vely. Let $\overline{I^p}$ be $I^p \times 0 \cup I^p \times I_p$ where I_p is $[0,1]$ with the index p . Briefly we set $I^p \times 0 = I^p, I^p \times I_p = O^p$, hence $\overline{I^p} = I^p \cup O^p$. First we construct two mappings $F_{f,(g,h)}, F_{(f,g),h}$ of a($p + q + r$)-dimensional cube $E_{p,q,r} = \overline{P} \times \overline{I^q} \times \overline{I^r}$ into X as follows. Let \overline{x} be an arbitrary element of \overline{P} . We have $\overline{x} = x$ for $\overline{x} \in I^p \times 0$ and $x = \overline{x} \times t_p(x \in I^p, t_p \in I_p)$ for $\overline{x} \in O^p$ and similarly for $\overline{y} \in \overline{I^q}$, $\overline{z} \in \overline{F}$. We define

(6)
$$
F_{f,(g,h)}(\overline{x}, \overline{y}, \overline{z})
$$

\n
$$
f(x) \vee (g(y) \vee h(z))
$$

\n
$$
= \begin{cases} f(x) \vee (g(y) \vee h(z)) & (f(x) \vee g(y) \vee h(z)) \\ f(x) \vee H_f(h(z), t_q) & H_f(f(x) \vee f_q) \vee h(z) \\ f(x) \vee H_f(g(y), t_r) & H_f(f(x) \vee g(y), t_r) \\ H_f(H(g(y), t_r), t_p) & H_f(H_g(y), t_r), t_p) \end{cases} = \begin{cases} F_{(f, g),h}(\overline{x}, \overline{y}, \overline{z}) & \text{on } I^p \times I^q \times I^r, \\ H_f(f(x), t_q) \vee h(z) & \text{on } I^p \times O^1 \times I^r, \\ H_f(f(x) \vee g(y), t_r) & \text{on } I^p \times I^q \times O^r, \\ H_f(g(y), t_p), t_r) & \text{on } O^p \times I^1 \times I^r, \\ H_f(H_f(g(y), t_r), t_p) & \text{on } O^p \times I^p \times O^r, \\ H_f(H_f(f(x), t_q), t_r) & \text{on } O^p \times O^1 \times O^r, \\ f_{\text{off}}(H_f(f(x), t_q), t_r) & \text{on } O^p \times O^1 \times O^r, \\ f_{\text{off}}(H_f(f(x), t_q), t_r) & \text{on } O^p \times O^1 \times O^r, \\ f_{\text{off}}(H_f(f(x), t_q), t_r) & \text{on } O^p \times O^1 \times O^r, \\ f_{\text{off}}(H_f(f(x), t_q), t_r) & \text{on } O^p \times O^1 \times O^r, \\ f_{\text{off}}(H_f(f(x), t_q), t_r) & \text{on } O^p \times O^1 \times O^r, \\ f_{\text{off}}(H_f(f(x), t_q), t_r) & \text{on } O^p \times O^1 \times O^r, \\ f_{\text{off}}(H_f(f(x), t_q), t_r) & \text{on } O^p \times O^1 \times O^r, \\ f_{\text{off}}(H_f(f(x), t_q), t_r) & \text{on } O^p \times O^1 \times O^r, \\ f_{\text{off}}(H_f(f(x), t_q),
$$

on $I^p \times O^p \times O^r$, $F_{f,(q,h)}$ maps all points of the triangle with vertices $x \times y \times$ $0 \times z \times 0$, $x \times y \times 1 \times z \times 0$, $x \times y \times 0 \times z \times 1$ ($x \in I^p$, $y \in I^q$, $z \in I^r$) to $f(x) \vee$ x_0 and all points of a line segment connecting $x \times y \times 1 \times z \times t$, $x \times y \times t$ \times z \times 1 to $H_l(f(x),t)$. On $O^p\ \times O^{\imath}\times I^r$ we define $F_{(f,g),h}$ by a method analogous as above. These two mappings agree on the boundary $E_{p,q,r}$ of $E_{p,\gamma,r}$. Moreover we define such a pair of mappings for every order of suffixes f, g, h .

