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1. Introduction. This paper is concerned with semi-groups of operators
in Fréchet space and its application to the Cauchy problem for some linear
partial differential equations with constant coefficients.

A topological vector space is called a Fréchet space if it is locally con-
vex, complete and metrizable.

We shall deal with a semi-group of operators { T'(£) ;0 < & < oo} satisfy-
ing the following conditions :

(1) For each £=0, T(§) is a continuous linear operator from a Fréchet
space X into itself and

TE + n) = TET(n) for £,7 =0,
T(0) = I (the identity).
(2) There exists a non-negative number o such that
{e=*T(E)x ; & = 0}
is bounded in X for each x € X.
3) léif} TEx = x for each z € X.

Since a Banach space is obviously a Fréchet space, our semi-groups are
an extention of semi-groups of class (C,) in Banach space. (For semi-groups
in Banach space see the book of E. Hille and R.S. Phillips [3].)

We first remark that the conditions (1) and (3) imply the condition (2)
if X is a Banach space. For M EOE?£||T(E)H<OO by the uniform boundedness

theorem, and hence ||7(&)|| < M-exp(¢ log M) for each & = 0. But this is not
true in general if X is a Fréchet space.

EXAMPLE. We consider real valued functions of one real variable. C~
denotes the space of oo times continuously differentiable functions. It is well
known that the space C~ becomes a Fréchet space under the family of semi-
norms {p, ();m,k=0,1,2---- }, where

(1.1) Pm X)) = ‘§luslzlx("')(t)( for each z&C~.

We define
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(1.2) [T(E)x](2) = z(E + ©) for each £€=0, x€C~.
Then {7(€);0 < & < oo} is obviously a semi-group of operators satisfying
the conditions (1) and (3). But this semi-group does not imply the condition
(2). In fact, for zy(t) = & € C=,
2o.le™ T (E)zy) = sup ettt = =),
=k

Hence

éiTn Do,le” T (E)z,) = oo for each ¢ =0,

so that (e~ *T(&)z,; & =0} is not bounded for each o =>0.

§ 2—§5 are devoted to investigations of such semi-groups and we can
obtain results similarly as for semi-groups of class (C,) in Banach space. In
§6, these results are applied to the Cauchy problem for the parabolic
equation and the wave equation.

2. Preliminaries. We first prove the following

THEOREM 2.1. If {Tu} is a family of continuous linear operators
from a Fréchet space X, into a Fréchet space X, such that the set {T.x} is
bounded for each x € X, then for each neighborhood N, € 2, there exists a
neighborhood N, € 2, such that TN,) C N, for all a, where 2(i=1,2) is
a complete system of convex neighborhoods of the origin in X,.

PROOF. Since X, is locally convex and metrizable, its topology is also

determined by a family of denumerable semi-norms {p;1, PisPiss---- }. Let us
put
21 e for z € X,

220+ po (@)

Then X, is a quasi-normed space under the quasi-norm (2. 1)and || +||;-topology
is equivalent to the original topology in X,. Thus X, becomes a complete
quasi-normed space, so that each 7T, is a continuous linear operator from a
complete quasi-normed space X, into a complete quasi-normed space X, and
the set {7z} is bounded in the complete quasi-normed space X, for each
x € X;. Hence, by the Mazur-Orlicz theorem [5], for any € > 0 there exists
a positive number & = 8(&) such that ||7T,z|l, < & for all @ and |zl = 3.
Then the theorem is proved from the equivalence of the quasi-normed
topology (2.1) and the original topology in X;.

COROLLARY 2.1. Let {Ta} be a family of operators satisfying the as-

sumptions in Theorem 2.1. If the limit lim Ta.x exists on a dense subspace
@00

D in X, then the limit lim Tux exists on the whole space X, and T = lim

&0 )
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T, is a contintious linear operator from X, into X,.

PROOF. For any N, € 2, there exists a N, € 3, such that N, + N+
N;c N., and, by Theorem 2.1, there exists a symmetric neighborhood
N, € Z, such that
(2.2) To(N,) © N for all a.
Let x be any fixed element in X, and let x, be an element in D snch that
=+ (z, — ) € N,. Then, by assumption, there exists a number a, < 0 such
that T,z — Taxy € N, for a, @’ > a,. Hence

Tz — Tyx =Tz — x,) + (Tazy — Twzy) + Talxy — x)

€N:;+ N:+ N:C N,
for a,a > a,. The second part follows from (2.2).

COROLLARY 2.2. If {T(§);0 < & < oo} is a semi-group of operators
satisfying the conditions (1), (2) and (3), then {e~"*T(E)x; 0 < &€ < oo,z € B}
is bounded for each bounded set B C X. Especially, for any fixed » > 0,
{TEz;0 < E< o,z € B} is bounded.

PROOF. Theorem 2.1 shows that for each N € 2 there exists an
N’ € 3 such that e"*T(§) (N') C N for all £ = 0, where = denotes a complete
system of convex neighborhoods of the origin in X. Since B is a bounded
set, there exists a positive number as such that azB < N'. Hence aje¢ "
T(EXB) < N for all £ =0.

