A PRODUCT IN HOMOTOPY THEORY

HARUO SUZUKI

(Received June 7, 1954)

1. Introduction. H. Samelson conjectured, in his paper [1] that the Whitehead product in homotopy groups satisfies an analogous relation to the Jacobi identity in Lie algebras. This is stated also by A. L. Blakers and W. S. Massey [6]. We refer to the relation as the Jacobi identity in Whitehead products.

The present paper proves the identity for elements of dimension > 1. For this purpose we introduce a new product in homotopy groups of an H-space (See section 3 below and J.-P. Serre [2]) by means of the product operation of the space. We call the product an H-product. It is connected to the Pontrjagin product of homology groups (cf. L. Pontrjagin [4], H. Hopf [5]) and is interesting itself (see section 3, Proposition 2 below).

This product is bilinear for elements of dimension ≥ 2 and is not associative but under some additional conditions¹⁾ satisfies a modified form of the Jacobi identity. In the lacet spaces [2] the relation holds and is translated to the Jacobi identity in Whitehead products of the original space, using certain isomorphisms. These isomorphisms are Eilenberg's suspension for homotopy groups (see section 2 below) in a fiber space of paths starting from a fixed point.

2. Preliminaries. Let X be an arcwise connected topological space and x_0 be a fixed point in it. We consider a space whose elements are paths beginning at x_0 with compact-open topology and denote it by E. A mapping which associates each element of E with its terminal point, is continuous and denoted by P. Moreover it it well known that E is a fiber space with a base space X, projection P and a fiber, the lacet space Ω_X relative to x_0 (see J.-P. Serre [2]).

Let p and n be integers such that 1 be a mapping from an <math>n-dimensional cube I^n (an n-fold product space of I = [0, 1]) into X such that $f(I^n) = x_0$ where \dot{I}^n is the boundary of I^n . Under these notations we define a mapping $T_p f$ of I^{n-1} into Ω_X by the formula

(1)
$$T_p f(x_1, \ldots, x_{n-1})(t) = f(x_1, \ldots, x_{p-1}, t, x_p, \ldots, x_{n-1}),$$

(this definition has its sense if only the faces $x_p = 0$ and $x_p = 1$ of I^n go into x_0). T_p is one-to-one and induces a homomorphism of $\pi_n(X, x_0)$ into $\pi_{n-1}(\Omega_X, x_0)$ for n > 1, where x_0 is also a constant path $I \rightarrow x_0 \in X$. We also denote this homomorphism by T_p . Let Σ_p be the inverse of T_p ;

(2)
$$\sum_{p} f'(x_1, \ldots, x_{p-1}, t, x_p, \ldots, x_{n-1}) = f'(x_1, \ldots, x_{n-1})(t),$$

where f' is a mapping of I^{n-1} into Ω_v , then we have

^{1) §5,} Theorem 3 in this paper.

(3)

A homomorphism of homotopy groups induced by Σ_p is denoted by Σ_p .

PROPOSITION 1. T_p is an isomorphism of $\pi_n(X, x_0)$ onto $\pi_{n-1}(\Omega_X, x_0)^{2}$ and Σ_p in its inverse.

 $\sum_{p} T_{p} f = f.$

The proof is trivial. Moreover we have the relations $T_p = (-1)^{p+q}T_q$ $(1 < p, q \leq n), T_n = \partial P_*^{-1}$ which were shown by H. Samelson [1], where ∂ is the boundary homomorphism of the homotopy group $\pi_n(E, \Omega_X, x_0)$ to $\pi_{n-1}(\Omega_X, x_0)$ (this is an isomorphism onto, P_* is an isomorphism of $\pi_n(E, \Omega_X, x_0)$ onto $\pi_n(X, x_0)$ induced by the projection P. Hence a relation $T_p = (-1)^{n+p} \partial P_*^{-1}$ holds.

 T_n is the transgression and Σ_n the Eilenberg's suspension for n and (n - 1) dimensional homotopy groups (cf. J.-P. Serre [2, pp. 453]). For the sake of convenience we write T, Σ instead of T_n , Σ_n respectively.

REMARK. The isomorphism T_n was given by W. Hurewicz [9] for the first time.

COROLLARY 1. If A is a subset of X containing x_0 , then for n > 2 we have $\pi_n(X, A, x_0) \approx \pi_{n-1}(\Omega_X, \Omega_A, x_0).$

The isomorphism is induced by T_p (p < n).

PROOF. Consider the exact homotopy sequences of pairs (X, A, x_0) and $(\Omega_X, \Omega_A, x_0)$. T_p induces a homomorphism of the first sequence to the second. In fact, in the diagram (n > 2)

homomorphisms of each square are commutative. Making use of Proposition 1 above and the five lemma (Eilenberg-Steenrod [7]), our result is obtained immediately.

COROLLARY 2. For a triad $(X; A, B, x_0)$, where $x_0 \in A \cap B$, and for n > 3, we obtain

$$\pi_n(X;A,B,x_0) \approx \pi_{n-1}(\Omega_X;\Omega_A,\Omega_B,x_0)$$

The isomorphism is induced by $T_p(2 .$

The proof is analogous to that of the Corollary 1 above.

3. A new product in homotopy groups of the H-space.

DEFINITION 1. We call a space X with a product operation \lor , satisfying following conditions, an *H*-space and denote it by (X, \lor) :

²⁾ If Ω_X is arcwise connected i.e. X is a simply connected space, we can take x_0 as the base point of homotopy groups of Ω_X without any loss of generality. Even if X has not this property, as for isomorphism T_p , it is enough to consider the arcwise connected component containing x_0 , therefore the condition is not so restrictive.

(H. 1). The mapping $(x, y) \rightarrow x \lor y$ is a continuous mapping of the space $X \times X$ into X.

(H.2). There exists a fixed point $x_0 \in X$ such that $x_0 \vee x_0 = x_0$ and the continuous mappings of X into itself: $x \to x \vee x_0$, $x \to x_0 \vee x$ are homotopic to the identical mapping of X by two fixed homotopies $H_l(x, t)$, $H_r(x, t)$ which leave the point x_0 invariant (cf. J. P. Serre [2, PR 474]).

