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1. Introduction. Let s% be the Cesaro sum of a series ]Γ} an with

a0 — 0, that is, At being Andersen's notation,
n

and let σ* be the Cesaro mean of the series Σ a™ that is, <τ% = st/A%. The
n=0

series ^Z ̂ n is said to be evaluable (C, ct\ a > — 1, to s Ίί <?%,-+ s as

^ -> oo and to be evaluable | C, α |, Λ > — 1, to s if the series ^Z | σt — ot+i \

is convergent and if σ % —> s as n —> °°. In the following, let >̂ be a positive
oo

integer and let Λ be a real number such that tf^-1. The series Σ an i s

said to be evaluable to s by Riemann-Cesaro method of order p and index
a, or briefly, to be evaluable (i?, p, ά) to 5, if the series

(l. l) GVf+ι T.stί-3^^

where
1

(1. 2) T(a+ 1)
(sin «)p ί/w, - 1 < a < p - 1 or a = 0, /> = 1,

o

1, ct = - 1,

converges in some interval 0 < £ < £0 and its sum tends to s as £-*0 + .
Under this definition, the summabilities (i?, >̂, — 1) and (R, p, 0) are reduced
to the well-known summabilities (R, p) and (Rp), respectively. In our ealier
papers [3, 4] we have investigated some properties on this summability. The
purpose of this paper is to study further properties on this. One of our
problems is to establish the inclusion relation between the methods with
same order and distinguished indices. Concerning this problem, Marcinkiewicz
[6] proved the following theorems.

THEOREM A. A series may be evaluable (i?2) without being evaluable
(R, 2).
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THEOREM B. A series may be evaluable (R, 2) without being evaluable

These theorems were also proved by Hardy and Rogosinski [2] and Kut-
tner [5]. We shall prove, by the method used by Marcinkiewicz, the fol-
lowing theorems 1 and 2, in the sections 2 and 3, respectively.

THEOREM 1. There exists a series evaluable (R, 2, a + 1), - 1 <i a < 0,
but not evaluable(R, 2, a).

THEOREM 2. There exists a series evaluable (JR, 2, a), - 1 < a < 0, but
not evaluable (R, 2, a + 1).

The present author [3] proved the following theorem.

THEOREM C. Suppose that the series Σ an is evaluable (C, r + 1),

r > — 1, to s and
n

(l 3) Σ Kl = O(nr+ί).

00

Then the series Σ an is evaluable (R, p, ά) to s when — 1^0L<r<p— 1.

Recently, Rajagopal [8] proved the following
00

THEOREM D. Suppose that the series Σ an is Abel evaluable to s and
n=o

that the condition (1. 3) holds. Then the series Σ an is evaluable (R, p, r)

to s when — I ^ r < p — 1.

Concerning these theorems, in the section 4, we shall prove the following

THEOREM 3. Under the asumption of Theorem D, the series Σ an is

evaluable (R, p, a) to s when — I ^k a < p — 1 and — 1 < r < p — 1.

Further the author [3] proved the following
THEOREM E. Let a be an integer such that 0 ^ a + 1 < p. If the

series Σ an evaluable \C, p\ to s, then it is evaluable (R, p, a) to s. Further,

if the series Σ an is evaluable \ C? 11 to s, then it is also evaluable (R, p, 0)

to s.
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An improvement of this theorem is the following, which is proved in the

last section 5.

THEOREM 4. Let a be a real number such that 0 OL+Kp. If the series
oo

Σ an is evaluable \ C,p \ to s, then it is evauable (R, p, ct) to s.

I take this opportunity of expressing my heartfelt thanks to Professor
G. Sunouchi for his kind encouragement and valuable suggestions during
the preparation of this paper.

2. Proof of Theorem 1. We shall first prove that there exists an even

function f(t) ~ Σ ^ c o svt satisfying the conditions :

(2.

(2.

and

(2.