3. Infinitesimal generator and resolvent. Let {T(£); 0 < & < oo} be
a semi-group of operators satisfying the conditions (1),(2) and (3). It is
clear that, for each x € X, T(€) x is a continuous function of & € [0, o).
The infinitesimal generator is defined as the limit

140 h

xz = Ax
whenever this limit exists, the domain D{A) of A being the set of elements

for which the limit exists. For x € D{A) we have

3.2) i?%r_ = ATz = T(§)Ax for € > 0.

THEOREM 3. 1. The infinitesimal generator A is a closed linear operator
and IXA) is dense in X.

PROOF. Let x be any fixed element in X. T(§)z is a continuous func-
tion on [0, o) with values in X, so that we can define the Riemann integral

1 vl
, | 1@ aE (=)
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for each > 0. It is clear that y,—> x as 7|0 and that y, € D(A). Hence
D(A) is dense in X. By (3.2), we have

*‘;—‘(T(n)x — x)= %j{:" T(®Ax dE for x € D(A).

Suppose that {x,} is a sequence of elements in D(A) and that x,— x,,
Az, — 2,. The above formula holds for = = z,, so that

1 1
(T, — 2= [ T® Azt

Theorem 2.1 shows that for any closed convex neighborhood N there
exists a numbrer 7, > 0 such that T(é)( Az, — 2,) € N for n > nyp 0 < EZ.

Ui
Hence n“fu T() (Ax, — 2,)d€ € N for n > n,, that is,

1 A} 1 n
Y jo T(&)Azx,dE - L T(&)z,dE

as n — oo, Thus we have for each > 0

[ @ de = 176 — ).

When 7 — 0 the left hand side tends to 2,, so that x, € D(A) and Az,=z,.
This completes the proof.
Let x te any fixed element in X and let us put

R.(\; Ax = j;we"‘fT(Z‘)x dé

for each w > 0 and A > 0. (We can define the integral of Riemann type
since e MT(£)z is a continuous function on [0, «) with values in X.) P
denotes a family of denumerable semi-norms determining the topology of X.
Then we have for any semi-norm p € P

AR )z — Run; )= [ epTE)eNdt

By the assumption (2) there exists a constant M, > 0 such that p(T(é)x) =
¢’*M, for all € > 0. Hence if A > o, then

AR5 Az — R ) < M, [ ek — 0

as w,w — oo, Thus the limit lim R.(\; A)z exists.
W->c0

We shall define R(\; A) for each A > o by

o

(3.3) ROV Az = lim Run; Az = fo MT(E)x dE.
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THEOREM 3.2. For each A > o, R(\; A) is a continuous linear operator
Jrom X into itself, and

A= ARN\;A)x ==z for all x € X,
RA;AA(N— A)x=x for all x € D(A).
PROOF. It is clear that R(A; A) is a linear operator from X into itself.
Let z,— 0, z, € X. Then the sequence {z,} is bounded, so that {e™"*T(&)x.;
E>0,2=12,3,..... } is a bounded set by the Corollary 2.2. For each
semi-norm p € P there exists a positive constant M, such that p(T(€)z,)= %
M, for each ¢ =0 and = 1. From the definition of R(A; A) we have
ARO; ) = [ M uT@),) d:
Since lim AT (&)x,) = 0 for all €=0 and e M T(é)z,) < Mye*" € L' for
n>eo

all 7, the convergence theorem shows that p(R(\ ; A)x,) — 0 as n — oo. Hence
R(\; A)x,—>0 as n— oo, that is, R(A; A)(A > o) is a continuous linear
operator. The second part can be proved similarly as in the case of Banach
space.

From this theorem we get the resolvent equation

(8.4) RA;A)— R(p;A)= — (A — w)R(\; A)R(n; A)
for each A\, u > 0.
THEOREM 3.3. For each x € X and k= 1,23, -

(3.5) %:;R(K ; Az = (— 1D RI[R(N; Az A > o).
PROOF. From (3. 4)
RO+ b A)e — ROv; A)e] — (= DIRO; Al
= hR(\ + h; AYRO; APz for all z € X.
Then for any semi-norm p € P we have

1
2(5 RO+ s Az — RO A)e] — (= DIRO; APz )

= [2|ARN + 25 AR A)fx) = | 2] _/; we“‘“”’fp(T(«E)[R(x;A)]*x)d&

1
ANth—0o

as |h| = 0, where M, is a constant such that e “*s(T(E)R(\; A)l’x) < M,
for all £ = 0. This asserts that

= |k M,

-0
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d
’JXRO\. ; A)xr =(—= D[R\ ; A)lPx for all x € X.
Using the induction we see that (3.5) holds for each k= 1.

THEOREM 3. 4. For each bounded set B, the set
[N =0)R(\; A)]'z;2 € BBA>0, n=123,..... }
is bounded. '

PROOF. From the definition of R(\A; A)
dk co
A RO Mz =(— 1 [ e T dt,
so that by (3.5)
(0= RO A 2 = P2 e ae.

Thus for each semi-norm p € P we have

K+
P[(n — )RV D) = ) : f EeNp(T(E)x) dE.

