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1. Introduction. Let s? be the Cesiaro sum of a series »_ a, with
n=0
a, = 0, that is, A% being Andersen’s notation,

n
sv=> Ar, a,
v=0
o

and let o% be the Cesiro mean of the series Y a,, thatis, o% = s%/A%. The

n=0

series ) a, is said to be evaluable (C, &), @ > — 1, to s if 67— s as

n=0

n— oo and to be evaluable |C, a|, @ > — 1, to s if the series ) |o% — o%.:]

n=0
is convergent and if o § — s as z — oo. In the following, let » be a positive

integer and let @ be a real number such that @ = — 1. The series ) a, is
n=0

said to be evaluable to s by Riemann-Cesiaro method of order p and index
a, or briefly, to be evaluable (R, p, @) to s, if the series

o

(1. 1) Colut™t > 5% (

Nn=1

sin nt )P
nt ’

where

(1. 2) C I.(a;_‘_l)fﬁuw-r'(sinu)" du, —1<a<p—1lora=0p=
* p,w= 0

1, =1,
converges in some interval 0 < ¢ < ¢, and its sum tends to s as £—>0+.
Under this definition, the summabilities (R, p, — 1) and (R, p, 0) are reduced
to the well-known summabilities (R, p) and (R,), respectively. In our ealier
papers [3, 4] we have investigated some properties on this summability. The
purpose of this paper is to study further properties on this. One of our
problems is to establish the inclusion relation between the methods with

same order and distinguished indices. Concerning this problem, Marcinkiewicz
[6] proved the following theorems.

THEOREM A. A series may be evaluable (R,) without being evaluable
(R, 2).
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THEOREM B. A series may be evaluable (R, 2) without being evaluable
(Ry).

These theorems were also proved by Hardy and Rogosinski [2] and Kut-
tner [5]. We shall prove, by the method used by Marcinkiewicz, the fol-
lowing theorems 1 and 2, in the sections 2 and 3, respectively.

THEOREM 1. There exists a series evaluable (R, 2, a + 1), — 1 =a <0,
but not evaluable(R, 2, a).

THEOREM 2. There exists a series evaluable (R, 2, a), — 1 < a < 0, but
not evaluable (R, 2, a + 1).

The present author [3] proved the following theorem.

THEOREM C. Suppose that the series > a, is evaluable (C,r + 1),

n=0

r>—1, to s and

(1. 3) fnj [s)] = O@™").

val

Then the series )_ a, is evaluable (R, p, @) to s when — 1= a<r<p-—1

n=0

Recently, Rajagopal [8] proved the following

THEOREM D. Suppose that the series Y a, is Abel evaluable to s and

n=0

that the condition (1. 3) holds. Then the series Y a, is evaluable (R, p, )

n=0

to s when —1=r<p-—1
Concerning these theorems, in the section 4, we shall prove the following

THEOREM 3. Under the asumption of Theorem D, the series Y a, is

n=0

evaluable (R, p, &) to s when —1=a<p—1land —1<r<p-—1

Further the author [3] proved the following
THEOREM E. Let a be an integer such that 0= a + 1 <p. If the

series Y a, evaluable |C, p| to s, then it is evaluable (R, p, @) to s. Further,

n=0

if the series Y. a, is evaluable |C, 1| to s, then it is also evaluable (R, p, 0)

n=)

to s.
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An improvement of this theorem is the following, which is proved in the
last section 5.

THEOREM 4. Let a be a real number such that 0 a-+1<p. If the series

oo

> a, is evaluable |C,p| to s, then it is evauable (R, p, @) to s.

n=0

I take this opportunity of expressing my heartfelt thanks to Professor
G. Sunouchi for his kind encouragement and valuable suggestions during
the preparation of this paper.

