ON THE CESARO SUMMABILITY OF FOURIER SERIES II
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1. Introduction Let f{#) be an integrable function with period 2z and
let @(t) = @u(t) =flx+¢) + flx —t) — 2s.
J. J. Gergen’s Cesaro summability criterion of Fourier series reads as
follows [1] :
THEOREM A. Let @g(t) be the Bth integral of ¢(t). If
Pelt) = ot?) (t - 0)
and
T (m
lim lim sup u"f I_AM dt =0,

Kk->oo u->0 t1+e
ku

then the Fourier series of f(t) is summable (C,p) to s at t = x, where —1< p

and
' m

APg(t) = 3 (— 1y (’f) @t + va0).

v=0
S.Izumi and G. Sunouchi [2],[7] proved the following theorems:

THEOREM B. ZLet A =v/B=1. If @) = oY) (¢t —0),
and

f |d{utp(u)}]| = O®) 0<t<n),
0

then the Fourier series of f(t) converges to s at t = x.

THEOREM C. Let A=9/B=1 If @gt)=otY) (¢—0)
and

lim lim sup f L) — ol + w) dt=0
k->o0 u>0 t ’
(ku)liA
then a Fourier series of f(t) converges to s at t = x.
In the previous paper [5], we have proved the following :

THEOREM D. Let A=1, —1< p<1 and
v=A4—pA—1).
If @i(t) = o(tY), (£ —0) and
lim lim sup uf’f M dt =0,

k> u->0 t1+p
(ku)t/A
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then the Fourier series of f(t) is summable (C,p) to s at t = x.
THEOREM E. Let A=1, —1<p<1 and

. 2A-1
YEAT T,
If
@i(%) = o(2?)
and
(L1 ] |d{utp(u)}] = O®F),

0

then the Fourier series of f(t) is (C,p) summable to s at ¢ = x.

Concerning Theorems B and E, recently K.Kanno[4] has proved the
following theorem.

THEOREM F. If @p(t) = o(t?), v > B > 0, and the condition (1.1) holds, then
the Fourier series of f(t) is (C, p) summable to s at t = x, where

A=zvy/B
and
0 = AB -9 )
; A+y—8B-—1
that is,
IXA —1)
—Ag— PB+IXA=T) 0 5>
v 3 i+tp a p=
In this paper we shall prove the following theorems.
THEOREM 1. Let A=1,1>p=0, y=8>0 and
v =48 —plA—1).
I
Pg(t) = o(t") (t—0)
and
" A
(1.2) lim e | 1A7POL g _ o,
>0 tit+e

wlld

then the Fourier series of f(t) is summable (C,p) to s al t = x.
IfB=p (i.e. v=B=p), then we suppose A = 1.

THEOREM 2. In Theorem 1, if —1< p =<0, then (1.2) may be replaced by
i (m)
(1.2 Hm]mumpupf 1AMl g5 — o,

k>o0 450 fi+e
* (eu)l/A

THEOREM 3. Let A=1, p> —1, y=L >0 and
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Cam . PBE+IXA—-T)
v =48 1+p '
If
Pa(t) = otY) (t—0)
and

+

f |d{up)}| = O@),

0
then the Fourier series of f(t) is summable (C,p) to s at t = .

2. Proof of Theorem 1. In our theorem, if we put A = /B3, we have
p = 0. Hence, this case is Theorem C. The case A =1 and the case v =3
are Theorem A. Therefore it is sufficient to prove the theorem in case of
¥y>RB, A>1, 1>p >0 The method of proof is analogous to those of
Gergen[1] and Izumi and Sunouchi [3].

For the proof of our theorem, we need several lemmas.

Let us donote by K?(¢) the n-th Cesdro mean of order p of the series

1

+ Xlcos kt. Then we have

k=1

LeMMA 1(¢f. GERGEN[1], LEMMA 6). If we suppose —1< p=<1,

™|

2.1) Ki(t) = Sit) + Ryt),

cos(A.t + A)
AN2sin t/2)+e °

2.2) Sit) = Ap=n+((+1)/2, A= —(p+Dr 2

M d | M M
: P < M adiy » ) VL il
2.3) RO =5, | g B <o+
and
h << l+1 >
@.4) | ((‘;—t) Kz(t)l { = M, for k=0, |
. S Mnph-rt-i-e, for nt =1, h=0 and 0<p<l.

