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1. Introduction. Let {X, 33, m) be a measure space such that X is a
set, S3 is a Borel field of subsets of X, and m is a σ-finite measure defined
on 33. A single valued transformation T of X into itself is called measurable
if the inverse transformation T"1 sends every set of 33 to a set of 33. The
measurable transformation T is called non-singular (with respect to m) if
A € S3 and m(A) = 0 imply m(T~ιA) = 0. Throughout this paper it is assumed
that all sets under consideration are in 33 and the transformation T is measur-
ableand non-singular. A measure μ defined on 33 is said to be invariant under
T (or T is said to be measure-preserving with respect to μ) if μ(T~ιA) =
μ(A) for every set A. Two measures λ and μ defined 'on \f& are called
equivalent if λ(A) = 0 implies μ(A) = 0 and the converse. A set A is called
an invariant set if m{T~ιA - A) + m(A - T^A) = 0.

We define the following statements.
(I) There exists a constant K such that

0 < lim sup—jgiwtΓ-'il; S K vn(A)

for every set A of positive measure.
(Γ) There exists a constant K such that

lim sup — 2miT^A) < K-m(A)
H n i=o

for every set A.
(II) There exists a sequence of sets {Xj} and a constant K such that

Q α* ( ; ' = 1,2, . . . . ) ,

and

0 < sup lim sup~^m(X3[\ T^A) % K m(A)

for every set A of positive measure.
(IP) There exists a sequence of sets {Xj} and a constant K such that

JXj, m(X3)<cx> (/= 1,2, . . . . ) ,
. 7 = 1

and
n-i

sup lim sup —^m(X3Π T"£A) < JΓ^ m(A)
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for every set A.
(B) For any function / € L(X,%$, m)l> the limit

exists almost everywhere on X and / € £(X, S, m).

In the following, we use the notation f{g etc.) which denotes the limit

function of the means—2/(T*tf) ( —*Σg(Tx) etc. Jin case the limit is well

defined.
In case m is finite, N.Dunford and D.S. Miller [lp> have given in their

joint paper a necessary and sufficient condition^ that Neumann's ergodic
theorem holds, and as its consequence led the statement (B) from this
condition. Hereafter F.Riesz [3] has given another proof of the latter and
proved that, even if m is not finite, the above condition with a certain
additional restriction implies (B) (see Corollary of Theorem 1 in § 2). Recently
C. Ryll-Nardzewski [4] has shown that the statement (IF), which is weaker
than (II) formulated by S. Hartman, is equivalent to (B) and that, in case
m is finite, the statements (II), (IF) and (B) are equivalent to each other.
However a part of the former is not quite right in case m is not finite.
In fact we can construct a σ-finite (but not finite) measure space and a
transformation for which (IF) holds and (B) does not hold (see Example 1
in §3).

The main purpose of this paper is to work out that each of (I) and (II)
implies (B), and (IF) does not necessarily imply (B).

2. Generalization of Birkhoff's ergodie theorem. Let Δ(A) = Δ(A,

fc=i,2, ) denote a decomposition of the set A such that

n - l

Let us put for every set A
n-l

(1) a(A) = sup 2 lim sup — 2

where sup denotes the supremum for all decompositions Δ(A) of \A and

2 means to sum up with respect to all sets A^s of the \decomposition
(A.k)

1) The notation L(X, S3, m) denotes the class of all integrable functions with
respect to the measure space (X,?βrm).

2) Numbers in square brackets refer to the references at the end of this paper.
3) The condition reads as follows : there exists a constant K such that for any

set A
n-l

ί^? (n=l,2, ).
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Δ(A)=Δ(A, {A*}*.,, * . . . . ) .

LEMMA 1. If the statement (I') holds, the non-negative set function a defined
by (1) has the following properties:

(i) a is finitely additive
(ii) oc(A)^a(T-1A) for every set A of finite measure-,
(iii) a(A)-<*K m{A) for every set A;

i n— 1

(iv) α(A)>limsup—**?m(T-ιA) for every set A.

PROOF. Proof of (i): Let us suppose that
N

A = \JA>,

Let 8 be any positive number. Then, for each /, there exists a decom-
position Δ(A\ {Ajξ}fc=Ί)2, ) such that

f 1 n ~ 1

Combining all Δ(A0's we get a decomposition Δ(A, {A£}fc=lj2, j = 1, 2r

, N), so that it follows
n-l

limsup —

(2)

On the other hand, there exists a decomposition Δ(A, {Afc}fc=3,2, >
such that

n-ι

(3) a{A) - £ < 2 l i 2

Let us put

AJ = Abfl-A (̂* = 1,2, . . . . j = 1, 2, ... .,N).

