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1. Introduction. Prof. K. Yano mentioned in a lecture that a Riemann
space is euclidean if it possesses a one-parameter group H of non-isometric
similarities. With "Minkowskian" replacing "euclidean" the theorem holds
also for Finsler spaces, but fails to hold when differentiability hypotheses
are altogether omitted by substituting G-spaces1) for Finsler spaces. This
remains so, even under very strong supplementary hypotheses: without being
Minkowskian the space may, in addition to H, possess groups of motions of a
rather high dimension and its geodesies may be the euclidean straight lines.
On the other hand, a very mild differentiability suffices for concluding from
the existence of H and the axioms of a G-space that the space is Minkow-
skian. Yet, nothing in the formulation of the original theorem suggests the
necessity of smoothness requirements.

The author is not aware of any similarly striking example where dif-
ferentiability assumptions in their usual form conceal strong purely geometric
implications. Therefore a systematic analysis of the situation seems justified,

We begin 'by discussing similarities in general G-spaces, then convince
ourselves by examples'^ that the above mentioned phenomena actually occur.
Next, we discuss a simple intrinsic, geometric condition for differentiability.
Examples show that this condition is still too weak to deduce the Minkowskian
character of the metric from the existence of H, because, in fact, the local
metric need not be Minkowskian.

However, strengthening the condition slightly into an analogue of conti-
nuous differentiability proves sufficient: A G-space which admits a similarity
with dilation factor k *1 (a group H of similarities is not needed) and is
continuously differentiable at one of the {always existing) fixed points of the simi-
larity, is Minkowskian in the small when k>l, and in the large when k<l.

The local metric is Minkowskian at a point of a G-space where
the space is continuously differentiate and regular^. We use these methods
to partially solve the interesting problem of deciding from the intrinsic

1) G-spaces are defined in [2, page 37] although they have no differentiability prop-
erties, a large part of differential geometry holds for them, see [2].
2) A cone in E3 with total angle α<2τr or a>2τt at its apex a and with its intrinsic
metric provides a simple example for a space which possesses a group H of similarities
(and the group of rotations about a). However, for α<2τr prolongation of a segment
for a point b to the apex a beyond a is impossible, and for <χ>2it it is not unique,
so that the axioms for a G-space are not satisfied.
3) An other approach to differentiability of G-spaces is found in [1, Chapter II]. The
present conditions are simpler and the proofs shorter. Because the author suspected
the existence of such an approach, the method of [1, Chapter II] is not discussed in
[2]. The remaining results of [1] are also found in [2].
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distances whether the space is a Finsler space with given smoothness properties.

2. Global and local similarities. The mapping a: x-+xa = x' of the
metric space R (with distance xy) on itself is called a global similarity with
dilation factor k > 0 if

(1) xaya = kxy for any two points x,y in R.

If k = 1 then a is a motion if k Φ 1 we speak of a proper similarity, a
is one-to-one because Λtt̂ α: > 0 for xy > 0, hence or 1 is defined and also a
similarity. If <Xι and # 2 are similarities of R with factors #x and kΛ then
αitfs is a similarity with dilation factor k\kι. The global similarities of a
metric space form, therefore, a group G. The motions form an invariant
subgroup Gi. Mapping each similarity on its dilation factor yields a homo-
morphism of G on a multiplicative subgroup of the positive reals with Gx as
kernel. A compact space deos not possess a proper similarity.
(2) A proper global similarity a of a complete metric space has exactly one
fixed point f which is called the center of a.

For a proof we put generally xv = xav. Then

(3) xvyv = kvxy, * A + I = A%#i.

Since the fixed points of a and or 1 are identical we may assume that
k < 1. Then (3) implies f or p > v that

p - l p - 1

so that {je,,} is a Cauchy sequence and hence converges to a point /. Clearly
fa = / and (3) implies yv ->/. Consequently, / is the only fixed point of a.
(4) A G-space which admits a proper global similarity is straight^.

We have to show that for two given distinct points x, y a point z with
(xyz), i. e., distinct from y with xy + yz = #2 exists. With the previous nota-
tions, xv -+fi yv ->/ implies x,,yv € S(/, />(/)) for large v here S(f, p) is the open
sphere fx< p and />(/) is defined in [2, p. 33J: hence there is a point z with
(x»yvz). Then z~v satisfies {xyz~v).