REMARK. This definition is somewhat different from that of J.-P. Serre. The latter treats the homology theory, therefore it does not need to fix the point x_0 and the homotopies of (H. 2).

For example, Topological groups and lacet spaces become *H*-spaces. In topological groups the operation of multiplication is regarded as \lor , the unit element as x_0 and the two homotopies of (H. 2) are trivial. In lacet spaces an ordinary product of paths [10, VIII, § 46, pp. 217-8] is considered as \lor , a fixed constant path as x_0 and the two homotopies of (H. 2) are these induced by a homotopic transformation of parameters, which remove the constant path at one end point [10, VIII, § 46, pp. 217-8]. These homotopies in lacet spaces play a fundamental role to prove the modified form of the Jacobi identity for the *H*-product (see Theorems 1, 2).

Let X be an arcwise connected space and f_n, g_n be mappings from the *n*-dimensional cube I^n into the space X such that the restrictions of these mappings on I^n agree, i. e. $f_n | I^n = g_n | I^n$. Similarly to the theory of S. Eilenberg [8, §1], we define a mapping $d(f_n, g_n)$ of an *n*-dimensional sphere S^n to X as follows: $a(f_n, g_n)|I_n^n$ is induced by $f_n, d(f_n, g_n)|I_n^n$ is induced by g_n , where I_n^n, I_n^n are two copies of I^n identified on the boundaries and represent upper and lower hemispheres of S^n respectively. Hence we have $I_n^n \cup I_n^n = S^n$ and $I_n^n \cap I_n^n = S^{n-1}$, the latter is an (n-1) dimensional equatorial sphere of S^n . We take $(0, \ldots, 0) \in S^{n-1}$ as a pole of S^n and describe an element of $\pi_n(X, x_0)$ determined by $d(f_n, g_n)$ as $d(f_n, g_n)$.

We define here that the two singular *n*-cubes (i. e. continuous mappings of Euclidean *n*-cubes) f_n, f'_n are the same if there exists a homeomorphism λ of the Euclidean *n*-cubes preserving its orientation such that $f_n = f'_n \lambda$. For any singular *n*-cubes f_n, g_n and a homeomorphism λ of the *n*-cubes such that $f_n | I^n = g_n \lambda | I^n$, we can define a mapping $d(f_n, g_n \lambda)$ and an element $d(f_n, g_n \lambda)$ of $\pi_n(X, x_0)$ determined by it.

Now let f be a mapping from I^p into X such that $f(I^p) = x_0$ and g be that from I^q into X such that $g(I^q) = x_0$. Let α be an element of $\pi_p(X, x_0)$ determined by f and β be that of $\pi_q(X, x_0)$ determined by g. We define a mapping $f \lor g$ of $I^p \times I^q$ into X by a formula

$f \lor g(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) \lor g(\mathbf{y})$

for $x \in I^p, y \in I^q$. We deform a partial mapping $f \lor g | (I^p \times I^q)$ to a mapping which coincides with f(x) on $I^p \times I^q$ and with g(y) on $I^p \times I'$. This is established as follows. The mapping $f \lor g$ on $I^p \times I^q$ is always a constant x_0 , therefore we apply the homotopies (relative to x_0) of condition (H. 2) to both of $I^p \times I^q$ and $I^p \times I^q$ independently and obtain the desired homotopy. Thus we have extended the mapping $f \lor g$ of $I^p \times I^q \times 0$ identified with $I^p \times I^q$ to that of $I^p \times I^q \times 0 \cup (I^p \times I^q) \cdot \times I = \overline{I^{p+q}}$. We denote it by $f \nabla g$. $\overline{I^{p+q}}$ is homeomorphic to a (p+q)-dimensional Euclidean cube³, hence $f \nabla g$ determines a singular cube.

Let $\lambda_{p,q}$ be a homeomorphism of $I^p \times I^q \times I$ onto $I^q \times I^p \times I$ defined by $\lambda_{p,q}(x, y, t) = (y, x, t)$ for all $x \in I^p, y \in I^q$ and $t \in I$. We consider $d(f \nabla g, (g \nabla f) \lambda_{p,q}) \in \pi_{p+q}(X, x_0)$ i.e. a homotopy class of $d(f \nabla g, (g \nabla f) \lambda_{p,q})$ by homotopies which map the point $(0, \ldots, 0) \times (0, \ldots, 0) \times 1 \in \dot{I}^{p+q} = \bar{I}^{p+q} \cap \tilde{I}^{p+q}$ always to x_0 . It is shown that the element is uniquely determined by α , β and this operation is linear for elements of dimension > 1.

Let f' be another mapping of α and g' be that of β . Let F(x, t) and G(y, t) give these homotopies $f \simeq f', g \simeq g'$ relative to $x_0 \ (x \in I^p, y \in I^q \text{ and } t \in I)$. We define a mapping of $I^p \times I^q \times 0 \times I \cup (I^p \times I^q) \times I \times I$ into X by the formulas

$F(x,t) \lor G(y,t),$	$\text{if } \mathbf{x} \times \mathbf{y} \times 0 \times \mathbf{t} \in I^p \times I^q \times 0 \times I,$
$H_{l}(F(x,t),s),$	if $x \times y \times s \times t \in I^p \times \dot{I}^q \times I \times I$,
$H_r(G(y,t),s),$	if $x \times y \times s \times t \in \dot{I}^p \times I^q \times I \times I$.

This gives a homotopy $f \nabla g \simeq f' \nabla g'$ which maps $(0, \ldots, 0) \times (0, \ldots, 0) \times 1$ always to x_0 . The homotopies of the mappings $f \nabla g, (g \nabla f) \lambda_{p,q}$ defined above agree on the boundary \dot{I}^{p+q} . Hence we obtain the homotopy

 $d(f \nabla g, (g \nabla f) \lambda_{p,q}) \simeq d(f' \nabla g', (g' \nabla f') \lambda_{p,q})$

relative to x_0 . This proves that $d(f \nabla g, (g \nabla f) \lambda_{p,q})$ is determined by α and β .