Then, for each j , the collection of sets {A }̂fc=i,2. gives a decompo-
sition Δ(A>, {ilfl-r-i.a,, ), so that we have

1 n-ί -

2limsup—^ΣnKT-'A,)^ 2 Hmsup —

= ^ ^ hmsup —
j=l (AJ:k) n n

Thus by (3) and (4) we have
N

(5) a{A)~£<^

Since € is arbitrary, (2) and (5) imply

i=0
w-1 JV
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a(A) =

Hence it follows that a is finitely additive.
Proof of (ii): If A is a set of finite measure, then for each / the set

T~ιA is of finite measure. Further, to a decomposition Δ(A, {AΛ}A.=i,2,....)
there corresponds a decomposition Δ(T~1A,{T"1Afc}fc=i,2ί )• Hence we can
easily show the property (ii).

The properties (iii) and (iv) are the immediate consequences of the
-definition of oc.

C Ryll-Nardzewski [4] has proved the following

LEMMA 2. Let {Xr, 33', μ) be a measure space, and let T be a transformation
of L(Xf, 33', u) into itself which has the following properties:

(i) if f(x) = g(x) almost everywhere (μ), Tfix) = Tg(x) almost everywhere

(μ);

(ii) T is additive and homogeneous

(iii) if f(x) is positive almost everywhere (μ), Tf(x) is also. Then T is a
linear operator of L(X', 33', μ) into itself

We shall now prove the following theorem which is a generalization
of Birkhoff's ergodic theorem.

THEOREM 1. The statement (I) implies the statement (B), but the converse
is not true.

If m is finite, three statements (I), (F) and (JB) are equivalent to each
other.

PROOF. (I) -> (B): We put for any set A of finite measure

β(A) = lim a(T~nA).
n

This definition is justified by (ii) of Lemma 1.
Let B be a fixed set of finite measure, then the non-negative set function

,β(A Π B) of variable A has the following properties:
(i) β(A f)B)^K* m(A f] B) for every set A
(ii) β(Af)B) is completely additive as the set function of A;
(iii) β[T-\A(]BJ] = β(A(]B) for every set A;

- n-l

(iv) β(A Π B) > a(A (]B)^ lim sup—2m\T~\A (] B)] for \every set A.
n n f-o

Proof of (i): From (ii), (iii) of Lemma 1 and (I), it follows that for any
set A
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M - l

y\K[T\A(\B)\<, K*

which is the required.
Proof of (ii): From (i) of Lemma 1 it follows that β(A[]B) is finitely

additive as the set function of A.
Let {An} be any sequence of sets such that

Since B is of finite measure, m(Anf]B) tends to zero with 1/n, so that,
from (i), β(An(]B) tends to zero with 1/n. Thus β(Af]B) is completely
additive.

The properties (iii) and (iv) follows evidently from the definition of β
and (iv) of Lemma 1.

Now we choose a sequence of sets fFfc} such that

fc = l

Let us put for each set A

Then the non-negative set function y has the following properties:
(v) y(A) ^ Rι JM(A) for every set A
(vi) γ is an invariant measure on 33;
(vii) 7 is equivalent to m;
(viii) y(A) > m(A) for any invariant set A.
The property (v) is the immediate consequence of (i) and definition of 7.
Proof of (vi): From (ii) it is evident that 7 is a measure on 33, so that

we shall prove only that 7 is invariant under T. Since Fz/s are of finite
measure and hence, from (I), T~1Y1c

fs are also, it follows, from (iii),
that for any set A

Proof of (vii): It is clear that m(A) = 0 implies y(A) = 0, so that we
shall prove the converse.
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Let A be any set of positive measure. Then there is a set Y^ such that
the set A f] FAo is of positive measure. From (iv> and (I) it follows

i "-1

> limsup—SmCΓ-'ίAnF*,)] > 0 .