Corollary 2.2 shows that there exists a constant M, >0 such that p(T(&)x)
<M.,e’ for all €=>0 and x € B. Hence

KA — )R\ ; A ') = M,
forall r € BA>0o and £=0,1,2,----

THEOREM 3.5. For each x € X
lim AR(A; A)x = .

A>eo
PROOF. By Theorem 3. 2

AR\ ; A)xr — 2 = R(\; A)Ax for x € D(A),
and Theorem 3.4 asserts that for each semi-norm p € P there exists a con-
stant M, > 0 such that p(R(\; A)Ax) < M\ — o)~! for all A>o. Hence

PARN; A)r — 2) = (RNV; A)Ax) S M(X — o) ' =0

as A — oo, so that }\Lrg AR\ ; A)x = x for x € D(A). Since D(A) is dense
in X and since {AR(N; A)x ; A>>0a} is bounded for each z € X, the theorem
follows from Corollary 2. 1.

4. Representation theorem. We now define
A
2 = e~ 22 AL RO A
k=0

for each x € X. For each fixed A>o, ng and z€ X, the sequence { TW(&)x;
n=20,1,2,..... } is a Cauchy sequence. Indeed, for any semi-norm p € P,
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AT — ToEw) = exp( — DX XL par0n; A1)

m+1

and there exists, by Theorem 3.4, a constant M, > 0 such that (A\—o)"
p((R(N; A)IFx) =< M, for all %, and so that

(Kf)k Xk

T(E)x — T(E)x) = M, exp(— A\E)D_ > Kl O o) -0
as n, m — co,
Then, for each A >0, £ =0 and x € X, the limit
(4.1) Tz = lim T(E)x = exp( — N‘I‘)Z ()”E)k AR A x

exists. Since T%(€) is a continuous linear operator from X into itself, it
follows from Corollary 2.1 that T\(&) is a continuous linear operator from
X into itself.

THEOREM 4. 1. For each fixed N > o and x € X, T\(&) x is a continuous
Sunction on [0, o) with values in X. Furthermore the set

{eXP(T:—:%) T\&z;x € B,£=0 and 7\.>a'l-

is bounded if B is a bounded set.

PROOF. T3(é)z is a continuous function of & € [0, =) and (4.1) holds
uniformly with respect to € in any finite interval of & so that TW(&) x is a
continuous function of & € [0, ). By Theorem 3.4 we have for each semi-
norm p € P

Ammxmm—mz%y

AR\ ; A )
_ (x&) Y
< M, exp( M:‘)Z (7\. — ¢r) =M, expy /7\

for all €= 0, A > o and x € B, where M, > 0 is a constant.
THEOREM 4. 2. For each fired A\, p > 0o and x € X

d
(4.2) ;,;TA(E — DTz = TN — DT () AR(p; A)x — MAR(N; A)x)
0=9=9).

PROOF. An elementary calculus shows that for each semi-norm p € P

Z”(d&iexﬂ x&)m+<!’»ﬂi>lfx})

k=ko
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k=ko

(0 < & < w), where M, is a constant such that p([(A — @)R(\ ; A)Ifx) < M, for
al A >0 and £=0.1,2, - . The right hand side tends to zero as k,—>o°
and hence the series

£ g OEIEGAT

~ dE |

k=)

converges uniformly with respect to £ in any finite interval of & Therefore
bl k k

> ;; {exp( XE)(XE) [M/: 9 s A)] } is a continuous function of & € [0, o)
k=0

and then

£ o k k
szt)d% exp(_x )(m) [Mz('x ; A)] }d”

&) [xR(x AF

—Ze p( — AE)

k=0
for all € > 0, and so that

S ep(— 2 CDEOAL, 5y QEDROSANY )

k=0 k=0

— cxp ~ 1y O DROAT

Since MR(M; A)x — = hAR(?u ; A)x by Theorem 3.2, we have

MR\ ; A)x — Ax).

4.3) j& TW&)x = TVEMNAR(N; A)x for £=0.

Then the formula (4.2) follows from (4.3), Therems 4.1, and 2.1, and the
property T,(mARM\; A) = AR\ ; A)T (7).

The same agument shows that
4
48 g TWE = DT = TiE = NTHXA — MR DA

for x € DA, »>0c and 0 < 9 < &
THEOREM 4. 3. For each € =0 and x € X

RO A

(4.5) TE)x = hm exp( — NE)Z(X‘E)IC k1

PROOF. By (4.4) we have
£

T@® ~ T = [ 5 TiE — DTy
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3
= j; TE — 7)T(n) (Ax — NR(\; A)Ax) dn

for x € D(A). It follows from Theorems 4.1 and 2.1 that for any closed
convex neighborhood N of the origin there exists a neighborhood N’ € 2
such that TW(é — )N < N for all A > 20 and 7 € [0,&]. Further there
exists by Theorem 2.1 a neighborhood N” € 2 such that T'(»)N” < N’ for
all » € [0, &], and Theorem 3.5 asserts that there exists a numbker Ay > 0
such that Az — AR(\; A)Ax € N” for A > .. Hence if A > max(2a,2,),
then TW(& — 9)T(n) (Ax — AR(\; A)Ax) € N for all » € [0, &]. Hence we get