Let α_1 , α_2 be elements of $\pi_p(X, x_0)$ such that $\alpha = \alpha_1 + \alpha_2$ and f_1 , f_2 be mappings of I^p into X such that $f_1(I^p) = f_2(I^q) = x_0$. We define a mapping $f_{1,2}$ by

$$f_{1,2}(x_1, \ldots, x_p) = f_1(2x_1, \ldots, x_p) \quad \text{if } 0 \leq x_1 \leq 1/2, \\ = f_2(2x_1 - 1, \ldots, x_p) \quad \text{if } 1/2 \leq x_1 \leq 1.$$

This belongs to α . Let S^{p+q} be a (p+q)-dimensional sphere. We shrink its equatorial sphere to a point and identify the two spheres thus obtained with two copies $[I_{+}^{\overline{p+q}} \cup I_{-}^{\overline{p+q}}]_{,} [I_{+}^{\overline{p+q}} \cup I_{-}^{\overline{p+q}}]_{,}$ of $I_{+}^{\overline{p+q}} \cup I_{-}^{\overline{p+q}}$, where the points $[(1, 0, \ldots, 0) \times (0, \ldots, 0) \times 1]_{1}$, $[(0, \ldots, 0) \times (0, \ldots, 0) \times 1]_{2}$ coincide with the point shrunk. We describe the shrinking followed by $d(f_{1} \nabla g, (g \nabla f_{1}) \lambda_{p,q})$ and $d(f_{2} \nabla g, (g \nabla f_{2}) \lambda_{p,q})$ on the two spheres respectively, as $F_{1,2}$.

Next we identify the part $1 \times I^{p+q-1} \times I$ of $[\overline{I_+^{p+q}}]_1$ with $0 \times I^{p+q-1} \times I$ of $[\overline{I_+^{p+q}}]_2$ and retract it to $1 \times (I^{p+q-1} \times 0 \times I^{p+q-1} \times 1)$. This is a deformation retract. Similarly we consider this operation for $[\overline{I_-^{p+q}}]_1$, $[\overline{I_-^{p+q}}]_2$. A space thus obtained is clearly homeomorphic to $\overline{I_+^{p+q}} \cup \overline{I_-^{p+q}}$.

Let θ be a composite mapping of identifications and homeomorphisms

³⁾ A homeomorphism is given as follows: we project the set $I^p \times I^q \times 0 \cup (l^p \times I^q) \times I$ to a hyperplane $\mathcal{P}_{P+q+1} = 1$ from a point $(\frac{1}{2}, \dots, \frac{1}{2}, 2)$.

stated above, from S^{p+q} onto $\overline{I_{+}^{p+q}} \cup \overline{I_{-}^{p+q}}$. We have easily

 $F_{1,2} \simeq d(f_{1,2} \nabla g, (g \nabla f_{1,2}) \lambda_{p,q}) \theta,$

where this homotopy maps the point $(0, \ldots, 0) \times (0, \ldots, 0) \times 1$ always to x_0 . Since the degree of θ is + 1, $F_{1,2}$ and $d(f_{1,2}\nabla g, (g\nabla f_{1,2})\lambda_{p,q})$ represent the same element of $\pi_{p+q}(X, x_0)$. If $\omega(\alpha_1)$ is an automorphism of $\pi_{p+q}(X, x_0)$ induced by a closed path $F_{1,2}|[I \times (0, \ldots, 0) \times (0, \ldots, 0) \times 1]_1 = f_1|I \times (0, \ldots, 0), F_{1,2}$ determines

$$\mathrm{d}(f_1 \nabla g, (g \nabla f_1) \lambda_{p,q}) + \omega(\alpha_1) \mathrm{d}(f_2 \nabla g, (g \nabla f_2) \lambda_{p,q}).$$

For $p > 0 \omega$ is trivial.

Similarly this holds for β . Thus the linearity is proved.

DEFINITION 2. To any elements $\alpha \in \pi_p(X, x_0)$, $\beta \in \pi_q(X, x_0)$ we associate an element $(-1)^p d(f \nabla g, (g \nabla f) \lambda_{p,q})$ of $\pi_{p+q}(X, x_0)$ and call it an *H*-product of α and β and denote it by $\langle \alpha, \beta \rangle$.

We show some properties of this product in the following Propositions.

PROPOSITION 2. Let h be the Hurewicz natural homomorphism of $\pi_n(X, x_0)$ into $H_n(X)$ and * be the Pontrjagin product. We have the relation (4) $h < \alpha, \beta > = (-1)^p \{h\alpha * h\beta - (-1)^{pq} h\beta * h\alpha\}.$

PROOF. If we regard the mappings $f \nabla g$, $(g \nabla f) \lambda_{p,q}$, $d(f \nabla g, (g \nabla f) \lambda_{p,q})$ as cubic singular cycles we have

$$d(f\nabla g, (g\nabla f)\lambda_{p,q}) = f\nabla g - (-1)^{pq}g\nabla f.$$

By means of a natural deformation retract we obtain the relation $f \nabla g \sim f \lor g$ (homologous) and this determines $h\alpha * h\beta$. Thus the result is proved.

PROPOSITION 3. If a topological group G is abelian, then the H-product in homotopy groups of G is trivial.

This is a direct consequence of the Definition 2.

4. A relation between the *H*-product and the Whitehead product. In this section, we consider how to derive the Whitehead product from our *H*-product. Let X be an arcwise connected space and f be a mapping of I^{p+1} into X such that $f(I^{p+1}) = x_0$ and g be that of I^{q+1} into X such that $g(I^{q+1}) = x_0$ and g be that of I^{q+1} into X such that $g(I^{q+1}) = x_0$ where x_0 is a fixed point of X. Let α and β be elements of homotopy groups determined by the mappings f and g respectively i. e. $\alpha \in \pi_{p+1}(X, x_0)$, $\beta \in \pi_{q+1}(X, x_0)$.