Proof of (viii): Let A be an arbitrary fixed invariant set. If A is not
of finite 7-measure, it holds obviously

<y(A) ^ m(A),

so that we shall consider the case where A is of finite γ-measure. Then from
(vi) and (vii) it follows that 7 is a finite invariant measure equivalent to m
as the measure on 33/ >. By Birkhoff's ergodic theorem, for each / € L(A,

_ 1 n~l

%$Λ, 7) the limit function f(x) of the means ~ 2 ATιx) is defined almost

everywhere (7) on A and / € L(A, %$A, 7). Since m is equivalent to 7, the
function / is also defined almost everywhere inί) on A. Let T denotes the
transformation of L(A, SS4.7) into itself defined by

for each feL(A, 2^,7). Then T has the properties (i), (ii) and (iii) of

Lemma 2, so that T is a linear operator of L(A, 33̂ , 7) into itself. Let us
now suppose that Δ(B, {Bfc}fc=i,2) ) is a decomposition of any subset B of
A, and let ̂  and φuk's be the characteristic functions of B and 2?fc's, respe-
ctively5). Then it holds

/

isr

φB(x) - _

so that from the linearity of T it follows

= ί
Since 2 ^ * ^ ) ^s monotone-increasing as iV increases, we have that

k=i

00

*ΣφBk(χ) = <PB(X)
fc = l

almost everywhere (7) on A and hence almost everywhere (m) on A.
Therefore, by Fatou's lemma we have

4) The notation 33^ denotes the Borel field relative to the set A (that is, 33^ is
consisted of all subsets of A).

5) In the following we employ the notations 9>A, 9>B etc. for the characteristic
functions.
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^ W - l

= V sup 2 limsup—SwΓΓ-'C

1 n-l

= 2 SUP 2 H m s u p - 2 I φunrιk(TΛ)dm
ι=ι wn*v ^ n I Ί : f c ) w n ι=o J

r i "-1

^ 2 SUP 2 l i m i n f — 2

= I φA{x)dm = /

Thus the proof of fviii) is complete.
Next let us suppose / € L(X,%,m), then by (v) we have /€

Hence from Birkhoff's ergodic theorem it follows that the limit

exists almost everywhere (7) and then almost everywhere (m) on account of
(vii), and furthermore / € / X X 35,7). Since the limit function / is an invariant
function, it follows that, for any pair of real numbers a and b, the set {x;
a<if(x)< b} is an invariant set. Hence, from / € Z(Z,S3,7), (viii\ and the

definition of the integral, we have eas i ly /6 L(X, 33, w). Thus it was proved
that (I) implies (B).

It will be shown by Example 2 in § 3 that (B) does not necessarily imply
(I).

Next we shall prove that, in case m is finite, the statements (I), (I')
and (B) are equivalent to each other. We have already proved that (I)
implies (B)} so that it remains to prove that (B) implies (F) and (I') implies
(I).

(B) -> (l'f>: Since m is finite, we have, by Lebesgue's convergence the-
orem, (B) and Lemma 2, that there exists a constant K such that for any
set A,

n- n - l /•
lim s u p — 5 « ί ( W ) = lim sup — V / φΛ(Tx)dm

6) The proof of this part is due to Ryll-Nardzewski [4].
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^ (limsup— VφΛ{Tιx)dm = / φA(x)dmg /Π φΛx)dm = K m(Ά).
X ι==0 X X

which is the required.
(I') -> (I): Since m is finite, we can show that for any set A

<6) 7(Λ) = β(A) = lim a (T-nA).
n

Let us now suppose that there exists a set A such that
n-l

0, lim sup^-y w(T-?'Λ) = 0.

Then it is easy to see that for each positive integer j
n-l 1 n-l

lim sup—y^m[T-\T-iA)\ = limsup —V^T-'Λ) = 0.

Hence from the definition of a it follows

<7) α ( Γ - » A ) = 0 (Λ = 0,1,2, . . . . ) .

Let us put

A =

Since, in the present case, 7 is a finite invariant measure and

it follows that A is an invariant set. Thus we have

7(A) > mi A) ^ m(A) > 0.

On the other hand, from (6) and (7), it follows

i=0 i=0

This contradiction shows that if A is any set of positive measure, it follows
n-l

lim sup—Vra(T-fA) >0.
n n 7^

Hence, from (Γ) and the above inequality we get (I).
Thus Theorem 1 is now completely proved.
REMARK 1. The statement (I) implies that for any set A of positive

measure
n-l

lim inf — VwCΓ-'A) > 0.
n n£Z

In fact, let A be any set of positive measure, then we can choose a
set Y such that 0 < m(A Γ\Y)<CQ. Then it is easy to see that for each
positive integer j

lim sup ~ V mCΓ-'ίA f| 10]
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»-l

= lim sup — y]m[T-f{T-HA fl Y))] S K-mlT~*(A f] Y)l
" i=0

Thus we have

so that

lim sup — ]>>[T-'(A[}Y)1^K. inf w[T^(A Π 501
n n i o J

«-l

lim inf — ^ m ί Γ ^ A ) ^ inf
n n 7^ >

n-i

-jsr.limsup —2ι»[T-'(AnF)] > 0.