LEMMA 2 (¢f. GERGEN[1], LEMMA 7). If x'A < v, then

v

f AL "™ @i(2) |dt < (v + rx)‘“’f S
1/A

i 11+p
Jor every pair of integers r =0 and m = 1.
LeMMA 3. Under the assumption of the theorem, we have
@r(t) = o(f+(r-DA-o(a-1)), (—0),
where 7 is an integer such that 1<r <[B] + 1.

Proor. Let B3 be non-integral and u = [B] + 1. Then, by the assumption,

we have
Du(t) = o(2¥+R=B),
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hence
QDu(t) — o(t1+(#—1)A—P(A—1)),
since
Y+ @w—8)—{1+(@—DA—pA—-1)}
= (B —I[BIA—1)>0.
Therefore it is sufficient to prove that @r..(2) = o(tf) imply @At) = o(t-2),
where =1 and €=1+7A—p(A—1). Let us put R=m+7r—1, b=
1/(R+ 1), and k, = 1/{(R + 1)* +1}. We shall consider the integral
A T —Rt
dt AP g, (u) du = 7.
nard t1/a

By the definition, we have

h'vA T—Rt R R
n= f dtf {2(~1)"(v)¢)r-1(u+vt)}du
nyzd iia v=0
= (— DAk — h)x*@x(x) + 7*,
where 7* is the linear combination of @,...
On the other hand, by Lemma 2, 7 is majorated by

had z—mt .
- .
171 (x — mE)+e df lAt_f(ﬂ du
P
h.wA 11/A %
=< 772.?2) o (W=p — BiP) gttra-pa-1),

where

7™ = least upperbd. [ o [ 1AM@(0)] du} .

1+p
nyrdst=nzd /A u

Hence we have
P(x) = o(xt-2),
which is the required result.
In what follows, we put ¥y = z/A, = z/{n + (p + 1)/2}. Then

LeMMA 4. Under the assumption of the theorem, we have
leA+vy
I= f P(t)Ki(t)dt = o(1), (n — 00),
0

where v is a positive integer.

Proor. We may replace by »'/4 the upper limit of the above integral.
There is an integer u such that 4y —1< B8=<pu. We may suppose that
p—1< @< u, since the casep = @ canbe easily deduced by the following
argument. By p times application of integration by parts, we get
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= S 0 d h-t . leA M‘/‘L'UA d I3
_h§=];<—1y[¢nm(ﬁ) Kn(t)]o - (%) K ar

=S (-1 L+(~ 1 Isr.

h=1

By Lemma 3 and (2. 5),
I = o{nt 1 r[tDAZRA] _pja} = of1).

On the other hand,
. yI/A d w
T — Bt = Do — B) f wutt) (-2-) KO ar

1/A

v d
=f (2:7) Kit) dtf Pp(2e) (t — wy=P~1 du

f <pg(u) duf ( ) Ki(t)(t —u)yB-1 dt
vt yHA—y y1a !
=fduf dt—i—f duf dt+f du}r dt—f duf a't
0 u 1] w 0 ‘u+y

yla
=h+L+5—]
say, where

= +1 " — gy | = -7} = o(1
A O{H" (fl(pp(u)l[(t u) ‘-"L du} o(nB-Y) = o(1),

1/A % +Y

i
J.= f pa(u) du f (%)MK,@(t}(t — wr-B-1 dt
Y u

J1A u+y
= 0{ n"“"f u'"1-p duf @ — u)p—B-1 dt}
v w
= o(nP-Y) + o(ns-p- x v-») = 0(1), since v = AB — p(A —1).
Integrating by parts,
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say. We have
1/Aa

. y 18—y
Ji= O{f |pp(n)| du <n"““’[t"“’(t — w# Bl 18 >}
0

1A

+ol [T tpgmian (2) " Koy —upe-r|

:-’;ul + }%,2_

t=u+y }

1/A
1 Y
]31',1 = 0{ nM‘I—P'FK(l‘FP)(yl/A _yTIA +y)M‘ﬂ'l f Y du }
0

= o(n-P+B+4 -1 ) = o(1).