The Whitehead product $[\alpha, \beta]$ of α and β (see [3]) is defined as an element of $\pi_{p+q+1}(X, x_0)$ determined by a mapping h of $(I^{p+1} \times I^{q+1})^{\frac{1}{2}}$ into X such that

$$h(x, y) = f(x) \qquad \text{if } x \in I^{p+1}, y \in I^{q+1},$$
$$= g(y) \qquad \text{if } x \in I^{p+1}, y \in I^{q+1}.$$

For the sake of convenience, we describe the mapping h as [f, g].

PROPOSITION 4. In every H-space the Whitehead product is null.

PROOF The mapping $f \nabla g$ gives a null homotopy of h = [f, g].

Let f' be a transgression of the mapping f, namely a mapping of I^p into a lacet space Ω_X of X based on x_0 such that $f'(\dot{I}^p) = x_0^{4}$, and similarly g' be a transgression of g i.e. Tf = f', Tg = g'. The elements of homotopy groups determined by f' and g' are $T\alpha \in \pi_p(\Omega_X, x_0)$ and $T\beta \in \pi_q(\Omega_X, x_0)$. We denote them by α' and β' respectively.

THEOREM 1. Let α , β be as above. Then we have the formula (5) $T[\alpha, \beta] = \langle T\alpha, T\beta \rangle$.

PROOF. We deform the mapping $\sum d(f' \nabla g', (g' \nabla f') \lambda_{p,q})$ and will show that the element of $\pi_{p+q+1}(X, x_0)$ determined by it, coincides with $(-1)^p[\alpha, \beta]$.

Now, we construct a mapping $[\varphi_s]_+$ of $E = \overline{I^{p+q}} \times I(0 \le s \le 1)$ onto itself. (It is not always necessary that the mapping is continuous). On $\overline{I^{p+q}}$ $\times t$, for any $x \times y \in (I^p \times I^q)$ we map the line segment with end points $(1/2, \ldots, 1/2) \times (1/2, \ldots, 1/2) \times 0 \times t, x \times y \times 0 \times t$ onto a broken line segment (tree) with vertices $(1/2, \ldots, 1/2) \times (1/2, \ldots, 1/2) \times 0 \times t, x \times y \times 0 \times t, x \times y \times 0$ $y \times s(1-2t) \times t$ for $0 \le t \le 1/2$ and onto that with vertices $(1/2, \dots, 1/2)$ $\times (1/2, \ldots, 1/2) \times 0 \times t, x \times y \times 0 \times t, x \times y \times s(2t-1) \times t, \text{ for } 1/2 \leq t \leq 1,$ linearly about length. On $I^{p+q} \times I \times I$, for any $x \in I^p - I^p$, $y \in I^q$, 1/2 $\leq t \leq 1$, in $x \times y \times I \times I$ we map the interval $x \times y \times [0, 2t - 1] \times t$ onto the interval $x \times y \times [s(2t-1), 2t-1] \times t$ linearly, and the interval $x \times y \times r \times r$ [0, 1/2(1+r)] onto the line segment with end points $x \times y \times (r + s(1-r)) \times (r + s(1-r))$ 0, $x \times y \times r \times 1/2(1+r)$ $(0 \le r \le 1)$, linearly about length. For $x \in 1$ \dot{I}^{p} , $v \in I^{1} - \dot{I}^{q}$ the mapping is defined similarly by inverting the value t. For any $x \in \dot{I}^p$, $y \in \dot{I}^q$ we map the interval $x \times y \times [0, 1-2t] \times t$ onto x $\times z \times [s(1-2t), 1-2t] \times t$ for $0 \le t \le 1/2$ and $x \times y \times [0, 2t-1] \times t$ onto x $\times y \times [s(2t-1), 2t-1] \times t$ for $1/2 \leq t \leq 1$ linearly. We define a mapping $[\varphi_s]_{-}$ by $[\varphi_s]_{-}(x, y, s, t) = [\varphi_s]_{+}(x, y, s, 1-t).$

Let S^{p+q+1} be a (p+q+1)-dimensional sphere represented by two copies E_+, E_- of the cube E by identifying their boundaries and φ_s be a mapping of S^{p+l+1} onto itself. It is one-to-one for s-values $0 \leq s < 1$, but is not continuous on $I^p \times I^q \times I \times I$. However $[\sum d(f' \nabla g', (g' \nabla f') \lambda_{p,q}] \varphi_s^{-1}$ is defined for $0 \leq s \leq 1$ and continuous and gives a homotopy of the mapping $\sum d(f' \nabla g', (g' \nabla f') \lambda_{p,q})$.

There exists a homeomorphism of $\varphi_1(E_+)$ onto $(I^p \times I^q) \times (I \times 0 \cup 1 \times I) \cup (I^p \times I^q) \cdot \times$ (the triangle with vertices (0, 0), (1, 0), (1, 1) in $I \times I$) as follows: for any $x \in I^p$, $y \in I^q$ line segments $\varphi_1(x \times y \times 0 \times [0, 1/2])$ and $\varphi_1(x \times y \times 0 \times [1/2, 1])$ go onto $x \times y \times I \times 0$ and $x \times y \times 1 \times I$ obviously piecwise linearly. For $(x, y) \in (I^p \times I^q)$; $\varphi_1(x \times y \times I \times I)$ which is $x \times y \times$ (the triangle with vertices (1, 0), (0, 1/2), (1, 1) in $I \times I$) goes onto $x \times y \times$ (the triangle with vertices (0, 0), (1, 0), (1, 1)) by an affine transformation which maps the vertices (1, 0), (0, 1/2),

⁴⁾ x_0 means also the constant path $I \to x_0 \in X$.