2. Proof of Theorem 1. We shall first prove that there exists an even
function f(£) ~ >_ b, co svt satisfying the conditions :

@ 1 > b, converges,

2. 2) lim 7% (f(&) — £(0)) = 0,

and

2. 3) lim sup #** ‘ ?<2t) — F‘(Zt) _F«)) = + oo
150+ L 2 >

where ?(t) is the function conjugate to f(¢) and where F(t) is an integral of
f@®).

We may take two decreasing positive sequences {A;} and {&;} such that

(2. 4) 0<xi<%,o<xm<xi—2“xi (i=1,2 3,...),
(2. 5) > & converges
t=1

and
(2. 6) lim & log A, = — oo,

1500
Now, we shall define the function f(¢) as follows.
2.7 @) =2 @),

t=1
where

fi(t) = O, t= 7\'1 - 2“)4 and t = Xt,

=81X[_w‘ t=7\.£—7\.§-a,
= linear, (A — 22X, Ay — M%) and (A — A%, AY),
=0 elsewhere,

=f(— o).
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Then, as is shown in the following, we see that the function f(¢) satisfies
the three conditions (2. 1), (2. 2), (2. 3). It is obvious that

: ENT" i} 1
FO= 20 e =20 <t <M - M)
-3 Yo &
=_—}~—;=_-xfi— M = NP < <),

We have then
[Lir@p=a=2 f F@P-=a
-2z f > jz:)\}

t=1 Jp—2%)\ {=1

oo

ENT
12 (o)
g 2”)\,1—).} @

o

2 { 2OETINTIEO (20N — N+ D e}~w}

i=1 i=1

1-

&
A

Il

(22 o
(2N — M%) + Z(
i=1

e

=2 {Z YN (2% — AT 4+ D & }
i=1

i=1

=22 — Mo 4+ 1} &% < + oo,

i=1

since the series ) &~ converges by (2. 5). Thus, the derivative f'(¢£) belongs

i=1
to the class L'™%, so that, using Tonelli’s theorem [10; p. 138], (2. 1) follows
because f(¢) is absolutely continuous. We shall next show that the function
f(®) is satisfying (2. 2). Let A, — 2N <t =N, — M™% Then

i) t ( t )““
JN) - .
ENTY =N = AMTET AN — N ’

£ f(£) < & A (A — AP
If A, — A ®*=<¢=M, then

S (*,__L_y
eixgaé = N— NS

2 f) < EAT* (N — MO

hence

hence

Therefore, we get, remenbering that f(0) =0,
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0= }1»131 (&) — FO) = %im ENT(ON — MY = lim E(1 — A2 =0,
+ >0 e
and, then, we see that Iil(‘fl t(f(t) — £(0)) = 0, which is the required. We
=50+

shall now prove that the function f(¢) satisfies (2. 3). Let S, = >_f;, R,=
i=1

>~ fi and, for any function g, let

=n+l1

A(g, u) — ua+1

920 _ GCw) — GO)|
u 2 |’

u

where G(u) is an integral of g. Let us denote by :S':, and ﬁ,, the function
conjugate to S, and R,, respectively. We have then, by the well-known
formula,
~ 1 * S,_i(x)dx
S L[ S
-2 tan g(x —u)

™
1 (f—xn_ﬁz“)u,._; M
™ A A =200\

n—1 ‘p—1

Then we se easily that S,_, (0) exists and S,_,(%) is continuous in an interval
containing origin. Therefore we have, a{«) denoting an integral of S,_,(x),

lim 0{2—}1)_0—(0) = lim 2————'5”'1(2}1)

n>0 h? >0 2h =25 (0),

remembering that E,,_l(()) = 0. Thus, for a fixed #, A(En_l, u)—~>0 as u—0.
Hence, if the sequence {\;} decreases rapidly enough,
A(S,-1y M) < 1 (n=1, 2, 3,....),
and then we may suppose that this condition is satisfied in addition to the
conditions (2. 4), (2. 5) and (2.6). Hence
A, M) Z BRocty M) — AS,ms, M) Z AR,y Na) — 1.
Now

IR0 = ‘5 [ Rui(®) de

1
2 tan 2()»" — )