By the above remark, the proof of Theorem 1 may be considerably
simplified, but our method of proof of Theorem 1 enables us to prove
Theorem 2.

REMARK. 2. The question of whether (I') implies (B) or not is still open.
The following result due to F. Riesz [3] follows immediately from

Theorem 1.

COROLLARY. If there exist two positive constants KΊ and Kz such that for
any set A

»-l

KΊ m(A) ^ — 2r*T-*A) S Krm(A) {n = 1,2, . . . . ) ,
" i-o

then the statement (B) holds.
Next we shall state the theorem which is a modefication of Ryll-Nardze-

wski's theorem [4J.
THEOREM 2. The statements (II) and (B) imply the statements {B) and (IF)

respectively, but the converses are not true.

PROOF. (IF) -> iB): This implication is proved similarly as Lemma 1 and
Theorem 1, so that we shall sketch the proof.

With respect to the sets X/s in (II), we put
n-l

cc*(A) = sup sup V lim sup — "S[nι(X5 Π T^A*)
j (A) ** n n ***

(Ak) *-0

for any set A. Then the non-negative set function α* has the following
properties:

(i) α* is finitely additive;
(ii) ct*(A) <, a*(T~ιA) for every set A
(iii) a*(A) ^ K m{A) for every set A

1

(vi) Λ*(A)^suplim s u p — - ^ ^ ^ Π Γ " ' ^ ) for every set A.
j n n i-o

We put further for any set A
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βKA) = lim a*(T~nA).
n

For any fixed set B of finite measure, the non-negative set function β*(A[]
B) of variable A has the following properties:

(v) β%A()B)^K* m(A[)B) for every set A;
(vi) β*(Af]B) is completely additive as the set function of A;
(vii) β*[T~ι{A{\B)] = βHAf]B) for every set A;

(viii) β*(A()B) >suplim sup- "^tn[X,(]T-f(A(]B)] for every set A.

Finally we put for any set A

7%4)= limjGWAΓI-Xj).

Then the non-negative set function 7* has the following properties:
(ix) 7*(A) <; K2 vn(A) for every set A
(x) 7* is an invariant measure on 33;
(xi) 7* is equivalent to m;
(xii) y*(A) > m[A) for any invariant set A.
From the properties (ix)-(xii) of 7*, it is easy to see that (II) implies (B).
(B) -> (IF)7>: From (B) and Lemma 2 there exists a constant K such that

for any sets Y and A of finite measure

A) = lim sup — '~ 2 /V(̂ *)*»

/ lim sup—'V φΛTιx)dm = / φA{x)dm g I φA(x)dm

which implies (II7).
It will be shown by Example 1 in § 3 that (£) and (II') do not necessarily

imply (II) and (B), respectively.
By use of Theorem 2 we shall prove the following two theorems.

THEOREM 3. If there exists a finite invariant measure equivalent to m, then
the statements (II), (IF) and (B) are equivalent to each other.

The assumption of the theorem cannot be omitted.
PROOF. Theorem 2 shows that (II) implies (B) and (B) Implies (IF), so

that for the present purpose it is sufficient to prove that (IF) implies (II).
Let A be any set of positive measure, μ a finite invariant measure

equivalent to m, and {Xj} the sequence of sets in (IF). Then from Birkhoff's
ergodic theorem it follows that the limit function φA of the means of φ± is

7) The proof of this part is due to Ryll-Nardzewski [4].
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(8) f^Ά(x)dμ = μ(A).

defined almost everywhere (μ) and hence almost everywhere (m), and that
Since μ is equivalent to m and m(A) > 0, it follows μ(A) > 0. Let B be the

set {x φA(x) > 0}, then, from μ(A) > 0 and (8), it follows μ{B) > 0. Hence
we can choose a set Xh € {Xi} such that μ(XjQ Γ\B) > 0. Since m is equivalent
to μ} it holds m{Xh[}B)>Q. Thus we have

sup lim sup—*Vm(X^ f\ T~fA) > Km sup 'S\m{Xh f] T~Ά)
J n *+1 ' n ^., » „ £ - . - • , „

i n~ι Γ Γ i w~]

= lim sup *V I ψA{Tx)dm> I liminf — y*φA(Tιx)dm

= / l?Λ(x)dm > 0.