(1,1) to (0,0), (1,0), (1,1) in $I \times I$ respectively. Under this homeomorphism line segments $\varphi_1\left(x \times y \times s \times \left[0, \frac{1+s}{2}\right]\right)$, $\varphi_1\left(x \times y \times s \times \left[\frac{1+s}{2}, 1\right]\right)$ for any $x \in I^p - I^p, y \in I^q$ go onto the broken line segment with vertices $x \times y \times 0 \times 0$, $x \times y \times 1 \times s$, $x \times y \times 1 \times 1$ and $\varphi_1\left(x \times y \times s \times \left[0, \frac{1-s}{2}\right]\right)$, $\varphi_1\left(x \times y \times s \times \left[\frac{1-s}{2}, 1\right]\right)$ for any $x \in I^p, y \in I^q - I^{\hat{q}}$ go onto that with vertices $x \times y \times 0 \times 0$, $x \times y \times (1-s) \times 0, x \times y \times 1 \times 1$ and $\varphi_1(x \times y \times s \times \left[\left[0, \frac{1-s}{2}\right]\right] \cup \left[\frac{1-s}{2}, \frac{1+s}{2}\right] \cup \left[\frac{1+s}{2}, 1\right]\right)$ for any $x \in I^p, y \in I^q$ go onto that with vertices $x \times y \times 0 \times 0$, $x \times y \times (1-s) \times 0, x \times y \times 1 \times 1$ and $\varphi_1(x \times y \times s \times \left(\left[0, \frac{1-s}{2}\right]\right] \cup \left[\frac{1-s}{2}, \frac{1+s}{2}\right] \cup \left[\frac{1+s}{2}, 1\right]\right)$ for any $x \in I^p, y \in I^q$ go onto that with vertices $x \times y \times 0 \times 0$, $x \times y \times (1-s) \times 0, x \times y \times 1 \times s, x \times y \times 1 \times 1$, piecewise linearly. Similarly $\varphi_1(E_-)$ is homeomorphic to $I^p \times I^q \times (0 \times I \cup I \times 1) \cup (I^p \times I^q) \times ($ the triangle with vertices (0, 0), (0, 1), (1, 1) in $I \times I$. These induce a homeomorphism ϕ' of $\varphi_1(S^{p+q+1})$ onto $(I^p \times I^q \times I \times I) \rightarrow (I^p \times I^q \times I)$ defined by $\eta(x, y, s, t) = (x, s, y, t)$. This is a homeomorphism with the degree $(-1)^p$. From the construction the relation

$$\left[\sum d(f' \nabla g', (g' \nabla f') \lambda_{p,q})\right] \varphi_1^{-1} = [f, g] \phi$$

is obtained. Therefore for any $\alpha' \in \pi_p(\Omega_x, x_0)$, $\beta' \in \pi_q(\Omega_x, x_0)$ we have $\Sigma < \alpha', \beta' > = [\Sigma \alpha', \Sigma \beta'],$

and this means that for any $\alpha \in \pi_{p+1}(X, x_0)$, $\beta \in \pi_{q+1}(X, x_0)$ $T[\alpha, \beta] = \langle T\alpha, T\beta \rangle$.

5. The Jacobi identities in homotopy groups. Let X be an arcwise connected H-space and x_0 , H_l , H_r be those of Definition 1. We suppose that mappings $f: I^p \to X$, $g: I^q \to Y$, $h: I^r \to X$, $f(I^p) = g(I) = h(I^r) = x_0$ represent $\alpha \in \pi_p(X, x_0)$, $\beta \in \pi_q(X, x_0)$, $\gamma \in \pi_r(X, x_0)$ respectively. Let $\overline{I^p}$ be $I^p \times 0 \cup I^p \times I_p$ where I_p is [0, 1] with the index p. Briefly we set $I^p \times 0 = I^p$, $I^p \times I_p = O^p$, hence $\overline{I^p} = I^p \cup O^p$. First we construct two mappings $F_{f,(g,h)}$, $F_{(f,g),h}$ of a (p+q+r)-dimensional cube $E_{p,q,r} = \overline{I^p} \times \overline{I^q} \times \overline{I^r}$ into X as follows. Let \overline{x} be an arbitrary element of $\overline{I^p}$. We have $\overline{x} = x$ for $\overline{x} \in I^p \times 0$ and $x = \overline{x} \times t_p(x \in I^p, t_p \in I_p)$ for $\overline{x} \in O^p$ and similarly for $\overline{y} \in \overline{I^q}$, $\overline{z} \in \overline{F}$. We define

$$(6) \qquad F_{f_{1}(g,h)}(\overline{x},\overline{y},\overline{z}) \qquad F_{(f_{1}0),h}(\overline{x},\overline{y},\overline{z}) \\ = \begin{cases} f(x) \lor (g(y) \lor h(z)) \\ f(x) \lor H_{r}(h(z),t_{q}) \\ f(x) \lor H_{l}(g(y),t_{r}) \\ H_{r}(g(y) \lor h(z),t_{p}) \\ H_{r}(H_{l}(h(z),t_{q}),t_{p}) \\ H_{r}(H_{l}(h(z),t_{q}),t_{p}) \\ H_{r}(H_{l}(g(y),t_{r}),t_{p}) \\ H_{r}(H_{l}(g(y),t_{r}),t_{p}) \\ H_{r}(H_{l}(g(y),t_{r}),t_{p}) \\ \chi_{0} \end{cases} = \begin{cases} F_{(f_{1}0),h}(\overline{x},\overline{y},\overline{z}) \\ F_{(f_{1}0),h}(\overline{x},\overline{y},\overline{z}) \\ (f(x) \lor g(y) \lor h(z) & \text{on } I^{p} \times I^{q} \times I^{r}, \\ H_{l}(f(x) \lor g(y),t_{r}) & \text{on } I^{p} \times O^{1} \times I^{r}, \\ H_{l}(f(x) \lor g(y),t_{p}) \lor h(z) & \text{on } O^{p} \times I^{1} \times O^{r}, \\ H_{r}(g(y),t_{p}),y) \land h(z) & \text{on } O^{p} \times I^{1} \times O^{r}, \\ H_{l}(H_{r}(g(y),t_{p}),t_{p}) & \text{on } O^{p} \times O^{1} \times O^{r}, \\ \chi_{0} & \text{on } O^{p} \times O^{1} \times O^{r}, \end{cases}$$

on $I^p \times O^i \times O^r$, $F_{f_1(g,h)}$ maps all points of the triangle with vertices $x \times y \times 0 \times z \times 0$, $x \times y \times 1 \times z \times 0$, $x \times y \times 0 \times z \times 1$ ($x \in I^p$, $y \in \dot{I}^q$, $z \in \dot{I}^r$) to $f(x) \vee x_0$ and all points of a line segment connecting $x \times y \times 1 \times z \times t$, $x \times y \times t \times z \times 1$ to $H_i(f(x), t)$. On $O^p \times O^i \times I^r$ we define $F_{(f,g),h}$ by a method analogous as above. These two mappings agree on the boundary $\dot{E}_{p,q,r}$ of $E_{p,r,r}$. Moreover we define such a pair of mappings for every order of suffixes f, g, h.