Instead of global similarities, differential geometry considers local simi-
larities which are special cases of conformal mappings. This is also feasible
in the present general setup we discuss briefly the necessary details:

The mapping a : x-+ xa = xf of a complete metric space R without isolated
points on the metric space R' is conformal if it is interior and

(5) lim

exists for each p 6 R and 0 < Up) < oo.
We note some trivial consequences of the definition, using the assumption

that a be interior only in (11).

4) For the definition of a straight space, see [2, p. 38]. If the space is smooth enough,
then it is, in the language of the calculus of variations, a simply connected space
without conjugate points.
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(6) a is continuous.
For xv-+P and S(p) < oo imply xvapa -*0.

(7) h{p) is a continuous function of p.

For if pv-±p we can choose xv Φpv with xvpv < v1 and \x'vp'Jxvpv — h{pϊ)\

< v'1. Then xv-+p hence x'vP'Jxvpv-^h{p) and h(pv)-±h{p).
(8) For any compact set C in R and a given £ > 0 there is an 8' > 0 such
that x,y 6 S(£, £') αrcd £ 6 C ι»φ(y |#y/*y - δ(ί)| < £.

Otherwise an 6 > 0 and triples #„ Φ Λ , Λ € C with xvyv € S(2v, ẑ "1) and
\xvy'Jxvyv — δ(Pv)\ ̂ «? would exist. For a subsequence {pp} of {£„} we have

/>P->/>€C because C is compact. Therefore x?-^p,yP-^p,h(pp)-^-h{p) and

l y ^ p — δ(/>)l ^ ~9"^or l a r ^e ẑ , contradicting Ϊ5).

A corollary of (8) is
(9) If x(t), a<:t<^b is a rectifiάble curve in R, then x'(t) = x{t)a is a rectifiable
curve in R'.
(10) If X s ) , 0 g s ^ £ is the representation of a rectifiable curve in terms of
arclength and y\s) = y(s)a, then the length L! of y\s) equals

/ = J S(y(sϊ)ds
0

For (8) yields for any sufficiently fine partition s0 = 0 < sx < . . . . < sn. = L
the inequality

(11) T^^ mapping a of R on R' is locally topologicaL
There is a positive τrP such that the restriction of a to S(p,7rp) is one-

to-one. Otherwise a sequence of pairs xv-*p,yv-*p, xv*yv with x'v—y'v
would exist, but then δ(/>) = 0.

Because of their importance in other connections we notice the following
facts which are easy to prove and explicitly contained in [2, (7. 5)]. If 7r(p)
is the least upper bound of these ΊTP, then the restriction aP of a to S(p, τr{p))
is one-to-one and either irip) = oo, i. e., a is one-to-one in the large, or 0 <
τr(p) < oo and \τr(p) — ir(q)\ ^pq.

Sf = Sip.Mp))^ = Sipfirtp^cCp is open because a is interior, and for the
same reason a'1 is continuous on S\

The conformal mapping a of R on Z?' is called a /oαz/ similarity of /? on
Z?' if the corresponding function S(p) is constant, say S(p) = ^. We conclude
from (10) that the lengths of any rectifiable curve x{t) in R and Z(#') of its
image x\t) = ^ ί )α in R satisfy

(12) L{xf) = kL(x).

From now on we assume that both R and R' are G-spaces. Then we
have for a segment T from # to jy in R

(13) fep = kUT) =

We notice the corollary



SIMILARITIES AND DIFFERENTIABILITY 59

(14) A compact space does not admit a local similarity on itself with dilation
J actor k < 1.

For (13) would imply shrinking of the diameter of the space. Local
similarities with k > 1 are, of course, possible; they exist, for example, for a
torus with a euclidean metric.

Locally, (13) can be improved:

(15) For a given point p in R there is a positive 8 such that a maps Sip, kβ)
on S(pa, 8) with x'y' = kxy for any x,y € Sip, kβ).