LEMMA 1. If X is a lacet space, x_0 is a constant path and H_t , H_r are *homotopies induced by a homotopic transformation of parameters which remove the constant path* x_0 *at one end (see section 3), then* $F_{f(g,h)}$ *,* $F_{(f,g),h}$ *are homotopic leaving the mappings on the boundary* $E_{p,q,r}$ *fixed. This holds good for any order of f} gsh.*

PROOF. For any points of $E_{p,q,r}$ paths of its images by the two mappings change each other by means of a homotopic transformation of parameters and we can define this transformation continuously on the whole $E_{q, p, r}$ *.*

Let C_p^{q+r} be a $(q+r)$ -dimensional cube and ρ_p be a mapping of it onto $I^{q+r}_{+} \cup I^{q+r}_{-}$, which maps C^{q+r}_{p} to $(0, ..., 0) \times (0, ..., 0) \times 1$ and is a homeor morphism on $C^{q+r}_{\scriptscriptstyle{D}} - C^{q+r}_{\scriptscriptstyle{D}}$. We set

 $D_{\langle f, \langle g, h \rangle \rangle} = d[f \nabla (d(g \nabla h, (h \nabla g) \lambda_q, r) \rho_0, \{d(g \nabla h, (h \nabla g) \lambda_q, r) \rho_0) \nabla f \} \lambda_{p,q+r}]$ and denote its inverse image sphere by *Sp+q+r .* Similarly we can define $D_{\langle q,\langle h,f\rangle\rangle}, D_{\langle h,\langle f,g\rangle\rangle}$.

We construct a mapping $i_{q,r}$ of $[I^q \times I^r]_+ \cup [I^q \times I^r]_-$ onto $I^{q+r}_+ \cup I^{q+r}_- \cup$ $(0, \ldots, 0) \times (0, \ldots, 0) \times 1 \times I$ int he following way. First we define a mapping $[i_{q,r}]$ ₊from $[I^{q} \times I^{r}]$ onto $I^{q+r}_{+} \cup (0, \ldots, 0) \times (0, \ldots, 0) \times 1 \times I$ by

 $y \times z$ if $\overline{y} = y \in I^q$, $\overline{z} = z \in I^r$. $[i_{q,r}]_+(x \times y) = \begin{cases} y \times z \times t_q & \text{if } y = y \times t_q \in O^q, \ z = z \in I^r, \end{cases}$ $y \times z \times t^r$ if $\overline{y} = y \times I^q$, $\overline{z} = z \times t_r \in O^r$,

In $O^2 \times O^2$, for any $y \in I^2, z \in I^2$ and $0 \le t \le 2$ we identify the line segment $\{y \times t_{i} \times z \times t_{r} | t_{q} + t_{r} = t\}$ to a point represented by $y \times t \times z \times 0$ for $0 \leq$ $t \leq 1$ and by $y \times 1 \times z \times (t-1)$ for $1 \leq t \leq 2$. Let U be a neighborhood of $(0, \ldots, 0) \times (0, \ldots, 0)$ on $I^1 \times I^r$, consisting of all points whose distances from $(0, \ldots, 0) \times (0, \ldots, 0)$ are less than 1/2. For any $(y, z) \notin U$ we identify $y \times 1 \times z \times I$ to $y \times 1 \times z \times 0$. In *U* for any $(y, z) \in U$ let $l_{y, z}$ be a line segment with end points $y \times 1 \times z \times 1$, $(0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1$ and $l'_{y,z}$ be that connecting $y \times 1 \times z \times 0$, $(0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 0$. We consider a homeomorphism of $l_{y,z}$ onto $\ l'_{y,z} \bigcup \, (0, \, \ldots, 0) \times 1 \times (0, \, \ldots, 0) \times I$ such that the part of $l_{y,z}$ from $(0, \ldots, 0, x \times 1 \times (0, \ldots, 0) \times 1$ to its center goes onto $(0, \ldots, 0, x \times 1)$ $(0, 0) \times 1 \times (0, ..., 0) \times I$ and the other part onto $l'_{y,z}$ linearly. We identify every line segment connecting the two points corresponding under the above homeomorphism to its end point belonging to $l'_{y,z} \bigcup (0, \ldots, 0) \times 1 \times (0, \ldots, 0)$ 0) x *I*. We map $(0, ..., 0) \times 1 \times (0, ..., 0) \times I$ onto $(0, ..., 0) \times (0, ..., 0) \times$ $1 \times I$ in the obvious way. Thus $[i_{i,r}]_+$ is defined on the whole $[I^q \times I^r]_+$.

Similarly $[i_{q,r}]$ ₋ is defined.