LEMMA 1. If X is a lacet space, x_0 is a constant path and H_i , H_r are homotopies induced by a homotopic transformation of parameters which remove the constant path x_0 at one end (see section 3), then $F_{f(g,h)}$, $F_{(f,g),h}$ are homotopic leaving the mappings on the boundary $E_{p,q,r}$ fixed. This holds good for any order of f, g, h.

PROOF. For any points of $E_{p,q,r}$ paths of its images by the two mappings change each other by means of a homotopic transformation of parameters and we can define this transformation continuously on the whole $E_{q,p,r}$.

Let C_D^{q+r} be a (q+r)-dimensional cube and ρ_D be a mapping of it onto $\overline{I_+^{q+r}} \cup \overline{I_-^{q+r}}$, which maps \dot{C}_D^{q+r} to $(0, \ldots, 0) \times (0, \ldots, 0) \times 1$ and is a homeomorphism on $C_D^{q+r} - \dot{C}_D^{q+r}$. We set

 $D_{\langle f, \langle g, h \rangle \rangle} = d[f \nabla (d(g \nabla h, (h \nabla g) \lambda_{q,r}) \rho_0, \{ d(g \nabla h, (h \nabla g) \lambda_{1,r}) \rho_0) \nabla f \} \lambda_{p,q+r}]$ and denote its inverse image sphere by S^{p+q+r} . Similarly we can define $D_{\langle g, \langle h, f \rangle \rangle}, D_{\langle h, \langle f, g \rangle \rangle}.$

We construct a mapping $i_{q,r}$ of $[\overline{I^q} \times \overline{I^r}]_+ \bigcup [\overline{I^r} \times \overline{I^r}]_-$ onto $\overline{I_+^{q+r}} \bigcup \overline{I_+^{q+r}} \bigcup (0, \ldots, 0) \times (0, \ldots, 0) \times 1 \times I$ int he following way. First we define a mapping $[i_{q,r}]_+$ from $[\overline{I^q} \times \overline{I^r}]$ onto $\overline{I_+^{q+r}} \bigcup (0, \ldots, 0) \times (0, \ldots, 0) \times 1 \times I$ by

 $[i_{q,r}]_{+}(x \times y) = \begin{cases} y \times z & \text{if } \overline{y} = y \in I^{q}, \ \overline{z} = z \in I^{r}. \\ y \times z \times t_{q} & \text{if } \overline{y} = y \times t_{q} \in O^{q}, \ \overline{z} = z \in I^{r}, \\ y \times z \times t^{r} & \text{if } \overline{y} = y \times I^{q}, \ \overline{z} = z \times t_{r} \in O^{r}, \end{cases}$

In $O^{1} \times O^{r}$, for any $y \in I^{q}$, $z \in I^{r}$ and $0 \leq t \leq 2$ we identify the line segment $\{y \times t_{q} \times z \times t_{r} \mid t_{q} + t_{r} = t\}$ to a point represented by $y \times t \times z \times 0$ for $0 \leq t \leq 1$ and by $y \times 1 \times z \times (t-1)$ for $1 \leq t \leq 2$. Let U be a neighborhood of $(0, \ldots, 0) \times (0, \ldots, 0)$ on $I^{1} \times I^{r}$, consisting of all points whose distances from $(0, \ldots, 0) \times (0, \ldots, 0)$ are less than 1/2. For any $(y, z) \notin U$ we identify $y \times 1 \times z \times I$ to $y \times 1 \times z \times 0$. In U for any $(y, z) \in U$ let $l_{y,z}$ be a line segment with end points $y \times 1 \times z \times 1$, $(0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1$ and $l'_{y,z}$ be that connecting $y \times 1 \times z \times 0$, $(0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1$ and $l'_{y,z}$ be that part of $l_{y,z}$ from $(0, \ldots, 0, 1 \times 1 \times (0, \ldots, 0) \times (0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times (0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times (0, \ldots, 0) \times 1 \times 1 \times I$ in the obvious way. Thus $[i_{y,z}]_{+}$ is defined on the whole $[\overline{I}^{q} \times \overline{I}^{r}]_{+}$.

Similarly $[i_{q,r}]_{-}$ is defined.

Let C_F^{q+r} be a (q+r)-dimensional cube and ρ_F be a homeomorphism of it onto a (q+r)-dimensional cell $i_{q,r}^{-1} [\overline{I_+^{q+r}} \cup \overline{I_-^{q+r}}]$. Let $i_{q,r}^C$ be a mapping of C_F^{q+r} onto C_D^{q+r} such that $i_{q,r} \ \rho_F = \rho_D i_{q,r}^C$. This is uniquely determined in C_F^{q+r} $-\dot{C}_F^{q+r}$ and is extended naturally to a mapping of C_F^{q+r} . We construct a mapping ρ_F of $\overline{C_F^{q+r}}$ onto $[\overline{I^q} \times \overline{I^r}]_+ \cup [\overline{I^q} \times \overline{I^r}]_-$ by $\rho_F(u \times 0) = \rho_F(u)$ on $C_F^{q+r} \times$ $0 (u \in C_F^{q+r})$ and defining $\overline{\rho_F}(u \times t)$ on $\dot{C}_F^{q+r} \times I$ as a point dividing the line segment with end points, $\rho_F(u)(u \in \dot{C}_F^{q+r})$ and $(0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1$ in the ratio t: 1 - t. A mapping $\overline{\rho_D}$ of $\overline{C_D^{q+r}}$ onto $[\overline{I_+^{q+r}} \cup \overline{I_-^{q+r}}] \cup (0, \ldots, 0) \times (0, \ldots, 0) \times 1 \times I$ is defined by

$$\overline{\rho}_D(v \times 0) = \rho_D(v) \text{ on } C_D^{q+r} \times 0 (v \in C_D^{q+r}),$$

$$\overline{\rho}_D(v \times t) = \rho_D(v) \times t \text{ on } \dot{C}_D^{q+r} \times I(v \in \dot{C}_D^{q+r})$$