£ (T®z — Tyl € N

for A > max(N\y, 20), that is, 1}\im T\&)x = T(E)x for each € >0 and z €
D (A). We have by Corollary 2.1 that the limit 7"'(§)x = lAim TW(E)x exists
%DO

for all x € X and that 7'(€) is a continuous linear operator. Since 7"(&)x
= T(&)x for x € D(A) and since the operators 7"'(¢£) and 7T(€) are continuous,
we have T(E)x = T'({)x for all x € X and € > 0. If £=0, then T(E)x = =
=Ty\&x for all A > o and x € X. Therefore (4.5) holds for all z € X and
E=o.

5. Generation of semi-groups. Collecting the previous results we get
the following

THEOREM 5.1. If {T(E);0<E < oo} is a semi-group of operators
satisfying the conditions (1), (2) and (3), then

(1) the infinitesimal generator A is a closed linear operator and its
domain IXA) is dense in X,

(2) for each N > o there exists a continuous linear operator R(A; A)
from X into itself such that

A= ARN\; Az ==x for z € X,
RA;AN—Az=z for x € D(A),
(38 for each x € X the set
([ — RN ; A2 >0, n=0,1,2,-}
is bounded.
Then we have

T@z = lim exp (- )Y (ﬁ’ﬁ[’ifg?&:_é)]? .

We now consider the converse problem for the theory of semi-groups,
namely, what properties should an operator A possess in order that it be
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the infinitesimal generator of a semi-group of operators satisfying the con-
ditions (1), (2) and (3)°?

Let A be a linear operator satisfying the following conditions:

(1) Ais a closed linear operator from the domain D(A) into X and
D(A) is dense in X.

(2") For each A > o, where o is some non-negative constant, there exists
a continuous linear operator R(A; A) from X into itself such that

AN—ARN;A)x = x for z€ X,
RA;A)(W— A)x = x for x € D(A).
(83") For each x € X the set
([ =R ; A)'23v>0,n=0,1,2,---}
is bounded. '
Under these assumptions it follows from the previous arguments that
5.1 T® = exp(— ) 3 MIDROGAT

= k!

is well defined for each £€=0, A > ¢ and x € X, and that Theorems 3.5,
4.1 and 4.2 hold.
We now prove that for each fixed £ € X the limit lim T\(&)xr exists
Am >

uniformly with respect to & in any finite interval of £ In fact, by Theorem
4.2, we have

td
Tz — T®x = [ 5 T ~ DT dy

£
= [ 7€ — TR 4) ~ ARO AAzdy

for £ € D(A). By Theorems 4.1 and 4.2 for any closed neighborhood N € =
there exists a neighborhood N’ € 2 such that TW(¢ — 9)T.(n)N' < N for all
M, A>20 and 0 < 9 < & < o, where » is any fixed number, and Theorem
3.5 shows that there exists a number A, > 0 such that [pR(u; A) — AR
(A; A)JAx € N’ for all A, p > A,. Then we have for each 0 < ¢ < o

ENTUBx — Tb)x) € N

if A, # > max (A, 20), so that TW(&)x — T\(E)x € o N for all & € [0, o] if
A, > max(N, 20). Hence for each fixed x € D{A) the limit lim 7,(&)x

e
exists uniformly with respect to £ in any finite interval. Corollary 2. 1 concludes
that for each fixed € X the limit lim T, (é)z exists uniformly with respect
M0

to & in any finite interval and this limit is a continuous linear operator
from X into itself.
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We define
(5.2) TEx= }\im T\(&zx for eaché=>=0 and x € X.

Since T)(&)x is a continuous function of & € [0,00), T(E)x is continuous with
respect to & € [0, o) for each x € X.
An elementary argument shows that for A > o

TAE + n) = T(E)TA(n) and TN0) = I,
and hence we have by (5.2) and Theorem 2.1 the semi-group property
TE + ) = T(E)T(n) and 7(0) = L

Finally, from Theorem 4.1, we have that the set {e™" T(&)x; 0 < & < oo} is
bounded for each 2 € X. Thus we obtain the following

THEOREM 5.2. If A is an operator satisfying the assumptions (1°),(2')
and (3"), then A is the infinitesimal generator of a semi-group of operators
(T(&); 0 < & < oo} satisfying the conditions (1),(2) and (3). Further

b )\’ k . Kk
TE)x = ,1\1;5 exp ( — Af) Z( ) D\ﬁ(l,{l)] x

k=0
for all x € X and &€ = 0.

PROOF. It has already been observed that the family of operators which
is defined by (5.2) satisfies the conditions (1),(2) and (3). We shall now show
that A is the infinitesimal generator of {7T(£);0 < & < oo}.