An
=L "R

T Joa,

dt

2 tan%()\n —?)
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_Z. —f n—l(t) 1
a=2%An 2 tan 5(7&,, )

1 e dt
4 f 3D L —

=1 1,1~
An=2%" A= A %

[ =l )
= |

log A, + log (2“ b ; 7&;‘”) —(1 - a)logkn}

v

>

EZXTT‘“ {alog N, + log 2*7}

m

and hence, using (2. 6),
K%(ﬁn_,(h")l > a &, log\, + 1 E,log2* ' - + oo as 7 — oo,
4 4
On the other hand, using the Riesz theorem [10; p. 148],
An ~ Ap o~ 1/
f R,_.(® dtl < x}.’z( f Ri_(2) dt) :
) J 0

1/2

= M.’z( f_ " Ri\(2) dt)
=< ka”( f "R dt)m

/2
( f R _.(2) dt)
—n
S2KMPENTTDE =2 K&, M7 = oA %),
where K is a constant. Therefore

lim *—f Rn (@B dt =0,

and then

lim ACF, A,) = + oo,

N->oo

which proves (2. 3). Thus the function f(¢) satisfies the conditions (2. 1),

(2. 2) and (2. 3). Using this function, we shall now define a series ) a,

n=1

evaluable (R, 2, a + 1) but not evaluable (R, 2, @). Let the series )_a, be

n=1
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defined by the relation s#*! = #%,, s2** being the (C, @ + 1) sum of the
series 2a,. Then, by a lemma due to Marcinkiewicz [6 ; Lemma 1],

+ p(2),

o5 £+ nzl < sin ¢ ) = — potl <;7<t2t) _ F‘(Zt)t: ﬁO))
£o? Z soH ( SM> - % #(F(26) — F(O)),

a=1

p{¢) denoting a continuous function for all £ Thus (2. 2) and (2. 3) show

that the series D a, is evaluable (R, 2, @ + 1) but not evaluable (R, 2, a)

n=1
and the proof of Theorem is complete.

3. Proof of Theorem 2. We take the two sequences {A;} and (&}
in the former section, that is, these sequences satisfy the conditions (2. 4),
(2. 5) and (2. 6). Further let the sequence {A\;} satisfy

3. 1) 2041 < Nge

Then we define the function ¢(¢) in the same way as we defined £(¢) in (2, 7)
except that now we suppose ¢(¢) to be an odd function. Let us denote by
g(#) the function conjugate to g(¢). Let

9(£) ~>_ b, cos nt.
Then the convergency of the series > _|4,| is seen, by the method analogous

to one which we proved (2. 1). Furthermore, we have easily
(3. 2) lim {#5(28) — £7(G(28) — GO} = 0.
>0+

Now we shall prove that

3. 3) lirrtlesaup t*|9(¢) — 9(0)| = + oo,

Let us write

Sn = Z .‘éi and En = Z gi:
i=1 i=n+1

and denote by S, and R, the function conjugate to S~n and En, respectively.
Then we see easily that S,_,(#) is even and have the derivative at origin.
Hence Si_,(0) = 0. Therefore, if the sequence {A;} is chosen suitably,

(3 4) )—"-1&4)7‘5";‘(0)}<1 (n=2, 3 4. )
and we may suppose that this condition is satisfied in addition to the con-
ditions (2. 4), (2. 5) and (2. 6). Let us write
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M) — 90)] AE[9a(0) — 9x(0)] — AE[ S i(Nn) — Sn-i(0)]
- x%an(xn) - Rn(o)l