1/n yl/A_y
p= [+ [T =pmane

0 1n
say, where
1/n
et = 01 nF«-(u—B—l)f | pa(a)| du;» = o(nf-Y) = o(1)
0
and

Illl

Aoy
(l‘]’ﬁ(“)l [Pt — )= B~ 1] sy ) du}

BN
= 0{ nM—l—P—(#—ﬂ—l)fJ w1-f dy } = o(nf-7) + o(nf""'A1 0=p) = o(1).
1/n
Thus we get J3»* = o(1) and hence Ji = o(1).
We shall now estimate J;.
1/A 1/A

Y -V Y \Np—1
Ji= f Ppa(n) du f ( % )’L KNt (2 — w)—B-% dt

u+y

0
1/n yllA_y
N f du + f du = J3" + J3*,
0

1n

say, where
B _y A
TRt = O{ ne-1-p f | pp(ee) | du f t-1-e(t — up-B-2 dt}
1/n U+Y
Ay Ja
= o{ nk-1-p u“/'l"’[(t — ) Bl J du }
1/n

u+y
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yY
= o{ nb-p f

1/n

A"“!/

w-1p d“} = o(nB~7) + o(nP=#= 3 VP) = o(1).

and
1/n 1/A

Jit = 0{ ""Of l¢’s(u)l[(t —up Pl } du}

u+y

1/n

= o{ n(MA — 1/ n)-B-1 f ' du } + o(nf-7)
0

= 0{ nh- i—(f‘«"ﬁ—l)—(')wl) } + o(nﬂ—'Y) = 0(1))

since the exponent of the first term is less than

(Bl1—B (A—-1/A=0.

Thus we get J: = o(1). Accordingly we have J; = o(1). By the similar way,
we get J, = o(1).
Collecting above estimations, we get Lemma 4.

LEMMA 5. Under the assumption of the theorem, we have

n+Ey

f @(t) Ri) dt = o(1), (n— ),
yl/A
where £ is an integer.

Proor. By Lemma 3, we have ¢i(2) = o(f1-P(4-D), Using this and inte-
gration by parts, we get

+Ey z+Ey

[ oo ar = [pomn |~ [ o0 re a
JIA 1T Ala dat
=R, — R,
say, where by (2.3)
Ry = o(1) + o{n~i[#1PA-D=2],_1ja} = o(n=(A-Da-p)Ia) = o(1)

and

T

Rzzo{f;l

= o{n~t-1-PA-D], 1} + o{n 2t -PA-D], 178}
= o(n~(A-DU-PIAY L o(p-(A=DE-pIA) = o(]).

1-P-D[p-1-3 4 pap=1] d:}
A

LEMMA 6. Under the assumption of the theorem, we have

—-my

T = ,i;f @t + ) w(t,y) cos (Ant + A) dt = o(1),
nvo1a
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as n— oo, where m and v are integers such that 1 <v<m, and
2m . 2m—-v v .
{sin (¢ + vy)/2}1+¢ (sin 2/2)t+p {sin(¢ + 2my)/2}1+r "
Proof. We need the following inequalities
Jw

w(t,y) = O@t), 22 = O(t~+"),

w(t,y) =

which is Lemma 13 in Gergen [1].
Integrating by parts, we get

T—=my
T = %[%(t + wy) w(t,y) cos (Ant + A)] 1A
" v
T—mYy

1 510}
= t oo .
; e @t + vy) o cos(Ant + A) dt

T—my

A f @it + vy) w(t,y) sin (Ant + A) dt

atd o,
= T1 - Tz ‘+’ Tg,

say, where
Ty = o{n=P~2 [¢1=PA-D=37P], _j1ja} = o{n~¥A-DIA} = o(1),

+

T, = 0{ n—r—zf Fl-pa=1)—4-p dt} = 0{ n—P—2[t—2—PA]ﬁ=y]_IA } = o(1)

JUA

and

T

Ts = o{ mi-p=z | pi-pa-n-3-p dt} = o{ n —<A-1>/A} = o(1).

gl

Thus we get the lemma.