By (4.3)

1 1t
(53) ¢ (T@z -2 = ¢ [ TR A) Az

for each z € D(A). Let N € 2 be any neighborhood and let N" be a closed
convex neighborhood of origin such that N+ N  CN. By Theorems 4.1
and 2.1 there exists a neighborhood N” € X such that T,(»)N” < N’ for
all A > 2a and 7 € [0, €], and by Theorem 3.5 there exists a number A > 0
such that AR(A;A)Ax — Ax € N for all A > A Since (5.2) holds uniformly
in any finite interval of & there exists a number A, > 0 such that (7'\(n) —
T (9)Azx € N’ for all A > Ay and 5 € [0, £]. Thus if A > max (A, Ao, 2 o), then

£ £
;( fu TimR(N; A) Az dn — fo T(n)Ax dn)
1 1
=& f; TR A)Ax — Ax)dn + ¢~ fd (T\(n) — T(n))Ax dn

€ N+ N cN.

Then passing to the limit with A in (5.3) we have
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£
& @ — ) =5 [ Topaady

) ,
for x € D(A), so that 15131 ?(T(f)x — z) = Ax for £ € D(A).

Let A" be the infinitesimal generator of {7(§); 0 < & < oo} and D(A")
be its domain. Since D(A") D D(A) and A’z = Ax for x € D(A), it follows
from the assumption (2') and Theorem 5.1 (2') that R(A; A)Y(A — A)z = =
= R(\; A)(M — A)x for x € D(A). Hence we have R(A; A) = R(A; A') ac-
cording to (AW — A)[D(A)] = X, so that A = A’. This concludes the proof
of Theorem 5. 2.

6. Applications to partial differential equations. The theory of semi-
groups of operators in Banach space has been applied to the Cauchy problem
for linear partial differential equations by E. Hille [2], P.D.Lax & A.N.
Milgram [4] and K. Yosida [7], [8].

In this section we shall apply to the Cauchy problem our semi-group
theory.

6.1. Preliminaries. Let H be the space of real-valued C*-functions
(infinite times continuously differentiable functions) defined on z-dimensional
euclidean space E™ such that its partial derivatives of all orders belong to
the space L2 It is clear that the space H becomes a pre-Hilbert space under
the inner product

(6.1) (@ ¥ = 3 [ DD ¥ (t)t,

|k =n
ai1+lcz+ etk

where D® = E TR | | =§ki and dt=d¢t dt, ......... dt,,.
Let H, be the completion of H with respect to the norm
(6.2) lell. = (@, @)
The following theorem is due to P.D.Lax & A.N. Milgram [4].
THEOREM 6. 1. Let a bilinear functional B(p, V) defined on the Hilbert
space H, satisfying the followings;
| Ble, V)| = vllolll¥l. for all @¢,¥ € H,,
Blp, ) = dllel for all @ € H,,
where 7y, 8 are some positive constants. Then there exists a bounded linear

operator S from H, onto itself such ||S|| < 8! and (@, V), = B(p, SY¥) for
all , ¥ € H,.

We shall introduce a topology into the vector space H. Let D be a
partial differential operator of the form o¥*%*-*km/515452. 5fm and let us
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put

12

(6.3) o) =<Lm i(D¢)(t)|2dt> for all @ € H.

It is a semi-norm of the vector space H and the totality of those semi-norms
corresponding to all partial differential operators defines a topology of H.
We shall again denote by H the topological vector space H provided with
this topology.

LEMMA 6. 1. If Iirr)x fo = fin H, then for each partial differential operator
D®
lim(D£) (1) = (D) (1)
holds uniformly with respect to t in any compact set in E".

PROOF. We now prove the lemma for m = 2. We may assume f =0
without loss of generality. By the assumption and the Schwarz inequality
we have

fm foa i a%wl —(L‘iﬁ—tg) i
. 1 at:hatQ € fu(tu t5) i dt, dt, — 0

as @ — 0, that is, for arbitrary & > 0 there exists a number a, = a,(&) > 0
such that

(6.4 fwfw|~ oD iy dn dn, < &
6.4) | odr, € Jolt, 1) | dt, dt, <

for |a| = a,, where 8, = 0 or 1. Then

= oM is e
f _atsl U 2) fa( 15 52) 8[51 (e fw(tu 82)1 dtl
s'“ -(f2+l2) ’
(6. 5) -wdt] S,at 1 fu(tl, t2)ldt2

651+1 _¢ +f2) |
f f_w) otor, VL8, 8,) de, dty, < &

for all |a] < a,, s, and &,. Now

P oo an _ (£2+L‘!)
[anf

IV T R 2 (N t2)[:dtl < oo,
|
Hence we see that

ot ¢
NG ;
f atal e '° fa(tl W) idt, =0

*) From now the symbol D (or D:) denotes a partial differential operator of the form
It R [k ot
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when ¢, tends to — oo (or + oo) without taking the values of #, which form
a set of finite measure. Therefore for each a there exists a sequence {&}}
= {&(a)} such that

lim J:i

ehy-e

R
o

e ‘(‘“‘*Jﬂf")fw(tl, &)\ dt, = 0.