=U,—V,— W,
Then, by (3. 4),
(3. 5) v, =A\le bn—l(xn)x" Sn-l(o)j <1 (n=2,3, 4,.....
and, using (3. 1),
1
A% N sin ?7\"
wos2 | [T RO - —dt
—Ap+1 in — — 1 -
2 sin 3 (2 — \,)sin 9 ¢
w+1 - =
=3 Mx fA ' *-E"(ft)’dt
" mHL Y- 2 sin o ¢
AT o gl®
(3. 6) =5 _T—Zf ‘il dt
" A sin ¢
g+ - EN®
= 2). ix . 2“7\i

o R'n - Xn+1 t=n+1 )"i -2 7\'1

2a+1 A’n hed xn
= S S S Z &, =o(—r_T>=o(l).
n n+1

- Xn - 7\n+1 1—2° t=n+1

Since

19,0 = 2 0

2tan7

2N\ f n(t)
o _
2tan - 5

9:(8)

Mn=2ha 2tan5

B -
A

™

@ a+1
_/A__ &N E 20N, = g_ = 0(1)’
TNy — 2°As) (1 — 2%)

IA

we have, arguing as in the former section,

137
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I L
- 2 tanE—(t—X,,) 2 tan >
" Ap ~ @& Ap ~
3. 7) =X " 5.0 ‘it———‘ -2 gn(t)—ét—t.
—M 2 tan ?(t—h,,) LW 2 tan 5
= En {alog A, + log 2*7!} + o(1) > + oo, as n —> oo,

2m

Summing up (3. 5), (3. 6) and (3. 7), we get (3. 3). We shall now define a
series evaluable (R, 2, a) but not evaluable (R, 2, @ + 1). Let the series

> a, be defined by the relation s%*' = #’b,, s2*' being the (C, @ + 1) sum

n=1

of the series D a,. Then, by (2. 8), (3. 2) and (3. 3), we see that the series

n=1

> a, is evaluable (R, 2, @) but not evaluable (R, 2, a + 1). Thus the

n=1

theorem is completely proved.

4. Proof of Theorem 3. For the proof, we need the following Lemmas.

LEMMA 1. Let r > — 1. Suppose that (1. 3) holds and the series )_ a,
n=0

is Abel evaluable to s. Then

4.1 ot = 0()
and
4. 2) ottt > s as n — oo,

where € is an arbitrary positive number.

PROOF. Rajagopal [8; series-analogue of Lemma 6] proved (4. 1) and
4. 3) AR as n—> oo,

Then, by the well-known theorem [1; Theorem 70], (4. 2) follows.
LEMMA 2. Let r > — 1. Then the condition (1. 3) implies
4. 4) 2 |ou] = O(m)
n=0

and, for € > 0,
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2 |ai| = O(m),

n=0

and conversely (4. 4) implies (1. 3).
Since T'r + DA ~n" (r== -1, — 2,...... ), Lemma is obtained, in obvious

way, using Abel transformation.

We shall now prove Theorem. The three cases are considered :
Da<r,d) a=r, (1) a > r.

We shall first prove that Theorem in the case (I) is reduced to Theorem C.

Since r + 1 < p, we take € such that » + 1 + &€ < p. Then, by Lemma 1,

the series ) a, is evaluable (C, » + 1 4+ &) and, by Lemma 2, (1. 3) implies

n=0

Z |S:+e[ = O(nr+1+e)'
v=0

Hence, by Theorem C, the series Y a, evaluable (R, p, @) to s. Theorem

n=0

in the case (Il) is Theorem D. The case (III) is reduced to the case (II),
reasoning that when the conditions of Theorem are satisfied for 7, they are
also satisfied for &, by Lemma 2. Thus Theorem is proved.

5. Proof of Theorem 4. For the proof we need the following

LEMMA 3. Let the series »_ b, be converge and let ¢, = > b,. Then

v=1 ve=n
m m-1
Zavbv = anCn — Anlm+r — Z Cvi1 Da,
ven v=n

where Ba, = a, — a,.,. In particular, if ancpi, —> 0 as m — oo,

Z avbv =Qa,C, — Z Cyi1 Aa.,.