\
Combining (IF) and the above inequality we get (II).
From Theorem 2 and the fact proved above, it follows that the assu-

mption of the theorem cannot be omitted (cf. Example 1 in § 3).

THEOREM 4. If X is the union of countable invariant subsets of finite
measure, then the statements (II), (IF) and (B) are equivalent to each other.

The assumption of the theorem cannot be omitted.
PROOF. Theorem 2 shows that (II) implies (B) and (B) implies (IF), so

that for the purpose it is sufficient to prove that (IF) implies (II).
From the assumption there exist the invariant sets Yfs such that

X = \JYj} Y , n Γ ; = 0 ίi * » , 0<m(Y3)<™ (;= 1 2, . . . . ) .

If we define the set function β* as in the proof of Theorem 2, then it is
easy to see that, for each j, β* is a finite invariant measure on'33r, and is
equivalent to m as the measure on 35 Y5.

Let us now put for any set A

Then it is clear that μ is a finite invariant measure on 33 equivalent to m.
Hence we obtain the conclusion by Theorem 3.

It follows, from Theorem 2 and the fact proved above, that the assu-
mption of the theorem cannot be omitted (cf. Example 1 in § 3).

REMARK. Theorem 3 is essentially equivalent to Theorem 4.
In the Proof of Theorem 4 we have shown that the assumption of

Theorem 3 follows from the assumption of Theorem 4 and the statement
(IF), so that f jr th3 present purpose it is sufficient to show that, the assu-
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mption of Theorem 3 and the statement (B) imply the assumption of Theorem
4.

Let 33O denote the class such that sets of 33O are the invariant sets of
finite positive measure and are mutually equivalent. Since m is σ-finite, the
class 33U is at most countable. Let us denote by Y the union of all sets of
35O, then the set X— Y must be a set of measure zero or an invariant set
which has no invariant subsets of finite positive measure.

Now let us suppose that X — Y is not the set of measure zero. Then
there is a set A such that

AczX - Y, 0 < m(A) < oo.

Since ψA € L(X, 33, m) and (B) holds, the limit φΛ of the means of φA is

defined almost everywhere (m) and *φA € L(X, 33, m).
On the other hand, let μ be a finite invariant measure equivalent to m,

then from Birkhoff's ergodic theorem it follows that φA is dsfined almost
everywhere {μ) and that

(9)
X

From m(A) > 0 we get μ(A) > 0. Hence, if we put B = {x; φA(x) > 0}, then
from (9) and μ{A) > 0 it follows μ(B) > 0, so that m(B) > 0. Then there
exists a positive number β such that the set {x;φA(x) > £} is of positive
measure. Since φA is the invariant function and φA € HX, 33, m\ the set {x.
<PA{X) > 8} is an invariant set of finite positive measure. This contradicts
the assumption for the set X — Y. Hence X — Y is the set of measure zero.

Thus we can conclude that X is the union of countable invariant subsets
of finite measure.

3. Counter examples. We shall now show by example that, in case m
is not finite, (B) does not necessarily imply (II) and that (IF) does not
necessarily imply (B).

EXAMPLE 1. We shall start from the measure space (X, 33, μ) and the
transformation T constructed by P. R. Halmos [2 pp. 743-744].

Let us define the collection of the linear intervals /w,*'s in the (s, f>plane
by

U = 0,1,2,... .
Let (X,33, μ) be the measure space such that X is the union of all Jn^'s, 99*
is the class of the Lebesgue measurable subsets of X, and μ is the ordinary
linear Lebesgue measure on S3. Let To be any one to one, measurable,
measure-preserving (with respect to μ), and ergodic transformation of

oo

\<Jjn,o onto itself (for example, the transformation To is defined by
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T0(s, 0) = ({s + θh 0), (s,0) € \Jjn,0,
rt=0

where 0 is a fixed irrational number and {s -f- θ} denotes the fractional part
of 5 + θ\ Further, let us define a transformation T by

T(s,t) = (s,*+ 1), if (5,0 € Λ

= T0(s, 0), if (5, t) e Λϊ2

n+1-i ( i = 0,1,2, . . . . ) .