For & = S(p, τrip))a is open, see the proof of (11), and contains a sphere
S(p', 28), 8 > 0. For xf,y' € SUff, 8) a segment T{x',y') lies in S{p', 28), see [2,
(6. 9)] and is mapped by a~ι on a curve C in S{p, π(p)) leading from x = x'a~ι.
to y = y'a;\ Then by (12) and (13) x'y' ^ kxy ̂  kL(C) = L(T(xf,yr)) = *y.

Denote by Rλ. the remetrization of R obtained by multiplying all distances
in R by k. Then a may be interpreted as a mapping of Rk on Rf and (14)
shows that this mapping is locally isometric. From the discussion of such
mappings in Chapter IV of [2] we obtain the following results:

(16) THEOREM. A local similarity of R on R' with factor k induces a global
similarity with factor k of S(p, kp(p)/2) on S(p', p(p')/2), (see [2, Theorem (27.
10)]).

(17) If the fundamental group of R is not isomorphic to a proper subgroup of
the fundamental group of R', (in particular, if Rf is simply connected) then
kxy = x'y' for any x,y in R.

This follows from [2, (27.17)] applied to 7& and R. Finally we prove:

(18) THEOREM. // a G-space R admits a local similarity a on itself with
dilation factor k<l then R is straight and a is global.

It suffices to prove that the geodesic through two given distinct points
of R is unique. For then R is by [2, Theorem (31. 2)] either straight or of
the elliptic type. The latter is impossible because of (14). The similarity
Will be global by (17), since straight spaces are simply connected.

For any v > 0 the mapping a? is a local similarity of R on itself with
factor kr, hence xavyav <i kvxy, see (Ί3), and we conclude as in the proof of
(2) that a has exactly one fixed point / and xav ->/.

If there were two different geodesies through x and y Φ x then two
distinct geodesic curves Zi(τ), 0 ̂  r ^ Lti i = 1,2, with «f(0) = x, zt{Li) = y would
exist. Here Z£ is the length of 2f(τ), and one of the two curves may be chosen
as a segment T(x,y). We choose v so large that for i = 1,2

a?Li < pCO/2 and Zi(τ)a? SίS^Sif,p(f)/2),0^T<Lu

Then zx{τ)av and z2(τ)av are two distinct geodesic curves in S. But T(xav, yav)
is the only geodesic curve from xav to yav in S. Hence at least one of the
two curves zt(τ)av must leave S, but then its length would exceed p(f). We
know that (18) does not hold for k > 1, but
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(19) THEOREM. If a G-space R admits a local similarity a on itself with

dilation factor k > 1, then the universal covering space R of R is straight and

possesses a global similarity a which lies over a and also has factor k.

As in [2, Chapter IV] we assume that R is related to R by a definite
locally isometric mapping ί2 we realize the fundamental group of R by the

group of motions of R which lie over the identity of R. The existence of a

mapping a of # on itself which lies over a, i. e., aΩ, = Ω,a follows exactly

as in the proof of [2, (28.7)] or also from the Covering Homotopy Theorem.

We conclude from the fact that Ω is locally isometric and from (16) that a

is a local isometry of R on itself with the same factor k. Because of (17),

& is global and R is straight.
For a later application we notice:

If / is the fixed point of a then ftί is a fixed point of a since fa =/ ί lα

~fcdl = /Ώ =/. Conversely, i f / i s a fixed point of a, then an a over a
exists whose fixed point lies over /. This is easily seen by choosing / as
the distinguished point in the proof of [2,(28.7)]. The mapping eίφ->e3tφ of
the unit circle of the complex plane on itself shows that a may have more
than one fixed point.

3. Non-Minkowskian spaces w i t h proper similarities. We now
give two examples of straight spaces which possess proper similarities without
being Minkowskian5).

The first consists of a suitable metrization of Moulton's well known
example for a non-Desarguesian curve system. Consider an (xu #2)-plane with
the auxiliary euclidean distance e(x,y) = [(ΛΓ2 — yL)2 + (x3 — jy2)

2]1/2- The curves
of Moulton's system W consist

1) Of the lines x2 = tan/5 (xι - a) τr/2 < β ^ TΓ
2) #2 = const, on β = 7r/2
3) The broken lines

1 tan/Sfo -a) for χ.λ > 0.