v=n v=n
Proof of Lemma is obvious, so that we omit it. We shall now prove
Theorem. Since Theorem in which & is an integer is Theorem E, we suppose
that «a is not an integer and write the greatest integer less than a by @.
Then p —2 B, by a + 1 <p. We may suppose, without loss of generality,
that s = 0. Let @(¢) = (¢"'sin#)’ and let A"@(nt) denote the m-th difference
of @(nt) with respect to n. Then Obreschkoff [7] showed
5B. 1) A" p(nt) = O™)

and
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(5. 2) A" P(nt) = O™ " u "),
for m,n=1,2,3,...... and ¢ > 0. By the repeated use of Abel’s transformation,
" m-p+p+1
s Z s‘,’i¢(nt) = pott Z szw-s-l Ap-8-1 ¢(nt)
Nml n=1
p-B-1

+ gt Y sat AT o(m — i+ 1)e).

Since the summability |C, p| implies the summability (C, p), when 0 7 p,

(5. 3) sh = o(n").
Then, using (5. 2), for a fixed ¢z > 0,
»-g-1
t“+l Z Sm ;,+1 ¢((m -7+ 1)t)
=1
—B—1

~ o(”z (m— i+ 1P (m— i+ 1)—">= o(1),

i=1
when m — oo, Therefore,by the identity

n

satP-B-1 — ZA%:;‘?—l 53_1,

v=0
1 3" sk p(at) = 20 3 sptvmPTU AP o)
n=1 n=1
= vt Z AP-B=1 g(nt) Z Azt 51
n=1 v=0
(5. 4) = a1 3" sh7t 5 ASTETT AP RSl ()
ve=l n=v
=Y s > A A P p(at)
val n=y

— Z (ot AP ZAN—ﬁ T AP- ﬁ¢(nt))

v=1

= Z (a8 — a2,) UL2),

where

Unle) =22 3 AP 3- AsZi7 AP g(nt),

v=1 n=vy

provided that the inversion in (5. 4) is legitimate and that, for 0 < # < 1 and

o

1) Here, we use Z Ax—=B=1 g1-F-1o(nt)=0 (t~%-1»-F) in (5.11) below and sP=o0(»?).

n=y
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(5. 5) U.(t) = OQ1).

Therefore, for the proof, it is sufficient to prove that the series

(5. 6) i (68 — ol ) US?)

v=1

converges in 0 < ¢ < ¢, and its sum tends to zero as £t —> 0 +. To justify
that the inversion in (5. 4) is legitimate, we must show that,for a fixed ¢z > 0,

N
(5. 7) lim > s27' > ABT AR () = 0.

Ve o1 ne=N+1

Since B8 < p — 2 and

3 AT gur) = A Pig(nt),

we have, by Lemma 3, for » such that 0 » =N,

> AP AR g(nt) = AFRT AP (N + 1))
n=N+1

(5. 8) -
F X ATER A ol + 1)

Nn=N+1
= O(N — v + 1) # ' N7
Then, putting [N/2] = u,

- - u—1 N
ST Y AR AT o) = (Z + Z) =1 + I,
v=1 N=N+1 v=1 v=p

say. Now, by the series-analogue of Rajagopal’s lemma [8; Lemma 10],

n

(5. 9) 2o s = 0@,

v=1

from our assumption. Hence, by (5. 8),

w-1
1L =0(X [ |(N — v + 1* N)
v=1l »
= o(N7N= 3 |27])
v=1
= O(N*=F") = o(1).
Concerning I,, we take an arbitrarily fixed L large enough. Then, using
(5. 9) and (6. 3) for i =p — 1,
N
L=0(N"X (N + 1 - vy

o )

v=1
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—o(n~

= oL + O (N~ > st - L)

ve=1

s oy NEF'S”“ v =)+ 0 N5 (5 kb o)

v=L "n=1

-1 N4l—

}:>+ O<N”’ > )

v=n v=L

= o1) + O +OWe") + O T e

v=L
= o(1) + O(L*~F").
Since L is arbitrary, by a — 8 — 1 < 0, I, = o(1) which proves, together
with I, = o(1), (5. 7). We shall next prove that (5. 5) holds. Now, by Lemma
putting p = [¢7],

oo v+p-1

> At artptny = (3 + ¥ )
n=v N=y nev+
v+pf1
—o(tw Az:’,’“>+ AP ATE o(y 4 p)e)

n=vy

— 2 AR AP o((n + 1))