Combining this and (6.5) we have

< 95‘ - z+S.:;' ’
6.6) [ S ™ flts an < e
1 |

).
for all |a| =< a, and s,. Let us take &, = 1, then

| e fulsi, 55) — e ~ED fo(8,, 5,)]

6.7) 9 | S
éf atl e “ Z)fw(tl: S2)]dt1 §f:w ‘a_tTe

2,2
= (07 +5y)

|
Fultss 50)1dt, <&

€1

for all s5,,&,s, and |a| =< &,. On the other hand if we put §, =0 in
(6.6), then

o | 2 2 !

| =7 +s3) _
f le ! EN A sy)idt, < &
—co |

for all s, and |a| < a,. Hence, as in the preceding case, we see that for
each fixed s, and |a@| =< a, there exists a sequence {&f} = {&(a, s,)} such
that

. —-((8'{)2 +s§) " _
E%erlme Su&,55) = 0.

. . . -(+s3) .
Combining this and (6.7) we have | e Fuls15 52)| < & for all s, and s, if
|la| < a,. Thus fu(s,, s;)—0 uniformly with respect to (s, s,) in any compact
set.

Finally if lim f, =0 in H then it is o.vious that lim Df, = 0 in H for
a—>)

a->0
each partial differential operator D, so that (Df,) (¥) = 0 uniformly with respect
to ¢ in any compact set.
Using the same method we can also prove the lemma for m = 3.
The following lemma is easily proved.

LEMMA 6. 2. The space H is a Fréchet space.

6. 2. Parabolic equation. Let A be a partial differential operator of the
2 n-th order in m-dimensional euclidean space E™;

6.8) A=—(=1" 3 & DPD®,

lpl, v]=0
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Pl -t P mn

] . ; .
where D® = _—————, [p| = 3 p; and the coefficients a** = g~ Prit>"n
AT, ~

are real constants.
In this section we consider the Cauchy problem for the parabolic
equation in m-dimensional euclidean space E™;

B _ aut), £=o0,

(0, t) = f(#).

We assume that

(6.9) a’ = a’* for |p| = |v| ==,
and there exists a constant & > 0 such that
(6.10) > et ... e > &, (Z t; )"

Ipl=|vl=n J=1

for each (¢,...... ,tn) € E™. Therefore A is an elliptic differential operator.
We define the adjoint operator A* by

n

6. 11) AF = (= 1" 3 (= 1)e+F gwD® Do,

lel, lvi=0

We can easily prove

(6.12) (Afs 9 = (f; A% g), for all f, 9 € H,

where (£, 0) = | f(Dot)d.

LEMMA 6. 3. (Garding's inequalities) There exist positive constants 8,
Mo(= N(8y)) and K such that if A=A, then

(6.13) N=ADfsfh=0F0—= A=Al for all f€ H,
(6 14) |<Af,9)o - (f’ Ag)0| é K”.ﬂ[n“g”n—l f07' all f;g S H
Further for each N > 0 there exists a constant M, such that

(6. 15) [ = Dfgh| = [ — A%)g)| = M FllLllgll

for all f,9 € H.

For the proof see Garding’s paper [1]. In our case the coeflicients are
constants, so that we see that the inequalities hold in the space H.

LEMMA 6.4. Let N be any fixed number such that N > N,. Then, for
any function f € L* N C, the equation
MNe — Au=f
has a solution u; € H, N C~.
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PROOF. Let us define a bilinear functional
Biu,v) = (\u — A*u,v),
for all u,v € H. From Garding’s inequalities we have
| B\, v)| = Millullallvllas Bi(u, w) = 8|lull3.
_ Since H, is the completion of H with respect to the norm 11l
B\(u ,v) may be extended to the bilinear functional B,(u,v) defined on H,
satisfying
(6 16) IB:\(u’ ’U)‘ _S__ M)\“ulln”vum BA(ua u) 5_\—_ 80”“”;
For any f € L? N C~ the linear functional (u,f), is a bounded functional
defined on H, since |(u,f)y| = ||ull.|lfll,- Hence, by the F.Riesz theorem,
there exists an element o(f) € H, such that (u,f), = (u, v(f)), for all u €
H,. Thus, by Theorem 6.1, we get
(u7f)0 = (u’ 'v(f))n = B,\(u, SAv(.f)) fOl' all u < H",
where S, is a bounded linear operator from H, onto itself which is deter-
mined in Theorem 6.1. Let v, € H be a sequence such that

lim/[v, — Sio(f)l, = 0.

Then, for « € HE™® C H,
B\(u, Siv(f)) = lim By(u, v,) = lim \u — A*u,v,),
im m

= (Au — A*u, S\v(F))y»
so that
(w, f o = v — A%*u, Syo(f))y for all u € H(E™).
Thus (A — A)S\w(f) = f in (= the dual of § = the space of distributions).
f(x) being any C~-function and (A — A) being an elliptic differential
operator, we see, by the L.Schwartz theorem [6], that u, = Syv(f) € H, is

a C~-solution.

LEMMA 6.5. Let N be any fixed number such that A > \,, where M, (> \,)
is a constant. If w € L* N C* and if AMw — Aw =0, then w(t) =0 for all
te E".