Two curves with different β intersect. For any two points x3y and a given
β we denote by Sβ(x,y) the eucliden distance of the lines with slope tan/3 (in
ΛΓ2 > 0 for the broken lines) which pass through x and y.

Clearly

Sβ(χ,y)
and f or k > 0

5) They also show that the statement (22) in the Appendix of [2] is false, without
additional assumptions, for example continuous differentiability, see the present The-
orem (29).
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Hence

= f 8β{x,y)dβ
0

is finite and satisfies

8(kx, ky) = k8(x, y) for k > 0.

Moreover, δβ zs invariant under the translations parallel to the Xι-axis, hence
8 is too, so that a global similarity with an arbitrary factor k > 0 and an
arbitrary point on the #i-axis as center exists. That the curves in W are the
geodesies is seen exactly as in the more general situation studied in [2, p. 61],
or as in the second example.

The product of this space with a euclίdean or Minkowskian space, as it
is defined in [2, Theorem (8.15)] is a higher dimensional space which possesses
a proper global similarity with an arbitrary factor k > 0 and an arbitrary
point of a fixed hyperplane as center.

In the second example the geodesies will be the euclidean lines, so that the
Theorem of Desargues holds moreover, the rotations about the center of the
similarities will exist, as for the cases mentioned in Footnote 2).

Consider again an (Xι, #2)-plane-, put for fixed positive p

gp{x,β) = sign (xι cosβ + x ± sin/3) |x1 cosβ + x2 sin/31P

and

Sp(*,y) = f Igf{x,β) - g&,β)\dβ.

Obviously 0 < 8p(x,y) = 8p(y, x)< oo for x^y. The triangle inequality holds-
for 8P because of

(20) \gP(χ,β)-gP(z,β)\ ^ \gP(χ,β)-9P<y,β)\ + \9jy,β)-g>(z,β)\.
If y = (1 - t)x + tz, 0 < t < 1, then for arbitrary β

gp(x, β) > gP(y, β) ^ gP(z, β) or gp{x, β) S g/y, β) < gP{z, β),

because the line with normal direction β through y lies between (or coincides
with) the lines through x and z and because of our agreement on the sign
of gp. Therefore we have equality in (20) for every β and 8p(x,z) = 8p(x,y) +
8P(y,z).

If y does not lie on the euclidean segment from x to z, then we can find
a value β such that

gP(y, β) > max {gP{x, β\ gP(z, β} or gp(y, β) < min {gP(xrβ), gP(z, β)},

hence we have inequality in (20) for this and all neighboring β, so that δp(*, z)

p

Thus, the geodesies are the euclidean straight lines, and the metric is
clearly invariant under the euclidean rotations about the origin. Since

gp(kx, a) = k?gP(x, a) for k > 0

we have
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Hence Xι = kllpXi is a global similarity with factor k and the origin as center.
The metric is Minkowskian only for k = 1 (in which case it is euclidean).

4. Differentiability. The usual definition of differentiability of a
function involves two spaces, one for the independent and one for the depen-
dent variable. This method can, of course, be followed in our case by
postulating the existence of suitable coordinates. However, it is much more
satisfactory to establish the existence of such coordinates directly from intr-
insic properties of the distance. One is led to such a formulation of differ-
entiability by the following observation:

Consider a real valued function f(x) = f(xu . . . . , xn) defined in a neighbor-
hood of z. If f{x) possesses at z a differential, then for xv->z,yv-*z, x? •
and 0 < tv < M,

K ^ /[(I - tv)z + tytf] -f[q - tv)z + tvy] _ -

provided/Or) =*=/(>"). This formulation has the advantage of using only the
dependent variable and suggests a procedure for G-spaces:

In a G-space denote by a(β, q), β ;> 0, a point satisfying
qa{β, q) = βqa and qa(β, q) + a(β, q)a = qa or qa -f aa{β, q) = qa{β, q).
For β Ŝ 1 and a(β, q) exists but may not be unique when 0 < β < 1. For

β > 1 it may not exist, but is unique. However, for a given point p and a
given M > 0 there is always a positive p such that α(/3, #) exists and is unique
for β < M and a, q £ S(/>, p), see [1, (8.11)]. Because in our considerations a
and q will be points tending to a point p, the point a{β, q) will eventually
exist and be unique. Therefore we will not mention this question again.
We notice that
(22) a(β, q)(a, q) = a{aβ, q).