1)

2)

3)

2L \b,\

l imί s

lim sup if"*1

(/ω-j

7(2ί)
t

converges,
f(0)) = 0,

H2f) -HO) = + CO,

where fit) is the function conjugate to fit) and where H/) is an integral of

Jit).
We may take two decreasing positive sequences {Xt} and |£ tJ such that

(2. 4) 0 < λί < — , 0 < λ t + 1 < \t - 2ΛXi (i = 1, 2, 3, ),

(2. 5) Σ Si converges
ί = l

and

(2. 6) lim St log λf = - oo.

Now, we shall define the function f(t) as follows.

(2.7) έ

where

ft(t) = 0, t = λi - 2αλi and t = λ4,
= = ^ i A/i i ^ : = : A*ί A*{ ,

= linear, (λt - 2" \, Xt - λί"*) and (λ, - λ}"1*, λ(),

= 0 elsewhere,
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Then, as is shown in the following, we see that the function f{t) satisfies

the three conditions (2. 1), (2. 2), (2. 3). It is obvious that

S X~*

• ^ = 2a x - x?— ( λ i ~ 2 " λ i < * < Xt ~ λ ' " α )

*i /xί y*ι 1 / 1 5

•vl-α = ~ V" (λi — Xf" < t < \ ).

We have then

= 2 £ p
(-1

Σ ( ^ ) *ί-|

= 21 έ a}-α λ , - 0 - ' (2« λ4 - λi-*)« +

= 2

^ 2 1(2* - λΓT + H Σ f ' " α < + °°>
ί - 1

00

since the series ]P β]'* converges by (2. 5). Thus, the derivative f'(t) belongs
ί = l

to the class U~a, so that, using Tonelli's theorem [10 p. 138], (2. 1) follows

because fit) is absolutely continuous. We shall next show that the function

fit) is satisfying (2. 2). Let \ - 2* λ t < t S X* - λJ-Λ. Then

θ t λr α = λf - xl"05 = V λf - λί"α / '

hence

If λi - Xl'" ^ ί ^ Xi? then

hence

Therefore, we get, remenbering that /(0) = 0,
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0 ^ lim ί» (f(t) - /(0)) ^ lim fi, \;* (λ, - λ}"-)- = lim fi,(l - λf *)α = 0,
ί-^oo

and, then, we see that lim t"(f(t) — /(0)) = 0, which is the required. We
ί->0+

shall now prove that the function f{t) satisfies (2. 3). Let Sn =

oo

Σ fi and, for any function g, let

, u) = ua+1 S&u) G(2u) - G(0)

where G(u) is an integral of g. Let us denote by Sn and Rn the function
conjugate to Sn and Rn, respectively. We have then, by the well-known
formula,

-* 2 tan i ( o ; - M)

7Γ W - λ l
n—* n—*

Then we se easily that -XLj (0) exists and Sn-X(u) is continuous in an interval

containing origin. Therefore we have, <r(u) denoting an integral of Sn-^u),

T ιZ ~Ύh 2 6re-1 (0)'

remembering that Sn-^0) = 0. Thus, for a fixed #, Δ(Sn-.l9 u) -> 0 as w-> 0.
Hence, if the sequence {Xέ} decreases rapidly enough,

?„_,, λ » ) < l (» = 1, 2, 3, ),

and then we may suppose that this condition is satisfied in addition to the

conditions (2. 4), (2. 5) and (2.6). Hence

Now

dt

2 tan—(λB - t)

2 tan—(λ. - t)
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i Γn-K«~*R^it) f
•-Λ» 2 tan j(Xn - t)

^ Jiog λ n + iog(2 +
4τr l \ 2

»-1 + ̂ -XnΛ - (1 - α)logλn2 /

> j α l o g λ 1 , + l o g 2 M

and hence, using (2. 6),

λS I Rn-άK) I > - ? - θ» log \n + "Γ- «» log 2*" "• + «, as 72
47Γ 47Γ

On the other hand, using the Riesz theorem [10 p. 148],
\ l / 2

1/2

Rn-λt)dt Sλi' ^J RL,(t)dt)