Let C_F^{q+r} be a $(q + r)$ -dimensional cube and ρ_F be a homeomorphism of it onto a $(q + r)$ -dimensional cell $i_{q,r}^{-1}$ $\overline{I_{+}^{q+r}}$ U $\overline{I_{-}^{q+r}}$. Let $i_{q,r}^{c}$ be a mapping of C_F^{q+r} onto C_D^{q+r} such that i_q , $\rho_F = \rho_D i \frac{d}{dx}$. This is uniquely determined in C_F^{q+r} $-\dot{C}_{F}^{i+r}$ and is extended naturally to a mapping of C_{F}^{q+r} . We construct a mapping ρ_F of $\overline{C_F^{q+r}}$ onto $[\overline{I'} \times \overline{I'}]_+ \cup [\overline{I'} \times \overline{I'}]$ -by $\rho_F(u \times 0) = \rho_F(u)$ on $C_F^{q+r} \times$ $0 \ (u \in C^{q+r}_{F})$ and defining $\rho_{F}(u \times t)$ on $C^{q+r}_{F} \times I$ as a point dividing the line segment with end points, $\rho_F(u)$ ($u \in \dot{C}_F^{q+r}$) and (0, ..., 0) \times 1 \times (0, ..., 0) \times 1 in the ratio $t: 1-t$. A mapping ρ_D of $\overline{C_{D}^{t+r}}$ onto $[\overline{I_{+}^{t+r}} \cup \overline{I_{-}^{t+r}}] \cup (0, \ldots, 0) \times$ $(0, \ldots, 0) \times 1 \times I$ is defined by

$$
\overline{\rho}_D(v \times 0) = \rho_D(v) \text{ on } C_D^{a+r} \times 0 (v \in C_D^{a+r}),
$$

$$
\overline{\rho}_D(v \times t) = \rho_D(v) \times t \text{ on } C_D^{a+r} \times I(v \in C_D^{a+r}).
$$

Let $\overline{i_{q,r}^C}$ be a mapping of C_F^{q+r} onto $\overline{C_{D}^{q+r}}$ defined by

$$
\overline{i_{q,\,r}^C}(u\times 0)=i_{q,\,r}^C(u) \qquad \text{on } C_F^{r+r}\times 0,
$$

$$
\overline{i_{q,\,r}^C}(u\times t)=i_{q,\,r}^C(u)\times t \qquad \text{on } C_F^{q+r}\times I.
$$

Easily we have

$$
i_{q,r} \, \, \overline{\rho}_F = \, \widehat{\rho}_D \, \overline{i_{q,r}^C}
$$

There exist two mappings F_1, F_2 of $\overline{I^q} \times \overline{C_F^{q+r}}$ induced by $F_{f,(q,h)}, F_{f,(h,q)}$ and $F_{(g,h),f}, F_{(h,g),h}$ respectively. We set $F_{\leq f, \leq g, h>>} = d(F_1, F_2)$ and describe its inverse image sphere by S_F^{p+q+r} . Similarly $F_{\leq q, \leq k, j>}$ and $F_{\leq h, \leq f, q>>}$ can be defined.

We construct a mapping *i* of S_F^{p+q+r} onto S_D^{p+q+r} as follows:

$$
i(\overline{x} \times \overline{u}) = x \times i_{q,r}^{\overline{v}}(\overline{u}) \quad \text{if } \overline{x} = x \in I^p, \, \overline{u} \in \overline{C_{\overline{x}}^{u+r}},
$$

\n
$$
= x \times i_{q,r}^{\overline{v}}(\overline{u}) \times t \text{ if } \overline{x} = x \times t \in O^p, \, \overline{u} \in C_{\overline{x}}^{q+r} \times 0,
$$

\n
$$
= x \times i_{q,r}^{\overline{v}}(\overline{u}) \times t \text{ if } \overline{x} = x \times t_p \in O^p, \overline{u} = u \times t_c \in C_{\overline{x}}^{q+r} \times I
$$

\nsuch that $t_p = t$ and $t_c \in [0, t]$ or $t_p \in [0, t], t_c = t$.

i induces mappings of $[\overline{I^p} \times \overline{C_F^{q+r}}]_+$ onto $[\overline{I^p} \times \overline{C_D^{q+r}}]_+$ and of $[\overline{I^p} \times \overline{C_F^{q+r}}]_+$ onto $[I^p \times C^{q+r}_b]$ i.e. mapping of S^{p+q+r}_F onto S^{p+q+r}_p .

LEMMA 2. ίF ^αy //z *following relation,*

 (7) $D_{\langle 1,\langle 9,h\rangle>}\mathbf{i}\simeq F_{\langle 1,\langle 9,h\rangle>}\rangle$

where this homotopy maps the point $(0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1 \times (0, \ldots, 0)$ \times 1 \in S_F^{p+q+r} always to x_0 .