In analogy to (21) we say that the space is differentiable at p if

DP: limϊ^gWβjϊPΣ = lf f o r Gv_+p bv^P) av Φ bμ a n d 0 < βv < M.

We notice the following immediate conequenca of Dp:
(23) // DP holds, then 8 > 0 (δ < p{p)) exists such that a Φ b, ap <δ, bp^S
and 0 < β < 1 f»#/j>

1/2 < a(β,p)b(β,p)/βab < 3/2.

The principal consequences of DP are summarized in

(24) THEOREM. // DP holds, then
(25) into 6) = lim β-'aiβ, p) b(β, p)

exists and yields a metrization of S(p, S) which is topologically equivalent to ab.
Moreover m(p, a) = pa,

lim tn(av,bv)/avbv = 1 for av-+p, bv-±p and av 4= bv
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and

(26) m[a(β, p), b(β, p)] = βm(a, b).

In all considerations of this section and many of the next, the second
point q in a{β,q) will be p. We therefore put for simplicity

Obviously m(a, a) = 0. Assume a =t= b.
To prove (24) we conclude first from (22) and (23) that

a{β) = a(a)(β/a)
hence

1/2 < a(a)b{cϊβla(β)b(β)cc < 3/2,
so that

0 < lim inf β-WJ3fi(β) < limsupβ-WβWβ) < 00.

Choose βv-*0 + such that lim β-ιa(βv)b(βv) exists and let av-+0 + . Denote
by # the smallest /3P > #„, so that # -• 0 + . Then (22) and DP yield

lim a{av)b{av)a;ηa(β'v)Uβ'v)β'v^ = 1.

Therefore the above limit m(a,b) in (25) exists and is different from 0 and
00. The symmetry and triangle inequality for ab yield the same properties
for m{a,b).

The equivalence of the metrics ab and m[a,b) follows from (23) by letting

If al,-±p,bt,-+p and av Φ bv choose βv < v~ι such that

\m{av,bv) -β;1 aAβvMβJl < v^aά,.

After dividing this equation by avbv the condition DP yields m{av,bv)lavbv

-> 1. The relation (26) follows from (22).
Under the usual assumptions of differential geometry m(a, b) is, of course,

part of the normal Minkowskian metric of the space at />6). In order to obtain
all of this space we ήefine a(β) for ap = δ and 0 ^ β ^ 1 as before. For 1 <
j8<oowe define a new point α'β) not in the given space and metrize the
set of all a'β\ ap = S, by

n<<*ι(βi), ajβ*)) = am'MβJa), a.(β,/a))
where α is so large that βi/a <: 8. We conclude fron (22) and (25) that this
definition is independent of the choice of a and consistent for atp rg δ. Moreover
(22), (25) and (26) hold in all of the new space, which we call the normal
tangential space TP at p.

The space TP is finitely compact: if a, € TP and m{av,p)< N, then
m[a,(hN~ι), p] < δ, so that the points aXSN'1) have an accumulation point a
and a^δN"1) is an accumulation point of av.

We prove next

(27) For a given p > 0 and given points a, b in TP there exists a point c such

6) For the following statements see [2, Section 15].
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that
m(a, c) = pm(a, ft) and either m(a, c) + m{c, ft) = m(α, 6),

or m(a, c) + m'ft, c) = m(a, c)
(i. e., c is a point ft(p, a) for the metric m, but we avoid this notation to prevent
confusion).

PROOF. If β is sufficiently small then

exists we put c3 = dHβ~ι). From

m(p, dβ) = pdP <:pa(β) + a(β)dβ = pa(β) + pa(β)b{β)

^ (1 + p)/x/y3) + p£ft(/3) = [(1 + p) miβά) -f pmίft b)] β

follows

w(ί, c β) < (1 + p) m(p, a) + p rn(p, c).