,1/2

Rl-lt)dt\
- 7 ί

12

S 2 ίΓλi'2(£2

n λ^ 2 α + ϊ ) 1 / 2 = 2

where X' is a constant. Therefore

and then

lim Δ(/, λn) = + oo,

which proves (2. 3). Thus the function f(t) satisfies the conditions (2. 1),

(2. 2) and (2. 3). Using this function, we shall now define a series JZ an
W - l

evaluable (i?, 2, α + 1) but not evaluable (i?, 2, tf). Let the series Σan be
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defined by the relation s%+1 = n2bn, s%+1 being the (C, a + 1) sum of the

series Σαn. Then, by a lemma due to Marcinkiewicz [6 Lemma 1],

(2. 8) "-1

t^ Σ rt+1 ( " ^ ) 2 - - 1 /-CA2ί) - /(o)),

/>(/) denoting a continuous function for all t. Thus (2. 2) and (2. 3) show

that the series ^ an is evaluable (i?, 2, a Λ- 1) but not evaluable (i?, 2, α)
W = l

and the proof of Theorem is complete.

3. Proof of Theorem 2. We take the two sequences {λ4} and {£,}

in the former section, that is, these sequences satisfy the conditions (2. 4),

(2. 5) and (2. 6). Further let the sequence \\t) satisfy

(3. 1) 2λ i + 1 < λ*.

Then we define the function g(t) in the same way as we defined f{t) in (2, 7)

except that now we suppose g(t) to be an odd function. Let us denote by

g{f) the function conjugate to #(*). Let

~ Σ bn cos «ί.

Then the convergency of the series Σ\bn\ is seen, by the method analogous

to one which we proved (2. 1). Furthermore, we have easily

(3. 2) lim \t*g(2t) - tx'\G(2t) - G(0))| = 0.

Now we shall prove that

(3. 3) lim sup " I #(*) - fl<0)| = + oo.
ί>0

Let us write

and denote by 5 n and Rn the function conjugate to Sn and i?n> respectively.

Then we see easily that Sn-i(t) is even and have the derivative at origin.

Hence S'n-i(0) = 0. Therefore, if the sequence jXj is chosen suitably,

(3 4) (n = 2, 3, 4,

and we may suppose that this condition is satisfied in addition to the con-

ditions (2. 4), (2. 5) and (2. 6). Let us write
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- g(0)I \%Ign(\n) - gn(0)\ - Xt\5n_,(λn) - Sn_,(0)!

-\«n\Rn(\n)-RM\

= Un-Vn- Wn.

Then, by (3. 4),

(3. 5) Vn =λi + < S » - i ( λ » ) - ^ » - i ( 0 ) \ < 1 ( » = 2, 3, 4,.

and, using (3. 1),

(3. 6)

7Γ L.*"(
. 1

sin — 0 - λn)sin

X" λ " + 1 •'-*.+i 2 sin-i-<

Since

noc + 1 Λ -. • «»

TΓ J_* o tan —

^tan 2

"λ

2 tan

we have, arguing as in the former section,
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^ i— \dt

(3. 7) f
2 tan —

> ^ - {Λ log λn + log 2*"1} + o(l) -• + oo? as^oo.
27Γ

Summing up (3. 5), (3. 6) and (3. 7), we get (3. 3). We shall now define a

series evaluable (R, 2, a) but not evaluable (R, 2, a 4- 1). Let the series

X) an be defined by the relation sV1 = n2 bni sV1 being the (C, Λ + 1) sum

of the series Σ an- Then, by (2. 8), (3. 2) and (3. 3), we see that the series
n = l

oo

Σ «n is evaluable (JR, 2, α) but not evaluable (R, 2, a + 1). Thus the

theorem is completely proved.