Let $\overline{i_{q,r}^{C}}$ be a mapping of $\overline{C_{F}^{q+r}}$ onto $\overline{C_{D}^{q+r}}$ defined by

$$\overline{i_{q_{q}r}^{C}}(\boldsymbol{u} \times \boldsymbol{0}) = i_{q_{q}r}^{C}(\boldsymbol{u}) \quad \text{on } C_{F}^{r+r} \times \boldsymbol{0}, \\ \overline{i_{q,r}^{C}}(\boldsymbol{u} \times \boldsymbol{t}) = i_{q_{q}r}^{C}(\boldsymbol{u}) \times \boldsymbol{t} \quad \text{on } \dot{C}_{F}^{q+r} \times \boldsymbol{I}.$$

Easily we have

(7)

$$i_{q,r} \ \overline{\rho}_F = \overline{\rho}_D \ \overline{i_{q,r}^C}$$

There exist two mappings F_1, F_2 of $\overline{I^q} \times \overline{C_F^{q+r}}$ induced by $F_{f_1(g,h)}, F_{f_1(h,g)}$ and $F_{(g,h),f}, F_{(h,g),h}$ respectively. We set $F_{\langle f_1 \langle g,h \rangle \rangle} = d(F_1, F_2)$ and describe its inverse image sphere by S_F^{p+q+r} . Similarly $F_{\langle g, \langle h, f \rangle \rangle}$ and $F_{\langle h, \langle f, g \rangle \rangle}$ can be defined.

We construct a mapping *i* of S_F^{p+q+r} onto S_D^{p+q+r} as follows:

$$\begin{split} i(\overline{x} \times \overline{u}) &= x \times i_{q,r}^{\overline{C}}(\overline{u}) \quad \text{if } \overline{x} = x \in I^p, \ \overline{u} \in \overline{C_F^{q+r}}, \\ &= x \times \overline{i_{q,r}^{\overline{C}}(\overline{u})} \times t \text{ if } \overline{x} = x \times t \in O^p, \ \overline{u} \in C_F^{q+r} \times 0, \\ &= x \times i_{q,r}^{\overline{C}}(u) \times t \text{ if } \overline{x} = x \times t_p \in O^p, \ \overline{u} = u \times t_c \in \dot{C}_F^{q+r} \times I \\ &\text{ such that } t_p = t \text{ and } t_c \in [0, t] \text{ or } t_p \in [0, t], \ t_c = t. \end{split}$$

i induces mappings of $[\overline{I^p} \times \overline{C_F^{q+r}}]_+$ onto $[\overline{I^p} \times \overline{C_D^{q+r}}]_+$ and of $[\overline{I^p} \times \overline{C_F^{q+r}}]_-$ onto $[\overline{I^p} \times \overline{C_D^{q+r}}]_-$ i. e. mapping of S_F^{p+q+r} onto S_D^{p+q+r} .

where this homotopy maps the point $(0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1 \in S_F^{p+q+r}$ always to x_0 .

PROOF. The mapping *i* is an identification mapping i_1 of the four parts of S_F^{p+q+r} induced by that of $E_{p,q,r}$ above, followed by an orientation preserving homeomorphism of $i_1(S_F^{p+q+r})$ onto S_D^{p+q+r} . Changing the values on each

line segment of S_F^{p+q+r} which is identified to a point by i_1 , for the value of its end point continuously in regard to a parameter τ $(0 \leq \tau \leq 1), D_{\langle f' > g, h > \rangle} i$, $F_{\langle f, \langle g, h \rangle >}$ are homotopic relative to the point x_0 , where the base point of S_F^{p+q+r} is $(0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1 \times (0, \ldots, 0) \times 1$.

REMARK. In lacet 'spaces, this lemma' is proved directly, using the homotopic transformations of parameters of paths (see the proof of Lemma 1).

Since *i* is a mapping between the (p+q+r)-dimensional spheres with the degree $1, D_{< f, < g,h>>}, F_{< f, < g,h>>}$ represent the same element of $\pi_{p+q+r}(X, x_0)$. For the mappings of *F*'s the following result is obtained.

LEMMA 3. Let dF be an element of a homotopy group represented by a mapping F of a sphere. We have the relation

(8) $d F_{\langle f_1 \langle g_1 \rangle \rangle \rangle} + (-1)^{p(q+r)} d F_{\langle g_1 \langle h, f \rangle \rangle} + (-1)^{r(p+q)} d F_{\langle h_1 \langle f_1 g \rangle \rangle} = 0.$

PROOF. Let $\lambda_{p',q',r'}^{p,q,r}$ be a homeomorphism of $E_{p,q,r}$ onto $E_{p',q',r'}(\{p,q,r\})$