Hence the points {cβ} are bounded. We show, and emphasize for a later
application, that every limit c of a converging sequence cβv with βv -> 0 + ,
(i.e., w(c^,c)->0) satisfies the assertion. As in the preceding proof β;]c((βu)
dβ"->0, hence

a(βv)d% - dβv)dβv < a(βv)c(βv) < a(βv)(fv + c(βv)dβv

yield

m(a, c) = lim β;ιa(β,)c(βu) = lim β;^a{βv)dβv

= p lim /3;1 a(βv)b{βv) = p m(ύr, ft).

Similarly we see that mf«, c) + πι(c, ft) = wfίz, ft) for p < 1 and m(β, ft) + m(ft, cj
= ?rc(tf, c) for p > 1.

The space TP is therefore convex in Menger's sense and prolongation i&
possible in the large (for the terminology see [2, pp. 28, 33]). It will be straight
if prolongation is unique, i. e., the point c is unique for p > 1. It is then also-
unique for p < 1, [2, pp. 38, 39]. Under the usual assumptions of differential
geometry, the space TP is Minkowskian, hence straight if, and only if, the
unitsphere of the Minkowslμ metric is strictly convex, see [2, Section 17]. In
that case the space, or its line element ds = F(xy dx), or also the function
Fix, ξ) is called regular at the point p. We therefore introduce the Regularity
Condition at p:

RP: Prolongation is unique in the normal tangential space TP.

Regularity presupposes that TP is defined, hence that DP holds. Our further
investigation could be carried out without assuming regularity, and this would
be justified by the fact that there are G-spaces of class C°°, for instance
quasi-hyperbolic planes (see [2, Appendices (46)]), which are nowhere regular.
However, matters would become much more complicated.

Because of (26) it suffices to postulate Rv in px < 8 or, which is the same,
m(p, x) < δ. Therefore Rp reads in terms of the original metric:
RP: If ^,ft,d,c3 lie in S(p,δ),a*b, and m[x,y) = lim β~ιx'β,p)y'β,p), then

0>O
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m(a, b) + m'b, d) = m'a, d) and m(b, cx) = m(b, c 2)

imply Cι = c3.
In the first example of the preceding section the space and TP are

identical for every p on the # raxis, in the second they are identical for p =
(0,0) and the space is everywhere differentiable and regular. Thus

(28) THEOREM. Differentiability and regularity of a G-space at a point p do
not imply that the normal tangential space TP is Minkowskian. Differentiability
and regularity at p (or everywhere) and the existence of global similarities
with center p and arbitrary dilation factors do not imply that the space is
Minkowskian.

5. Continuous Differentiability. In the examples the space is dif-
ferentiable at p = (0,0), but, one feels, not CDntinuously so. This can easily be
made precise by observing that, if the function f(x) in (21) has continuous
first partial derivatives at z, then the fixed z in (21) may, without impairing
the validity of (21), bs replaced by a variable point zv tending to z. Thus
we are led to the following definition:

The space is continuously differentiable at p if

CDP : lim ^Δ^PJ^^IPA. = 1 f o r av _> p$ b ^ P ) Λj Φ ^ Pv_+p

and 0 < βv < M.

With CDP replacing DP both the occurrences in (28) become impossible:
First we discuss the generalization of the result mentioned by Yano:

(29) THEOREM. Let the G-space R possess a local similarity with dilation
factor k Φ 1, and assume R to be continuously differentiable at a fixed paint of
the similarity (which is unique for k < 1). When k < 1 then R is Minkowskian
when k > 1 then the universal covering space of R is Minkowskian.

Theorems (18), (19) and the remark after (19) reduce (29) to the following
assertion: A straight space is Minkowskian if it possesses a global similarity
a on itself with k 4= 1 and is continuously differentiable at the center of a.
We may assume k < 1. The space will be Minkowskian, see [2, p. 237 and
p.261], if for any three distinct points a,b,c and the midpoints b' of a,b (i.e.,
ab = 2abr = 2b'b) and c' of a, c the relation 2b'c' = be holds. This is very easy
to see.

If x, = xoίv then

b'vcjbvcv = kb'v_Λc'v_λ\kbv-\Cv-.\ = b'v_χc^Λ\bv.λcv^\.