4. Proof of Theorem 3. For the proof, we need the following Lemmas.

LEMMA 1. Let r > — 1. Suppose that (1. 3) λo/ds Λ K/ the series Σan

w = 0

Z5 Abel evaluable to s. Then

(4. 1) σT = O(l)

and

(4. 2) σ£+1+e -> s as n-+oo,

where S is an arbitrary positive number.

PROOF. Rajagopal [8 series-analogue of Lemma β] proved (4. 1) and

(4. 3) σr

n

+2 -+s as«->oo,

Then, by the well-known theorem [1 Theorem 70], (4. 2) follows.

LEMMA 2. Let r > — 1. Then the condition (1. 3) implies

m

(4.4) £ | ^ | = O < »

and, for 8 > 0,
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m

Σ, K+el =o(m\

and conversely (4. 4) implies (1. 3).

Since Γ(r + l)Ar

n-—- n (r =f= — 1, — 2, ), Lemma is obtained, in obvious

way, using Abel transformation.

We shall now prove Theorem. The three cases are considered :

(I) a < r, (II) a = r, (III) a > r.

We shall first prove that Theorem in the case (I) is reduced to Theorem C.

Since r + 1 < p, we take £ such that r + 1 + € <i p. Then, by Lemma 1,

the series Σ an ι s evaluable (C, r + 1 4- 6) and, by Lemma 2, (l. 3) implies

Hence, by Theorem C, the series Σ an evaluable (R, p, a) to s. Theorem

in the case (II) is Theorem D. The case (III) is reduced to the case (II),

reasoning that when the conditions of Theorem are satisfied for r, they are

also satisfied for a, by Lemma 2. Thus Theorem is proved.

5. Proof of Theorem 4. For the proof we need the following
oo oo

LEMMA 3. Let the series Σ &*> ^ e converge and let cn — Σ bv Then
v = l v**n

m m-l

Σ a» b» = an cn — am cm+1 — Σ c*>+ι Δau,

where Δav = av — av+ι. In particular, if amcm+1 -> 0 as m -* oo?
oo oo

v=n v=n

Proof of Lemma is obvious, so that we omit it. We shall now prove

Theorem. Since Theorem in which a is an integer is Theorem E, we suppose

that a is not an integer and write the greatest integer less than a by β.

Then p — 2 β, by a + 1 < p. We may suppose, without loss of generality,

that 5 = 0. Let φ{t) = (Γ 1 sin tf and let Δmφ(nt) denote the ra-th difference

of ψ{nt) with respect to n. Then Obreschkoff [7] showed

(5. 1) Δ™ φ(nt) = O(tm)

and
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(5. 2) Δ™ φ(nt) = O(tm~v n~v\

for m, # = 1, 2, 3, and t > 0. By the repeated use of Abel's transformation,
m, m-p+β+1

w-1 w=l

Since the summability \C, p\ implies the summability (C, p\ when 0 i p9

(5. 3) si = oU P ).

Then, using (5. 2), for a fixed 2 > 0,
P-/3-1

= oy E (m-i + iγ-(m - i + l)-pJ = o(l),

when m —> oo. Therefore,by the identity

oo oo

ta+1 Y^ st ψ(nt) = ία+1 y 5w+1?~β"1 Δ2""^1 mint)

(5. 4) = t«+1 Σ ^r1 Σ AsiS-1 Δ ί " β "

Al Σ ^ I ξ - 1 Δ-" φ(nt))

where

t/mW =ί I + 1 Σ A?Σ ASI^Δ'-

provided that the inversion in (5. 4) is legitimate and that, for 0 < t < 1 and

1) Here, we use ] Γ Λ^-ξ-1 jp-β-i (pCwO^OCi-*-1 V-P) in (5. 11) below and ΛJ=C
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m = l, 2, 3, ,

(5. 5) Ujf) = Oil).