 $\{p', q', r'\}$ defined by the permutation (p', q', r') of (p, q, r) and $\overline{\lambda}_{p',q',r'}^{p,q,r}$ be a homeomorphism of S_F^{p+q+r} induced by $\lambda_{p',q',r'}^{p,q,r}$. Let Γ_1 be a space consisting of three (p + q + r)-dimensional spheres which are copies of S_F^{n+q+r} and have a base point $(0,\ldots,0) \times 1 \times (0,\ldots,0) \times 1 \times (0,\ldots,0) \times 1$ in common. Let G be a proper identification of a (p+q+r)-dimensional sphere S^{p+q+r} to Γ_1 followed by $F_{\langle f \langle g,h \rangle \rangle}, F_{\langle g,\langle h,f \rangle \rangle} \overline{\lambda}_{g,r,p}^{p,q,r}$ and $F_{\langle h,\langle f,g \rangle \rangle} \overline{\lambda}_{r,p,q}^{p,q,r}$ on each S_F^{n+q+r} respectively. S_F^{p+q+r} consists of four inverse images of $E_{p,q,r}$ under $1 \times \overline{\rho_F}$ $(1 = \text{identity mapping of } \overline{I^p})$. We identify each inverse images in Γ_1 to copies of $E_{p,q,r}$. Let Γ_2 be a space constructed by this operation from Γ_1 . Then $F_{<f_1 < g,h>>}$ is this identification followed by the mappings $F_{f_1(g,h)}$, $F_{f_1(h,g)}\lambda_{p,r,q}^{p,q,r}$ $F_{h,(f,g)}\lambda_{r,p,q}^{p,q,r}$ and $F_{h,(g,f)}\lambda_{r,p,q}^{p,q,r}$ from four copies of $E_{p,q,r}$ respectively. Similarly such decompositions hold for $F_{\langle g, \langle h, f \rangle > \lambda} \overline{\lambda}_{g,r,p}^{p,q,r}$ and $F_{\langle h, \langle f, g \rangle > \lambda} \overline{\lambda}_{r,p,q}^{p,q,r}$. Moreover, six pairs of mappings from copies of $E_{p,q,r}$ on Γ_2 i.e. $F_{f_1(g,h)}$ and $F_{(f,g)h}$, $F_{g_1(h,f)}$ $\lambda_{q,r,p}^{v,q,r}$ and $F_{(q,h),f}\lambda_{q,r,p}^{v,q,r}$, etc. agree on the boundary $E_{p,q,r}$ respectively. Let Γ_3 be a space obtained by identifying the boundaries of each two copies of $E_{p,q,r}$ on Γ_2 paired as above. The space consists of six spheres identified properly on their equatorial spheres. Hence G is a composition of the identification S^{p+q+r} onto Γ_3 and the six mappings $d(F_{f,(g,h)}, F_{(f,g),h}), d(F_{g,(h,f)}\lambda^{p,q,r}_{q,r,p}, F_{(g,h),f})$ $\lambda_{a,r,p}^{p,q,r}$, etc. of six spheres on Γ_3 respectively. The latter is homotopic to the constant mapping x_0 by Lemma 1 and the homotopy extension property of a finite polyhedron [11, pp. 501].

THEOREM 2. Let X be an arcwise connected space and Ω_X be its lacet space based on a fixed point $x_0 \in X$. For any three elements $\alpha \in \pi_p(\Omega_X, x_0)$, $\beta \in \pi_q$ (Ω_X, x_0) , $\gamma \in \pi_r(\Omega_X, x_0)$ we have the Jacobi identity in H-products:

(9)
$$(-1)^{(p+1)r} < \alpha, <\beta, \gamma >> + (-1)^{(q+1)p} < \beta, <\gamma, \alpha >> + (-1)^{(r+1)q} < \gamma, <\alpha, \beta >> = 0$$

PROOF. From (7), (8) and Definition 2 the relation follows easily, using

the bilinearity of *H*-product for elements of dimension ≥ 2 .

COROLLARY 2.1. The Jacobi identity in Whitehead products for elements of dimension > 1 holds i.e. for any set of elements $\alpha' \in \pi_{p+1}(X, x_0), \beta' \in \pi_{q+1}(X, x_0)$ and $\gamma' \in \pi_{r+1}(X, x_0)$, where p, q, r > 0, we have the relation

(10)
$$(-1)^{(p+1)r}[\alpha', [\beta', \gamma']] + (-1)^{(q+1)p}[\beta', [\gamma', \alpha']] + (-1)^{(r+1)q}[\gamma', [\alpha', \beta']] = 0.$$

This is the Samelson's conjecture.

PROOF. From Theorem 2, this is immediately shown using Theorem 1.

When we take a topological space as an H-space (See section 3, example), the result of Theorem 2 is also obtained. The procedure of the proof of this fact is analogous to that of Theorem 2 and more easy.

The proof of theorem 2 can be applied for the H-space in which the result of Lemma 2 is satisfied. Therefore the theorem is stated in the following general form.

THEOREM 3. Let X be an arcwise connected H-space and x_0 , H_i , H_r , be those of Definition 1. If for any mappings $f: I^p \to X$, $g: I^q \to X$, $h: \Gamma \to X$ such that $f(\dot{I}^p) = g(\dot{I}) = h(\dot{I}^r) = x_0$ we have the homotopy $F_{f,(g,h)} \simeq F_{(f,g),h}$ leaving the mappings on $\dot{E}_{p,q,r}$ fixed and similar relations for all permutations of suffixes f, g, h, then the Jacobi identity in H-products (9) holds.

References

- [1] H. SAMELSON, A connection between the Whitehead and the Pontrjagin products, Amer. Jour. Math. vol 75(1953), pp.744-752.
- J. P. SERRE, Homologie singuliere des espaces fibres, applications, Ann. of Math. vol. 54(1951), pp. 425-505.
- [3] G W. WHITEHEAD, On products in homotopy gronps, Ann. of Math., vol. 47 (1946), pp. 465–475.
- [4] OL. PNTRJAGIN, Homologie in compact Lie groups, Rec. Math. (Mat. Subornick) N. S. 6(1939), pp. 389-422.
- [5] H. HOPF, Ueber die Topologie der Gruppen Mannigfaltigkeiten und ihre Verallgemeinerungen, Ann. of Math. vol. 42(1941), pp. 22-32.
- [6] A. L. BLAKERS and W. S MASSEY, The homotopy groups of triad III, Ann. of Math. vol. 58(1953), pp. 409-417.
- [7] S. EILENBERG and N. E. STEENROD, Foundations of algebraic topology, Princeton (1952).
- [8] S. EILENBERG and S. MACLANE, Relations between homology and homotopy groups of spaces II, Ann. of Math. vol. 51(1951), pp. 514-533.
- [9] W. HUREWIC7, Beiträge zur Topologie der Deformationen, I-IV. Proc. Akad. Amsterdam, 38(1935), pp. 112-119, 521-528, 39(1936), pp. 117-125, 215-224.
- [10] L. PONTR'AGIN, Topological Groups, Princeton (1939).
- [11] P. ALEXANDROFF and H. HOPF, Topologie I, Berlin (1935).

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY, SENDAI.