LEMMA 7. If (1.2) holds for an integer m =1, then the relation (1.2) is
still valid when m is replaced by m' (m' = m).

Proof runs similarly as Lemma 14 in Gergen [1].

Using above lemmas, we shall now prove the Theorem 1.

We denote by o#&x) the nth Cesiro mean of order p of the Fourier
series of f{(¢) at the point x. After Gergen, we have

221 7z [f(%) — 5]

B

=QL+Q2+Q3,-

say, where @; = o(1) by Lemma 4 and @; =0, since ¢@(z)Ki(#) is an even
periodic function. Accordingly it is sufficient for the proof to show that

T+ (v—m)Y T

bot) Kty ar

..+.
1/A+|/1/ A+n(v=m)y |
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Q:=o0(1):
om 2 T+ (y—-m)y om 2 T+ (v—m)y
— m m
Q. = 2( ! )f o(t) Si2) dt + 2( ” )f @(2) Rt) dt
v=0 sy v=0 Ay
= Q4 + Q.s;

say. By Lemma 5, we have @; = o(1). Concerning @,, we get

7T — M

Y
=2 A"Vt + ) t+ A) dt
Q= giwear {f s (it F 2y O A T A

Y

Z—my
AT Dep(t)
- fl/A W cos(Aqnt + A) dt
v

-m

2m-1 (—'—i)'c o fn {
N é ( " ) ia @(t + w) w(t,y) cos (Ant + A) dt} )

Hence, by the assumption of the theorem and Lemmas 6 and 7, we get
Q, = o(1). Thus the theorem is completely proved.

3. Proof of Theorem 2. It is sufficient to consider the case — 1< p < 0.
For this purpose we need some lemmas.

LEMMA 8.

(%)r SKE) = O =pt=1-9),  for mt 2 1.

Proof is easy.

LEMMA 9. If (kx)UA <w, then

v +rz .
m \
AT @B 4y

v
) 7
[AC+™ ()] dE < 27(v + rx)1+Pf T

(kz)l/A thryt/a

for every pair of integers r =0 and m = 1.
LEMMA 10. If @g(t) = oY) ard

(m),
N

lim lim sup »{")(x, k) = lim limsup x? f
0 " koo 4

b A z->0 D
Jor 0>p> —1, then
@(L) = o(f1+r—DA-p(a-1)),
where 157 <[B]+ 1.

Proor. It is sufficient to prove that if @,..(¢) = o(tf) for r =1, then
@t) = o(tt2), where £ =1+ 7A — p(A — 1).

Letusput R=m+7—1, h=1/(R+ EF/*)*and h = 1/{(R + B/*)» + 1}.
By the method of the proof of Lemma 3, we have
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l%;—'gy4 <o(l)+ K — B (least upper bd. 7{"(¢, k) )

h— R Bt mnzd

= o(1).
Thus we have @.(x) = o(x%-2).
LeEMMA 11. Under the assumption of the theorem, we have

& B vy
P(t) Set) dt = o(1), (n — o),
ky
where —1< p<0.
By using Lemma 10 instead of Lemma 1, the proof runs similarly as in
the proof of Lemma 4.

LEMMA 12. If @i(t) = o(t), then
ky
limf @(t) Ki(t) dt =0,
n-yoo
0

for —1<p=1
LeEMMA 13. If @u(t) = o(2), then

T+EY
limf @(t) Ri(t) dt = 0.
N>e0 -

LEMMA 14. If @u(t) = o(t), then

o —~my
lim —1,,— f Pt + ) o(t,¥)cos (Ant + A) dt = 0.
N->c0 All 1A
%)
LemMA 15. If (1.2)* holds for an integer m =1, then the relation (1.2)*is
still valid when m is replaced by m' (m' = m).

We shall now prove Theorem 2. We have

2m ky
v=0 0

7+ (v—-m)y am

< 2m 2 (kZI)llA+vy
+ 20( y )kf pORID A + 3( m)f P(F) SKP) dt
- ] |

+ %(2:”) f (1) S dt + 2(2;”) f o(t) K2t) dt

v=0 L] v=0 T (p=m)y
=@+ @+ Q:+ @, + @,
say, where @, = o(1) by Lemma 12, §, = o(1) by Lemma 13, @; = o(1) by
Lemma 11 and @, = 0. By the same method as in the proof of Theorem
1,we get @, = o(1).