N=v+p

= 0@y~ Azf) + O(c*-'v As~P)

r (o S

n=p
=0@G*v") + OE*v™") + O(t~*»7")
= O™ ").
Hence, if mz 1, then
(5. 10) U.(t) = (t 5 —") = O(mz) = O(D).
v=1
Thus,we have to prove for the case in which mz > 1. For p = 2,
had 2v—1 o
3 ATEIATFgnt) = O (75 PIRt= ol 7Y+ 0(672 2 (nw) )

n=2w

= O(t_ﬂ"gv'pz A%:E“> + O(t B=2yn=f- ‘Z n"’>

n=v n=2y

= Ot B2y rteP) 4 O By 7HaB)
— O(t -2 -P-Hz—ﬂ)
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For p=1, then — 1 < a <0 so that 8 = — 1. Since

Z sin nt _ O(t"v“),
n=v n
if v > 1, then

oo p-1

S AT APP2 () — Z Az, Sinnt (Z Ly )

n=y n=2y

=0 (t"v" > Az_v> + 4506 +0( i vty )

oo

= 06w + O + (¢4 (o — )

= O(t 7' v®) = O PPy Pra P,
Similarly, for » 1, putting p = [¢7],

oo v+p—1 o

6. 11) 2 ARTET AR o) =( PRI >= o v).

n=y n=y N=v+p

Now

U6) = 1= zsz A5 87 gty = (3 4 z) = Upi + Upa,

v=1

say, where U,, = O(1) by (5. 10). Since

oo

o2 AT AP g(nt) = 30 AsTh T ATEI (), (=0, 1),

v=i n=y =i

and
A A’:+1 = — Av+13
we have, by Lemma 3,

Upe = t’”l[ ZA“"B LA ) — AL S AR NP ()

n=p n=m+1
P A Y Ar are- ' gnd)|
v=p n=v+l

= [A” S AR A gty — A Y ASE AP ()

=p n=m+l

Al Z A8 AP g(ne) — AL Z AR AP 2 g(nt)

?1=p+1 Nn=m+1"

+ Z AZE X A A )|

n=y+2
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— O(tau-x 'Pp'f_“_‘ p—ﬂ) + O(tu+1 mﬂ.tw—lm—p)
+ O(ta+lpp-1,t—ﬁ-2p—p+a—ﬂ) + O(t”“ mﬂ-l .t—ﬂ—z m-p+w—ﬂ)

+ (6] <tw+1 Z y”‘2-t‘5'2y‘p+“‘ﬂ>

= O(1) + O((pt)**") + O((mey**) + O(pr)*~*)
= 0(1).

This proves (5. 5) for m¢ > 1. We shall now consider the series (5. 6). In
virture of (5. 5), by the assumption that

Z o'ﬁ_'a'r':+ll < + oo,

n=1
the series (5. 6) is converges (absolutely) in 0 < ¢ < 1. Further, for an arbi-
trary positive number &, there exists an N = N(&) such that

‘ i (o'f - ¢€+1) Uv(t)

| v=N

On the other hand, for a fixed » > 0, obviously

< &

oo

Y ARET AT B p(nt) = O <t““ D (n—v+ 1y F1yF n"’)

n=y n=v

= o(tw-ﬂ“ S (n—v+ 1)w-ﬂ-v—1>

n=y

= O (g8,
Then, for m N,

Unlt) =t 30 A D A3l AP g(nt)

v=1l n=y

=0 (L) = 0w N,

v=l

Hence

N
fm Y ot~ o) Ut = 0.
Therefore we have

lim sup

Zw - a,H)U(t)] <e¢

Since € is arbitrary, we get

Hn 3 (@ - et Uk = o,
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Theorem is completely proved.
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