PROOF. The mapping *i* is an identification imapping i_i of the four parts of S^{b+q+r}_{F} induced by that of $E_{p,q,r}$ above, followed by an orientation preserving homeomorphism of $i_1(S_F^{p+q+r})$ onto S^{p+q+r}_D . Changing the values on each

line segment of S^{p+q+r}_{r} which is identified to a point by i_1 , for the value of its end point continuously in regard to a parameter τ ($0 \leq \tau \leq 1$), $D_{\langle f' \rangle g, h \rangle}$ *i*, $F_{\langle f, \langle g, h \rangle}$ are homotopic relative to the point x_0 , where the base point of S^{p+q+r}_{F} is $(0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1$.

REMARK. In lacet 'spaces, this lemma' is proved directly, using the homotopic transformations of parameters of paths (see the proof of Lemma 1).

Since *i* is a mapping between the $(p+q+r)$ -dimensional spheres with the degree $1, D_{\leq f, \leq g, h \leq s}$, $F_{\leq f, \leq g, h \geq s}$ represent the same element of $\pi_{p+q+r}(X, x_0)$. For the mappings of F 's the following result is obtained \cdot

LEMMA 3. *Let άF be an element of a homotopy group represented by a mapping F of a sphere. We have the relation*

(8) d $F_{\leq f, \leq \varnothing, h>>} + (-1)^{p(q+r)} d F_{\leq \varnothing, \leq h, f>>} + (-1)^{r(p+q)} d F_{\leq h, \leq f, g>>} = 0.$

Proof. Let $\lambda^{p,q,r}_{p',q',r}$, be a homeomorphism of $E_{p,q,r}$ onto $E_{p',q',r'}(\{p,q,r\} =$

 $\{\pmb{p'}, \pmb{q'}, \pmb{r'}\}$ defined by the permutation $(\pmb{p'}, \pmb{q'}, \pmb{r'})$ of $(\pmb{p}, \pmb{q}, \pmb{r})$ and $\overline{\lambda}^{p, q, r}_{\pmb{p'}, \pmb{q'}, \pmb{r'}, \pmb{r'}}$ a homeomorphism of S_F^{p+q+r} induced by $\lambda_{p',q',r'}^{p,q,r}$. Let Γ_1 be a space consisting of three $(p + q + r)$ -dimensional spheres which are copies of S_F^{n+q+r} and have a base point $(0,\ldots,0)\times 1\times (0,\ \ldots,0)\times 1\times (0,\ \ldots,0)\times 1$ in common. Let *G* be a proper identification of a $(p+q+r)$ -dimensional sphere S^{p+q+r} to \mathbf{r}_1 followed by $F \leq f \leq g, h \geq g$, $F \leq g, \leq h, f \geq g$, $\lambda_{g_1, r_1, p_2}^{p_1, r_2, r_3}$ and $F \leq h, \leq f, g \geq g$, $\lambda_{r_1, p_1, q_2}^{r_1, r_2, r_3}$ on each S_F . respectively. S^{p+q+r}_{F} consists of four inverse images of $E_{p,q,r}$ under $1 \times \overline{\rho}_F$ (1 = identity mapping of $\overline{I^p}$). We identify each inverse images in Γ_1 to copies of $E_{p,q,r}$. Let Γ_2 be a space constructed by this operation from Γ_1 . Then $F_{\leq f, \leq g, h_{0}>}$ is this identification followed by the mappings $F_{f, (g, h)}, F_{f, (h, g)} \lambda_{p, r, q}^{p, q, r}$ $F_{h,(f,g)}\lambda_{r,p,q}^{p,q,r}$ and $F_{h,(g,f)}\lambda_{r,p,q}^{p,q,r}$ from four copies of $E_{p,q,r}$ respectively. Similarly such decompositions hold for $F_{\leq q,\leq h,f>}\tilde{\lambda}^{p,q,r}_{q,r,p}$ and $F_{\leq h,\leq f,g>}\tilde{\lambda}^{p,q,r}_{r,p,q}.$ Moreover, six pairs of mappings from copies of $E_{p,q,r}$ on Γ_z i.e. $F_{f,(q,h)}$ and $F_{(f,q)h}$, $F_{g,(h,f)}$ $\lambda_{q,r,p}^{n,q,r}$ and $F_{(q,k),f}\lambda_{q,r,p}^{p,q,r}$, etc. agree on the boundary $E_{p,q,r}$ respectively. Let Γ_3 be a space obtained by identifying the boundaries of each two copies of $E_{p,q,r}$ on Γ_2 paired as above. The space consists of six spheres identified properly on their equatorial spheres. Hence *G* is a composition of the identification S^{p+q+r} onto Γ_3 and the six mappings $d(F_{f,(g,h)}, F_{(f,g),h})$, $d(F_{g,(h,f)}\lambda_{q,r,p}^{p,q,r}, F_{(g,h)}$ $\mathbb{P}_{q,r,p}^{p,q,r}$, etc. of six spheres on Γ_3 respectively. The latter is homotopic to the constant mapping x_0 by Lemma 1 and the homotopy extension property of a finite polyhedron $[11, pp. 501]$.