7—(v—m)Y T
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4. Proof of Theorem 3. It is sufficient to prove the theorem for the
case — 1< p< 0, because the case p =0 is the Sunouchi-Kanno theorem.
Since @(¢) = O(t1~2) by (1.1), we have by the convexity theorem due to
Sunouchi [8],
@u(t) = o(2{B-A-)+1n)ip) (h=1,2.....u—1)
4.1)
Put) = otV -B+r),
where p is an integer such that w—1< B < p. If A=1, then we have
@i(t) = o(tV'®) = o(t). Hence the case A = 1is the Hardy-Littlewood theorem.
Therefore we may suppose A > 1. Under the these assumptions we shall

now prove Theorem 3.
We have

a{ah(x) — s} = f o(t)Ke(2) dt

k/n 0 n
= f @(t) Ki(t) dt + f @(t) Ri(t) dt + f @(2)SH(¢)dt
0 kin kin
=h+L+/
Since @i(f) = o(t), by Lemmas 12 and 13 we get J, = o(1), J. = o(1). Concerning
J:, we put

&8 =
I = f P(t)S {¢t)dt + f pt)Sit)at =T, + Js
% tim)®

where

_l+p _1+8 _ B-p _,
A+p A+ Y—P
Similarly as in the proof of Theorem 2 in the author’s paper [5], we have

Js = o(1).
By u times application of integration by parts,

Jo= - o) (g ) Sk [T (- / - o) (G ) Sk at

=1 kin

(k/m)®
kJ

n
= 2 (= L+ (= 1# Ly,

h=1

say. By (4.1) and Lemma 8, we get, for h<pu — 1,

s
I, = o{ nl-1-p [,«s—nm—A>+uy)/s—1—p]<"’"" }
kin
— 0(nlz—1—p——&[((ﬂ—h)(l—A)+Iby)[ﬁ—1—p]) + O(nll.—l—p—((ﬁ—-h)(l—A)+/L‘y}/(3+1+p).
where the exponent of the first term is

—Rhy—B+A—-1)/BA+v)<0
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and the exponent of the second term is
—h(y—BA+A—-1)/B<0,
since v — BA > 0. Hence we get 7, = o(1) for o <y — 1. Concerning I,, we
have '
d \#-1 (kn)® (Homy®
e (oo ) s =olorfer] |
dt kIn kjn
= g(pt-1-p-8ly+p-B-1-pl)
where the exponent of 7 is
A—-1D@E—-L—-1)/A+p) <0,
since 1+ p=(B+1)(A—1)/)(y+A— B —1). Thus we have I, = o(1).
Concerning 7,.,, we devide it in four parts;
®im®

t
Ly = f (;; >”S£(t<) dtf Pp(t) (t — urB-1 du
kin 0

Kin w+kfn (xejn)® Wtk /n
= Pe(u) du f (%)HS%U)U —u)pB-L dt + f du dt
0 kjn kln w
knd~xm &jn)® (x/nyd Wk
+ f du f dt — du dt

0 utkin Himd—kin  (kmy®

=h+h+—J
The method of the estimation of J; is similar to one of the proof of Theorem
1. For example, we shall show that J, = o(1);

&imy® Wtk in J
J:= f pp(2) duf <§t~>”Sﬁ(t) (t — u)—B-1dt
kln W
(wm)® u+k[n ®ny®
= o{ n'*"i’f uy"1-p duf (& — u)B-t dt} = o{n“""‘“‘m[w“?—l ' J»
JdE/n
k/n i

= o(nP-P-3(Y-p),

where the exponent of # is
B—p—8r—p)=B—p
Thus we have J, = o(1).

5. Remark. As we remarked in our previous paper [5], Theorem 1 in
case of p >0 has the meaning when
0<p<1/(A—1)
and Theorem 3, in case of p, > 0 has the meaning when
0<p<iia—2).

_B=p

—p)=0
w—m” P
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