Therefore, for the proof, it is sufficient to prove that the series
CO

(5.6) ΣK-σΓ+])C/XO

converges in 0 < t < t0 and its sum tends to zero as t —> 0 +. To justify
that the inversion in (5. 4) is legitimate, we must show that,for a fixed t > 0,

N

(5. 7) lim Σ si'1 Έ A"-*'1 AP'β'' <p(nt) = 0.
-ιV"^°° v=ι n^N+1

Since β^p—2 and
oo

J2 A**-**-1 φ{yt) = Δp-β-2φ(nt\

we have, by Lemma 3, for v such that 0 v % N9
oo

Σ ASΓf-1 Δ^-^-1 ^ ( Λ ί ) = ΛSHζ ϊ Δ^-^-2

 φ ((N

(5. 8)

= O((JV - v + ly-^-1 N'p).
Then, putting [JV/2] = μ,

2V oo

say. Now, by the series-analogue of RajagopaΓs lemma [8 Lemma 10],
n

(5. 9) Σ kP~M =O(np),

from our assumption. Hence, by (5. 8),

Concerning /2, we take an arbitrarily fixed L large enough. Then, using
(5. 9) and (5. 3) for i = p - 1,

= o [

N--o(
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= o{L«-β) + <

O(N-P Σ\sl-+\-Λ(N+i-μ)*-β-1)+ O(N-*Σ(Έ
\ 1 / \ . . Γ \ Λ, 1

= o(l) 4-

Since L is arbitrary, by a — /9 — 1 < 0, 72 = o(l) which proves, together

with Iλ — o(l), (5. 7). We shall next prove that (5. 5) holds. Now, by Lemma

putting p = [ r 1 ] ,

Hence, if mt 1, then

(5. 10) Um(t) = θ ( ί £ ^. j r") = O(mί) = 0(1).

Thus,we have to prove for the case in which mt > 1. For p ^ 2,
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For ρ=l, then - 1 < a < 0 so that β = - 1. Since

if ϊ/ί > 1, then

Σ AS:?-1 Δ"-"-* ̂ (^) = Σ A S . , s i ~ = (*Σ + Σ

= O{r'v«) + o(i"V) + ( r 1 Σ U - ")•"'

Similarly, for p 1, putting p = [ί"1],

(5. 11) Σ ASlf-1 A'-^1 ^Λί) = ( Σ + Σ ) =

Now

c/»ω = ία+1 Σ A; Σ AS:?-1 Δ*-V«*) =ία+1 ( Σ + Σ ) = ^ ^ + c/m2,

say, where [7OTl = O(l) by (5. 10). Since

Σ Σ AT-?-1 *>-*-> φ{nt) = Σ Λt-Jr1
 A>-*-^ φ(nt), (j = o,

and
/IP /IP ΔP-1

we have, by Lemma 3,

Σ ^ - P " 1 Δ1 1^"1 ^(«0 --4- Σ A%ztX

m - 1 eβ -|

Σ Alι\ Σ As=5zί Δ-p-1 9,(Λί)
I/ = p 7i = I/ + l -"

m-2

+ Σ ATΛ Σ ArW Δ»-?-* ^(n ί)
.. . Λ *i — i/j- "2 - '
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i - β+ (

= oil) + oiiρt)χ-β-1)

= 0(1).
This proves (5. 5) for mt > 1. We shall now consider the series (5. 6). In
virture of (5. 5), by the assumption that

έ < ~ σj+ι < + oo

the series (5. 6) is converges (absolutely) in 0 < t < 1. Further, for an arbi-
trary positive number 8, there exists an N = N(S) such that

On the other hand, for a fixed v > 0, obviously

t«+1 Σ, AizS'1 Δp'β φ(nt) = O ( r + 1 E (n - v

Then,

Hence

for m

UM)

lim
ί^0+

m

= o(t*-β

N

= 0 if

IP \ ΛΛ—β
Xγ / f JLXfl — V

m

MUM

β ).

- 1 A»-β φ(nt)

= Oit"-β-χ N'

= 0.

Therefore we have

lim sup Σ W -

Since ε is arbitrary, we get

-^-1 rβ n~p
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and Theorem is completely proved.
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