PROOF. Let © be the space of all rapidly decreasing functions and let
&’ be the dual of &. We now define

Tp) = | w(bg(t) dt
for all @ € &. It is clear that 7', € &". According to L.Schwartz [6] we can

*¥)  P(E™) denotes the space of C=-functions with compact carriers.



178 I. MIYADERA

define the Fourier transform F(T) € & for all T € &. It is well known
that

(6.17) F(@T/at,) = 2ma/—1¢,+ F(T),

(6.18) FrFT) =T

where F* denotes the conjugate Fourier transform.
By the hypothesis

AT, + (=1 Y a*DPDYT, =0,
Iel,1v[=0
so that by (6.17)

n

6.19) A F(T)) + (-1 3 a™@m/— D™ L ™ JT,) = 0.

Ipl lvl=0

An elementary calculus shows that if A > A, = max (A, C) then

n

D] =+ (= 1" S a@m/— 1) A e
Iol, Ivl=0
ip'}\. —-C>0,
where C = (2m)*" 273 la®|alf'* " and a, = max (1, &" }5 |a””|). Then,
for each A > A, I]’.)I/ll;lfs a slowly increasing function, scl)m,tl}:l::to @/h, € © for

all ¢ € G.
Now, by (6. 19), (F(Tw)) (hy@) = 0 for all @ € &. Hence if A >\, then

(KT (@) =(F(T,)) (]l)\ ) =0 for all ¢ € &, that is, F(T,) = 0. Thus
we have T, = 0 from (6. 18). Then

[ wypwat =0
for all @ € &, so that w(t) = 0 since € is dense in L

LEMMA 6.6. Let N be any fixred number such that N > \,. Then, for
any functions f € H, the equation
A= Au=f

has a unique solution u;, € H and, for each semi-norm pi ),

where N, and C are constants in the preceding lemma.

PROOF. By Lemma 6. 4, for each function f € H there exists a function
uy € H, N C” such that (A — A)uy = f. Operating any partial differential
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operator D, we have
(6. 20) (A — A)Du, = Df.
Again it follows from Lemma 6.4 that there exists a function up, € H, N C~
such that
(6.21) N — Aun; = Df.
We remark that D%Wu, belongs to L? 1 C°, where D™ denotes a partial
differential operator of the first order. If we put w = D® u; — up, then
w € L* N C° and (A — A)w = 0. Thus Lemma 6. 5 shows that DVu, = upw)y,
€ H, N C~c L?* NI C°. Repeating the same argument, for each partial dift-
erential operator D, we have Duy = upr € H, 1 C° < L?* ) C~. Hence u,
€ H and the uniqueness of the solution follows from Lemma 6. 5.

Finally we get from (6. 20)

h(t) F(Du;) = F(Df),

where F denotes the Fourier transform on L?% and

Ik)\(t)l — D‘f + ( _ 1) Z apv(zﬂ_\/ )lpl+lv| prem t%wm I =a—C

lpt, v =0

for all ¢ € E™. Hence ®

| F(Du,X#)| = T_"a | FXDY)(®)]

for all t € E™, so that by the Parseval theorem

ey = ([ 1 Dug () 12arys = ([ | FDuX0)|2 aty”
<o IFDXDI avy = ;f—c ([ 1Dr) 2 ary

1
= ):__Epn(f ).

This concludes the proof of Lemma 6. 6.

It is clear that A is a continuous linear operator from I into itself.
If we put R(A; A)f = u,;, then we obtain from Lemma 6.6 that R(A; A)
(A > A,) is a continuous linear operator from H onto itself, that

A — ARMN;A)fF = ROA(N— AF=Ff for all f€ H, A > A,
and that

PD([R()\' A)ka) (X C)kPD(f)

for each semi-norm pp, £ =1,2,3, ...... and A > A,. Hence the set
([ — ORMAFf NS>0, k=0,1,2, e |
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is bounded in H for each f € H, where o = max(\,, C). Thus Theorem 5. 2
shows that the differential operator A generates a semi-group of operators
satisfying the following conditions;

(6.22) TE + n) = TE)T(n), T(0) = 1,
(6.23) pTES) = e"*pu(f) for all f € H,
(6.24) lgi:gl TEF=f for all f€ H.
In this case D(A) = H, so that

d'T
(6,25) LT _ 1@ - aTey
forall fe Hand [ =1,2,3,------- .

It follows from Lemma 6.1 that dT(£)f/ d€é is equal to the ordinary deri-
vative O(T(€)f) (t)/o€ and that lu;n (TEF)t) = At) for all t € E™. Thus if
we put u(&, t;f) = T(E)f, then

ou,t; f)
oF

(6.27) lgirol w& t;f) =f(t) for all t € E™.

(6.26) = Au(, t; f) for all €= 0,t € E",

Furthermore, for each partial differential operator D, with respeet to %, we
have

(6.28) ([ 1Dutt,t; pizary < e[ DAty

for all £ = 0. It is clear that (&, ¢;f) is a C=-function with respect to € and
wé t;f) € H for each €= 0.