THEOREM 2. Let X be an arcwise connected space and Ω_X be its lacet space *based on a fixed point* $x_0 \in X$ *. For any three elements* $\alpha \in \pi_p(\Omega_x, x_0)$ *,* $\beta \in \pi_q$ (Ω_X, x_0) , $\gamma \in \pi_r(\Omega_X, x_0)$ we have the Jacobi identity in H-products:

(9)
$$
(-1)^{(p+1)r} < \alpha, <\beta, \gamma> + (-1)^{(q+1)r} < \beta, <\gamma, \alpha> + (-1)^{(r+1)q} < \gamma, <\alpha, \beta> = 0
$$

PROOF. From (7), (8) and Definition 2 the relation follows easily, using

88 H.SUZUKI

the bilinearity of *H*-product for elements of dimension ≥ 2 .

COROLLARY 2.1. *The Jacobi identity in Whitehead produdts for elements of dimension* >1 *holds* i.e. *for any set of elements* $\alpha' \in \pi_{p+1}(X, x_0), \beta' \in \pi_{q+1}(X, x_0)$ *x*₀) and $\gamma' \in \pi_{r+1}(X, x_0)$, where p, q, $r > 0$, we have the relation

(10)
$$
(-1)^{(p+1)r}[\alpha', [\beta', \gamma']] + (-1)^{(q+1)r}[\beta', [\gamma', \alpha']] + (-1)^{(r+1)q}[\gamma', [\alpha', \beta']] = 0.
$$

This is the Samelson's conjecture.

PROOF. From Theorem 2, this is immediately shown using Theorem 1.

When we take a topological space as an H-space (See section 3, example), **the result of Theorem 2 is also obtained. The procedure of the proof of this fact is analogous to that of Theorem 2 and more easy.**

The proof of theorem 2 can be applied for the H -space in which the **result of Lemma 2 is satisfied. Therefore the theorem is stated in the following general form.**

THEOREM 3. Let X be an arcwise connected H-space and x_0 , H_l , H_r , be those *of Definition* 1. *If for any mappings* $f: I^p \to X, g: I^q \to X, h: I^r \to X$ such that $f(I^p) = g(I) = h(I^p) = x_0$ we have the homotopy $F_{f,(g,h)} \simeq F_{(f,g),h}$ leaving the *mappings on* $E_{p,q,r}$ *fixed and similar relations for all permutations of suffixes f f y, h, then the Jacobi identity in H-products* **(9)** *holds.*

REFERENCES

- [1] H. SAMELSON, A connection between the Whitehead and the Pontrjagin products, Amer. Jour. Math, vol 75(1953), pp. 744-752.
- [2] J. P.SERRE, Homologie singuliere des espaces fibres, applications, Ann. of Math. vol. 54(1951), pp. 425-505.
- [3] G W. WHITEHEAD, On products in homotopy gronps, Ann. of Math., vol.47 (1946), pp. 465-475.
- [4] oL. PNTRJAGTN, Homologie in compact Lie groups, Rec. Math. (Mat. Subornick) N.S. 6(1939), pp. 389-422.
- [5] H. HOPF, Ueber die Topologie der Gruppen Mannigfaljtigkeiten und ihre Verall gemeinerungen, Ann. of Math. vol. 42(1941), pp. 22-32.
- [6] A.L.BLAKERS and W.S MASSEY, The homotopy groups of triad III, Ann. of Math. vol. 58(1953), pp. 409-417.
- [7] S. EILENBERG and N. E. STEENROD, Foundations of algebraic topology, Princeton (1952).
- [8] S. EILENBERG and S. MACLANE, Relations between homology and homotopy groups of spaces II, Ann. of Math. vol. 51(1951), pp. 514-533.
- [9] W.HUREWIC7, Beitrage zur Topologie der Deformationen, I-IV. Proc. Akad. Amsterdam, 38(1935), pp. 112-119, 521-528, 39(1936), pp. 117-125, 215-224.
- [10] L. PONTR'AGIN, Topological Groups, Princeton (1939).
- Lll] P. ALEXANDROFF and H. HOPF, Topologie I, Berlin (1935).

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY, SENDAI.