If p is the fixed pDint of a, then av, bv, c, tend to p, bμ =1= cv and c'v = cv(2~ι, av),
b'v = bv(2'1, av) because a is a global similarity. Therefore CDP yields

2Vc'lbc = lim 2b'vc
fjbvc, = 1.

Next we show:

(30) THEOREM. If a G-space is continuously differentiable and regular at p
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(i.e., satisfies CDp and RP), then the normal tangential metric at p is Minkow-
skian.

As in the previous proof it suffices to show that

m'a, b) = 2m(a, br) = 2m(bf, b) and m(a, c) = 2m(a, c') = 2m(c', c)

imply
m(b, c) = 2m[b\ c').

B e c a u s e of (26) w e m a y a s s u m e t h a t t h e p o i n t s a,b,c, V ,cf l i e i n S(p, δ ) .
Put dβ = b(β)(2~\ a(β)), eβ = c'β)(2-1, afβ)). In the proof of (27) we

established that any converging sequence dβjβ'*1) with βv->0 + tends to a
midpoint of a and b. Because of Rp this midpoint is unique, namely b/, hence
lim dβ(β'1) = b' and similarly lim eβ(β~ι) = c'. The condition CDP yields

lim 2dβeβ/b(β)c(β) = 1,
β->0+

or
m{b, c) = lim β-ιb'β)c(β) = 2 limβ

β->o+

But

b'(β)c'(β) - dφ"β) - ^cv/5j ^ φ ^ S b'(β)c'(β)

and by (23)

dib'(β) < ?>β-ιdβ(β-ι)bf.

Therefore β'1 dβb'(β)->0 and similarly β-ιeβc
f(β)->$ so that

2 lim /3"1 ̂ c 3 = 2 lim /3 'Ψ(β^β) = 2m(δ', cr).

This theorem has the corollary:

(31) A G-space which is continuously different table and regular at one point
p, is a topological manifold.

For m(a,b) and ab are topologically equivalent metrizations of S'p,h)} and
S(p,S) is, because of m(a,p) = «/>, an opsn sphere in the Minkowski space,
therefore homeomorphic to En for a suitable finite n. It follows from [2,
Theorem (10.1)] that every point of the spaed has a neighborhood homeomorphic
to En.

The methods which we have d-velop d̂ give a partial answer to the
following very interesting problem:

Consider a Finsler spac* of class Cn with an Fκx,ξ) of class Cn'1} >̂ >
n ^ 4 and the usual conditions on F(x, ξ), see [2, Section 15] or [4J. By passing
from an admissible coordinate system to a non-admissible one, we can destroy
some or all of the smoothness properties of the metric in terms of coordinates
distance may not even be d^finabld in terms of a function F(x,ξ). But the
intrinsic distances have not changed How can we recognize from the intrinsic
distances that this space can be written as a manifold of class Cn with a metric
derived from a function Fix, ξ) of class C ?

Our condition CDP does not use coordinates and will therefore be satisfied.
Normal, Qoordinates, vpt the .space at p are, as usual, defined in S(p,S) as
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affine coordinates with origin p belonging to the local Minkowskian geometry,
see [3] or [4]. These coordinates are of class Cn~2

f see [4, pp. 90 ss], except
at the origin p where they are in general only of class C, see f3J. Hence if
q is a given point we merely need to choose p =t= q such that q lies in a
neighborhood of p where normal coordinates are defined. In terms of these
coordinates the space is of class Cn~2. The function F(x,ξ) is determined by
the given intrinsic distance. Thus our methods solve the problem completely
in the case of C°° and allow us to recover class Cn~2, if the original space was
of class Cn. No method for reestablishing class Cn is known.

The same problem may be put differently: given a G-space which is
continuously differentiate and everywhere, to find out whether the space is
a Finsler space of a certain class. We procure coordinates at q as before.
If q has normal coordinates belonging to different points pι,pi, distinct from
q, then the transition functions from one system to the other will be class
Cu if the space can be obtained as above as a Finsler space of class C"1"2

with an F(x,ξ) of class Cn+1. Thus our methods, together with the classical
methods of [4] allow us to establish that the space is of class Cn, when it
is optimally of class Cn+2. Again, we have a complete answer for n = oo.
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