Finally we shall prove that u(§, t;f) is a C~-function with respect to
(&, t). Since DA = AD,, we have D,R(\; A) = R(\; A)D,. Then, by the
continuity of D, and the representation theorem of T(£), we have
Therefore we obtain from (6. 25) that

o 2
_fég‘Dtu(f, t;f) = D‘—é&‘_ wE, t:f) = ul, t;A'Df)
for I = 1, 2’3, ......... .

Now T(&)A'D,f = w(é,«; A'D,f) is a continuous function of &€ = 0 with values
in H, so that it follows from Lemma 6.1 that (&, #; A'D,f) is a continuous
function of (&, t). Hence w(&, t;f) is a C*-function with respect to (&, £). Thus
we have the following

THEOREM 6. 2. The Cauchy problem for the parabolic equation in m-
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. . . i
dimensional euclidean space E

j ?ﬁé%—t) = (Aw) (& D), £§=0,tc E™,
%0, t) = Ab), te E",

is solvable in the following sense. For any given f € H the above parabolic
equation admits a C™(with respect to (&, t)) solution u(E, t)=u(§, t;f) satisfying
the conditions

(i) wE + n,t;/) = & t;uln, ;1)) for all £, =0 and t € E",
(ii) there exists a constant o > 0 such that

([ 1Dtk t:p)aty® <e [ |DAo)\aty
for all € = 0 and for all partial differential operators D,
(iii) lgiﬁl wé, s f) =) in H and du(§, «;f)/dé = Au(é,;f)in H.
Furthermore the solution w(&, t;f) such that the conditions (ii) and (iii) satisfy,
is uniquely determined for f € H.

PROOF OF UNIQUENESS. We suppose u,(&, t;f) and (&, t;f) satisfy the
conditions (ii) and (iii). Then v(§, £;f) = w,(&, t;f)—ux(&, t;f) implies the foll-

owings;
; lim w(&, ;) =0 in H,
£00

'(h)“(f;&:;f)*' = Av(§, +;f). in H,
(o€, +3)) < 2¢7pi(f).
Hence
Lovo) = [ et -5 £) dt
exists for each A > o and
ALo) = [ Ao @) ab = [ e TESD g

= AL\ v),

that is, W — A)L(\;v) = 0. Thus L(\; v) = 0 for all A > o. Hence v(§, +; f)
=0 for all £ =0, so that «,(§ t;f) = u,(& t;f).

6.3. Wave equation. Let A be a partial differential operator of the
second order in m-dimensional euclidean space E™ with constant coefficients
satisfying (6.9) and (6.10) (with » = 1).

We now consider the Cauchy problem for the wave equation in -
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dimensional euclidean space E™;

j—a—%tl.:Au(é,t), — oo < E < oo,

(6.29) 5
l u(0, t) = f(t), ux(0, t) = o (0, 1) = g(1).

The problem is equivalent to the matrical equation

o ()= (o) (D),

(:6,19) = (50).

Let A, be a fixed positive number such that the Garding inequality
(6.13) holds, and let D be a partial differential operator of the form
Qfrttkm JOhOfkr . We define gp by

(6.31) a(f) = (N — A)Df, Df))* for all f € H.
The following lemma is easily proved from the Garding inequalities.

(6.30)

LEMMA 6.7. qp is a semi-norm of the vector space H and H becomes a
Frechét space under the topology defined by the totality of semi-norms qp cor-
responding to all partial differential operators. Further this topology is
equivalent to the previous topology determined by {pp; D}.

Let us put
ro1) = @) + £

for each(-g)eHxH

It is a semi-norm of the product vector space H X H and the totality of
those semi-norms corresponding to all partial differential operators defines a
topology of H X H. We shall again denote by H X H the topological vector
space H X H provided with this topology. Then it is clear that the product
space H X H is a Fréchet space.

From Yosida’s arguments [8] and Lemma 6.6 we can prove the following

LEMMA 6.8. There exists a positive number N, such that if \is a real
number with |N| > \,. then the equation

(6 D-Ga)E)=0)

has a unique solution <Z‘> = <Z£ > € H X H for each (J;) € H X H.

2

Further
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1
Ur) <« ————— f
©.32) w(5)= wr=a ()
for each semi-norm rp,|N| = N, and ({;) € H X H, where B is a positive

constant independent of A, <J; ) and rp.

Using the same method in the parabolic case, we can prove the foll-
owing theorem.

THEOREM 6. 3. The Cauchy problem for (6.29) is solvable in the fol-
lowing sense: For any given pair <jgr> of H-functions the equation (6.29)
admits a C* (with respect to (Et)) solution u(&t) = u(§, t;(])) satisfying the
conditions

(i) there exists a constant o > 0 such that

(v — A)Dad, - ), DaE, « )y + (D&, + ), D€, + o]
=< " [(Ny — A)D.f, D.f)y +(D.g, D,g) "
for all & and for each partial differential operator D,

- Lim (ﬁ;&? I 3) = (J;) in H x H,
i) d

_d (u(-) _(0 I\ (u(E )\ .
l dE (ue(f,' )> AV 0) <u£(§,, )> in Hx H.
Further the solution u(& t) which satisfies the conditions (i) and (i) is
uniquely determined for (J; > € Hx H.
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