Then it can be proved that T is a one to one, measurable, measure-prese-
rving (with respect to μ), and ergodic transformation of X onto itself (see
Γ2])

In the following, by x we denote the point (s,t) of X simply.
From BirkhofPs ergodic theorem it follows that for any function / €

L(X, S3,μ) the limit function/ of the means of / is defined almost everywhere

Since / is an invariant function and T is ergodic, the function f(x) is
constant almost everywhere (μ), so that / £ L(X, 29, μ) implies that f[x)
vanishes almost everywhere (μ). Hence, for any sets Y and A of finite
measure, we have

- M - l - n - 1 /•

limsup—y\μ(γ{\T-ιA) = limsup — V / ψA(Vx)dμ
* ntTo ntΓ0Jγ

(1)
/ limsup— 2φA{Tx)dμ^ \ = 0,

so that the statement (II) does not holds.
On the other hand, since μ is invariant under T, the statement (B) is

the immediate consequence of Rirkhoff's ergodic theorem.
Thus we conclude that (B) does not necessarily imply (II) (see Theorem

2).
Next we define a new measure m on 23 as follows:

m(A) = KA)/Γ2(« + I)2 - 1], if Ac/-,, 1" 1-.^ = 0,1, . . . . ) ,

if
l f

* = 0 , l , . . . . , 2 " « - 2 ;

Then it is obvious that m is a σ-finite (but not finite) measure equivalent to
μ, and T is measurable, non-singular (with respect to m) and ergodic. We
shall now show that the measure space (X, 23, TW) and the transformation T
have the following properties:

(i) the statement (B) does not hold;
(ii) the statement (IF) holds.
Proof of (i): Let us put

Ax) = 2w+1[2(w + I)2 - l]/2(w + I)2, if x € Λ l2

n+1-i (Λ = 0,1,2, •),



QQ S. TSURUMI

/u _ f) Ί 2 n + 1 - 2

= 2 +1/2(» + 1)2(2"+1 - 1), if * €/„,,. Q ~ J j' g '// ̂  '

veThen we have

J f{x)dm

/ 2»+>[2(M + I)1 - 1] W _ l _ 1
V 2(« + 1)2 Λ 2»+i '2(n + ty-l

.0 L-0 ^ ^

so that/eZ(X,58,«ί).
On the other hand, it holds that for each n
f{x) + f[Tx) +..-.+

θw+1

2(n

— 1) terms

2 7

and further to any point x of X there corresponds a positive integer p{x)
such that

Hence we get for any x of X

1
limsup—

If we suppose that (B) holds, then we have

n n

almost everywhere (m) a n d / € Z(X,33, m). This contradicts the fact that m
is not finite. Hence (B) does not hold.

Proof of (ii): It is easy to see that for any set A of finite measure
(2) m(A) ^ μ(A) < oo.

By (1) and (2) we get that for any sets A and Y of finite measure
f l - l

limsup — 2 ^ ( 7 | Ί Γ~V1) = 0.
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Since the inequality in (IF) holds evidently for any set A of infinite measure,
the statement (IF) holds.

Thus we conclude that (IF) does not necessarily imply (B) (see Theorem
2).

In the connection to Theorem 3 and 4 we note that the following
properties can be easily shown:

(iii) there exists no finite invariant measure equivalent to m
(iv) X has no invariant subset of finite measure.
Finally we shall show by example that, in case m is not finite, (B) does

not necessarily imply (F).

EXAMPLE 2. We define X, 23, μ, T and Jn^ (£ = 0, 1, . . . . 2n+1 - 1 n = 0,
1,2, ) as in Example 1. We introduce a new σ-finite measure m on 33
such that m is equivalent to μ, and for any set A

(J J \ 2; ;; β
and
(4) m(Jn,0) = rc, m(A flΛo) ^ μlA ΠΛ.o) (Λ = 0,1,2, .. )•

In fact, it is easy to construct such measure.

Let us suppose / € L(X, 33, m), then by (3) and (4) we get / € L(X, S, /i).
Hence we get similarly as in Example 1 that the limit function f of the
means of / is defined almost everywhere (m) and/(#) vanishes almost every-
where (fri). Thus the statement (B) holds.

On the other hand, if we put

we have
(5) m(A) = μ(A) = 1.

Then from (4) it follows that for each n

so that
1 n-l

(6) lim sup — yimiT^A) = oo.
w i-o

By (5) and (6) we have that (F) does not hold.
Thus we conclude that (B) does not necessarily imply (F) and then (I) (see

Theorem 1).
Finally I have to express my cordial thanks to Mr. S. Yano who gave

me valuable remarks and advices.



68 S.TSURUMI

SUPPLEMENT

The results of the present paper were sketched in the ^preliminary
report, S.Tsurumi, On ergodic theorems, Proc. Japan Acad., 30(1954) pp.
331-334 in which the sentence misinserted in lines 16-17 of page 333

should be omitted.
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